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TOPICS ON THE GEOMETRY OF HOMOGENEOUS SPACES

LAURENT MANIVEL

Abstract. This is a survey paper about a selection of results in complex
algebraic geometry that appeared in the recent and less recent litterature, and
in which rational homogeneous spaces play a prominent rôle. This selection is
largely arbitrary and mainly reflects the interests of the author.

Rational homogeneous varieties are very special projective varieties, which ap-
pear in a variety of circumstances as exhibiting extremal behavior. In the quite re-
cent years, a series of very interesting examples of pairs (sometimes called Fourier-
Mukai partners) of derived equivalent, but not isomorphic, and even non bira-
tionally equivalent manifolds have been discovered by several authors, starting from
the special geometry of certain homogeneous spaces. We will not discuss derived
categories and will not describe these derived equivalences: this would require more
sophisticated tools and much ampler discussions. Neither will we say much about
Homological Projective Duality, which can be considered as the unifying thread of
all these apparently disparate examples. Our much more modest goal will be to
describe their geometry, starting from the ambient homogeneous spaces.

In order to do so, we will have to explain how one can approach homogeneous
spaces just playing with Dynkin diagram, without knowing much about Lie the-
ory. In particular we will explain how to describe the VMRT (variety of minimal
rational tangents) of a generalized Grassmannian. This will show us how to com-
pute the index of these varieties, remind us of their importance in the classification
problem of Fano manifolds, in rigidity questions, and also, will explain their close
relationships with prehomogeneous vector spaces.

We will then consider vector bundles on homogeneous spaces, and use them
to construct interesting birational transformations, including important types of
flops: the Atiyah and Mukai flops, their stratified versions, also the Abuaf-Segal
and Abuaf-Ueda flops; all these beautiful transformations are easily described in
terms of homogenenous spaces. And introducing sections of the bundles involved,
we will quickly arrive at several nice examples of Fourier-Mukai partners.

We will also explain how the problem of finding crepant resolutions of orbit clo-
sures in prehomogeneous spaces is related to the construction of certain manifolds
with trivial canonical class. This gives a unified perspective over classical construc-
tions by Reid, Beauville-Donagi and Debarre-Voisin of abelian and hyperKähler
varieties, naturally embedded into homogeneous spaces. The paper will close on
a recent construction, made in a similar spirit, of a generalized Kummer fourfold
from an alternating three-form in nine variables.

Acknowledgements. These notes were written for the Lecture Series in Algebraic
Geometry, organized in August and September 2019 at the Morningside Center of
Mathematics in Beijing. We warmly thank Professors Baohua Fu, Yujiro Kawamata
and Shigeru Mukai for the perfect organization.
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2 LAURENT MANIVEL

1. Basics

1.1. Rational homogeneous spaces. A classical theorem of Borel and Remmert
[Ak95] asserts that a projective complex manifold which admits a transitive action
of its automorphism group is a direct product of an abelian variety by a rational
homogeneous space. The latter can be described as a quotient G/P , where G is a
semi-simple algebraic group and P a parabolic subgroup. Moreover it can always be
decomposed into a product

G/P ≃ G1/P1 × · · · ×Gℓ/Pℓ

of rational homogeneous spaces of simple algebraic groups G1, . . . , Gℓ.
So we will suppose in the sequel, unless otherwise stated, that G is simple.

Moreover the list of homogeneous spaces under G will only depend on its Lie algebra
g, which is clasically encoded in a Dynkin diagram ∆. In fact the G-equivalence
classes of parabolic subgroups are in bijective correspondence with the finite subsets
of nodes of ∆. As a conclusion, a projective rational homogeneous space with simple
automorphism group is determined by a marked Dynkin diagram.

The two extremes cases correspond to the complete flag manifolds (all nodes
marked), and the generalized Grassmannians (only one node marked). General-
ized Grassmannians are equivariantly embedded inside the projectivizations of the
fundamental representations, and from this perspective they are exactly their geo-
metric counterparts. (For a quick introduction to the Lie theoretic background, see
e.g. [Ma13]). In type An, we get the usual Grassmannians:

◦ ◦ ◦ ◦ ◦ ◦ ◦• ≃ G/P = G(3, 8) ⊂ P(∧3C8)

In types Bn, Dn (resp. Cn) there is an invariant quadratic (resp. symplec-
tic) form preserved by the group G, and the generalized Grassmannians G/Pk are
OG(k,m), for m = 2n + 1 or 2n (resp. IG(k, 2n)), the subvarieties of the usual
Grassmannians parametrizing isotropic subspaces.

This has to be taken with a grain of salt for k = n or n− 1 in type Dn (and also
for k = n in type Bn): the variety of isotropic spaces OG(n, 2n) ⊂ P(∧nC2n) has
two connected components; moreover, the restriction L of the Plücker line bundle
to a component is divisible by two, and the line bundle M such that L = 2M
embeds this component into the projectivization of a half- spin representation ∆2n.
As embedded varieties, these two components are in fact undistinguishable. We
will denote them by S2n ⊂ P(∆2n) and call them the spinor varieties.

◦ ◦ ◦ ◦

◦

•

�
�

❅
❅

≃ G/P = S12 ⊂ P(∆12)

1.2. Some reasons to care. Being homogeneous, homogeneous spaces could look
boring! But we are far from knowing everything about them. For example:

(1) Their Chow rings are not completely understood, except for usual Grass-
mannians and a few other varieties: Schubert calculus has been an intense
field of research since the 19th century, involving geometers, representation
theoretists, and combinatorists! Modern versions include K-theory, equi-
variant cohomology, quantum cohomology, equivariant quantum K-theory...
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Interesting quantum to classical principles are known in some cases, which
for instance allow to deduce the quantum cohomology of Grassmannians
from the usual intersection theory on two-step flag varieties.

(2) Derived categories are fully described only for special cases (Grassmannians,
quadrics, isotropic Grassmannians of lines, a few other sporadic cases),
although important progress have been made for classical Grassmannians.

(3) Characterizations of homogeneous spaces are important but not known (ex-
cept in small dimension). This is one of the potential interests of rational
homogeneous spaces for the algebraic geometer: their behavior is often
extremal in some sense. Here are some important conjectures:

Campana-Peternell conjecture (1991). Let X be a smooth complex Fano va-
riety with nef tangent bundle. Then X is homogeneous.

See [MOSWW15] for a survey. Nefness is a weak version of global generation:
varieties with globally generated tangent bundles are certainly homogeneous. Note
that varieties with ample tangent bundles are projective spaces: this was conjec-
tured by Hartshorne and Frankel, and proved by Mori.

A smooth codimension one distribution on a variety Y is defined as a corank
one sub-bundle H of the tangent bundle TY . Let L = TY/H denote the quotient
line bundle. The Lie bracket on TY induces a linear map ∧2H −→ L. This gives
what is called a contact structure when this skew-symmetric form is non degenerate
(this implies that the dimension d = 2n+1 of Y is odd and that the canonical line
bundle ωY = −(n+ 1)L, see [KPSW00]) .

