
HAL Id: hal-02460877
https://hal.science/hal-02460877v1

Submitted on 30 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust dynamic analysis of detuned-mistuned rotating
bladed disks with geometric nonlinearities

Anthony Picou, Evangéline Capiez-Lernout, Christian Soize, M. Mbaye

To cite this version:
Anthony Picou, Evangéline Capiez-Lernout, Christian Soize, M. Mbaye. Robust dynamic analysis
of detuned-mistuned rotating bladed disks with geometric nonlinearities. Computational Mechanics,
2020, 65 (3), pp.711-730. �10.1007/s00466-019-01790-4�. �hal-02460877�

https://hal.science/hal-02460877v1
https://hal.archives-ouvertes.fr


Robust dynamic analysis of detuned-mistuned rotating bladed
disks with geometric nonlinearities

A. Picoua,b, E. Capiez-Lernouta, C. Soize∗,a, M. Mbayeb
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Abstract

This work is devoted to the robust analysis of the effects of geometric nonlinearities on the non-
linear dynamic behavior of rotating detuned (intentionally mistuned) bladed disks in presence of
unintentional mistuning (simply called mistuning). Mistuning induces uncertainties in the com-
putational model, which are taken into account by a probabilistic approach. This paper presents
a series of novel results of the dynamic behavior of such rotating bladed disks exhibiting nonlin-
ear geometric effects. The structural responses in the time domain are analyzed in the frequency
domain. The frequency analysis exhibits responses outside the frequency band of excitation. The
confidence region of the stochastic responses allows the robustness to be analyzed with respect
to uncertainties and also allows physical insights to be given concerning the structural sensitivity.
The bladed disk structure is made up of 24 blades for which several different detuned patterns
are investigated with and without mistuning.

Key words: Mistuning, Detuning, Bladed disks, Dynamics, Geometric nonlinearities,
Uncertainty Quantification

1. Introduction

The intentional mistuning, also called detuning, has been identified as an efficient techno-
logical way for reducing the sensitivity of the forced response of bladed disks to unintentional
mistuning (simply called mistuning), caused by the manufacturing tolerances and the small vari-
ations in the mechanical properties from blade to blade [1, 2, 3]. The objective of the detuning
is to reduce the sensitivity of the response amplification induced by the mistuning. This random
amplification is defined as the random ratio between the random highest dynamic response of
a given detuned bladed disk in presence of mistuning and the deterministic highest response of
the tuned bladed disk under the same excitation. It has been proposed to detune the bladed disk
structure by using partial or alternating patterns of different sector types. A sector is constituted
of a blade and of the corresponding part of the disk.

This technology has intensively been studied in the framework of the linear dynamic analysis
(see for instance,[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]), for which the mistuning effects have been
modeled using either parametric probabilistic approaches (see for instance, [15, 16, 17, 18, 19]),
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or using the nonparametric probabilistic approach ([20, 21, 22]), and for which the optimization
of alternating patterns has been studied (see for instance, [23, 24, 25, 26]).

More recently, the technological improvements that include the use of more flexible and
lighter materials can lead to large displacements so that the linearization of the dynamic equations
can no longer be used. In this context, the geometric nonlinearities have to be taken into account
and there is a growing interest for including geometric nonlinearities in the dynamic analyses
of detuned bladed disks. It should be noted that the effects of nonlinearities on the dynamics
have been considered by [27] for a simple generic cyclic structure exhibiting nonlinear stiffness
connections (and not for nonlinear geometrical effects, and furthermore, without mistuning). The
effects of geometrical nonlinearities using the Harmonic Balance Method have been analyzed by
[28, 29] for tuned bladed disks (with neither mistuning nor detuning). The first work concerning
the effects of nonlinear geometrical effects of mistuned bladed disk based on a probabilistic
model without detuning can be found in [30].

It should be noted that, in the framework of linear dynamics, the introduction of intentional
mistuning induces a modification of the eigenfrequencies of the blades and allows the aerody-
namic coupling to be reduced [31, 32, 33]. This type of result should be analyzed in nonlinear
geometrical dynamics. Nevertheless, the aerodynamic coupling is not considered in this paper.

This work is devoted to the robust analysis of the effects of geometric nonlinearities on the
nonlinear dynamic behavior of rotating bladed disks that are detuned in presence of mistuning.
An ensemble of novel results are presented based on analyses performed with a stochastic com-
putational model of a bladed disk structure consisting of 24 blades.

The methodology used for obtaining these novel results and the organization of the paper are
presented below. Section 2 begins defining the boundary value problem of the nonlinear geo-
metric dynamics for the detuned bladed disk in rotation taking into account geometric stiffness,
gyroscopic coupling, and centrifugal stiffness matrices (that are zero matrices when the rotation
speed is zero). The corresponding computational model is constructed by using the finite ele-
ment method. This computational model is referred as the nonlinear high-fidelity computational
model (NL-HFM). The robust analysis that is proposed cannot be performed using the NL-HFM
because the number of degrees-of-freedom is much too large for analyzing such parameterized
stochastic nonlinear dynamical system. Consequently, it is necessary to introduce an appropriate
parameterized stochastic nonlinear reduced-order model for carrying out the robust analysis.

The methodology used for the construction of this appropriate nonlinear reduced-order model
(NL-ROM) is presented. For this purpose, a modal basis is computed by solving the generalized
eigenvalue problem associated with the NL-HFM for which the rotation speed is zero (therefore,
without nonlinear geometrical effects, without damping, and without mistuning). A first nonlin-
ear reduced-order model (NL-ROMF) is constructed by projecting the NL-HFM on the subspace
spanned by this modal basis.

Another vector basis is then calculated using the Proper-Orthogonal Decomposition (POD)
method [34, 35] applied to the nonlinear solution of the NL-ROMF, which is solved in the time
domain. Note that this time solution is computed taking into account geometric stiffness, gyro-
scopic coupling, and centrifugal stiffness matrix, for a given speed of rotation.

A projection basis for the NL-HFM is obtained by composing the modal basis with the vector
basis constructed with the POD method. The final nonlinear reduced-order model (NL-ROM)
is then obtained by double projection of the NL-HFM that is to say, by projecting the NL-HFM
on the subspace spanned by the projection basis introduced above. At the end of this section,
we present the construction of the nonlinear stochastic reduced-order model (NL-SROM) that
is based on the nonparametric probabilistic approach of uncertainties [36] that is implemented
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in the NL-ROM. This NL-SROM describes the stochastic nonlinear dynamics of the detuned
rotating bladed disk in presence of mistuning. The NL-SROM is solved in the time domain using
the Monte-Carlo method. The random quantities of interest, related to the nonlinear stochastic
responses, are analyzed in both time and frequency domains.

Section 3 is devoted to the construction of the NL-SROM for the robust analysis of the de-
tuned bladed disk in rotation in presence of mistuning. Sections 4 to 6 deal with the robust
analysis of the 24-blades disk, including the convergence aspects.

2. Mean (or nominal) nonlinear reduced-order model of a detuned bladed disk in rotation
without mistuning

2.1. Assumptions and terminology

For the sake of clarity, one has to distinguish the following terms:

1. The tuned structure is related to the conceptual structure, which exhibits a perfect M-order
cyclic symmetry. For this configuration as denoted as P0, the geometry, the constitutive
equation of material, and the boundary conditions related to the reference sector are in-

variant under the
2π
M

rotation around its axis of symmetry. A dynamic analysis can then be
performed by using only one reference sector with appropriate phase-lag conditions on the
boundary. In this work, the tuned bladed disk is analyzed in 3D as for the detuned bladed
disk.

2. The detuned (or intentionally mistuned) structure is related to the conceptual structure for
which there is a spatial distribution of different types of sectors that are characterized by
a given pattern. Here, we will only use two sector types with identical geometry and for
which the material properties of the blades are different. The detuned structure is defined
by an assembly of these two sector types. For M = 24 blades, a pattern will be defined,
for instance, by 12B6A3B3A, which consists of 12 consecutive blades of type B, 6 of type
A, 3 of type B, and 3 of type A.

