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AND EXPANDERS WITH LIQUID PISTON  
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1 „POLITEHNICA“ UNIVERSITY – BUCHAREST,  
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Abstract. This paper is a continuation of efforts made by the authors for developing new systems for compression 
and expansion of gases and vapors, systems in that the development of processes  receives a pronounced 
isothermal character. In the theoretical analysis of the first part of the paper, we analyze the characteristics of 
polytrope transformations that occur in the installations for compression and expansion of the state of the art. 
Are highlighted, clearly, the conditions to be satisfied by these transformations to be as close as possible than an 
isothermal transformation, and the power limitations resulting from such conditions. Next, we review a number of 
practical achievements and theoretical studies that overcome these limitations by replacing the solid mobile 
organ via a liquid piston. We also propose several original types of compressors and expanders with liquid piston 
and a series of installations that take advantage of this type of driving.   
Keywords: gas and vapor compression and expansion, quasi-isothermal processes, isothermal processes, liquid piston. 

1. THEORETICAL CONSIDERATIONS 

1.1. Isothermal Processes 

The kinetic-molecular theory demonstrated 
even as of its beginnings that the interaction 
between gas and mobile organ results in changing 
momentum of the gas molecules which collide 
with the mobile organ in motion. During the com-
pression process, the mechanical kinetic energy of 
the mobile body is converted to mechanical 
potential energy of the gas / vapor system on the 
one hand (by increasing its pressure), and to 
thermal energy on the other hand (through tempe-
rature increase). During the expansion process the 
mechanical potential energy and part of the 
internal energy of the system, plus in almost all 
cases, the thermal energy absorbed from the 
external environment, turns into mechanical kinetic 
energy to trigger the mobile organ. In an ideal 
adiabatic compression, reversible, all the kinetic 
energy of the mobile organ is taken by the gas, 
resulting in a maximum increase of its temperature, 
while an ideal isothermal compression the thermal 
energy generated by the mobile organ is eliminated 
through the walls and through the cooling of the 
lubricant, while the gas temperature remains the 
same. For piston compressors, Stoicescu and Petrescu 
[1] have shown that, compared with the compres-
sion at a speed very close to zero, for high speeds 
of the piston, there is an additional increase in 
pressure oin the piston. 

It is widely recognized that in order to achieve 
economical compressions or to achieve performing 
thermal engines (especially from energy sources 
with low thermal potential such as renewable 
resources), isothermal compression is the preferred 
choice. For a given volume of gas, a higher 
temperature means higher pressure, hence a further 
increase of the mechanical work needed to continue 
the compression. As a result, for the compression 
of a gas whose temperature is slightly higher than 
that of the refrigerant, the mechanical work 
consumed is lower as the conversion is closer to an 
isothermal one. Notwithstanding that this compres-
sion process is always accompanied by a process of 
heat transfer: for each cubic meter of air iso-
thermally compressed at ambient temperature, in a 
ratio of 1:100 (in order to introduce it into a 10 L 
tank) will need to rise with 10°C the temperature 
of 11 L of cooling water, and to recover then at the 
same temperature, through isothermal expansion, 
the mechanical energy used, the heat produced by 
burning 10g of diesel is required. 

1.2. Isothermal and cvasi-isothermal reversible 
transformations 

According to the first principle of thermodyna-
mics: 

 dU=δQ-δL= δQ-p·dV  (1)  

In an isothermal process 0d U , hence: 

