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Abstract

In the context of door-to-door transportation of people with disabilities, service quality consider-
ations such as maximum ride time and service time-consistency are critical requirements. To identify
a good trade-off between these considerations and economic objectives, we define a new variant of
the multi-period dial-a-ride problem called the time-consistent dial-a-ride problem. A transportation
planning is supposed to be time-consistent if for each passenger, the same service time is used all along
the planning horizon. However, considering the numerous variations in transportation demands over
a week, designing consistent plan for all users can be too expensive. It is therefore necessary to find a
compromise solution between costs and time-consistency objectives. The time-consistent dial-a-ride
problem is solved using an epsilon-constraint approach to illustrate the trade-off between these two
objectives. It computes an approximation of the Pareto front, using a matheuristic framework that
combines a large neighbourhood search with the solution of set partitioning problems. This approach
is benchmarked on time-consistent vehicle routing problem literature instances. Experiments are also
conducted in the context of door-to-door transportation for people with disabilities, using real data.
These experiments support managerial insights regarding the inter-relatedness of costs and quality
of service.

Keywords: Vehicle routing, Dial-a-ride problem, Healthcare logistics, Consistency, Set partition-
ing, Large neighborhood search.

1 Introduction
The design of efficient para-transit systems relies both on minimizing operational costs and on providing
users with an adequate quality of service. In the operations research literature, the Dial-A-Ride Problem
(DARP) is a well-known optimization problem that consists in designing minimal-cost vehicle routes to
fulfill a set of transportation requests while satisfying a number of service quality requirements. Common
applications concern door-to-door transportation of elderly people or people with disabilities. In Medico-
Social Institutions (MSI) in France, transportation is considered to be the main expense after wages [1].
Transportation plans are defined on a yearly basis and partially revised several times a year whenever
necessary. Due to the pressure to cut costs, this is often their main objective, although service quality
criteria are also taken into account to define transportation plans.

The DARP formulation considers a single period, typically half a day. Passengers are generally subject
to ride-time constraints: they must not be transported longer than a maximum predefined travel duration.
In this paper, we examine the case of para-transit systems for people who need to be transported on a
regular basis, for example handicapped workers or scholars. The DARP formulation is extended over
multiple periods and each period has a known set of transportation requests from passengers. Most
passengers submit the same transportation request everyday but variations are common (attendance,
pickup or destination modifications according to medical appointments, etc.). In 2016, we carried out
a statistical study on field data which shows that only 30 % of passengers had a complete and regular
schedule throughout the week. A passenger demand variation may impact the schedule of other passengers
on the same route. As a result, passengers and and MSIs express a demand for regularity (or consistency)
in service times. For medical, cognitive or convenience reasons, it is desirable for a passenger who has the
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same need on several week-days to haves the same pickup / drop off time. In this paper we seek to design
an algorithm to be integrated into a dial-a-ride application for passengers with regularity requirements.

This work has been motivated by a real-life case study in the area of Lyon, France. Transportation
of disabled or elderly people in the area is operated mainly by a single carrier1 who works for multiple
MSIs and has a fleet of adapted vehicles. Every morning, from Monday to Friday, disabled children
from the region are transported from their home to a MSI. In the afternoon, they are driven back home.
Without a loss of generality, this paper presents the results of our research for morning trips. Thus,
we address a multi-period dial-a-ride problem and study the trade-off between service time-consistency
and transportation costs. As this problem introduces time-consistency within a DARP setting, we call
this new variant the Time-Consistent DARP (TC-DARP). This research has been conducted in close
cooperation with SMIs and the carrier company.

The paper is organized as follows: Section 2 presents how the TC-DARP is related to the existing
literature in operations research. In Section 3, we give a formal definition of the TC-DARP and formulate
it as a mixed-integer linear program (MILP). Section 4 presents a general approach for solving the TC-
DARP. Section 5 details the algorithm used for generating the routes. In Section 6, computational results
and management insights are reported.

2 Related literature
The mono-period DARP of our application has been presented in Tellez et al. [29]. We focus our literature
review on the consistency aspects that appear in the multi-period version of the problem.