3. The mistuned structure is related to the real structure for which the cyclic symmetry is
broken and is defined at the beginning of this Section. It is modeled by using the nonpara-
metric probabilistic approach of uncertainties [36].

It is assumed that:
(1) The bladed disk is made up of a linear elastic material.
(2) In the time domain, the amplitude of the external forces are assumed to be sufficiently large
so that the structure undergoes geometric nonlinear effects induced by large displacements and
strains.
(3) The bladed disk is in rotation around its rotational axis at a constant rotation speed Ω (rad/s).

2.2. Nonlinear boundary value problem

We are interested in considering the nonlinear boundary value problem of the detuned bladed
disk in rotation. A total Lagrangian formulation is chosen and the nonlinear dynamic equations
are expressed in the rotating frame with respect to the reference configuration.The rotation axis of
the bladed disk is defined as (O, e3). Let R be the rotating referential cartesian coordinates system
and let (O, e1, e2, e3) be its related basis. Let D be the three-dimensional bounded open domain
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corresponding to such reference configuration and subjected to the body force field g(x, t) =

(g1(x, t), g2(x, t), g3(x, t)), in which x = (x1, x2, x3) denotes the position of a given point belonging
to domain D. The boundary ∂D is such that ∂D = Γ∪Σ with Γ∩Σ = ∅. The external unit normal
to boundary ∂D is denoted by n = (n1, n2, n3). The boundary part Γ corresponds to the fixed
part of the structure (in the local rotating frame) whereas the boundary part Σ is subjected to
the external surface force field G(x, t) = (G1(x, t),G2(x, t),G3(x, t)). Note that the external force
fields are derived from the Lagrangian transport into the reference configuration of the physical
body/surface force fields applied in the deformed configuration. We then introduce the (3 × 3)

Figure 1: Scheme of the bladed disk in its reference configuration

rotation matrix [R(Ω)] such as

[R(Ω)] =

 0 −Ω 0
Ω 0 0
0 0 0

 , (1)

corresponding to the rotational axis (0, 0, 1) in R. From now on, the convention of summation
over repeated latin indices is used. The unknown displacement field in R is denoted as u(x, t) =

(u1(x, t), u2(x, t), u3(x, t)) and is solution of the following nonlinear boundary value problem [37].
For i = 1, 2, 3, we have

∂

∂x j

(
Fik�k j

)
+ ρgi − αρ

∂ui

∂t
= ρ

∂2 ui

∂t2 + 2ρ [R]i j
∂u j

∂t
+ ρ [R]i j[R] jk (xk + uk) , ∀x ∈ D , (2)

Fik�k j n j = Gi , ∀x ∈ Σ , (3)

ui = 0 , ∀x ∈ Γ , (4)
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in which ρ is the mass density and where α is the coefficient controlling the dissipation. In
Eq. (2), the deformation gradient tensor F is defined by

Fi j =
∂ui

∂x j
+ δi j , (5)

where δi j is the second-order unit tensor such that δi j = 1 if i = j and 0 otherwise. The quantity
� is the second Piola Kirchhoff symmetric stress tensor for which the constitutive equation for a
linear elastic material is written as

�i j = ai jk`Ek` . (6)

In Eq. (6), a is the fourth-order elasticity tensor and E is the Green strain tensor that is written as

Ei j =
1
2

(
∂ui

∂x j
+
∂u j

∂xi
+
∂us

∂xi

∂us

∂x j

)
. (7)

It should be noted that Eq. (6) captures the finite displacements of the structure. In the present
context, it is assumed that there is no rigid body motion of the rotor and that the bladed disk
structure rotates around a fixed axis. Such assumptions then allows for obtaining all the above
equations as can be shown in [38, 37, 39, 40].

2.3. Nonlinear high-fidelity model (NL-HFM) for a detuned bladed disk

The finite element discretization of the weak formulation of the nonlinear boundary value
problem defined by Eqs. (2) to (7) yields the following NL-HFM,

[M] ü(t) +
(

[D] + [Cg(Ω)]
)

u̇(t) + [K(Ω)] u(t) + f NL(u(t)) = f(t) , (8)

in which the (n × n) matrix [K(Ω)] is defined by

[K(Ω)] = [Ke] + [Kc(Ω)] + [Kg(Ω)] , (9)

and is assumed to be positive definite. In Eq. (8), the Rn-vector u(t) is the vector of the n degrees-
of-freedom corresponding to the unknown displacements. The mass, damping, and stiffness
(n×n) real matrices [M], [D], [Ke] are positive definite, the geometric stiffness (n×n) real matrix
[Kg(Ω)] is symmetric, the gyroscopic coupling (n × n) real matrix [Cg(Ω)] is skew-symmetric,
and the centrifugal stiffness (n× n) real matrix [Kc(Ω)] is negative semi-definite. More precisely,
matrix [Kg(Ω)] is associated with the term ρ [R]i j[R] jk xk in Eq. (2), matrix [Kc(Ω)] with the term

ρ [R]i j[R] jkuk, and matrix [Cg(Ω)] with the term 2ρ [R]i j
∂u j

∂t
. The Rn-vector f(t) is the external

force vector depending on time issued from the finite element discretization of the surface and
body force fields. The Rn-vector f NL(u(t)) describes the nonlinear internal forces induced by the
geometric nonlinearities.
The corresponding linear high-fidelity model (L-HFM) is defined similarly to Eq.(8) by removing
the nonlinear term f NL(u(t)) and is written as

[M] ü(t) +
(

[D] + [Cg(Ω)]
)

u̇(t) + [K(Ω)] u(t)= f(t) . (10)
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2.4. Nonlinear reduced-order model (NL-ROM) for a detuned bladed disk
The objective of this Section is to construct a nonlinear reduced-order model for a detuned

bladed-disk. Such a construction requires the use of a vector basis for projecting the nonlinear
computational model. Many methods can be used for constructing such vector basis, see for
instance [41, 42, 30, 43, 29].

In this paper, the methodology proposed for constructing the NL-ROM is a novel approach,
briefly described in Section 1 and that we detail hereinafter. The construction of the NL-ROM
requires the knowledge of a consistent vector basis. It is first chosen of computing the vibrational
modes of the linear high fidelity model (L-HFM) that includes the rotation terms but for which the
damping term represented by matrix [D] is removed and for which the gyroscopic coupling terms
are not considered, mainly to avoid the computation of a complex eigenvalue problem for very
large dynamical systems and to avoid the use of a complex basis for constructing the NL-ROM.
This vector basis is not an optimal one with respect to the convergence speed of the reduced-
order model since it ignores the nonlinear geometrical effects and the gyroscopic coupling terms
(the damping matrix [D] does not influence the convergence speed because damping is very
small). This intermediate NL-ROMF is nevertheless constructed in order to carefully study the
convergence of the nonlinear response related to the detuned rotating bladed-disk structure with
all the rotating terms, the nonlinear geometrical effects, and the damping term. Such converged
nonlinear solution that is computed in the time domain is then used to calculate another real
vector basis using the Proper Orthogonal Decomposition method (POD-method). By combining
these two vector bases, a second NL-ROM is obtained with a reasonable size. Through this
NL-ROM, (1) the damping effect and all the rotating effects are taken into account, (2) for the
detuned rotating structure, the NL-ROM is of lower order, which is more efficient than the NL-
ROMF in terms of computational costs, (3) the probabilistic model describing the mistuning can
be implemented through the nonlinear stochastic reduced-order model (NL-SROM). In addition,
it allows for decreasing the computational costs for the Monte Carlo numerical simulation using
a parallel computer.