 δQ = δL.    (2)   
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On the other hand,  
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where: T is the gas temperature, which in most 
cases is a variable dependent on a number of 
parameters, which in turn are dependent on the 
variable t (time reported to initial moment t0); TS is 
the temperature of the source (including in the 
source its border thereof, the walls of the device), 
and Ugi, respectively Ai are the global coefficient of 
thermal and respectively the surface of portion i 
(different from the other portions from the thermal 
transfer characteristics point of view) of the total 
surface separating the two systems. The portions 
which make up the total area differ from each other 
in thickness, by the material they are made of, by 
the manner in which they are cooled or heated, by 
contact duration with the working fluid, etc. We 
denoted by R(t) the overall thermal resistance of 
the system. The requirement for a transformation 
to be isothermal is that T(t) = T0 = ct . If there is 
no temperature difference between the source and 
the system, TS = T(t0), then Q = 0, and W = 0 
and therefore there cannot be a heat exchange nor a 
isothermal transformation. The heat exchange can 
only take place in the moments when this diffe-
rence is not zero. In the thermal installations in 
current development stage there are no isothermal 
processes without phase change, the almost 
unanimous opinion being that this type of process 
is purely theoretical. Most common solution is the 
one in which the boundary of the source plays an 
active role meaning that after the establishment of 
a quasi-stationary regime, the wall temperature of 
the device is stabilized to an almost constant value: 
in case of compression greater than the one of the 
source, and in case of expansion lower than this. 
During a compression the wall of the device will 
deliver to the system a quantity of thermal energy 
in the first part of the cycle, as in the second part it 
will absorb from the system a larger amount. The 
difference between the two quantities is discharged 
into the environment during the entire cycle. In 
such a system, the gas passes through a polytropic 
transformation in which the polytropic exponent is 
variable: both for compression as well as for 
expansion at the beginning of the transformation 
its value is higher than the adiabatic exponent, it 
becomes equal to it when the gas temperature 
equals the wall temperature and decrease below its 
value towards the end of the transformation. In 
these circumstances, researcher’s efforts were not 

directed towards reaching an isothermal process, 
but to decrease as sharp as possible the polytropic 
exponent, and thus the differences between the gas 
temperature at the entrance and exit of the device. 

Török and all [2] approached a different method, 
searching first of all, disregarding the configuration 
of the device used, the conditions that need to be 
met so that the respective thermodynamic trans-
formation is a perfect isothermal one. They showed 
that in any positive displacement compressor a 
perfect isothermal compression can be achieved, if 
a positive temperature difference between the gas 
and the external environment is permanently 
maintained, if the piston starts its motion with a 
certain speed and if later the speed varies so that a 
certain equation of motion is respected (derived 
from the need to permanently respect the equality 
of mechanical power of the piston and the flow of 
thermal energy exhausted from the compressor. 
Indeed, from equations (2) and (3) follows  
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By splitting to dt, the first term is the instan-
taneous mechanical power, and the next will be the 
instantaneous thermal power exchanged with the 
external environment. For the transformation to be 
isothermal, the equality of the two powers must be 
maintained throughout the transformation. For the 
two powers the speed dependence of w (or of 
angular velocity ω) may be emphasized:  

 0( ) ( ) [ ( ) ( )]S gi ii
P w T T U w A w       (5)   

thus resulting an equation whose unknown is the 
function w(t), and by solving it one can find how to 
vary this speed to meet the condition imposed. For 
t = 0, we find the initial speed w0: startup speed of 
the mobile organ. But P(w) = F(w)·w so that the 
equation (5) can be decomposed into i simple 
equations:  

 P(wi) = (TS-T0)·Ugi(wi)·Ai(wi),     (6)  

one for each portion i of the total area which has a 
different thermal behavior from the other, from 
which we get i solutions wi, each representing the 
speed of the piston for which isothermal trans-
formation is obtained when the other portions are 
thermally insulated from the environment. The 
general solution of equation (6) is the sum of the i 
speeds. The method is particularly useful in assessing 
the contribution of each method used to improve 
the overall coefficient of thermal transfer. For 
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example, for machines with pistons, the gas volume 
at a given time will be: V = V0 ± x·A = (x0±x) ·A 
such that: 

 

0 0

0
0 0 0

d d
( )

d d
d

[ln( )]
d ( )

S

p VV V
P x p

t V t
T T

p V x x
t R t


    


    

   (7)  

For the piston and the cylinder head we can 
consider the thermal resistance being constant in 
time, hence R(t) = R0. The equation (7) becomes: 
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 can be positive or negative, 

as the process is a compression or an expansion: 
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If we choose as the independent variable   

 ε(t) = V/V0,  

the equation becomes: 
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with the solution: 

