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In this paper we revisit the integral functional of geometric Brownian motion

where µ ∈ R, σ > 0, and (W s ) s>0 is a standard Brownian motion.

Specifically, we calculate the Laplace transform in t of the cumulative distribution function and of the probability density function of this functional.

Introduction

Assume the canonical filtered probability space (Ω, F , F, P) with filtration F = (F t ) t>0 to satisfy the usual conditions. On this space consider a Brownian motion X = (X t ) t>0 with drift µ ∈ R and volatility σ > 0, i.e.

X t = µt + σW t ,
where W = (W t ) t>0 is a standard Brownian motion.

We are going to study the integral functional of the corresponding geometrical Brownian motion, namely for t ≥ 0 we are going to investigate

I t = t 0 e -X s ds = t 0 e -(µs+σW s ) ds.
The law of the integral functional of geometric Brownian motion of type

A (µ) t = t 0 e (2µs+2W s ) ds
Email addresses: elena.boguslavskaya@brunel.ac.uk (Elena Boguslavskaya), vostrik@univ-angers.fr (Lioudmila Vostrikova) 1 was studied by numerous authors. Alili (1995), [START_REF] Comtet | Exponential functionals of Brownian motion and disordered systems[END_REF] studied it in the case µ = 0. For the case µ < 0 it was studied by Comtet andMonthus (1994,1996). These functionals were also thoroughly studied by Yor (1992aYor ( , 1992bYor ( ,1992c)), [START_REF] Schepper | The Laplace transform of annuities certain with exponential time distributions[END_REF], [START_REF] Carmona | On the distribution and asymptotic results for exponential functionals of Levy processes[END_REF], [START_REF] Dufresne | Laguerre series for Asian and other options[END_REF][START_REF] Dufresne | The Integral of Geometric Brownian Motion[END_REF]. In particular, Yor (see 1992a, Proposition 2) states that

P A (µ) t ∈ du | W t + µt = x = √ 2πt u exp x 2 2t - 1 2u (1 + e 2x ) θ e x /u (t)du where θ r (t) = r √ 2π 3 t exp π 2 2t ∞ 0 exp - y 2 2t
exp(-r cosh(y)) sinh(y) sin πy t dy.

Dufresne (2000) obtained a series representation for the probability density function of 2A (µ) t involving generalised Laguerre polynomials and the moments of 2A (µ) t . Yor (1992c, Theorem 2) showed that

2A (µ) τ L = U G ,
where τ is independent exponential random variable of the parameter λ, the variables U and G are independent and distributed as Beta(1, a µ ) and Gamma(b µ , 1) respectively, with

a µ = µ + µ 2 + 2λ 2 , b µ = a µ -µ.
Dufresne (2001) showed that the probability density function of 1/ 2A (µ) t is given by

f µ (x, t) = e -µ 2 t/2 p µ (x, t) with p µ (x, t) = 2 -µ x -(µ+1)/2 +∞ -∞ e -x cosh 2 (y) q(y, t) cos π 2 y t -µ H µ √ x sinh(y) dy
where H µ is a Hermite function and

q(y, t) = e π 2 /(8t)-y 2 /(2t) π √ 2t cosh(y).
In more general setting related to Lvy processes, the following exponential integral functional was intensively studied

∞ 0 exp(-X s-)dη s , (1) 
where X = (X t ) t≥0 and η = (η t ) t≥0 are independent Lvy processes. The conditions for finiteness of integral (1) were obtained by Erikson and Maller in [START_REF] Erickson | Generalised Ornstein-Uhlenbeck processes and the convergence of Lvy integrals[END_REF]. The continuity properties of the law of this integral were studied by Bertoin, Lindner, and Maller in [START_REF] Bertoin | On continuity Properties of the Law of Integrals of Levy Processes[END_REF].

The equations for the density (under the assumption of existence of smooth densities of these functionals) were provided by Bheme in [START_REF] Behme | Exponential functionals of Lvy Processes with Jumps, ALEA[END_REF], by Bheme and Lindner in [START_REF] Behme | On exponential functionals of Levy processes[END_REF], and by Kuznetsov, Prado, and Savov in [START_REF] Kuznetsov | Distributional properties of exponential functionals of Levy processes[END_REF]. The properties of the functional I τ q killed at independent exponential time τ q for some parameter q > 0 were investigated in the papers of Patie and Savov [START_REF] Patie | Bernstein-Gamma functions and exponential functionals of Lvy processes[END_REF], and Prado, Rivero, Van Schaik [START_REF] Pardo | On the density of exponential functionals of Lvy processes[END_REF]. For fixed time horizon, i.e. for I t , in the Levy setting for X and η s = s, expressions for the Mellin transform, the moments, and the PDE equation for the density were obtained in Salminen, Vostrikova (2018[START_REF] Salminen | Vostrikova On moments of exponential functionals of additive processes[END_REF] and [START_REF] Vostrikova | On distributions of exponential functionals of the processes with independent increments[END_REF].