2.4.1. First nonlinear reduced-order model (NL-ROMF) for a detuned bladed disk
The finite element model of the detuned bladed disk will exhibit a large number of degrees-

of-freedom (dofs), for instance, 1 million, yielding a large NL-HFM. Since the objective of this
work is to perform a robust analysis of this NL-HFM demanding an extensive parametric study
with respect to a subsequent number of distinct patterns, it is essential to consider a nonlinear
reduced-order model (NL-ROM). The construction of the corresponding NL-ROM requires the
knowledge of a projection basis. As explained in Section 1, we have to construct a projection
basis that is performed in two steps. For the first step, consisting in calculating a modal ba-
sis, a possible strategy would consist in solving the generalized eigenvalue problem related to
the linear, conservative, and homogeneous problem associated with the differential equation (8),
yielding complex eigenvectors because of the gyroscopic coupling matrix. To avoid this diffi-
culty, the modal basis is chosen to be real and is built as follows. The eigenfrequencies να and
the corresponding elastic modes ϕα are obtained by solving the following generalized eigenvalue
problem,

[K(Ω)]ϕα = λα [M]ϕα , (11)

with α = {1, ...,m}, where the eigenvalues λα = (2πνα)2 are such that 0 < λ1 6 λ2 6 · · · 6 λm,
and where the elastic modes ϕ1, . . . ,ϕm are stored in the (n × m) real modal matrix [Φ

m
] that is

such that [Φ
m

]T [M] [Φ
m

] = [Im].
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The first nonlinear reduced-order model (NL-ROMF), as proposed in Section 1, is obtained by
projecting Eq. (8) on the subspace generated by [Φ

m
] and is written as

u(t) = [Φ
m

] q(t) , (12)

[M ] q̈(t) + ([D ] + [ Cg(Ω)]) q̇(t) + [K(Ω)] q(t) + F
NL (

q(t)
)

= F(t) , (13)

in which q(t) is the Rm-vector of the generalized coordinates and where [M ], [D ], [ Cg(Ω)],
and [K(Ω)] are the (m × m) reduced mass, damping, gyroscopic, and stiffness matrices, which
are deduced from [M], [D], [Cg(Ω)], and [K(Ω)]. In Eq. (13), the Rm-vector F(t) is the vector

of the reduced external forces depending on time. The Rm-vector F
NL

(q(t)) is the vector of the
nonlinear reduced internal forces defined by

F
NL

(q(t)) = [Φ
m

]T F NL([Φ
m

] q(t)) . (14)

2.4.2. Linear reduced-order model (L-ROM) for a detuned bladed disk

When the nonlinear reduced internal forces F
NL

are removed from Eq. (13), the linear
reduced-order model corresponding to Eqs. (12) and (13) is then denoted as L-ROM.

2.4.3. Second nonlinear reduced-order model (NL-ROM) for a detuned bladed disk
As explained in Section 1, the second step consists in using the POD-method applied to the

NL-ROMF, which allows for taking into account the effects of the gyroscopic coupling.
Equation (13) is solved using a Newmark scheme for which a constant time step ∆t is used.

At each time step, the nonlinear algebraic equation is solved using either the fixed point method
or a continuation method based on the arc-length method depending on the local nonlinearity
rate. Let nt be the number of time steps. It should be noted that the distance between two
consecutive snapshots could be chosen as r ∆t where r is a given integer greater than or equal to
1. Nevertheless, since the POD is applied to NL-ROMF, which has a small dimension m � n, it
is not penalizing to take r = 1. Let [A] be the (m × nt) real matrix with nt > m defined by

[A]i j = qi(t j)
√

∆t , (15)

in which the constant time step ∆t is used as the distance between two consecutive snapshots for
the construction of the POD basis. The vector basis is made up of the eigenvectors corresponding
to largest eigenvalues of the (m × m) real matrix [C] defined by

[C] = [A][A]T . (16)

It should be noted that the rank of matrix [C] is m that is less than or equal to m (if m < m,
then [C] is not positive definite but only positive). In practice, matrix [C] is not computed. Its
eigenvalues and its eigenvectors are obtained by computing the singular value decomposition
of matrix [A] using an economy size algorithm [44]. Removing the zero singular values, this
decomposition can be written as,

[A] = [W][S ][V]T , (17)
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in which [W] is the (m × m) real matrix with m ≤ m, where [V] is the (nt × m) real matrix, and
where the (m × m) matrix [S ] contains all the m non-zeros singular values sorted by decreasing
order s1 > s2 > · · · > sm > 0, which are the square-roots of the positive eigenvalues of matrix
[C]. It can also be shown that the m columns of matrix [W] are the corresponding eigenvectors of
matrix [C] associated with the positive eigenvalues and matrix [W] is such that [W]T [W] = [Im].
Let [W (m,N)] be the (m×N) matrix with N 6 m < m that contains the eigenvectors related to the
N greatest singular values sα, α = {1, · · · ,N}, which is such that [W (m,N)]T [W (m,N)] = [IN].
Finally, the projection basis, represented by the (m × N) real matrix [Φ(m,N)] that will be used for
obtaining the NL-ROM, is constructed such that

[Φ(m,N)] = [Φ
m

] [W (m,N)] , (18)

with [Φ(m,N)]T [M] [Φ(m,N)] = [IN]. The NL-ROM is then obtained by projecting the NL-HFM,
that is to say, is written as

u(t) = [Φ(m,N)] q(t) , (19)

[M] q̈(t) + ( [D] + [Cg(Ω)] ) q̇(t) + [K(Ω)] q(t) + FNL(q(t)) = F(t) , (20)

in which q(t) is the RN-vector of the generalized coordinates, where [K(Ω)] is the (N×N) matrix
that is written as

[K(Ω)] = [Ke] + [Kc(Ω)] + [Kg(Ω)] , (21)

and where [Ke], [Kc(Ω)], and [Kg(Ω)] are the reduced elastic, centrifugal, and geometric matri-
ces. In Eq. (20), the (N×N) real matrices [M], [D], [Cg(Ω)], and [K(Ω)] are the reduced matrices,
which are deduced from [M], [D], [Cg(Ω)], and [K(Ω)]. The normalization of matrix [Φ(m,N)] is
such that [M] = [IN]. The RN-vector F(t) is the generalized external forces. In Eq. (20), the
RN-vector FNL(q(t)) of the nonlinear internal forces are written, for all q = (q1, . . . , qN) in RN ,
as

FNL
α (q) = K(2)

αβγ qβ qγ + K(3)
αβγδ qβ qγ qδ , (22)

in which the quadratic and cubic stiffness contributions K(2)
αβγ and K(3)

αβγδ are written [45, 46] as

K(2)
αβγ =

1
2

(
K̂

(2)
αβγ + K̂

(2)
βγα + K̂

(2)
γαβ

)
, (23)

with

K̂
(2)
αβγ =

∫
Ω

a jk`m ϕ
α
j,k ϕ

β
s,` ϕ

γ
s,m dx , (24)

K(3)
αβγδ =

1
2

∫
Ω

a jk`m ϕ
α
r, j ϕ

β
r,k ϕ

γ
s,` ϕ

δ
s,m dx , (25)

in which ϕαj corresponds to the entry [Φ(m,N)] jα. Note that tensor K(2)
αβγ has permutation-invariance

property and that tensor K(3)
αβγδ has positive-definiteness property. The notation yr, j means the

partial derivative of yr with respect to x j.
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3. Stochastic linear and nonlinear reduced-order models of a detuned rotating bladed disk
with mistuning

In this section, we introduce two probabilistic models for NL-ROM, yielding two nonlinear
stochastic nonlinear reduced-order models, NL-SROM1 and NL-SROM2. The NL-SROM2 is
introduced in order to compare it with L-SROM that will be constructed as the NL-SROM2
without the nonlinear internal forces, while NL-SROM1 will be the full probabilistic model for
the nonlinear case.