 0( ) k tt e    (9)  

 and the initial condition ε(0) = 1. 
It notes the link between the two functions:  

 1 0( ) ( )w t w e t   

 For the side surface of the cylinder, the area 
through which the system is exchanging thermal 
energy with the envionment is changing as the 
piston moves: A2(t) = πD(x0±x), so: 
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The optimal speed of the piston will be   

 w = 2w1+w2 

1.3. Irreversible isothermal transformations 

To study the cumulative effect of several 
types of commonly occurring irreversible com-
pression and expansion processes we used the 
equation [3]: 
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where each of the terms in parenthesis explains 
quantitatively the contribution of one of the irre-
versibility of the system. It is also underlines that 
each of these terms has the size and the meaning of 
quantity of heat: revQ  is the heat exchanged with 

the environment in a reversible process, Qw is the 
heat caused by the influence of the finite speed of 
the piston w (during the compression, the gas in the 
vicinity of the piston has both the temperature and 
the pressure higher than the rest of the system, and 
smaller during the expansion), Qlam is the heat 
produced by the gaso-dynamic friction within the 
fluid and at its passing through the valves or other 
types the constrictions (only part of this heat 
effectively to the increase of the temperature, the 
remainder being used to recover the potential energy 
lost due to a temporary increase in speed, but 
results in a pressure drop Δplam) and Qfr is the part 
of heat produced by the friction between the piston 
and the cylinder wall, which remains in the system 
[4, 5, 6, 7, 8]. 

In the case of an isothermal transformation after 
highlighting the correlations between the piston 
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speed and the other factors that determine the size 
of irreversibility [3]:   
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equation (11) becomes: 
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In Figure 1 are the curves of isothermal ex-
pansion and compression in the presence of 
irreversibility caused by the finite speed w of the 
piston. The area between the curve of evolution of 
the instantaneous average pressure pmi and the 
pressure on the piston pp is a measure of the 
additional  mechanical work consumed during the 

compression, respectively the lost work due to the 
irreversibility during the expansion. In the first 
case, the thermal equivalent of work should be 
disposed, but in the case of expansion the thermal 
equivalent of work, although it is extracted from 
the hot source, does not result in the creation of 
useful work. 

Using a decomposition like the equation (6), we 
can solve the equation without taking into account 
the irreversibility, and after finding the speed 
equation w(t), we solve successively the three 
equations corresponding to the conversion of the 
useful mechanical work p·dV  into heat in the case 
of the three irreversibility. The three speeds thus 
obtained shall be deducted from/added up to the 
total speed and the difference will show, after a 
few iterations, how the piston speed must evolve to 
achieve isothermal transformation. So, in order to 
achieve an isothermal process, in case of the 
compression, for each of irreversibility, the mecha-
nical work consumed is higher compared to a 
reversible transformation, which corresponds to an 
additional heat that must be exhausted, and for 
expansion less heat is absorbed from the hot source 
and less mechanical work is produced. 

 
 

 
Fig. 1.  Expansion and compression isotherms in the presence of irreversibility  

caused by the finite speed w of the piston [6]  . 
 
2. ISOTHERMAL COMPRESSORS  

AND EXPANDERS 

2.1. Compressors and expanders  
with solid piston 

The theoretical analysis of the progress in the 
isothermal processes led us to the conclusion that, 
regardless of the configuration of the positive 
displacement device, the thermodynamic process 
can be one isothermal, or close to it (quasi-iso-
thermal), if the mechanism that operates its mobile 
organ may cause the volume variation as close to 
the manner described by equations (4) and (5). The 
same analysis allows us to determine the speed of the 
process to achieve an isothermal transformation. 
For example, for compressing air in a cylindrical 

reciprocating compressor made of cast iron with a 
diameter of 20 cm and a length of 30 cm, without 
using any cooling system, but with a temperature 
difference of 10°C between the working agent and 
the outside air, in order to achieve a compression 
ratio of approx. 7.39 (e2), the starting speed of the 
piston has to be approx. 0.0036 m / s, to make the 
compression ratio after 166 seconds, at which mo-
ment, the piston will have a velocity of 0.00049 m/s. 
For the actuator with profiled cams, this signify a 
rate of rotation about 20 rot/hour, which means an 
air debit about 0.2 m3. 