Lebrun-Salamon conjecture (1994). Let Y be a smooth complex Fano variety
admitting a contact structure. Then Y is homogeneous.

Hartshorne’s conjecture (1974) in complex projective geometry is that if Z ⊂
PN is smooth, non linearly degenerate, of dimension n > 2N

3 , then Z must be a
complete intersection. In particular it must be linearly normal, meaning that it is
not a projection from PN+1. Although Hartshorne’s conjecture is still widely open,
this last statement was indeed shown by Zak under the weaker assumption that
n > 2N−2

3 . He also proved [Zak93]:

Zak’s theorem II (1981). Let Z be a smooth, non linearly degenerate, non lin-
early normal subvariety of PN , of dimension n = 2N−2

3 . Then Z is homogeneous.
Those special homogeneous spaces are called Severi varieties (see section §1.5).

1.3. Homogeneous spaces and Fano manifolds. The importance of homoge-
neous spaces in the theory of Fano varieties comes from the following

Fact. Generalized Grassmannians are Fano manifolds of high index.

Definition 1.1. Let X be a Fano manifold of dimension n and Picard number one,
so that Pic(X) = ZL for some ample line bundle L, and KX = −iXL. Then iX is
the index and the coindex cX := n+ 1− iX .

Theorem 1.2. (Kobayashi−Ochiai, 1973).

(1) If cX = 0, then X ≃ Pn is a projective space.
(2) If cX = 1, then X ≃ Qn is a quadric.

Here is a list of generalized Grassmannians of coindex 2 (del Pezzo manifolds)
and 3 (Mukai varieties).
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dimension index
del Pezzo G(2, 5) 6 5
Mukai G2/P2 5 3

IG(3, 6) 6 4
G(2, 6) 8 6
S10 10 8

Observation. Suppose L is very ample and embeds X in PV . Then a smooth
hyperplane section Y = X ∩H has the same coindex cY = cX .

As a consequence, a generalized Grassmannian contains, as linear sections, a
large family of Fano submanifolds of dimension down to cX . Moreover, these fami-
lies are always locally complete, in the sense that every small complex deformation
of any member of the family is of the same type. In particular, Mukai varieties
allow to construct locally complete families of prime Fano threefolds of index 1.

Theorem 1.3 (Fano-Iskhovskih’s classification [IP99]). Any prime Fano threefold
of index one is either:

(1) a complete intersection in a weighted projective space,
(2) a quadric hypersurface in a del Pezzo homogeneous space,
(3) a linear section of a homogeneous Mukai variety,
(4) a trisymplectic Grassmannian.

For the last case, one gets Fano threefolds in G(3, 7), parametrizing spaces that
are isotropic with respect to three alternating two-forms. A unified description of
the last three cases is by zero loci of sections of homogeneous bundles on homoge-
neous spaces; this stresses the importance of understanding those bundles.

1.4. Correspondences and lines. There are natural projections from (general-
ized) flag manifolds to Grassmannians. In particular, given two generalized Grass-
mannians G/P and G/Q of the same complex Lie group G, we can connect them
through a flag manifold G/(P ∩Q) (we may suppse that P ∩Q is still parabolic):

G/(P ∩Q)

p

yysss
ss
ss
ss
s

q

%%❑❑
❑❑

❑❑
❑❑

❑❑

G/P G/Q

The fiber of p is P/(P ∩ Q), in particular it is homogeneous. If its automorphism
group is the semisimple Lie group L, we can write P/(P ∩ Q) = L/R and this
generalized flag manifold is determined as follows.

• Start with the Dynkin diagram ∆ of G, with the two nodes δP and δQ
defining G/P and G/Q.

• Suppress the node δP and the edges attached to it.
• Keep the connected component of the remaining diagram that contains δQ.

The resulting marked Dynkin diagram is that of the fiber P/(P ∩Q) = L/R.

◦ ◦ ◦

◦

•

• �
�

❅
❅

p
−→ ◦ ◦ ◦

◦

•

◦

�
�

❅
❅

❀ fiber �
�

◦
❅
❅

•

◦

≃ P3
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This rule has an obvious extension to the case where G/P and G/Q are not
necessarily generalized Grassmannians.

In particular, start with a generalized GrassmannianG/P , defined by the marked
Dynkin diagram (∆, δP ). Let δproxP be the set of vertices in ∆ that are connected
to δP . Let G/Pprox be the generalized flag manifold defined by the marked Dynkin
diagram (∆, δproxP ). Then the fibers of q are projective lines!

Theorem 1.4. [LM03] If δP is a long node of ∆ (in particular, if ∆ is simply
laced), then G/Pprox is the variety of lines on G/P .

If δP is a short node of ∆, then the variety of lines on G/P is irreducible with
two G-orbits, and G/Pprox is the closed one.

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

•
G/P = E8/P6

❀ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

• •
G/Pprox = E8/P5,7

In particular, any generalized Grassmannians parametrizes linear spaces on a
generalized Grassmannian defined by an extremal node of a Dynkin diagram.

There is a similar statement for the variety of lines passing through a fixed point
x of G/P ⊂ PV . These lines are parametrized by a subvariety Σx ⊂ P(TxX),
independant of x up to projective equivalence. Moreover Σx is stable under the
action of the stabilizer Px ≃ P of x. The semisimple part H of P has Dynkin
diagram ∆H = ∆ − {δP}, and we can define a parabolic subgroup Q ⊂ H by
marking in ∆H the vertices that in ∆ were connected to δP .

Theorem 1.5. [LM03] If δP is a long node of ∆ (in particular, if ∆ is simply
laced), then Σx ≃ H/Q. If δP is a short node of ∆, then Σx is made of two
H-orbits, and H/Q is the closed one.

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

•
G/P = E8/P6

❀ ◦ ◦ ◦

◦

◦• •×
H/Q = S10 × P2

Variety of lines through fixed points in homogeneous spaces are instances of
the so-called VMRTs (varieties of minimal rational tangents), which have been
extensively studied in the recent years in connexion with rigidity problems (see e.g.
[Hw19] for an introduction).

From deformation theory, one knows that the variety of lines passing through
a general point of a Fano manifold X has dimension iX − 2. With the previous
notations, this gives a nice way to compute the index of a generalized Grassmannian
(at least for the long node case):

iG/P = dim(H/Q) + 2.

Example 1. Let us consider the rank two (connected) Dynkin diagrams.

(1) ∆ = A2, G = PGL3. Then the two generalized Grassmannians are projec-
tive planes, and each of them parametrizes the lines in the other one.
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(2) ∆ = B2, G = PSO5. The two generalized Grassmannians are the quadric
Q3 and OG(2, 5). The latter parametrizes the lines in Q3. But note that
OG(2, 5) has dimension 3 and anticanonical twice the restriction of the
Plücker line bundle, hence index 4 since this restriction is 2-divisible. So
by the Kobayashi-Ochiai theorem OG(2, 5) ≃ P3! Moreover, lines in P3 are
parametrized by G(2, 4) ≃ Q4, and Q3 is the closed PSO5-orbit.