3.1. Stochastic nonlinear reduced-order model NL-SROM1 of a detuned rotating bladed disk
with mistuning

The first stochastic nonlinear reduced-order model (NL-SROM1) is based on a full prob-
abilistic model and corresponds to a probabilistic modeling of the mistuning for the detuned
rotating bladed disk. Note that only the nonlinear internal forces (including the linear elastic
part) are assumed to be uncertain and consequently, are modeled by random quantities. As previ-
ously explained, the nonparametric probabilistic approach for geometric nonlinearities [45, 36]
is used. It involves a positive (Na × Na) real matrix [KNL] with Na = N(N + 1) which is written
as

[KNL] =

 [Ke] [K̃
(2)

]

[K̃
(2)

]T 2 [K̃
(3)

]

 , (26)

in which [Ke] is the reduced elastic matrix defined in Eq. (21) and where [K̃
(2)

] and [K̃
(3)

] are
respectively the (N × N2) and (N2 × N2) real matrices resulting from the following reshaping
operation,

[K̃
(2)

]αJ = K̂
(2)
αγδ , [K̃

(3)
]IJ = K(3)

αβγδ , (27)

with I = (α − 1)N + β and J = (γ − 1)N + δ. The corresponding random matrix [KNL] is then
written as

[KNL] = [LK][GK(δK)][LK]T + [∆K̃] , (28)

in which [LK] is a (Na × NG) real matrix whose columns contain the NG eigenvectors of matrix
[KNL] associated with the first NG largest eigenvalues. Such factorization allows for reducing
the size of the random matrix [GK(δK)], as proposed in [47]. The full (NG × NG) random matrix
[G̃K(δK)] with NG � Na is constructed using the Maximum Entropy principle [48, 36]. In
Eq. (28), the (Na × Na) real matrix [∆K̃] is written as

[∆K̃] = [KNL] − [LK][LK]T , (29)

and E{[KNL]} = [KNL] because E{[G̃K(δK)]} = [ING ]. The hyperparameter δK allows for con-
trolling the level of uncertainties in random matrix [KNL]. The random linear, quadratic, and
cubic coefficients, [Ke]αβ, K(2)

αβγ, and K(3)
αβγδ, are extracted from random matrix [KNL] that have

the same block structure as its deterministic counterpart defined in Eq. (26). The first stochastic
nonlinear reduced-order model, NL-SROM1, is then written as,

U(t) = [Φ(m,N)] Q(t) , (30)
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[M] Q̈(t) +
(
[D] + [Cg(Ω)]

)
Q̇(t) + ([Ke] + [Kc(Ω)] + [Kg(Ω)]) Q(t)

+ FNLS (Q(t)) = F(t) , (31)

in which Q(t) is the RN-valued random variable. In Eq. (31), the vector of the stochastic nonlinear
internal forces FNLS(Q(t)) is written, for all q = (q1, . . . , qN) in RN , as

FNLS
α (q) = K(2)

αβγ qβ qγ + K(3)
αβγδ qβ qγ qδ . (32)

3.2. Stochastic nonlinear reduced-order model NL-SROM2 of a detuned rotating bladed disk
with mistuning

The second nonlinear stochastic reduced-order model, NL-SROM2, is defined by Eqs. (30)
and (31) for which two modifications are performed. Firstly, the stochastic nonlinearity term
FNLS in Eq. (31) is replaced by the deterministic nonlinearity term FNL defined by Eq. (22).
Secondly, another probabilistic model is introduced for the random positive-definite (N × N)
matrix [Ke], which is written as

[Ke] = [LKe
] [GK(δK)] [LKe

]T , (33)

in which [LKe
] is the lower triangular (N × N) real matrix, which results from the Cholesky

factorization of (N × N) real matrix [Ke], and where [GK(δK)] is the random (N × N) positive-
definite real matrix that is similarly constructed as [G̃K(δK)].

3.3. Stochastic linear reduced-order model L-SROM of a detuned rotating bladed disk with mis-
tuning

We also introduce a stochastic linear reduced-order model L-SROM, which is the NL-SROM2,
in which the nonlinear term FNLS is removed.

3.4. Observations of the nonlinear dynamical system

Observations of the nonlinear dynamical system have to be defined for performing the robust
analysis of the detuned rotating bladed disk with or without mistuning. It is recalled that, in
presence of mistuning, the responses are random. There are several ways for defining the ob-
servations. We have chosen one, which is coherent with all the analyses that are performed in
the frequency domain. First, we will define only one observation point for each blade, which
is located at its tip. This means that, the number of observation points is equal to the number
of blades. For the detuned rotating bladed disk without mistuning, we will look for the blade
number j0 where the maximum related to the amplitude of the displacement occurs, over all
the blades and for the entire frequency band of analysis. It should be noted that, in presence
of mistuning, j0 becomes a random variable. Nevertheless, we want to characterize the random
responses — of the detuned rotating bladed disk in presence of mistuning — with respect to the
deterministic response of the detuned rotating bladed disk without mistuning. Consequently, we
have chosen to keep j0 as the deterministic blade number for the case for which mistuning is
taken into account.
Figure 2 shows the computational model of the bladed disk for which, as previously explained,
the M observation points are located at the tip of each blade (red dots). We first consider the
detuned rotating bladed disk without mistuning. For each time t and for the observation in blade
j, let u j(t) = (u j

1(t), u j
2(t), u j

3(t)) be the vector whose coordinates are given in the local basis
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(e j
1, e

j
2, e

j
3). For frequency ν in Hz, the Fourier Transform of function t 7→ u j(t) is written as

û j(2πν) = (̂u j
1(2πν), û j

2(2πν), û j
3(2πν)). We have to find the blade number j0 such that

j0 = arg max
j=1,...,M

|||̂u j
||| , (34)

in which |||̂u j
||| is such that

|||̂u j
||| = max

ν
||̂u j(2πν)|| , (35)

with ‖̂u j(2πν)‖2 =
∑3

k=1 |̂u
j
k(2πν)|2. For the tuned rotating bladed disk (therefore, it is not detuned

and there is no mistuning), the quantity |||̂u j
||| will be rewritten as |||̂utuned

|||. It should be noted
that, the blade number j0 depends on the considered pattern and on the type of the analysis, which
is performed for the detuned rotating bladed disk. There are two types of analysis, the linear one
denoted by subscript L and the nonlinear one denoted by subscript NL. These subscripts will be
omitted when no confusion will be possible.

We are interested in characterizing the amplification levels for the nonlinear deterministic
and random cases. The random observations corresponding to the detuned-mistuned cases are
similarly denoted by replacing lowercase letters by uppercase ones. We then define quantities
b(2πν) and B(2πν) as the deterministic and random dynamic amplification factor such that

b(2πν) =
||̂u j0 (2πν)||

|||̂utuned
|||

, (36)

B(2πν) =
||Û

j0
(2πν)||

|||̂utuned
|||

. (37)

Figure 2: Finite element model of the bladed disk with 24 blades in which the dot symbols (red
color) correspond to the excitation points (left figure). Zoom of the finite element model of a
sector (right figure).

3.5. Remark concerning the software implementation
It should be noted that a commercial software is used for developing the finite element model

of a given sector of the bladed-disk. All the other steps (constructing the computational model,
11



computing the vector bases, constructing the LROM, the NL-ROM, the L-SROM and the NL-
SROM, computing the linear and nonlinear deterministic and stochastic dynamical responses)
are processed using a house code. Since a house code is used, there is no problem for a direct
implementation of the NL-ROM and NL-SROM (see [45, 46]).

4. Robust analysis of the detuned bladed disk in rotation in presence of mistuning using
the NL-SROM

From an industrial point of view, such a robust analysis is of particular interest when excep-
tional operating ranges are considered (severe loads or close to a flutter situation). In such cases,
the geometric nonlinearities can no longer be neglected and strongly modify the dynamical re-
sponses of the structure with respect to the usual linear case. The robust analysis presented will
then correspond to such exceptional operating ranges.