Equation (5) is the one that clearly suggests the 
following paths for getting some higher speeds and 
debits: the growth of the global transfer coefficient 
and the growth of the area through which occurs 
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the heat transfer to/from outdoors. The authors have 
already proposed [2], several methods and several 
device models in this respect. For example, for a 
device with the same volume as the one considered 
above, but with a diameter of 48.9 cm and a length of 
5 cm, to which both the piston and the cylinder head 
are profiled (with needle wedge profiles with an 
opening angle 6 °), the calculation showed a 16-fold 
increase in the average speed for that can be obtained 
perfectly isothermal transformations, and if this 
device is completely immersed in a cooling bath, 
there is obtained a doubling of the speed (angular 
speed of about 10 rot/min). The need to eliminate the 
waste heat by circulating coolant was the one of 
causes who suggested the use of a liquid pump from 
this circuit as the main device for the production and 
modification of power needed to compress the gas. 
The devices that changes the fluid flow and pressure 
are easier to achieve than the devices with profiled 
cams, have a low inertia, responds quickly to 
commands and causes less vibration. 

  In Figure 2 there is shown a compressor of 
which inner space is divided by fixed profiled walls 
1.4. The walls are separated from each other by the 
metalic frame 1.1 by whose assembling (by studs and 
nuts 1.5 and 1.6) obtain the side walls of the 
compressor, while the sealing between the frame and 
the wall is made of elastic sealants, which allows a 
rapid disassembly. 

 

 
 

Fig. 2. Compressor driven by the pressure created by the 
liquid pump:  

1.2 – side walls; 1.3 – seals; 1.4 – fixed walls; 1.5, 1.6 – joiners; 
2 – mobile walls (pistons); 6a, 6e – liquid valves; 7.1, 7, 7e – 

gas valves; 8 – liquid; 9  gas; 10, 11 – pipes; 12 – liquid pump; 
13 – tank p = ct.; 14 – hydraulic motor (turbine); 15 – heat 

exchanger [9]. 
 

Between each pair of the walls are placed two 
movable pistons each composed of a profiled wall, 
and a sliding system. Each frame are the valves 6a 
for the intake of working fluid between the two 

pistons and the valves 6e, respectively for his 
exhaust. When the intake flow is higher than the 
outlet flow, the pistons are pushed towards the 
fixed wall, compressing a gas from this compart-
ment and exhaust  it after the exhaust valve 7e. is 
openned.  When the exhaust flow rate is higher 
than the inlet flow, the pressure of the fluid drops 
abruptly (the liquids are essentially incompres-
sible), which leads to the opening of the intake valve 
and the gas filling of the respective compartments. 
The compression of the gas from the compression 
chamber is performed only by the introduction of 
liquid by the pump 12, simultaneously with the 
limitation of the flow of exhausted liquid, by the 
hydraulic turbine 14.1 (or a hydraulic motor, or a 
control valve, etc.). 

2.2. Compressors and expanders  
with liquid piston 

The enhancement of surfaces bounding the gas 
system, through which occurs the heat exchange 
between it and the outside is limited by technical 
and economic difficulties. On the other hand, a 
careful analysis of (5) points out that the overall 
heat transfer coefficient growth is limited also. 
In fact, its value for any of the portions i of the 
boundary component is given by: 
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 (13) 

where αi and αe are the individual transfer coef-
ficients between the wall and the inside fluid 
respectively for the outside fluid, δ is the wall 
thickness, and λ is the thermal conductivity of the 
wall. Most of the times, the wall thickness of the 
usually apparatus is small (of the order of milli-
meters, sometimes centimeters), and the thermal 
conductivity of the material used is high (on the 
order of tens, even hundreds W/mK), so the second 
term of the denominator can be neglected. When 
the outer wall is cooled by a liquid (especially when 
the device is fully submerged in a liquid pool), the 
third term in the denominator is also negligible, so 
that Ug ≈ αi. For all technical gases, this term is 
rather small (10-40 W/m2·K) severely limiting the 
possibility of increasing Ug. So, the researches were 
again oriented towards the increasing the contact 
area between the inside gas and the cooling agent 
Technical literature devoted to the study of heat 
transfer processes inside the compressor is large 
[12-31]. There are also numerous patents and patent 
applications that suggest practical solutions to solve 
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this problem [33-41]. Three main methods have 
been proposed to increase this area: 