(3) ∆ = C2, G = PSp4. The two generalized Grassmannians are P3 and
IG(2, 4). The latter is a hyperplane section of G(2, 4) ≃ Q4, hence a copy
of Q3. Of course we recover the previous case.

(4) ∆ = G2, G = G2. The two generalized Grassmannians G2/P1 and G2/P2

have the same dimension 5, but different indexes 5 and 3. In particular, by
the Kobayashi-Ochiai theorem G2/P1 ≃ Q5. Moreover G2/P2 must be the
closed G2-orbit in the variety of lines in Q5, which is OG(2, 7).

1.5. Sporadic examples. There exist a few series of generalized Grassmannians
with strikingly similar properties.

Severi varieties. These are the four varieties

v2(P
2) ⊂ P5, P2 × P2 ⊂ P8, G(2, 6) ⊂ P14, E6/P1 ⊂ P26.

Here v2 means that we consider the second Veronese embedding. Each of these
varieties is the singular locus of a special cubic hypersurface (the secant variety), and
the derivatives of this cubic define a quadro-quadric Cremona tranformation. Note
also that they are varieties of dimension 2a embedded inside P3a+2 for a = 1, 2, 4, 8.
These are the homogeneous spaces that appear in Zak’s Theorem II [Zak93].

Legendrian varieties. These are the four varieties

IG(3, 6) ⊂ P13, G(3, 6) ⊂ P19, S12 ⊂ P31, E7/P1 ⊂ P55.

Each of these varieties is contained the singular locus of a special quartic hypersur-
face (the tangent variety), and the derivatives of this quartic define a cubo-cubic
Cremona tranformation. Moreover they have the remarkable one apparent double
point property, which means that through a general point of the ambient projective
space passes exactly one bisecant. Note also that they are varieties of dimension
3a + 3 embedded inside P6a+9 for a = 1, 2, 4, 8. Finally, their varieties of lines
through a given point are nothing else than the Severi varieties [LM07]!

2. Borel-Weil theory and applications

Let G/P be a generalized Grassmannian and suppose that G is simply con-
nected. Let L be the ample generator of the Picard group. Then L is in fact very
ample and G-linearizable. In particular H0(G/P,L) is a G-module and G/P is
G-equivariantly embedded inside the dual linear system |L|∨ = PH0(G/P,L)∨. A
typical example is the Plücker embedding of a Grassmannian (see e.g. [FH91] for
basics in representation theory).

2.1. The Borel-Weil theorem. More generally, on any generalized flag manifold
G/Q, any line bundleM isG-linearizable, soH0(G/Q,M) is aG-module. Moreover
M is generated by global sections as soon as it is nef.

Theorem 2.1 (Borel-Weil). For any nef line bundle M on G/Q, the space of
sections H0(G/Q,M) is an irreducible G-module.
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A line bundle M on G/Q is defined by a weighted version of the marked Dynkin
diagram that definesG/Q. Moreover, it is nef/globally generated (resp. ample/very
ample) exactly when the weights are non negative (resp. positive), and then the
G-module H0(G/Q,M) is defined by the same weighted diagram.

Starting from a projection p : G/(P ∩ Q) −→ G/P , by homogeneity the sheaf
EP = p∗M is a G-equivariant vector bundle on G/P . Symmetrically there is a
vector bundle EQ = q∗M on G/Q, and

H0(G/Q,EQ) = H0(G/(P ∩Q),M) = H0(G/P,EP ).

Such identifications allow to play with sections in different homogeneous spaces and
describe nice correspondences between their zero loci.

Example 2. Consider the flag manifold F (2, 3, 5) with its two projections p and q
to G(2, 5) and G(3, 5). The tautological and quotient bundles U2, Q2 on G(2, 5),
U3, Q3 on G(3, 5), pull-back to vector bundles on F (2, 3, 5) for which we keep the
same notations. The minimal very ample line bundle on F (2, 3, 5) is L = det(U2)

∨⊗
det(Q3). Its push-forwards to the two Grassmannians are E2 = det(U2)

∨⊗∧2Q2 ≃
Q∗

2(2) on G(2, 5) and E3 = ∧2U∨
3 ⊗ det(Q3) ≃ U3(2) on G(3, 5). These are two

vector bundles with determinant O(5). As a consequence, a general section s of L
defines two Calabi-Yau threefolds

Z2(s) ⊂ G(2, 5) and Z3(s) ⊂ G(3, 5).

Proposition 2.2. [KR17] The Calabi-Yau threefolds Z2(s) and Z3(s) are derived
equivalent, but not birationally equivalent in general.

Derived equivalent means that their derived categories of coherent sheaves are
equivalent as triangulated categories. For two smooth projective varieties X1 and
X2, this is a very strong property, which implies that they are in fact isomorphic as
soon as one of them has an ample or anti-ample canonical bundle (Bondal-Orlov).
Non isomorphic but derived equivalent varieties with trivial canonical bundle re-
cently attracted considerable attention, and the previous example of Fourier-Mukai
partners is among the simplest.

Example 3. A three-form ω ∈ ∧3(Cn)∨ defines a section of ∧3T∨ on G(k, n) for any
k ≥ 3, and sections of Q∨(1) on G(2, n) and ∧2Q∨(1) on Pn−1. The latter leads to
Pfaffian loci in Pn−1. The previous one gives congruences of lines in G(2, n): the
zero locus of a general section of Q∨(1) is a (n− 2)-dimensional prime (for n 6= 6)
Fano manifold of index 3. For n = 6, one actually gets P2 × P2.

For n = 7, this congruence of lines is isomorphic with G2/P2. Indeed, the
stabilizer in SL7 of a general ω ∈ ∧3(C7)∨ is isomorphic to G2. This stabilizer acts
on the associated congruence, and since there is no non trivial closed G2-orbit of
dimension smaller than five, this congruence has to be a G2-Grassmannian. But it
is not G2/P1 = Q5, whose index is 5, so it must be G2/P2.

For n = 8, a general ω ∈ ∧3(C8)∨ is equivalent to the three-form

ω0(x, y, z) = trace(x[y, z])

on sl3, which is stabilized by the adjoint action of SL3. The congruence of lines
defined by ω0 is the variety of abelian planes inside sl3, a smooth compactifica-
tion of SL3/T , for T ⊂ SL3 a maximal torus: so a quasi-homogeneous, but not
homogeneous sixfold.
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These constructions intend to illustrate the general

Principle. Vector bundles on generalized flag manifolds allow to easily construct
interesting varieties, notably Fano or Calabi-Yau.