4.1. Finite element model of the tuned bladed disk with 24 blades
The finite element model of the tuned bladed disk is shown in Figure 2. There are M = 24

blades and the bladed disk rotates around its cyclic axis with a constant rotation speed Ω =

2π × 74 rad/s (4 440 RPM). The material is steel, which is considered as a homogeneous and
isotropic elastic material with Young modulus 2 × 1011 N×m−2, Poisson’s ratio 0.3, and mass
density 7 650 Kg×m−3. In the rotating frame, the disk is clamped at the inner radius of the
disk (see Figure 1). The main geometric characteristics are summarized in Table 1. The finite

Inner disk radius 19.8 ×10−3 m
Outer disk radius 100 ×10−3 m

Disk width 20 ×10−3 m
Blade thickness at root section 4.8 ×10−3 m
Blade thickness at tip section 2 ×10−3 m

Table 1: Geometric characteristics of the bladed disk

element model of the reference sector has been carried out using tridimensional isoparametric
solid finite elements with quadratic shape functions. The finite element mesh of a reference sector
is constituted of 37 488 hexahedral finite elements with 20 nodes, 1 848 pyramidal elements with
13 nodes, and 45 864 tetrahedral elements with 10 nodes. The finite element model of the full
bladed disk is then obtained from the finite element model of the reference sector. The numerical
description of the finite element model is given in Table 2. It should be noted that, for the linear

Structure Elements Nodes DOFs
Blade alone 2 714 6 896 20 688
Disk sector 836 4 554 13 662

Full structure 85 200 265 080 787 176

Table 2: Element, nodes, and dofs of the finite element model

tuned rotating bladed disk, the eigenfrequency of the elastic mode that corresponds to the first
flexural mode of the blade with a 4-nodal diameter is ν1 = 435 Hz. Following the damping model
introduced in Eq. (2), the Rayleigh damping model is chosen in order that the critical damping
rate be equal to 10−2 for the fundamental eigenfrequency ν1.

12



4.2. Definition of the patterns for the detuned bladed disk
The computational model of the detuned bladed disk is constructed from the knowledge of

two compatible meshes of two different sector types denoted as A and B. The reference sector
B is obtained from sector A by decreasing the Young modulus of the blade by 10 %; the Young
modulus of the disk remains unchanged. Figure 3 shows the tuned system P0 = 24A and the
detuned one P31 = (6A6B)2.

Figure 3: Tuned system P0 = 24A (left figure) and detuned system P31 = (6A6B)2 with red blade
for B and blue blade for A (right figure). For black and white printing, red color is light grey and
blue color is black.

4.3. Eigenfrequencies of the linear tuned rotating bladed disk
Figure 4 displays the Campbell diagram representing the evolution of the eigenfrequencies

να of the linear tuned rotating bladed disk P0 according to rotation speed Ω. The dashed lines
represent the EO-engine order excitation characterized by function Ω 7→ EO×Ω/60. A required
condition for an Engine Order (EO) excitation to excite a bladed-disk is that the EO frequency
coincides with the natural frequency of the bladed-disk. It is then possible to graphically detect
the possible resonant points. The intersection of the natural eigenfrequencies with the dashed
lines gives then an indication of the rotating speed yielding resonant situations of interest. The
EO excitation is a periodic force that can be given by

j M ± h=k×EO , (38)

in which j and k are integers, and where h is the circumferential wave number corresponding to
the number of nodal diameters of the considered mode.

Figure 5 displays the graph of να(h) as a function of the circumferential wave number h for
the linear tuned rotating bladed disk (configuration P0) for which rotation speed is 4 440 RPM.
For this rotation speed, we are interested in the first 3 modes related to h = 4, which are the
first bending mode of blades (mode 1 at 484 Hz), the second bending mode of blades (mode 2 at
1 170 Hz), and the first torsion mode of blades (mode 3 at 1 490 Hz).

4.4. Defining the external forces (excitation)
The objective of the presented analysis is not to compute the nonlinear dynamical response

for a general physical excitation, but is to present a sensitivity study for understanding the role
played by the geometrical nonlinear effects with respect to the linear counterpart. In this frame-
work, it should be noted that this choice is coherent with the fact that no aerodynamic coupling is
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Figure 4: Graph of Ω 7→ να(Ω) defining the Campbell diagram of the eigenfrequencies (in Hz)
of the linear tuned rotating bladed disk (pattern P0) as a function of the rotation speed (in RPM),
where EO denotes the engine order, and where the vertical dashed line identifies the speed of
rotation that is considered.
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Figure 5: Graph of h 7→ να(h) of the eigenfrequencies να of the linear tuned rotating bladed disk
(pattern P0) for rotation speed Ω = 4 440 RPM as a function of the circumferential wave number
h.

taken into account. Inspired by the type of analyses performed for the linear mistuned cases, the
external forces have been chosen in order to control the circumferential wave number and also
the frequency band of excitation, which has to be sufficiently narrow around the specified fre-
quency of interest. For the role of the nonlinear effects, this type of excitation allows for clearly
analyzing the transfer of energy outside the excitation frequency band (which is the objective of
the paper).

According to the Campbell diagram displayed in Figure 4, it can be seen that the third mode
intersect the EO line corresponding to EO=20 for the considered rotating speed Ω=4 440 RPM
(rotation per minute). As a consequence, the excitation is chosen with circumferential wave
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number h = 4 (nodal diameter), for which Eq. (38) is satisfied with j=k=1.
The excitation frequency band is chosen as Be = [1 000, 1 600] Hz, which contains the first

two eigenfrequencies corresponding to the flexural mode and the torsion mode of the blade as
shown in Figure 4. In the time domain, the external force vector f(t) is defined by,

f(t) = s0 g(t) f s , (39)

in which f s is the vector representing the spatial distribution of the external forces in (N), which
depends on the circumferential wave number h, and where the dimensionless time-function t 7→
g(t) is defined on R and is constructed so that the modulus |̂g(2πν)| of its Fourier transform
ĝ(2πν) is equal to 1 in excitation frequency band Be and equal to zero outside Be. The reference
intensity of the force applied is represented by g(t) f s (N) and the level of nonlinear geometric
effects is driven by the dimensionless parameter s0. For s0 = 0.01, the nonlinear geometrical
effects will be negligible, for s0 = 0.15, the nonlinear geometrical effects will be moderate,
and for s0 = 1 the effects will be large. Note that the value s0 = 4 has also been used for the
sensitivity analysis and correspond to strong effects. Figures 6 and 7 show the graphs of function
t 7→ g(t) and the modulus of its Fourier transform ν 7→ |̂g(2πν)|. The frequency band of analysis
is Ba = [0, 4 000] Hz. It should be noted that, from a computational point of view, the numerical
values of |̂g(2πν)| for ν in Ba\Be are not exactly zero but differ with three orders of magnitude
lower, which means that the linear dynamic response will have negligible magnitude in the band
Ba\Be (that will be not the case for the nonlinear dynamic response). From a numerical point of
view, function g is truncated by choosing tini = −0.065 s such that g(tini) = 0 with a time duration
T = 0.15 s. The computations are carried out with nt = 4 096 time steps, using a sampling
frequency νe = 16 000 Hz. The nonlinear dynamic analysis is performed in the time domain
according to Eq. (20). A Fourier transform of the time response (a deterministic time response or
a realization of the stochastic time response) is carried out and allows for analyzing a posteriori
the nonlinear dynamic responses in the frequency domain (in a deterministic framework or in a
stochastic one).
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Figure 6: Zoom on the interval [−0.02 , 0.02] s of the graph of the time-function excitation,
t 7→ g(t), defines on interval [−0.065 , 0.15] s.
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Figure 7: Graph of function ν 7→ |̂g(2πν)| in log scale.

4.5. Convergence analyses with respect to the parameters that control the reductions and the
Monte-Carlo numerical simulations

4.5.1. Convergence analysis with respect to the nonlinear reduced-order model
In this section, the convergence analysis of the deterministic response of the NL-ROM is

considered for a given pattern of a detuned rotating bladed disk (without mistuning). We estimate
the optimal values of parameters m and N related to the truncation of the vector bases used for
constructing the NL-ROM (according to Section 2.4.3). Let ŵ(2πν) be the scalar value such that

ŵ(2πν) =

√√√ M∑
j=1

||̂u j(2πν)||2 . (40)

When dealing with the first reduction, involving modal matrix [Φ̄m], ŵ(2πν) is denoted by
ŵm(2πν). When dealing with the final reduction, involving the modal matrix [Φm,N], ŵ(2πν)
is denoted by ŵm,N(2πν). A first convergence analysis is performed with respect to the number m
of modes to be kept in the NL-ROMF. Let Conv1(m) be the function defined by

Conv1(m) =

√∫
Ba

(
ŵm(2πν)

)2 dν . (41)

Figure 8 displays the graph of function m 7→ Conv1(m) for the three different patterns (the tuned
pattern P0 = 24A and two detuned patterns P2 = (AB)12 and P13 = 6B12A3B3A). A good
convergence is obtained for m = 145 that will be the retained value. A second convergence
analysis is then carried out with respect to N < m = 145 according to Eq. (18). Let Conv2(m,N)
be the function defined by

Conv2(m,N) =

√∫
Ba

(
ŵm,N(2πν)

)2 dν . (42)
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Figure 8: Convergence analysis with respect to the order m of the NL-ROMF: graphs of function
m 7→ Conv1(m) for patterns P0 = 24A, P2 = (AB)12, and P13 = 6B12A3B3A.