The integration of time-consistency appeared recently in the vehicle routing problem (VRP) literature.
Applications were first identified in the context of fast parcel delivery [8] and were rapidly extended to
passenger transportation [6]. Readers interested in an extensive review on vehicle routing with consistency
considerations can refer to Kovacs et al. [13]. Consistency in vehicle routing problems can be divided
into three main categories: service time-consistency, driver consistency, and territory consistency. Service
time-consistency means that regular customers are scheduled to be served at approximately the same
time in the planning horizon. As the main focus of our paper, the service time-consistency will be detailed
in the next section.

Driver consistency consists in minimizing the number of different drivers assigned to each passenger
during the planning horizon. The aim is to reinforce the relationship between drivers and passengers in
order to improve the quality of service. Braekers and Kovacs [2] computed the average cost of a solution
where each passenger was served by one, two and three drivers, respectively, showing that a solution with
two drivers can be near optimal whereas solutions with one driver are 10% costlier on average. Other
approaches using soft constraints have yielded similar conclusions [23, 18]. In Feillet et al. [6], drivers are
assigned to routes a posteriori, so that service time-consistency and driver consistency are considered as
independent problems in a lexicographical way.

Territory consistency aims at increasing drivers efficiency through their knowledge of the geographical
area in which they operate. A common way of addressing territory consistency is to design independent
districts in advance, where independent routing problems are solved every day. This approach was studied
in [15, 32, 23, 22].

This paper focuses on service time-consistency applied to a Dial-a-Ride Problem (DARP). In contrast
to the VRP, the DARP considers one origin and destination for each user and a maximum ride time.
The main applications of the DARP concern door-to-door transportation of people, particularly elderly
or disabled people [10, 30, 14].

2.1 Service time-consistency models
Service time-consistency consists in serving regular needs at approximately the same hour throughout
the whole planning horizon. This is modeled either by hard constraints, that is, imposing an acceptable
level of service time variation, or by soft constraints, that is, penalizing service time variations in the
objective function.

Groër et al. [8] defined the maximum arrival time variation as the difference between the latest and
earliest service times throughout the whole planning horizon, for each customer. This consistent VRP
(conVRP) is an extension of the multi-period VRP where the maximal arrival time variation is bounded
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Figure 1: Comparison, for one passenger, of two solutions having the same Lmax but different numbers
of time-classes. The width of a time-class is 10 minutes.

above by a constant value Lmax. However, this measure, initially proposed for the small package shipping
industry, has some practical drawbacks in the context of passenger transportation.

Feillet et al. [6] define a passenger-oriented time-consistency model based on the concept of time-
classes. They assume that very small variations (e.g. ±5 minutes) in service time are not significant for
users, especially considering approximations and variations due to traffic conditions or unexpected events.
Passengers are sensitive to the number of significantly different service times proposed in a week. Similar
times are regrouped in the same time-class. Regularity is then improved by minimizing the maximum
number Cmax of time-classes over all users. The difference between this measure and Lmax is highlighted
in Figure 1.

Figures 1(a) and 1(b) represent the service time of a passenger in two distinct solutions. Each vertical
line represents the service time from Monday to Friday. In Figure 1(a), these times can be grouped into
two intervals of 10 minutes: [7:00-7:10] and [7:50-8:00]. This passenger is said to have 2 time-classes. In
Figure 1(b), as service times are evenly spread between 7:00 and 8:00, there are 5 time-classes. While
both solutions have the same value Lmax = 1 hour, they do not offer the same consistency to passengers
as far as service time is concerned. In our application, a measure based on the number of time-classes
offers a better quality of service than a solution measure with Lmax.

There is however one limitation related to objective Cmax. It is the largest number of time-classes
in the solution, for all passengers. Hence, a solution with 99% of users who have Cmax time-classes is
equivalent to another solution where only 1% of users are the same situation. In order to overcome this
limitation, we propose a lexicographic optimization. We first minimize the number of passengers from
the highest to the lowest number of time-classes: first passengers with Cmax time-classes, then Cmax − 1,
Cmax − 2 and so forth.