2.2. Flops. Consider a rank two Dynkin diagram ∆, with corresponding group G.
The flag varieties of G are the complete flag variety G/B and the two generalized
Grassmannians G/P1 and G/P2. Let L denote the minimal ample line bundle on
G/B. Its push-forwards to G/P1 and G/P2 are two vector bundles E1 and E2.

L∨

��
E∨

1

��

G/B

p1

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦
p2

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖
E∨

2

��
G/P1 G/P2

Consider a point in the total space of L∨, that is a pair (x, φ) with x ∈ G/B and
φ a linear form on the fiber Lx. Let y = p1(x) and e ∈ E1,y, the corresponding fiber

of E1. Since E1 = p1∗L, we can see e as a section of L over p−1
1 (y), then evaluate

this section at x, and apply φ. This defines a morphism v1 : Tot(L∨) −→ Tot(E∨
1 ).

Moreover two points (x, φ) and (x′, φ′) have the same image if and only if p1(x) =
p1(x

′) and φ = φ′ = 0. This yields:

Proposition 2.3. The morphism vi : Tot(L
∨) −→ Tot(E∨

i ) is the blowup of G/Pi.

In particular we get a nice birational map between Tot(E∨
1 ) and Tot(E∨

2 ). In
type A1 × A1 this is the classical Atiyah flop (in dimension three), and in type
A2 the classical Mukai flop (dimension four). In type B2 = C2 this is the Abuaf-
Segal flop (dimension five) [Se16], and in type G2 the Abuaf-Ueda flop (dimension
seven) [Ue19]. An unusual feature of the two latter flops is that they are quite non
symmetric, the exceptional loci on both sides being rather different.

Theorem 2.4. All these flops are derived equivalences.

This supports a famous conjecture of Bondal and Orlov according to which
varieties connected by flops should always be derived equivalent.

The three bundles L,E1, E2 have the same space of global sections V . So if
we pick a (general) section s ∈ V , we get three zero-loci Z(s), Z1(s), Z2(s) and a
diagram:

L

��
E1

��

G/B

p1

ww♦♦♦
♦♦♦

♦♦♦
♦♦♦

♦
p2

''❖❖
❖❖❖

❖❖❖
❖❖❖

❖❖
E2

��
G/P1 Z(s)

?�

OO

u1oo u2 // G/P2

Z1(s)
?�

OO

Z2(s)
?�

OO
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Observe that p1 and p2 are P
1-fibrations, such that L is a relative hyperplane bundle.

So E1 and E2 are rank two bundles. Moreover, s vanishes either at a unique point of
a fiber, or on this whole fiber. This implies that u1 and u2 are birational morphisms,
with exceptional divisors that are P1-bundles over the codimension two subvarieties
Z1(s) and Z2(s). More precisely:

Proposition 2.5. The morphism ui : Z(s) −→ G/Pi is the blowup of Zi(s).

Note that the canonical bundle of G/B is −2L, so that Z(s) is Fano: this is one
of the (not so many) examples of blowup of a Fano manifold that remains Fano.

In type A2, Z(s) is a del Pezzo surface of degree 6, each Zi(s) consists in three
points in a projective plane, and the birationality between the two planes is the
classical Cremona transformation. In type C2, Z1(s) is a quintic elliptic curve E
in C2/P1 = P3, and we obtain one of the examples of the Mori-Mukai classification
of Fano threefolds with b2 = 2. The birational map to C2/P2 = Q3 is defined by
the linear system of cubics through E. Moreover Z2(s) is again an elliptic curve,
isomorphic to E since both curves can be identified with the intermediate Jacobian
of the Fano threefold Z(s). More to come about type G2.

Remark. In general, consider a projection p : G/P −→ G/Q and a line bundle
L on G/P . The vector bundle E = p∗L is a G-equivariant bundle, defined by a
P -module W . Consider a section s of L, vanishing along a smooth hypersurface
Z(s) ⊂ G/P . The fiber over x of the projection ps : Z(s) −→ G/Q is the zero locus
of the restriction sx of s to the fibers of G/P . Its isomorphism type only depends
on the P -orbit of sx in W . This is one of the many reasons to be interested in
representations with finitely many orbits.

2.3. Consequences for the Grothendieck ring of varieties. The Grothendieck
ring of (complex) varieties is the ring generated by isomorphism classes of algebraic
varieties (no scheme structures) modulo the relations

(1) [X ] = [Y ] + [X\Y ] for Y ⊂ X a closed subvariety,
(2) [X ×X ′] = [X ]× [X ′].

An easy consequence is that if X is a Zariski locally trivial fiber bundle over Z,
with fiber F , then [X ] = [Z] × [F ]. If we denote by L the class of the affine line,
the usual cell decomposition of projective spaces yields

[Pn] = 1 + L+ · · ·+ Ln =
1− Ln+1

1− L
.

Since the complete flag manifold Fn = SLn/B is a composition of projective bun-
dles, one deduces that

[Fn] =
(1 − L2) · · · (1− Ln)

(1 − L)n−1
.

Similar formulas exist for any G/P : they admit stratifications by affine spaces (cell
decompositions) and the classes [G/P ] are therefore polynomials in L, which admit
nice factorizations as rational functions.

Let us come back to Proposition 2.5. Since the the blowup ui gives a P1-bundle
over Zi(s), and an isomorphim over its complement, we get that

[Z(s)] = [G/Pi − Zi(s)] + [Zi(s)]× [P1] = [G/Pi] + [Zi(s)]× L.
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We deduce the identity

([Z1(s)]− [Z2(s)])× L = [G/P2]− [G/P1] = 0.

(In fact G/P1 and G/P2 have the same Hodge numbers as a projective space: such
varieties are called minifolds). This has the unexpected consequence that [IMOU19]:

Theorem 2.6. L is a zero divisor in the Grothendieck ring of varieties.

Proof. Let G = G2. One needs to check that in this case, [Z1(s)] − [Z2(s)] 6= 0.
This requires more sophisticated arguments. First, one shows that for s general,
Z1(s) and Z2(s) are smooth Calabi-Yau threefolds [IMOU19]. Second, their Picard
groups are both cyclic, but the minimal ample generators have different degrees.
So Z1(s) and Z2(s) are not isomorphic.

Therefore they are not birational, because Calabi-Yau’s are minimal models, so
they would be isomorphic in codimension one, and since the Picard groups are cyclic
their minimal generators would match. Therefore they are not stably birational
either, because if Z1(s)×Pm was birational to Z2(s)×Pm, then their MRC fibrations,
or maximal rationally connected fibrations, would also be birational; but since they
are not uniruled, Z1(s) and Z2(s) are the basis of these fibrations. Finally, a deep
result of Larsen and Lunts implies that [Z1(s)] − [Z2(s)] does not belong to the
ideal generated by L, and in particular it must be non zero. �

The fact that the Grothendieck ring is not a domain was first observed by Poonen
(2002). That L is a zero divisor was first shown by Borisov using the Pfaffian-
Grassmannian equivalence [Bo18] (see Proposition 3.4).