Figure 9 displays the graph of function N 7→ Conv2(m = 145,N). It can be seen that a good
approximation is obtained for N = 55, which proves the efficiency of the reduction strategy that
is proposed.
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Figure 9: Convergence analysis with respect to the order N of the NL-ROM for m = 145: graphs
of function N 7→ Conv2(m,N) for patterns P0 = 24A, P2 = (AB)12, and P13 = 6B12A3B3A.

4.5.2. Convergence analysis with respect to the number NG of columns of matrix [LK]
From the previous section, the order of the NL-ROM is N = 55. This means that the dimen-

sion of matrix [KNL] defined in Eq. (26) is Na = 3 080. Random matrix [KNL] is represented
by Eqs. (28) and (29), which depends on the number NG of columns of matrix [LK]. We then
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introduce the relative error function NG 7→ err(NG) such that

err(NG) =

√√
‖[∆K̃]‖2F
‖[KNL]‖2F

, (43)

in which ‖ · ‖F is the Frobenius norm. Figure 10 displays the graph of NG 7→ err(NG). A good
convergence is obtained for NG = 500, which allows for reducing the size of the random matrix
[GK(δK)] used in Eq. (28).
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Figure 10: Convergence analysis with respect to the number of columns NG of matrix [LK]:
graph of function NG 7→ err(NG) in log-scale.

4.5.3. Convergence analysis of the NL-SROM with respect to the number of Monte-Carlo simu-
lations

In this section, parameters m, N, and NG are such that m = 145, N = 55, and NG = 500. The
dispersion parameter δK is fixed to the value 0.1. Let

Ŵ(2πν) =

√√√ M∑
j=1

||Û
j
(2πν)||2 (44)

be the random variable corresponding to Eq. (40) for the stochastic case. The stochastic equa-
tion (31) is solved by using the Monte-Carlo numerical simulation with ns realizations denoted
by θ1, · · · , θns . Let Ŵ(2πν, θ`) be the realization θ` of the random variable Ŵ(2πν). The con-
vergence analysis with respect to ns is then carried out studying the function ns 7→ Conv4(ns)
defined by

Conv4(ns) =

√√
1
ns

ns∑
`=1

∫
Ba

(Ŵ(2πν, θ`))2dν (45)

In order to limit the CPU-time for performing the robust analysis of the detuned systems in
presence of mistuning, we choose the value of ns to be 500, which corresponds to a reasonable
compromise with respect to the level of convergence.
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Figure 11: Convergence analysis with respect to the number ns of realizations for the Monte-
Carlo numerical simulation of the NL-SROM: graph of function ns 7→ Conv4(ns).

5. Nonlinear deterministic analysis of nonlinear tuned and detuned rotating bladed disks
without mistuning

In all this section, we consider the nonlinear tuned rotating bladed disk and the nonlinear
detuned one without mistuning, which are analyzed using the NL-ROMF and the NL-ROM.

5.1. Sensitivity analysis of the deterministic responses for the nonlinear tuned rotating bladed
disk with respect to s0

This external-forces sensitivity analysis is performed using the NL-ROMF with m = 145 for
the nonlinear tuned rotating bladed disk (pattern P0 = 24A). The objective is to determine the
value of parameter s0 for which the geometric nonlinear effects occur in the dynamic response.
This analysis is performed by quantifying the energy iNL outside the excitation frequency band
Be (that is to say, in the band Ba\Be) such that

iNL(s0) =

√∫
Ba\Be

(
ŵ(2πν; s0)

)2 dν√∫
Be

(
ŵ(2πν; s0)

)2 dν
. (46)

Figure 12 displays the graph of function s0 7→ iNL(s0). It can be seen that geometric nonlinear
effects appear for s0 > 0.10. Figure 13 displays the graph of function ν 7→ ||̂u j0 (2πν)|| constructed
with the NL-ROMF for s0 equal to 0.04 (response belonging to the quasi-linear regime of the
nonlinear response), and equal to 0.25, 1.11, and 4.0 (response belonging to the nonlinear regime
of the nonlinear response). The left top figure clearly shows a dynamic response that remains
in the linear regime (there is no response outside Be). On the other hand, subsequent contribu-
tions with unexpected resonances appear outside Be in the frequency band Ba\Be as soon as s0
increases.

5.2. Linear and nonlinear dynamic analyses in the time domain using the L-ROM and NL-ROM
In this section, the linear and nonlinear dynamic responses of the tuned configuration (pattern

P0 = 24A) and three detuned configurations (patterns P6 = (4A2B)4, P11 = B4AB18A, P25 =
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Figure 12: Sensitivity analysis with respect to parameter s0 using the NL-ROMF for the nonlinear
tuned rotating bladed disk (pattern P0 = 24A): graph of function s0 7→ iNL(s0).

8 (Hz)
0 2000 4000

jjb uj 0
(2
:
8
)jj

(m
:s

)

10 -10

10 -5

8 (Hz)
0 2000 4000

jjb uj 0
(2
:
8
)jj

(m
:s

)

10 -10

10 -5

8 (Hz)
0 2000 4000

jjb uj 0
(2
:
8
)jj

(m
:s

)

10 -10

10 -5

8 (Hz)
0 2000 4000

jjb uj 0
(2
:
8
)jj

(m
:s

)

10 -10

10 -5

Figure 13: Sensitivity analysis with respect to parameter s0 of the response computed with the
NL-ROMF and analyzed in the frequency domain: graphs of function ν 7→ ||̂u j0 (2πν)|| for s0 =

0.04 (left top figure), s0 = 0.25 (right top figure), s0 = 1.11 (left down figure), and s0 = 4.0
(right down figure). The light yellow zone corresponds to the excitation frequency band Be

3A3B3A15B) are analyzed. Figure 14 displays the graph of function t 7→ u j0
2,L(t) for patterns

(P0, P6, P11, P25) corresponding to a linear computation performed with the L-ROM defined
in Section 2.4.2. Figure 15 displays the graph of t 7→ u j0

2,NL(t) for patterns (P0, P6, P11, P25)
corresponding to the nonlinear computation performed with the NL-ROM. By comparing the
nonlinear results with the linear ones, it can be seen that s0 = 1 yields high nonlinear geometric
effects that mitigate the amplitude of the responses and show ”irregular” responses, suggesting
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numerous resonances contributing outside band Be.
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Figure 14: Zoom on the time interval [−0.01, 0.1] s of the linear dynamic analysis in the time
domain performed with the L-ROM: graph of function t 7→ u j0

2,L(t) defined on the time interval
[−0.05, 1.5] s for the patterns P0 (left top figure), P6 (right top), P11 (left down), and P25 (right
down).