To the best of our knowledge, this approach is a new refinement of the Feillet et al. [6] model. Still,
according to the passenger transportation company, many good trade-off solutions can be found between
the cost optimal solution with Cmax = 2 and the cost optimal solution with Cmax = 1. According to the
fair optimization literature [19], the proposed model corresponds to a lexicographic minimax refinement
of the min-max model, using counting functions. We show that this lexicographic objective is easily
adapted to the context of passenger transportation.

2.2 Solution approaches for time-consistent routing problems
In the conVRP model introduced by Groër et al. [8], the objective is to optimize service time-consistency
(Lmax) without compromising a perfect driver consistency (1 driver per customer). These authors pro-
posed a record-to-record travel algorithm and developed benchmark instances for up to 100 customers.

The consistency measure Lmax has been used in several subsequent papers (i.e. [27, 28, 11, 12, 16,
31]). The current best results on the Groër et al. [8] benchmark instance set was obtained by Xu and
Cai [31], who proposed a Variable Neighborhood Search procedure using dedicated local search methods
for quickly finding local optima. This approach is based on improving template solutions generated by 3
different shaking methods. A problem extension, denoted the genConVRP, is proposed by Kovacs et al.
[12] in which: routes do not necessarily start at the same time, customers are associated with AM/PM
time windows, and a maximum number of drivers per customer is defined. Subramanyam and Gounaris
[26] propose a branch-and-cut framework to solve the consistent traveling salesman problem which is a
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particular case of the conVRP using a single vehicle without capacity constraints. They solve instances,
randomly generated, with up to 51 customers.

The Time-Consistent VRP (TCVRP) of Feillet et al. [6] is solved with a dedicated Large Neighborhood
Search (LNS) framework. At each iteration, the routes of all periods are destroyed. A VRP with multiple
time windows and no waiting time (VRPmTW-nw) is defined in order to decrease the number of time-
classes of one passenger. A branch-and-price heuristic is used to recreate the routes. The minimum cost
solutions for Cmax = 1 to 5 are saved in the process.

Another related approach is the Time Window Assignment Vehicle Routing Problem (TWAVRP)
introduced by Spliet and Gabor [25]. In the TWAVRP, a single time window of fixed width has to
be assigned to some regular customers before the effective daily demand is known. The assignment is
based on a set of demand scenarios, each of which is associated with a given probability. The objective
is to minimize the expected traveling cost. The TWAVRP is a particular case of the genConVRP if
scenarios are seen as periods and the number of drivers per user is set to infinity. However, the objective
differs: genConVRP optimizes the total transportation cost and TWAVRP the average transportation
cost. A branch-price-and-cut algorithm is proposed to optimally solve instances with up to 25 customers.
Spliet and Desaulniers [24] propose a variant, called the discrete time window assignment vehicle routing
problem, where the chosen time windows are selected from a discrete set.

Consistency issues are also often related to having stochastic customers in the VRP [21]. For example,
Sungur et al. [27] use a combination of robust optimization in a first phase master problem, and stochastic
programming with recourse to daily schedules to address the uncertainty in service times and customer
occurrence. Erera et al. [5] investigate the opportunity to give a main fixed route as well as a backup one
to frequent customers in a stochastic context.

Finally, the question of service time-consistency presents some similarities with some non-periodic
applications such as the synchronization of multiple vehicles at the same node. In this case, the arrival
time of multiple vehicles at a given location should be synchronized in order to perform a collective
operation. The vehicles then continue their routes independently. A survey on synchronization in VRP
is given by Drexl [4].

2.3 Contributions with respect to the literature
The literature review shows that there is still some gap between what has been proposed in the literature
and a practical implementation of time-consistency for a DARP application.

In this paper, we use the notion of time-classes introduced by Feillet et al. [6] and explore solutions
where some users accept several time-classes. Compared to the TCVRP proposed in Feillet et al. [6], we
propose a refinement of the Cmax minimization approach.