2.4. Representations with finitely many orbits. Consider a semisimple Lie
group G, and an irreducible representationW such that P(W ) contains only finitely
many G-orbits. Over C these representations were classified by Kac [Kac80], who
proved that most of them are parabolic. Parabolic representations are exactly those
representations spanned by the varieties of lines through a given point of a gen-
eralized Grassmannian. These representations always admit finitely many orbits.
This implies that there are very strong connections between rational homogeneous
spaces and prehomogeneous spaces [Ma13].

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦

•
G/P = E8/P6

❀ ∆16 × C3 x Spin10 ×GL3

Example 4. For dimensional reasons the spaces of three-forms ∧3(Cn)∨ cannot have
finitely many GLn-orbits when n ≥ 9. They do have finitely many GLn-orbits for
n ≤ 8 because they are parabolic, coming from generalized Grassmannians of type
En. Orbits were classified long ago.

Note that each orbit is a locally closed subvariety, whose boundary is a union of
smaller dimensional orbits. So there is a natural Hasse diagram encoding, for each
orbit closure, which other ones are the components of its boundary.

For n = 6 the orbit closures are particularly simple to describe. The Hasse
diagram is just a line

Y0
// Y1

// Y5
// Y10

// Y20,

where the index is the codimension:
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Y0 ambient space
Y1 tangent quartic hypersurface
Y5 singular locus of the quartic
Y10 cone over the Grassmannian G(3, 6)
Y20 origin

Alternatively, Y5 can be described as parametrizing those three-forms θ that
factor as ω ∧ ℓ for some vector ℓ and some two-form ω. In general the line L = 〈ℓ〉
is uniquely defined by θ. Moreover ω (which is defined modulo L) is a two-form of
maximal rank 4, supported on a uniquely defined hyperplane H . Then θ belongs
to ∧2H ∧ L. We conclude that Y5 is birational to the total space of the rank six
vector bundle E0 = ∧2U5 ∧ U1 over the flag variety F (1, 5, 6).

But we can also forget U1 and U5 and we get a diagram

F (1, 5, 6)

yyrrr
rr
rr
rr
rr

%%▲▲
▲▲

▲▲
▲▲

▲▲
▲

P5 Tot(E0)

yyrrr
rr
rr
rr
r

OO

p0

��

%%▲▲
▲▲

▲▲
▲▲

▲▲
P̌5

Tot(E1)

p1

&&▲▲
▲▲

▲▲
▲▲

▲▲
▲

OO

Tot(E2)

p2

xxrrr
rr
rr
rr
rr

OO

Y5

where E1 is the vector bundle ∧2C6 ∧ U1 and E2 is the vector bundle ∧3U5, both
of rank ten. It is a nice exercise to describe this flop. One checks in particular that

Proposition 2.7. p0, p1, p2 are resolutions of singularities. p0 is divisorial, while
p1 and p2 are crepant resolutions, with exceptional loci of codimension three.

For n = 7 the situation is slightly more complicated. Here is the Hasse diagram,
where as previously the index stands for the codimension.

Y9
// Y10

!!❈
❈❈

❈❈
❈❈

❈

Y0
// Y1

// Y4

  ❆
❆❆

❆❆
❆❆

>>⑥⑥⑥⑥⑥⑥⑥
Y22

// Y35

Y7
//

FF
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌
✌

Y14

==④④④④④④④④

For n = 8 there are 22 orbits, partially described in [BMT19].

2.5. Applications to linear sections. A nice case is when the generalized Grass-
mannian G/P is defined by a node that splits the Dynkin diagram ∆ into the union
of two diagrams, one of which is of type Ak−1, with k ≥ 1 (k = 1 occurs when the
node is at an end of the diagram). This means that the lines through some fixed
point in G/P are parametrized by Pk−1 × S for some homogeneous space S (of
some smaller Lie group H).
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If the minimal homogeneous embedding of S is inside P(U) for some irreducible
H-module U , the minimal homogeneous embedding of Pk−1×S is inside P(Ck⊗U).
Moreover, by Kac’s results mentionned above, the action of GLk ×H on Ck ⊗ U
admits finitely many orbits. This implies that the Grassmannian G(k, U) also
admits finitely many H-orbits, and therefore:

Proposition 2.8. There exist only finitely many isomorphism types of codimension
k linear sections of S ⊂ P(U).

Of course the open orbit yields smooth linear sections, but it may happen that
other orbits also give smooth sections, although degenerate in some sense. A very
interesting case is that of the spinor variety S10 [Ku18b, BFM18]. Starting from the
Dynkin diagram of type E8, we see that linear sections of codimension up to three
have finitely many isomorphism types. One can check that there exists only one
type of smooth sections of codimension 1, but two different types of codimension 2
and four types of codimension 3.

This gives examples of non locally rigid Fano varieties of high index. Conversely,
the local deformations of Fano linear sections of generalized Grassmannians are
always of the same type, and the generic Fano linear sections are locally rigid if
and only if their marked Dynkin diagrams can be extended to a Dynkin diagram
by an arm of length k − 1 [BFM18]. Actually this has to be taken with a grain of
salt: the generic codimension two linear section of the Grassmannian G(2, 2m+ 1)
is also locally rigid, while according to the previous rule, it would come from the
diagram E2m+2, which is not Dynkin if m > 3! But these are the only exceptions.

3. Some remarkable varieties with trivial canonical bundle

3.1. More crepant resolutions. Resolutions of singularities of orbit closures by
total spaces of homogeneous vector bundles on generalized flag varieties are in-
stances of Kempf collapsings; we have already met three of them in Example 4.

The general construction is extremely simple. Let E be a homogeneous bundle on
G/P , whose dual bundle is globally generated, and let V ∨ := H0(G/P,E∨). Then
Tot(E) embeds inside G/P × V , and the projection to V is the Kempf collapsing
of E:

Tot(E)

��

// Y ⊂ V

X

These collapsings have nice properties, in particular when the bundle E is irre-
ducible [Kem76, Wey03]. They are always proper, so the image Y is a closed subset
of V , usually singular, and the Kempf collapsing often provides a nice resolutions
of singularities.

Sometimes, these resolutions are even crepant. One can show that this happens
exactly when det(E) = ωX [BFMT17]. Here are a few examples:

Determinantal loci. Let V,W be vector spaces of dimensions v, w, and consider
inside Hom(V,W ) the subvariety Dk of morphisms of rank at most k. This means
that the image is contained in (generically equal to) a k-dimensional subspace U of
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W . So Dk is the image of a Kempf collapsing

Tot(Hom(V, Uk))

��

// Dk ⊂ Hom(V,W )

G(k,W )

where Uk is the rank k tautological bundle on the Grassmannian. This construction
is essential for constructing minimal resolutions of determinantal loci [Wey03]. This
Kempf collapsing is crepant if and only if V and W have the same dimension, that
is, for square matrices, independently of k.