5.3. Analysis the nonlinear dynamic time responses in the frequency domain

A Fourier transform is then performed on the time responses constructed with the L-ROM
(linear) and the NL-ROM (nonlinear), allowing the spectrum of the responses to be analyzed in
the frequency band of analysis Ba = [0, 4 000] Hz. We are interested in the dynamic amplification
factor b(2πν) (defined by Eq. (36) with respect to the tuned configuration. Figure 16 displays the
graphs of functions ν 7→ bL(2πν) (linear) and ν 7→ bNL(2πν) (nonlinear) for the tuned rotating
bladed disk (pattern P0) and for the detuned rotating bladed disks (patterns P6, P11, P25). By
comparing the linear responses with the nonlinear ones, it can be seen the strong effects of the
nonlinearities outside the frequency band of excitation Be and that new resonances occur below
and above this frequency band Be. Such phenomena has previously been observed [30, 49] in the
turbomachinery context. In order to better understand the discrepancy of the detuned nonlinear
dynamic responses with respect to the tuned ones, let b±NL(2πν) be the upper (+) and the lower
(−) envelopes of the dynamic amplification factors. Figure 17 displays the graphs of functions
ν 7→ b±NL(2πν) and ν 7→ btuned

NL (2πν) corresponding to the nonlinear computations performed
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Figure 15: Zoom on the time interval [−0.01, 0.1] s of the nonlinear dynamic analysis in the time
domain performed with the NL-ROM: graph of function t 7→ u j0

2,NL(t) defined on the time interval
[−0.05, 1.5] s for the patterns P0 (left top figure), P6 (right top), P11 (left down), and P25 (right
down).

with the NL-ROM. It can be seen that the nonlinear dynamic response is very sensitive to the
detuning, especially outside band Be. At a given frequency, the amplification factor can strongly
differ from one pattern to another one.

6. Analysis of the stochastic linear and nonlinear tuned and detuned rotating bladed disks
with mistuning

In all this section we consider the nonlinear tuned rotating bladed disk and the nonlinear
detuned one in presence of mistuning, which are analyzed using the NL-SROM1, NL-SROM2,
and L-SROM defined in Section 3.

6.1. Sensitivity analysis with respect to parameter s0 for the tuned and detuned rotating bladed
disks in presence of mistuning

The objective is to quantify and to give explanations concerning the effects of the level of
uncertainties related to the level of mistuning. In that sense, a parametric analysis is carried
out with respect to (i) the dispersion parameter δK that controls the level of uncertainties in
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Figure 16: Frequency analysis of the time responses computed with the NL-ROM: graphs of
functions ν 7→ bL(2πν) (red smooth thin lines) and ν 7→ bNL(2πν) (blue irregular thick lines) for
patterns P0 (left top figure), P6 (right top), P11 (left down), and P25 (right down). The excitation
frequency band Be is in light grey area.

the computational model and (ii) parameter s0. A comparison is performed between the lin-
ear stochastic responses computed with L-SROM and the nonlinear stochastic responses com-
puted with NL-SROM2. Let Ûmax(s0) be the real-valued random variable defined by Ûmax(s0) =

maxν∈Be
‖U j0 (2πν; s0)‖ depending on s0. Let ûmax(s0) be the real number depending on s0 such

that Proba{Ûmax(s0) ≤ ûmax(s0)} ≤ 0.95. Figure 18 displays the function s0 7→ ûmax(s0) com-
puted with the stochastic models L-SROM and NL-SROM2 for δK = 0.1 and for the patterns P0
(tuned) and P6 (detuned). It can be seen that the propagation of uncertainties for the nonlinear
geometrical effects (NL-SROM2) is smaller than for the linear case (L-SROM). This attenuation
is more important while s0 is increasing, that is to say when the nonlinear effects increase. More-
over, Figure 19 displays the graph of the confidence region of ν 7→ ||Û

j0
(2πν)|| corresponding to a

probability level 0.95 for both patterns P0 (tuned) and P6 (detuned) computed using NL-SROM2
for three external-forces intensities s0 = 0.01, s0 = 0.15, and s0 = 1 corresponding to negligible,
moderate, and large geometric nonlinear effects. It can be seen that for s0 = 0.01, the response
in the frequency domain is clearly located in excitation frequency band Be, similarly to the linear
case. For the medium and high values of s0, geometric nonlinear effects yield unexpected reso-
nances that occur outside Be, especially, around 484 Hz (mode 1 defined in Section 4.3), which
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corresponds to the first bending mode of the blade and 3 700 Hz, which corresponds to a com-
bination of elastic modes. In addition, the general level of responses outside band Be increase
with s0. Concerning frequency band of excitation Be, it can be seen that the second bending
mode of blade (mode 2 around 1 170 Hz defined in Section 4.3) is relatively stable in frequency
with respect to s0 while the first torsion mode of blade (mode 3 at around 1 490 Hz defined in
Section 4.3) tends to vanish when the nonlinear geometric effects increase. Furthermore, it can
be noticed that the width of the confidence region is not constant with respect to the frequency.
Let BL(2πν; δK) be the random variable depending on δK , defined by Eq. (37), and constructed
using the L-SROM. Let B∞L (δK) be the random variable defined by

B∞L (δK) = max
ν∈Be

BL(2πν, δK) ,

which corresponds to the maximum dynamic amplification factor over the excitation frequency
band. We then denote by b+,∞

L (δK) the value of B∞L (δK) depending on δK and such that

Proba{B∞L (δK) ≤ b+,∞
L (δK)} ≤ 0.95 .

Figure 20 displays the graph of function δK 7→ b+,∞
L (δK) for seven patterns of configurations:

tuned pattern P0 and detuned ones P2, P3, P5, P6, P12, and P31 defined in Appendix A. The re-
sults obtained are coherent with those published in [25], especially, for each pattern, a maximum
is obtained for a small mistuning (small value of δK).

6.2. Stochastic analysis of nonlinear tuned and detuned rotating bladed disks in presence of
mistuning for patterns

In this section, we present the results obtained using NL-SROM1 for the nonlinear tuned and
detuned rotating bladed disks in presence of mistuning.
Let BNL(2πν; δK) be the random variable depending on δK , defined by Eq. (37), and constructed
using the NL-SROM1. For two values of δK controlling the mistuning level, Figure 21 (δK =

0.03) and Figure 22 (δK = 0.1) display the confidence region of random variable BNL(2πν; δK),
estimated with a probability level of 0.95, for configurations P0 (tuned), and for P6, P11, and
P25 (detuned defined in Appendix A). These figures allow for estimating the robustness of the
responses with respect to the level of uncertainties as a function of the considered patterns. Nev-
ertheless, the first torsion mode for h = 4 (mode 3 around 1 490 Hz defined in Section 4.3 located
in Be is very sensitive to the mistuning, as already mentioned for the linear case in Section 6.1.
It can be seen that the nonlinear stochastic response of the mistuned-detuned bladed disk is par-
ticularly complex. It should also be noted, as in Section 6.1, that unexpected resonances occur
outside the excitation frequency band as soon as the level of nonlinearities is significant.

6.3. Stochastic analysis of nonlinear tuned and detuned rotating bladed disks in presence of
mistuning for 46 patterns

The analysis that we have presented in Section 6.2 is revisited considering all the 46 patterns
defined in Appendix A. For simplifying the presentation of the results, the 46 patterns (the tuned
pattern and the 45 detuned patterns, all in presence of mistuning) are considered as 46 realizations
of a random mechanical system. Let Ball

NL(2πν) be the random amplification factor defined by
Eq. (37) of this random mechanical system, estimated using the NL-SROM1 for δK = 0.1. In
practice, the confidence region associated with a probability level of 0.95 of random variable
Ball

NL(2πν) is estimated in concatenating all the Monte-Carlo realizations computed for each one
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of the 46 patterns. Figure 23 displays (in linear and log scales) the confidence region of the
deterministic amplification factor btuned

NL (2πν) for the tuned rotating bladed disk without mistuning
and the random variable Ball

NL(2πν) for all the 46 patterns defined in Appendix A, which includes,
as previously mentioned, the tuned pattern P0 in presence of mistuning. We use the same type
of analysis as the one that we have presented in Section 6.2. This figure shows that the values of
the random amplification factor, which occur outside excitation frequency band Be is significant
and is sensitive to uncertainties. It should be noted that btuned

NL (2πν) is included in the confidence
region. Moreover, the analysis of Figure 23 shows that the robustness of the stochastic response
around the two main resonances located in band Be is significantly higher than outside Be, while
noting that there are relatively high levels outside Be (in linear, there is no response outside the
band Be). In the low-frequency band [0, 1000] Hz (not excited by the external forces), there are
mistuned configurations for which the amplitude level outside Be is four times lower than the
one in Be. Nevertheless, it should be noted that the levels of responses (induced by the nonlinear
geometric effects), which occur outside band Be, depend on the bladed disk, and that these levels
could be larger than in the frequency band Be for other bladed disks.