– the abundant spraying of the coolant during 
the compression process, or of the thermal agent 
during the expansion process. The spraying can be 
performed also before the suction (with the addi-
tional consumption of the work). The volume of 
exhausted fluid will contain a significant fraction 
of fluid under pressure, and its potential energy 
will be recovered in a hydraulic motor circuit [41]; 

– the compression of the gas introduced into the 
liquid in the form of bubbles, either by hydrostatic 
pressure of a liquid column, either by the pression 
created trough centrifugation, or by the pression 
created by a liquid pump. In the first case, the 
circuit can be opened (and use the gravitational fall 
of a liquid conteined in a pool) or closed (use a 
fluid pump to compensate the pressure losses). In 
the second case, the amount of energy required for 
centrifugation can be recovered in a hydraulic 
turbine, and in the latter case using a compression 
in pressure steps can obtein the high gas flow [40]; 

– the increase of the overall coefficient of heat 
transfer between the gas and the environment, 
through the inner absorbent mass in contact with the 
gas during the compression process and in contact 
with the liquid at the end of the compression and 
during the exhaust. The use of the liquid piston, 
among other undeniable advantages [30, 31], has 
the benefit that the liquid used for compression (a 
fixed amount, introduced trough a solid piston or a 
variable amount introduced trough a pump) penetrate 
the interstices of the absorbent network and can 
quickly absorb from it (its heat transfer coefficient is 
more greater than that of the gas) the heat collected 
during compression process. In the expanders, the 
superheated liquid deliver of the network the heat 
required by the gas for an isothermal expansion. 

3. THERMODYNAMIC CYCLES WITH 
ISOTHERMAL COMPRESSION AND 
EXPANSION 

One of the advantages of piston compressors and 
expanders with liquid is the possibility to obtain 
isothermal thermodynamic transformations which 
creates the opportunity to build thermal devices 
where the efficiency (or COP, for the reversed cycle) 
is close to the optimal (corresponding to a device that 
operates as a Carnot cycle). The engine in Figure 3.1 
is a Carnot type engine made of a compressor and a 
expander, thermally insulated from the environment 
(insulation 1.7), facing each other, communicating 
through pipe 11, and having a well defined ration 
between their volumes (compressor has a higher 
volume than the expander), predetermined based on 
the temperatures needed for isothermal compression 

and expansion (different from the temperatures of hot 
and cold sources). The other prerequisite needed to 
achieve isothermal transformation is that the speed of 
the piston complies with the equations derived from 
parity at each moment of the mechanical power of 
each of the pistons with the thermal flux of the 
respective device exchanged with the environment. 
Figure 3,A shows the positions of the pistons at the 
end of each of the four phases of the engine cycle 
(Fig. 3,B): 

– In the initial position (position 1 in the T-s 
diagram), the compressor cylinder is empty, the 
position of its piston being at the end of the stroke 
and a gas volume V1 at pressure P1 and temperature 
T1 is in the expander. In the first phase of the cycle 
(curve 1-2), this gas expands isothermally (ab-
sorbing heat from the hot source) up to a volume 
V2 and a pressure P2, pushing the exterior piston 
using the liquid, and keeping constant temperature. 
For the transformation to be isothermal, the piston 
has to start with a speed w0, given by the structural 
characteristics of the expander, by the mass and the 
properties of the working gas and by the tempera-
ture difference between the gas and the hot source. 
During this phase, the piston compressor will remain 
motionless, while the one of the expander will 
move with the speed required to constantly main-
tain the product A · w · p (A is the piston surface at 
a given time) equal to the heat flux from the hot 
source to the gas. This equation leads to an ex-
ponential increase in piston speed (Fig. 3,C). In 
this phase of the cycle the engine receives heat 
from the hot source which gets converted into 
mechanical work to expands the gas, which in turn 
is sent out as useful mechanical work. 