Cubic polynomials. Inside the spaces Ck of cubic polynomials in k variables, con-
sider the set C2

k of those that can be written as polynomials in only two variables.
This is the image of the Kempf collapsing

Tot(S3U2)

��

p1 // C2
k ⊂ Ck

G(2, k)

Since det(S3U2) = det(U2)
6, the morphism p1 is crepant if and only if k = 6.

Skew-symmetric three-forms. Inside the spaces Fk of skew-symmetric three-forms
in k variables, consider the set F 6

k of those that can be written as three-forms in
only six variables. This is the image of the Kempf collapsing

Tot(∧3U6)

��

p2 // F 6
k ⊂ Fk

G(6, k)

Since det(∧3U6) = det(U6)
10, the morphism p2 is crepant if and only if k = 10.

Pencils of quadrics. Inside the spaces Pk of pencils of quadrics in k variables,
consider the set P ℓ

k of those that can be written in terms of ℓ variables only. This
is the image of the Kempf collapsing

Tot(C2 ⊗ Sym2Uℓ)

��

p3 // P ℓ
k ⊂ Pk

G(ℓ, k)

Since det(C2 ⊗ Sym2Uℓ) = det(Uℓ)
2ℓ+2, the morphism p3 is crepant if and only if

k = 2ℓ+ 2.

3.2. Beauville-Donagi type constructions. Crepancy has the following nice
consequence. Suppose that the crepancy condition is fulfilled for the vector bundle
E on G/P , that is, ωG/P = det(E). Then by adjunction, a general section s of E∨

will vanish on a smooth subvariety Z(s) ⊂ G/P with trivial canonical bundle.
Let us revisit the previous three examples from this perspective.
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Cubic polynomials. A global section s of S3U∨
2 on G(2, 6) is a cubic polynomial

in six variables, and defines a cubic fourfold X ⊂ P5. The variety Z(s) ⊂ G(2, 6)
is the variety of lines F (X) on this cubic fourfold. This is another fourfold, with
trivial canonical bundle, and Beauville and Donagi proved that it is hyperKähler
([BD85], more on this below).

Skew-symmetric three-forms. A global section s of ∧3U∨
6 on G(6, 10) is an alter-

nating three-form in ten variables, which also defines a hypersurface X in G(3, 10).
Then Z(s) ⊂ G(6, 10) can be interpreted as the parameter space for the copies of
G(3, 6) contained in X . This is again a fourfold, with trivial canonical bundle, and
Debarre and Voisin proved that it is hyperKähler [DV10]. Note the strong analogies
with the previous case.

Remark. These two examples might give the impression that it should be easy to
construct hyperKähler manifolds as zero loci of sections of homogeneous bundles
on (generalized) Grassmannians. This impression is completely false. For instance,
Benedetti proved that if a hyperKähler fourfold can be described as the zero locus
of a general section of a semisimple homogeneous bundle on a Grassmannian, then
it has to be one of the two previous examples [Be18].

Pencils of quadrics. Consider a pencil P ≃ P1 of quadrics in k variables. In general
it contains exactly k singular quadrics, which have corank one. For k = 2ℓ+2 even,
the family of ℓ-dimensional projective spaces that are contained in some quadric of

the pencil defines a hyperelliptic curve C
η

−→ P of genus ℓ. Moreover, the family
of (ℓ− 1)-dimensional projective spaces that are contained in the base locus of the
pencil is a ℓ-dimensional smooth manifold A with trivial canonical bundle. Reid
proved that A is an abelian variety, isomorphic with the Jacobian variety of C
[Re72, Theorem 4.8].

3.3. The Springer resolution and nilpotent orbits. A fundamental homoge-
neous vector bundle on G/P is the cotangent bundle ΩG/P . Its dual, the tangent
bundle, is generated by global sections. Moreover, it is a general fact that the
space of global sections of the tangent bundle is the Lie algebra of the automor-
phism group. Beware that the automorphism group of G/P can very-well be bigger
than G (we have seen that for Q5 = G2/P1 = B3/P1), but except for a few well
understood exceptions, we have H0(G/P, TG/P ) = g.

In any case, G/P being G-homogeneous, there is always an injective map from
g to H0(G/P, TG/P ), whose image is a linear system of sections that generate the
tangent bundle at every point. In particular the Kempf collapsing of ΩG/P to g is
well-defined. Note moreover that the fiber of TG/P over the base point is g/p, whose

dual identifies with p⊥ ⊂ g∨ ≃ g (where the duality is given by the Cartan-Killing
form). One can check that p⊥ is the nilpotent radical of p, in particular it is made
of nilpotent elements of g.

One denotes by N the nilpotent cone in g. A fundamental result in Lie theory
is that the adjoint action of G on N has finitely many orbits. This implies that
for each parabolic P , the image of the Kempf collapsing of the cotangent bundle of
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G/P is the closure of a uniquely defined nilpotent orbit OP :

Tot(ΩG/P )

��

πP // ŌP ⊂ N ⊂ g

G/P

Note that the crepancy condition is automatically fulfilled. In fact both sides of
the collapsing have natural symplectic structures. These are preserved by πP , but
beware that this collapsing is not neccessarily birational, although it is in most
cases. The most important one is the case where P = B, which yields the so-called
Springer resolution [CG97]

Tot(ΩG/B)

��

πB // N ⊂ g

G/B

This is a fundamental example of a symplectic resolution of singularities.

3.4. Stratified Mukai flops. In some situations the same orbit closure has sev-
eral distinct symplectic resolutions. This happens in particular when the Dynkin
diagram of G has a non trivial symmetry, that is in type A,D or E6. In type A, the
cotangent bundles of the Grassmannians G(k, n) and G(n− k, n) resolve the same
nilpotent orbit closure, so there is a birational morphism between them which is
called a stratified Mukai flop (of type A).

F (k, n− k, n)

vv♥♥♥
♥♥♥

♥♥
♥♥♥

♥

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗

G(k, n) Tot(E0)

vv♥♥♥
♥♥♥

♥♥
♥♥
♥♥

OO

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗
G(n− k, n)

Tot(ΩG(k,n))

((PP
PPP

PPP
PPP

PP

OO

Tot(ΩG(n−k,n))

vv♠♠♠
♠♠
♠♠♠

♠♠♠
♠♠

OO

Ōk,n

where Ōk,n ⊂ sln is the set of nilpotent matrices of square zero and rank at most k.
In particular k = 1 gives a Mukai flop. The other cases yield the so-called stratified
Mukai flops of types D and E. In particular the cotangent spaces of the two spinor
varieties of type Dn resolve the same nilpotent orbit [Na08, Fu07].