Such interest to the integral functionals of geometric Brownian motion, and, more generally, to the integral functionals of Levy processes, can be easily explained. These functionals appear in many fields, for example in the study of self-similar Markov processes via Lamperti transform, in the study of diffusions in random environment, in mathematical statistics, in mathematical finance in the evaluation of Asian options, and in the ruin theory. However, despite numerous studies, the distributions of I t and I ∞ are only known for a limited number of cases (cf. [START_REF] Gjessing | Present value distributions with applications to ruin theory and stochastic equations[END_REF]).

The main results of this paper are the two explicit expressions (see Theorem 1 and Corollary 2). The first explicit expression is for the Laplace transform of the cumulative distribution function of the integral functional of geometric Brownian motion. The second is for the Laplace transform of the probability density function of the integral functional of geometric Brownian motion. To our knowledge these results are new.

We proceed in the following way. Firstly we provide the equation for the probability density of the exponential integral functional of additive processes with fixed time horizon. This result allows us to derive the equation for the probability density function of I t , and to write the equation for its cumulative probability function together with boundary conditions (see Proposition 1). Finally, we derive the equation for the Laplace transform of the complementary cumulative distribution function of I t , relate it to the Kummer equation and solve it explicitly. In Corollary 1 we provide the expressions for the Laplace transform of the cumulative function of I t . In Corollary 2 we provide the expression for the Laplace transform of the probability density function of I t .

Laplace transform for the cumulative distribution function

Denote by p t (x), t > 0, x > 0 the probability density function of I t with respect to Lebesgue measure, and let 

F(t, y) = P(I t ≤ y) =
(t, x) → p t (x) is of class C ∞ (]0, t], R +, * ). Moreover, the cumulative distribution function F(t, y) of I t satisfies the following PDE ∂ ∂t F(t, y)) = 1 2 σ 2 ∂ ∂y (y 2 ∂ ∂y F(t, y)) -(ay + 1) ∂ ∂y F(t, y) ( 2 
)
where a = 1 2 σ 2µ, with boundary conditions F(t, 0) = 0, lim y→+∞ F(t, y) = 1.

For t > 0 and y ≥ 0 define complementary cumulative distribution function F

F(t, y) = 1 -F(t, y) (3) 
with Laplace transform for λ > 0

P(y, λ) = ∞ 0 e -λt F(t, y)dt. ( 4 
)
Consider a confluent hypergeometric function of the first kind (Kummer's function) defined as

M(a, b, z) = ∞ n=0 (a) n z n (b) n n! (5)
where (a) n is a Pochhammer symbol, (a 

) 0 = 1, (a) n = a(a + 1)(a + 2) • • • (a + n -1)
P(y, λ) = 1 λ 2 yσ 2 k Γ 1 -2µ σ 2 + k Γ 1 -2µ σ 2 + 2k M k, 1 - 2µ σ 2 + 2k, - 2 yσ 2 , ( 6 
)
where k

= µ+ √ µ 2 +2λσ 2 σ 2
.

Proof: We divide our proof into three parts: firstly we reduce our equation to Kummer's equation and find a general solution, then we adjust this general solution to the boundary conditions. 1) General solution of equation [START_REF] Alili | Fonctionnelles exponentielles et valeurs principales du mouvement brownien[END_REF]. From ( 2) and (3) we get

- ∂ ∂t F(t, y) = - 1 2 σ 2 ∂ ∂y y 2 ∂ ∂y F(t, y) + (ay + 1) ∂ ∂y F(t, y), (7) 
F(t, 0) = 1, (8) lim y→∞ F(t, y) = 0. ( 9 
)
where a = -µ + σ 2 2 . Expanding the derivative operation and substituting a = -µ + σ 2 2 we can rewrite [START_REF] Bertoin | Exponential functionals of Levy processes[END_REF] as

∂ ∂t F(t, y) = 1 2 σ 2 y 2 ∂ 2 ∂y 2 F(t, y) + (by -1) ∂ ∂y F(t, y), ( 10 
)
where b = µ + σ 2 2 . By taking the Laplace transform of (10) and using (4), we rewrite (10) as 1 2 σ 2 y 2 P ′′ yy + (by -1)