Regarding the VRP attributes, we investigate a more enriched setting than Feillet et al. [6]. In
particular, we consider time windows and maximum ride times in a problem with multiple MSIs (e.g.
multiple pickup and delivery locations). As a result, solutions might contain routes that contain waiting
times. We keep the assumption that improving consistency by artificially introducing waiting times within
routes is not realistic with respect to drivers practice. Similarly to Kovacs et al. [12], we consider that
the departure time of routes can be changed in order to improve consistency.

As we consider a para-transit user application, we will refer to the passengers of the transportation
system as users in the remainder of the paper.

3 Modeling the time-consistent dial-a-ride-problem (TC-DARP)
We consider a set of users U to be transported during a planning horizon T . Each uses may require a
particular space v ∈ V in the vehicle such as a seat or wheelchair space. There is a homogeneous fleet
of vehicles based at a single depot o. The vehicle capacity is defined by a vector Q = {Q1, . . . , Q|V|}
representing the availability of each space type v ∈ V.

Each user u ∈ U has a pickup node denoted by pu ∈ P, a delivery node du ∈ D, a maximum ride time
Tu, and a demand indicator βtu ∈ {0, 1} for each period t ∈ T . βtu = 1 if user u requires transportation
at period t and 0 otherwise. Each user can be serviced at most once in any period. Note that if two users
have a common origin or destination, nodes are duplicated so that each pickup node and each delivery
node has exactly one user.

The TC-DARP is defined on a directed graph G = (V,A) with the vertex set V = {P ∪ D ∪ o} and
the arcs set A containing the following arcs: (o, i) where i ∈ P; (i, j) where i, j ∈ P ∪D, i 6= j; and (i, o)
where i ∈ D. Each node i ∈ V is associated with a service duration ζi and a time window [ai, bi]. Every
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U set of users
T set of time periods
Tu set of time periods in which user u ∈ U needs to be transported
Ω set of all routes
Ωu set of routes serving user u ∈ U
C set of time-classes

Table 1: Sets

βtu equal to 1 if user u ∈ U must be serviced in period t ∈ T , and 0 otherwise
Cω variable cost of route ω ∈ Ω
λ weekly vehicle cost ownership cost
Huω earliest time service to user u ∈ U by route ω ∈ Ω
∆+
ω maximum time shift of route ω ∈ Ω

Λ time-class width

Table 2: Data

arc (i, j) represents the fastest path from node i to node j and is associated with a travel time tij and a
distance dij .

We propose a route-based MILP formulation of the TC-DARP. A route is any feasible sequence of
nodes visited by a vehicle. Each route ω starts and finishes at node o and is characterized by a set of
visited pickup and delivery nodes. Every pickup or delivery node i ∈ P ∪ D on a route ω is associated
with a time Hi,ω. Hi,ω is the earliest possible service time of node i in a schedule of ω that minimizes its
duration and satisfies time windows and maximum ride time constraints for each user on the route. In
addition, for each route a maximum route time shift ∆+

ω which represents the maximal amount of time by
which its departure time can be postponed, without violating any time window or ride time constraints.
The detailed scheduling procedure for the calculation of values ∆+

ω is presented in Appendix A.2.
Each route ω ∈ Ω is operated by one vehicle. To each vehicle is associated: a weekly ownership cost

λ, a cost per kilometer τ related the fuel consumption, and a cost per hour α related to the driver’s cost.
The TC-DARP can be seen as a bi-objective problem which consists in selecting a subset of routes from
Ω such that transportation requests on the planning horizon are satisfied within their time windows and
maximum ride times. The first objective is to minimize the sum of fixed and variable traveling costs.
The second objective is to minimize the service time inconsistency.

Note that we do not explicitly consider users with more than one address. Actually, time-consistency
is meaningful for a given address. A person with two distinct addresses is modeled as two different people
(one per address).

Tables 1, 2 and 3 synthesize the mathematical notations for the sets, data and variables used in the
TC-DARP mathematical model.