3.5. Projective duality. Consider an embedded projective variety X ⊂ P(V )
and its projective dual X∗ ⊂ P(V ∨). By definition X∗ parametrizes the tangent
hyperplanes to X . If the latter is smooth, this implies that the affine cone over X∗
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is the image of the Kempf collapsing

Tot((T̂X)⊥)

��

π // X̂∗ ⊂ V ∨

X

where we denoted by T̂X the affine tangent bundle of X , which is a sub-bundle
of the trivial bundle with fiber V . If π is generically finite, then X∗ ⊂ P(V ∨)
is a hypersurface: this is the general expectation. Moreover projective duality is
an involution, and this implies that the general fibers of π are projective spaces.
In particular, if X∗ is indeed a hypersurface, then the projectivization of π is a
resolution of singularities.

Now suppose that V and its dual are G-modules with finitely many orbits. Since
projective duality is compatible with the G-action, it must define a bijection be-
tween the G-orbit closures in P(V ) and those in P(V ∨) (but not necessarily com-
patible with inclusions).

3.6. Cubic-K3 and Pfaffian-Grassmannian dualities. To be even more spe-
cific, consider G = GLn acting on the space V = ∧2(Cn)∨ of alternating bilinear
forms. The orbits are defined by the rank, which can be any even integer between
0 and n. We denote by Pfr the orbit closure consisting of forms of rank at most r.
These orbits can also be seen inside V ∨. One has

(Pfr)
∗ = Pfn−r−ǫ,

with ǫ = 0 if n is even, ǫ = 1 if n is odd. For n even, Pfn−2 is the Pfaffian
hypersurface, of degree n/2. But if n is odd, there is no invariant hypersurface, and
the complement Pfn−3 of the open orbit has codimension three.

n = 5. The PGL5-orbits in P(∧2C5) are G(2, 5) and its complement. In particular
G(2, 5) is projectively self-dual. Note that its index is 5, so its intersection

Xg = G(2, 5) ∩ gG(2, 5)

with a translate by a general g ∈ PGL(∧2C5) is a smooth Calabi-Yau threefold.
This is also true for the intersection of their projective duals,

Yg = G(2, 5)∗ ∩ (gG(2, 5))∗.

These two Calabi-Yau’s are obviously deformation equivalent, but [BCP17, OR18]:

Theorem 3.1. For g ∈ PGL(∧2C5) general:

(1) Xg and Yg are derived equivalent.
(2) Xg and Yg are not birationally equivalent.
(3) In the Grothendieck ring of varieties, ([Xg]− [Yg])× L4 = 0.

Note moreover that Example 2 is a limit case, obtained when the two Grass-
mannians collapse one to the other along some normal direction (indeed the normal
bundle to G(2, 5) ⊂ P9 is isomorphic with Q∨(2)). Interestingly, for this case one
obtains in the Grothendieck ring the stronger relation ([Z1(s)]− [Z2(s)])×L2 = 0.

Similar phenomena can be observed if one replaces the Grassmannian G(2, 5) by
the spinor variety S10 [Ma18].
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n = 6. The proper PGL6-orbit closures in P(∧2C6) are the Grassmannian G(2, 6)
and the Pfaffian hypersurface. The projective dual of G(2, 6) is the Pfaffian hyper-
surface Pf4 inside P(∧2C6)∨ ≃ P(∧4C6), which is singular exactly along G(4, 6).
Since the codimension of the latter is 6, the intersection of Pf4 with a general five
dimensional projective space L ⊂ P(∧4C6) is a smooth cubic fourfoldXL. Moreover
L⊥ ⊂ P(∧2C6) has codimension 6, and it follows that its intersection with G(2, 6)
is a smooth K3 surface SL. Beauville and Donagi [BD85] showed that:

Proposition 3.2. The Fano variety of lines F (XL) ≃ Hilb2(SL).

In particular F (XL) is hyperKähler, and since this property is preserved by
deformation, the variety of lines of any cubic fourfold is also hyperKähler, as soon
as it is smooth.

Proof. Take two points in SL, defining two planes P1 and P2 in C6. In general these
planes are transverse and we can consider Q = P1 ⊕ P2. The alternating form that
vanish on Q (which implies they are degenerate) span a P5 in P(∧2C6)∨, which is
automatically orthogonal to P1 and P2. So the intersection with L is defined by
only four conditions (rather than 6), and the intersection is in general a line in XL.
This defines a rational map a : Hilb2(SL) −→ F (XL), which is in fact regular.

Conversely, take a line ℓ in XL. In particular this is a line parametrizing alter-
nating forms of rank four, and if the rank drops to two XL must be singular, which
we exclude. By [MM05, Proposition 2], we have:

Lemma 3.3. Up to the action GL6, a line of alternating forms of constant rank
four in six variables can be put in one of the two possible normal forms

〈e1 ∧ e3 + e2 ∧ e4, e1 ∧ e5 + e2 ∧ e6〉, or 〈e1 ∧ e3 + e2 ∧ e4, e1 ∧ e4 + e2 ∧ e6〉.

In particular, there always exists a unique four plane Q (the orthogonal to e1
and e2) on which all the forms in the line ℓ vanish. Note that P(∧2Q)⊥ ∩ L is a
linear space in XL that contains ℓ, so it must coincide with ℓ unless XL contains
a plane. By dimension count, this implies that P(∧2Q) ∩ L⊥ is also a line, which
has to cut the quadric G(2, Q) ⊂ P(∧2Q) along two points (more precisely along
a length two subscheme). These two points belong to SL, so this defines a map
b : F (XL) −→ Hilb2(SL), which is inverse to a. �

n = 7. The proper PGL7-orbit closures in P(∧2C7) are the Grassmannian G(2, 7)
and the Pfaffian variety of degenerate forms, of codimension three. The projective
dual of G(2, 7) is the Pfaffian variety Pf4 inside P(∧2C7)∨ ≃ P(∧5C7), which is sin-
gular exactly along G(5, 7). The codimension of the latter is 10, so the intersection
of Pf4 with a general six dimensional projective space L ⊂ P(∧5C7) is a smooth
threefold XL. Moreover L⊥ ⊂ P(∧2C7) has codimension 7, so its intersection with
G(2, 7) is a smooth Calabi-Yau threefold YL.

Theorem 3.4. Suppose that XL and YL are smooth. Then:

(1) XL and YL are derived equivalent Calabi-Yau threefolds.
(2) XL and YL are not birationally equivalent.
(3) In the Grothendieck ring of varieties, ([XL]− [YL])× L6 = 0.

This is the famous Pfaffian-Grassmannian equivalence [BC09]. The identity in
the Grothendieck ring is due to Martin.
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Proof. The fact that XL has trivial canonical bundle can be proved by observ-
ing that the minimal resolution of the Pfaffian locus Pf4 ⊂ P := P(∧5C7) is the
Buchsbaum-Eisenbud complex

0 −→ OP(−7)
∧

3ω
−→ OP(−4)

ω
−→ OP(−3)

∧
3ω

−→ OP −→ OPf4 −→ 0.

This implies that the relative canonical bundle of Pf4 ⊂ P is the restriction of
O(−7), and this remains true by taking a linear section. So the canonical bundle
of XL must be trivial. Using the resolution of OXL

obtained by restricting to L the
previous complex, one computes that h1(OXL

) = 0, and this is enough to ensure
that XL is indeed Calabi-Yau.