These results lead us to split the frequency band of analysis Ba in 3 sub-frequency bands to
better analyze the amplification factor. We then define the following bands: Blow = [0, 1 000] Hz,
Bmed = [1000, 1 300] Hz, and Bhigh = [1 300, 4 000] Hz. Note that band Bmed is included in
frequency band of excitation Be and that band Bhigh overlaps band Be with the common fre-
quency band [1 300, 1 600] Hz. This partition of the frequency band of analysis has been intro-
duced in order to analyze the amplification of the resonances in each sub-frequency band. Let
{low,med, high} be the set of the three strings of characters such that, for band ∈ {low,med, high},
the band Bband denotes one of the band Blow, Bmed, and Bhigh.

Let BNL(2πν; δK) be the random amplification factor defined by Eq. (37), computed using
NL-SROM1. Let

B∞,band
NL (δK) = max

ν∈Bband

BNL(2πν; δK)

be the random variable that corresponds to the maximum dynamic amplification factor over
frequency band Bband. We then denote by b+,∞,band

NL (δK) the value of B∞,band
NL (δK) depending on

δK and such that
Proba{B∞,band

NL (δK) ≤ b+,∞,band
NL (δK)} ≤ 0.95 . (47)

For anyone of the 46 patterns, we are interested in plotting the graphs of functions δK 7→

b+,∞,med
NL (δK), δK 7→ b+,∞,low

NL (δK), and δK 7→ b+,∞,high
NL (δK), which describe the evolution of the

maximum amplification factor for each configuration according to the dispersion parameter δK .
However, to maintain a sufficient readability of the figures, we only plot the lower and upper
envelopes of the 46 configurations. These two envelopes define a region in which all the 46
configurations belong. Figures 24, 25, and 26 show the graphs for each frequency band, Bmed,
Blow, or Bhigh. In the caption of each one of these three figures, the patterns corresponding to
the lower and upper envelopes will be indicated. Figure 24 shows that there is a weak sensitiv-
ity of the envelopes with respect to the mistuning level represented by the value of δK . Pattern
P34, which corresponds to the upper envelope, yields the largest dynamic amplification factor in
band Bmed, whereas pattern P1, which corresponds to the lower envelope, has the lowest dynamic
amplification factor. In Figures 25 and 26, it can be seen that the envelopes are sensitive to the
level of mistuning represented by δK , and that a very high dynamic amplification factor can be
obtained, for instance pattern P26 (upper envelope for Blow) and pattern P9 (upper envelope for
Bhigh). Note that these high dynamic amplification factors are due to the choice of the reference.
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If this reference was chosen as the linear tuned system, then this amplification dynamic factor
would be infinite. Presently, the reference has been chosen as the nonlinear tuned system without
mistuning.

7. CONCLUSION

We have presented a robust analysis of the effects of geometric nonlinearities on the nonlin-
ear dynamic behavior of rotating bladed disks that are detuned in presence of mistuning. This
mistuning induces uncertainties that are taken into account by a probabilistic approach in the
computational model. The results obtained allow for increasing the knowledge in the area of the
nonlinear stochastic dynamic of the detuned rotating bladed disks. It has been demonstrated that
the responses obtained in the frequency band outside the band of excitation can be significant.
The envelopes of the dynamic amplifications factors among the investigated patterns show that
the nonlinear dynamic response is sensitive to the detuning in presence of mistuning. The results
highlight the indirect excitation of the rotating bladed disks through the geometric nonlinearities
outside the excitation frequency band. The optimization with respect to all the possible configu-
rations defined by the patterns, with the objective to find the pattern that minimizes the random
dynamic amplification factor, remains a problem that demands large computer resources in term
of CPU time. The complexity of the results obtained for the 46 configurations studied, seems to
show that such a discrete nonconvex optimization problem on a set of configurations having a
huge number of patterns, is difficult. Nevertheless, although a nonexhaustive study optimization
could not be made, we have shown that there were detuned configurations that minimize the
dynamic amplification factor in presence of mistuning.
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A. Table of patterns

Pattern number Arrangement
P0 24A
P1 (5A1B)4

P2 (AB)12

P3 (4A4B)3

P4 4A2B3A2B5A2B3A2B
P5 (3A3B)4

P6 (4A2B)4

P7 AB2A2B(AB)22A2B2AAB2B(AB)2

P8 2ABA2B2A3B(AB)22AB3A3B
P9 (2A2B)6

P10 4A4B(2A2B)22A6B
P11 B4AB18A
P12 12A12B
P13 6B12A3B3A
P14 3B15A3B3A
P15 6A3B6A9B
P16 (3B6A)23B3A
P17 3A6B3A12B
P18 3B12A6B3A
P19 18A6B
P20 3B12A6B3A
P21 6B9A6B3A
P22 6A3B3A12B
P23 9A3B6A6B
P24 14A9B
P25 3A3B3A15B
P26 15B9A
P27 3B6A12B3A
P28 3A21B
P29 3A3B(3A6B)2

P30 (3A3B)23A9B
P31 (6A6B)2

P32 3B9A9B3A
P33 3B21A
P34 6A6B3A9B
P35 18A6B
P36 3B12A3B6A
P37 3B6A3B3A6B3A
P38 6A8B3A6B
P39 9A3B3A9B
P40 3B9A3B3A3B3A
P41 3B6A6B3A3B3A
P42 3B9A6B6A
P43 (3A3B)4

P44 (3A9B)2

P45 (9A3B)2
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Figure 17: Graphs of functions ν 7→ b±NL(2πν) (black irregular thick lines) and ν 7→ btuned
NL (2πν)

(red/grey irregular thin line) corresponding to the upper (+) and the lower (−) envelopes of the
dynamic amplification factor among the investigated patterns. Linear scale (top figure) and log
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ing to a probability level 0.95, computed using NL-SROM2 for P0 (left figures) and P6 (right
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Figure 21: For δK = 0.03, confidence region (yellow/grey region) of the random amplification
factor, BNL(2πν), estimated with a probability level of 0.95 using NL-SROM1, for the tuned
configuration P0 (left top figure), and for the detuned configurations, P6 (right top), P11 (left
down), and P25 (right down). The dashed-line is the nominal amplification factor bNL(2πν). The
vertical grey region corresponds to excitation frequency band Be.
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Figure 22: For δK = 0.1, confidence region (yellow/grey region) of the random amplification
factor, BNL(2πν), estimated with a probability level of 0.95 using NL-SROM1, for the tuned
configuration P0 (left top figure), and for the detuned configurations, P6 (right top), P11 (left
down), and P25 (right down). The dashed-line is the nominal amplification factor bNL(2πν). The
vertical grey region corresponds to excitation frequency band Be.
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Figure 23: For δK = 0.1, confidence region (yellow/grey region) of the random amplification
factor, Ball

NL(2πν), related to the 46 patterns, estimated with a probability level of 0.95 using NL-
SROM1. The dashed-line is the amplification factor btuned

NL (2πν) of the tuned system without
mistuning. The thick solid line is the median value of random variable Ball

NL(2πν). The vertical
grey region corresponds to excitation frequency band Be. Linear scale (left figure), log scale
(right figure)
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Figure 24: For band Bmed, lower (thin solid line) and upper (thick solid line) envelopes of the
regions containing the 46 graphs of functions δK 7→ b+,∞,med

NL (δK) for the 46 patterns. The upper
envelope corresponds to pattern P33 and the lower one to P1.
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Figure 25: For band Blow, lower (thin solid line) and upper (thick solid line) envelopes of the
regions containing the 46 graphs of functions δK 7→ b+,∞,low

NL (δK) for the 46 patterns. The upper
envelope corresponds to pattern P26 and the lower one to P37.
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Figure 26: For band Bhigh, lower (thin solid line) and upper (thick solid line) envelopes of the
regions containing the 46 graphs of functions δK 7→ b+,∞,high

NL (δK) for the 46 patterns. The upper
envelope corresponds to pattern P9 and the lower one to P8.
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