P ′ y -λP = 0 (11) 
From ( 8) and from ( 9) we find the boundary conditions for (P(y, λ)) y≥0,λ>0 :

P(0, λ) = ∞ 0 e -λt F(t, 0)dt = ∞ 0 e -λt dt = 1 λ , (12) 
lim y→∞ P(y, λ) = ∞ 0 e -λt lim y→∞ F(t, y) dt = 0. ( 13 
)
Next, the equation ( 11) can be transformed into

1 2 σ 2 ξu ′′ ξξ + ξ + σ 2 2 -µ + σ 2 k u ′ ξ + ku = 0. ( 14 
)
by setting

y = ξ -1 , P = ξ k u, where k is a root of σ 2 2 k 2 -µk -λ = 0, i.e. k = µ ± µ 2 + 2λσ 2 σ 2 , (15) 
(see eq. 2.1.2.179 from [START_REF] Zaitsev | Polyanin Handbook on ordinary differential equations[END_REF]). Equation ( 14) is of type 2.1.2.108 in [START_REF] Zaitsev | Polyanin Handbook on ordinary differential equations[END_REF] and has a solution

u(ξ) = J k, 1 - 2µ σ 2 + 2k, - 2ξ σ 2 , ( 16 
)
where J(a, b; x) is any solution of confluent hypergeometric equation

xy ′′ xx + (b -x)y ′ x -ay = 0
known as Kummer's equation. It is well known there are two fundamental solutions of this equation, namely Kummer's function (confluent hypergeometric function of the first order) defined by ( 5) and Tricomi's function (confluent hypergeometric function of the second order) defined as

U(a, b, z) = π sin(πb) M(a, b, z) Γ(1 + a -b)Γ(b) -z 1-b M(1 + a -b, 2 -b, z) Γ(a)Γ(2 -b) .
Therefore, the general solution of the initial problem can be rewritten as

P(y, λ) = c 1 y -k M k, 1 - 2µ σ 2 + 2k, - 2 yσ 2 + c 2 y -k U k, 1 - 2µ σ 2 + 2k, - 2 yσ 2 , ( 17 
)
where c 1 and c 2 are some real constants.

2) Choice of k and c 2 via boundary condition lim y→∞ P(y, λ) = 0. Note, that there are only two cases for k: k > 0 if we take the sign + in [START_REF] Dufresne | The Integral of Geometric Brownian Motion[END_REF], or k < 0 if we take the signin [START_REF] Dufresne | The Integral of Geometric Brownian Motion[END_REF]. Indeed, as λ > 0 we have

k = µ + µ 2 + 2λσ 2 σ 2 > 0,
and

k = µ -µ 2 + 2λσ 2 σ 2 < 0.
In fact only k > 0 is suitable for our purposes, as both independent solutions explode at +∞ if k < 0. Moreover, if k > 0, only the first independent solution is suitable, as the second independent solution also explodes at +∞. Let us see it in more detail.

According to formula 13.5.5, 13.5.10 and 13.5.12 from [START_REF] Abramobitz | Handbook of Mathematical Functions[END_REF] for a ∈ R and b < 1 and z small

M(a, b, z) = 1, as z → 0, U(a, b, z) = Γ(1 -b) Γ(1 + a -b) + O |z| 1-b , for 0 < b < 1, = 1 Γ(1 + a) + O (|z| ln(|z|) , for b = 0, = Γ(1 -b) Γ(1 + a -b) + O (|z|) , for b < 0. Therefore, for k = µ- √ µ 2 +2λσ 2 σ 2 < 0 we have 1 - 2µ σ 2 + 2k = 1 - 2 σ 2 µ 2 + 2λσ 2 < 1,
and subsequently

lim y→∞ y -k M k, 1 - 2µ σ 2 + 2k, - 2 yσ 2 = ∞ lim y→∞ y -k U k, 1 - 2µ σ 2 + 2k, - 2 yσ 2 = ∞.
In such a way we know, that for k < 0 both independent solutions explode, and therefore c 1 and c 2 should be equal to 0.