The same argument as in the proof of Theorem 2.3 implies that XL and YL are
not birationally equivalent. Proving that they are derived equivalent requires more
sophisticated techniques. �

Remark. The Calabi-Yau threefolds in the G2-Grassmannians that appear in the
proof of Theorem 2.6 are degenerations of the Pfaffian-Grassmannians Calabi-Yau
threefolds.

All these examples are in fact instances of Kuznetsov’s Homological Projective
Duality, which provides a way, under favourable circumstances, to compare the
derived category of a variety X ⊂ P(V ), and of its linear sections, with the derived
category of the dual X∗ ⊂ P(V ∨), and of its dual linear sections (see [Th18] for an
introduction).

Another example with a similar flavor is that of the spinor variety S10 ⊂ P(∆16).
As we already mentionned, this variety is a very similar to G(2, 5). In particular
it is projectively self-dual (non canonically), and its complement is an orbit of
Spin10. Moreover it is a Mukai variety, so a smooth codimension eight linear section
XM = S10 ∩M is a K3 surface of degree 12. Moreover M⊥ also has codimension
eight and we get another K3 surface YM = S∗10 ∩M⊥ in the dual projective space.
These two K3 surfaces are Fourier-Mukai partners (they are derived equivalent),
they are not isomorphic, and ([XM ] − [YM ]) × L = 0 in the Grothendieck ring of
varieties [IMOU16].

4. Orbital degeneracy loci

Instead of zero loci of sections of vector bundles, it is very natural to consider
morphisms between vector bundles and their degeneraly loci, where the morphism
drops rank. More generally, one may consider orbital degeneracy loci and try to
construct interesting varieties from those.

4.1. Usual degeneracy loci. Given a morphism φ : E −→ F between vector
bundles on a variety X , the degeneracy loci are the closed subvarieties where the
rank drops:

Dk(φ) := {x ∈ X, rk(φx : Ex −→ Fx) ≤ k}.

Writing locally φ as a matrix of regular functions and taking (k + 1)-minors allow
to give to Dk(φ) a canonical scheme structure. If φ is sufficiently regular, Dk(φ)
has codimension (e− k)(f − k) (where e and f are the ranks of the bundles E and
F ), and its singular locus is exactly Dk+1(φ). If moreover the latter is empty, the
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kernel and cokernel of φ give well-defined vector bundles K and C on Dk(φ), with
a long exact sequence

0 −→ K −→ EDk(φ) −→ FDk(φ) −→ C −→ 0.

A local study allows to check that the normal bundle NDk(φ)/X ≃ Hom(K,C).
Using the previous exact sequence, we can deduce in the square format e = f that
the relative canonical bundle is

ωDk(φ)/X ≃ (detE∨)k ⊗ (detF )k.

This gives a nice way to construct Calabi-Yau manifolds of small dimension: start
from a Fano variety X such that ωX = L−k for some ample line bundle L; find
vector bundles E,F of the same rank e such that Hom(E,F ) is globally generated
and (detE∨) ⊗ (detF ) = L. If the dimension of X is n < (e − k + 1)2, a general
element φ ∈ Hom(E,F ) defines a smooth manifold Dk(φ) with trivial canonical
bundle (most often a Calabi-Yau), of dimension n − (e − k)2. Similar remarks
apply to the case of skew-symmetric morphisms φ : F∨ −→ F and their associated
Pfaffian loci.

Example 5. Consider a three-form ω ∈ ∧3(Cn)∨, and recall that it defines a global
section of the bundle ∧2Q∨(1) on Pn−1. Locally this is just a family of two-forms
on the quotient bundle, and we get a stratification of Pn−1 by Pfaffian loci.

4.2. General theory. Determinantal and Pfaffian loci are special cases of a more
general construction, that of orbital degeneracy loci. Suppose for example that E
is a vector bundle on some variety X , with rank e. Consider a closed subvariety Y
of ∧mCe, stable under the action of GLe. Let s be a section of ∧mE. Then the
locus of points x ∈ X for which s(x) ∈ ∧mEx ≃ ∧mCe belongs to Y is well-defined,
since the latter identification, although non canonical, only varies by an element of
GLe. This locus is precisely the orbital degeneracy locus DY (s).

Basic properties of these loci are established in [BFMT17]. For instance, for a
general section s one has

codim(DY (s), X) = codim(Y,∧mCe),

Sing(DY (s)) = DSing(Y )(s).

4.3. Applications: Coble cubics and generalized Kummers. For a nice ex-
ample of these constructions, start with a general three-form ω ∈ ∧3(C9)∨. The
quotient bundle Q on P8 has rank 8, and a skew-symmetric form in eight variables
has rank six in codimension 1, four in codimension 6, two in codimension 15. So
the Pfaffian stratification reduces to P8 ⊃ C ⊃ A, where:

(1) The hypersurface C is given by the Pfaffian of the induced section of
∧2Q∨(1), which is a degree four polynomial, hence a section of the line
bundle ∧8Q∨(4) = O(3) ⊂ Sym4(∧2Q∨(1)); so C is in fact a cubic hyper-
surface.

(2) The singular locus of C is the smooth surface A, whose canonical bundle
is trivial. This is in fact an abelian surface, and C is the Coble cubic of A,
the unique cubic hypersurface which is singular exactly along A [GSW13].

On the dual projective space, denote by H the tautological hyperplane bundle, of
rank 8. Then ω defines a global section of ∧3H∨, and therefore, orbital degeneracy
loci DY (ω) for each orbit closure Y ⊂ ∧3C8. The codimension four orbit closure
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Y4 has particular interest [BMT19]. It can be characterized as the image of the
birational Kempf collapsing

Tot(E)

��

// Y4 ⊂ ∧3C8

F (2, 5, 8)

where E is the rank 31 vector bundle with fiber ∧3U5+U2∧U5∧C8 over the partial
flag U2 ⊂ U5 ⊂ C8.

Theorem 4.1. The Kempf resolution of the orbital degeneracy locus DY4
(ω) is a

hyperKähler fourfold.
More precisely, this hyperKähler fourfold is isomorphic with the generalized Kum-

mer fourfold of the abelian surface A.

Generalized Kummers of abelian surfaces were first constructed by Beauville:
start with an abelian surface A and the Hilbert scheme Hilbn(A) of n-points on
A; then the sum map An → A descends to Hilbn(A) → A, and the n-th general-
ized Kummer variety of A is any fiber. The resolution in Theorem 4.1 is exactly
the restriction to the Kummer variety of the Hilbert-Chow map from Hilb3(A) to
Sym3(A).

Generalized Kummer varieties are hyperKähler manifolds, like Hilbert schemes of
points on K3 surfaces. But contrary to the latter case (for which we have e.g. Fano
varieties of lines on cubic fourfolds), no locally complete projective deformation of
generalized Kummers is known!
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