– In the second phase of the cycle, both pistons go 
in a very short time through the entire length of the 
cylinder, backwards. As a result, the gas is transferred 
into the compressor, and in the same time it expands 
to a volume V3 and a pressure p3. Due to the high 
speed of the pistons, the quantity of heat exchanged 
with the environment is very small, so that the 
process can be considered adiabatic, the temperature 
dropping to the value T2 given by the equation of 
such a transformation (Fig. 3,B and C, curve 2-3). 
The adiabatic expansion in the compressor is done by 
transforming part of its internal energy into mecha-
nical work, which is transmitted to the piston. 

– In the third phase of the cycle, the expander 
piston remains at the end of the cylinder, while 
piston of the compressor compresses the gas up to 
a pressure p4. Having a higher piston speed in the 
beginning, it decreases so that the gas temperature 
remains constant (Fig. 3.1 B and C, curve 3-4). 
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– In the last phase of the cycle, the compressor 
piston crosses in a very short time the remaining 
length of the cylinder while the expander piston will 

move into the position corresponding to volume V1. 
The gas will be compressed adiabatically to a 
pressure p1, its temperature increasing to the value T1. 

 

 
 

Fig. 3.1. Carnot engine developed with liquid pistons: 
1 – cylinder; 2 – piston; 1.7 – thermal insulation; 11 – pipe; 2.6-2.9 – actuator; 

20 – ax; 15.1 – cooler; 15.2 – solar collector; 16 – electric generator. 
 

In the last two stages of the cycle, the engine 
consumes part of the mechanical energy accu-
mulated in the rotation of the flywheel in order to 
achieve the two compression stages. 

 Using the same configuration, the system can 
operate as a refrigerator, or as a heat pump by re-
versing the cycle. In the reverse cycle, the expander 
becomes the compressor, and through the isothermal 
compression of the gas from the volume V2 to the 
volume V1 external mechanical work is used and 
heat is yielded to the environment; the compressor 
becomes expander and through the isothermal gas 
expansion from the volume V4 up to the volume V3 
heat extracted from the external environment is used 
and mechanical work is yielded to the machine 
shaft.Obtaining the variations in speed required to 
achieve such a cycle can be achieved through 
multiple methods, in Figure 3 the solution chosen 
is to engage the pistons using the rods 2.6 with 
bearings 2.8 at both ends moving through the profiled 
channels 2.9, dug into discs 2.7, which rotate 
around the pin 20. The profiles shape is obtained 
by transposing into polar coordinates the desired 
equation of motion (curves B' and C'). 

Figure 3 presents one way of building the engine, 
using the compressor and the expander shown in 
[40]. The liquid in the expander is heated con-
tinuously by a circuit which includes the solar tubes 

15.2 installed in the linear focus of trough parabolic 
mirrors, and the compressor is 12.3 which extracts 
cooled fluid and introduces heated fluid during the 
intervals when the expander piston is motionless. The 
piston of this compressor is synchronized with the 
other pistons using profiled rotary discs mounted on 
the same shaft. The law of motion of the piston and 
the form of the profiled channel are shown in Figures 
3.1,E and E '. The cooling circuit of the liquid in the 
compressor is mad of a compressor 12.4 similar to 
that described above, and a cooler 15.1. The cooler in 
the figure is made up of a large number of trays made 
of perforated plates, or wire mesh, through which 
cold air suctioned from the lower part flows. The 
system described is easily adaptable for high power 
solar plants, using as working liquid molten salts at 
high temperatures. 

4. CONCLUSIONS  

Although there is recent discoveries, the com-
pressors and the expanders with liquid piston 
became the most powerful of devices in this 
category. They are able to achieve compression of 
gases and vapors with a low consumption of me-
chanical energy and the expansion is achieved by 
the most efficient use of the heat extracted from 
the heat source. For this reason they are the most 
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suitable equipment the valorization of renewable 
energy and for the energy storage facilities. 
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