It is easy to check when condition lim y→∞ P(y, t) = 0 is satisfied for k > 0. Indeed, in

this case k = µ+ √ µ 2 +2λσ 2 σ 2
, and

1 - 2µ σ 2 + 2k = 1 + 2 σ 2 µ 2 + 2λσ 2 > 1.
Thus according to formula 13.5.5 -13.5.8 in [START_REF] Abramobitz | Handbook of Mathematical Functions[END_REF] for a ∈ R and b > 1 and z small M(a, b, z) = 1, as z → 0,

U(a, b, z) = Γ(b -1) Γ(a) z 1-b + O |z| b-2 , for b > 2, = Γ(b -1) Γ(a) z 1-b + O (ln(|z|)) , for b = 2, = Γ(b -1) Γ(a) z 1-b + O (|1|) , for 1 < b < 2,
we can write

lim y→∞ y -k M k, 1 - 2µ σ 2 + 2k, - 2 yσ 2 = lim y→∞ y -k M k, 1 + 2 σ 2 µ 2 + 2λσ 2 , - 2 yσ 2 = 0, lim y→∞ y -k U k, 1 - 2µ σ 2 + 2k, - 2 yσ 2 = lim y→∞ y -k U k, 1 + 2 σ 2 µ 2 + 2λσ 2 , - 2 yσ 2 = lim y→∞          y -k 1 y -2 σ 2 √ µ 2 +2λσ 2          = lim y→∞ y -µ+ √ µ 2 +2λσ 2 σ 2 = ∞.
In other words only the first independent solution satisfies boundary condition lim λ→∞ P(y, λ) = 0 when k > 0, and consequently c 2 should be equal to 0.

3)Boundary condition P(0, λ) = 1/λ. According to 13.5.1 in [START_REF] Abramobitz | Handbook of Mathematical Functions[END_REF] for large |z| and fixed a and b M(a, b, z)

Γ(b) = e iπa z -a Γ(b -a)        R-1 n=0 (a) n (1 + a -b) n n! (-z) -n + O |z| -R        + e z z a-b Γ(a)        s-1 0 (b -a) n (1 -a) n n! z -n + O |z| -s        Therefore taking R = 1 and s = 1 lim y→0 y -k M k, 1 - 2µ σ 2 + 2k, - 2 yσ 2 = σ 2 2 k Γ 1 -2µ σ 2 + 2k Γ 1 -2µ σ 2 + k
Finally we get

P(0, λ) = c 1 σ 2 2 k Γ 1 -2µ σ 2 + 2k Γ 1 -2µ σ 2 + k = 1 λ . (18) 
and, subsequently,

c 1 = 1 λ σ 2 2 -k Γ 1 -2µ σ 2 + k Γ 1 -2µ σ 2 + 2k , (19) 
where k

= µ+ √ µ 2 +2λσ 2 σ 2
, and ( 6) is proved. ✷ Corollary 1. The Laplace transform F(y, λ) of the cumulative function F t (y) of I t at λ > 0 is given by :

F(y, λ) = 1 λ          1 -y σ 2 2 -k Γ 1 -2µ σ 2 + k Γ 1 -2µ σ 2 + 2k M k, 1 - 2µ σ 2 + 2k, - 2 yσ 2          , where k = µ+ √ µ 2 +2λσ 2 σ 2
. Proof: The result follows directly from the definition of F and Theorem 1 since F(y, λ) = 1 λ -P(y, λ). ✷ Corollary 2. The Laplace transform p(y, λ) of the probability density p t (y) of I t at λ > 0 is equal to : Let us denote by P(y, z), z ∈ C, the extension of the function P(y, λ), λ > 0, constructed in the usual way. Then, since P(y, z) is an analytic function on the half-plan with Re(z) > 0, the inverse Laplace transform can be calculated by the Bromwich-Mellin formula, namely 1 -F t (y) = 1 2πi

p(y, λ) = 1 λ y σ 2 2 -k Γ 1 -2µ σ 2 + k Γ 1 -2µ σ 2 + 2k k y k+1 M k, 1 - 2µ σ 2 + 2k, - 2 yσ 2 - 2k σ 2 y k+2 (1 -2µ σ 2 + 2k) M k + 1, 2 - 2µ σ 2 + 2k, - 2 yσ 2 
λ-i∞ λ-i∞ e zt P(y, z)dz with any λ > 0. The similar formula is valid for the inversion of the Laplace transform p(y, λ) of the density p t (y).
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  x)dx be the cumulative distribution function of I t . Combining Proposition 2, Proposition 3 and Corollary 2 from [23] we get the following proposition. Proposition 1. The law of I t has a density with respect to Lebesgue measure , and the map

Theorem 1 . 2 σ 2 y 2 P

 122 and the same for (b) n . The Laplace transform P(y, λ) of F satisfies the following differential equation 1 ′′ yy + (by -1)P ′ y -λP = 0

+2λσ 2 σ 2 .

 2 Proof: We take the derivative w.r.t. y in the expression of the Laplace transform F(y, λ) of F and use 13.4.8 from [1] d dz M(a, b, z) = a b M(a + 1, b + 1, z). ✷