To model the problem, we introduce the binary decision variable ytω which is equal to 1 if route ω ∈ Ω
is selected at period t ∈ T . The binary variable ztuc is equal to 1 if user u ∈ U is assigned to time-class
c ∈ C at period t ∈ T . Binary variables µuc indicate which time-classes from set C are actually used by
user u. If u has 3 time-classes, we assume that time-classes 1, 2 and 3 are used, and time-classes 4 and 5
are not used. Hence, µu,1 = µu,2 = µu,3 = 1. The shift of route ω ∈ Ω departure time at period t ∈ T is
expressed by continuous variables δtω ∈ [0,∆+

ω ].

Objectives

The first objective is the minimization of transportation costs that is defined by the sum of fixed and
routing costs. Fixed costs are related to the cost of owning the vehicles. Then, the cost Cω of a route
ω ∈ Ω will then depend on its duration (which may include some waiting time) and on its length.

min f = λv +
∑
ω∈Ω

∑
t∈T

Cωy
t
ω. (1)

The second objective minimizes time inconsistency, which is modeled with a lexicographical refinement
of the time-class model proposed by Feillet et al. [6]. The expression used in the MILP model is the
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Binary Variables

ytω ∈ {0, 1} =1 if route ω ∈ Ω is selected at period t ∈ T , and 0 otherwise
ztuc ∈ {0, 1} =1 if user u ∈ U is assigned to time-class c ∈ C at period t ∈ T , and 0 otherwise
µuc ∈ {0, 1} =1 if user u ∈ U uses time-class c ∈ C, and 0 otherwise

Other variables

δtω ∈ [0,∆+
ω ] time shift (used margin) of route ω ∈ Ω at period t ∈ T

s−uc, s
+
uc ∈ R+ lower and upper bounds for the time-class c ∈ Cu for user u ∈ U

htu ∈ R+ beginning of service for user u ∈ U at period t ∈ T
v number of vehicles needed for the whole planning horizon
mu number of users having c ∈ C time-classes (post-processed variable)

Table 3: Variables

following:

lexmin ĝ =

(∑
u∈U

µu|C|, . . . ,
∑
u∈U

µu2

)
. (2)

This expression lexicographically minimizes the number of people having more than c time-classes, where
c decreases from |C| to 2. The expression

∑
u∈U

µuc counts the number of users with c or more time-classes.

This is equivalent to the lexicographical minimization of the number of users whose number of time-
classes is exactly |C|, |C| − 1, down to 1, respectively. In the remainder of the paper, we denote by

lexmin g =
(
m|C|, . . . ,m1

)
(3)

the alternative formulation of this objective, where mc denotes the number of users having c time-classes.
It is post-processed from the values of the µuc variables using the following expressions:

m1 = |U| −
∑
u∈U

µu2

mc =
∑
u∈U

µuc −
∑
u∈U

µu,c+1 ∀c ∈ {1, . . . , |C| − 1}

m|C| =
∑
u∈U

µu|C|

(4)

Constraints

The set of TC-DARP feasible solutions is defined by the following constraints:

∑
ω∈Ωu

ytω = βtu ∀u ∈ U , t ∈ T , (5)

∑
ω∈Ω

ytω ≤ v ∀t ∈ T , (6)∑
c∈C

ztuc = 1 ∀u ∈ U , t ∈ Tu, (7)

htu =
∑
ω∈Ωu

(Huω y
t
ω + δtω) ∀u ∈ U , t ∈ Tu, (8)

δtω ≤ ∆+
ω y

t
ω ∀ω ∈ Ω, t ∈ T , (9)

s−uc ≤ htu +M(1− ztuc) ∀c ∈ C, u ∈ U , t ∈ Tu, (10)

htu ≤ s+
uc +M(1− ztuc) ∀c ∈ C, u ∈ U , t ∈ Tu, (11)

s+
uc − s−uc = Λ ∀c ∈ C, u ∈ U , (12)

s+
uc ≤ s−u,c+1 ∀c ∈ C/{|C|}, u ∈ U , (13)

6



∑
ω∈Ωu

ytω =
∑
c∈C

ztuc ∀u ∈ U , t ∈ Tu, (14)

ztuc ≤ µuc ∀c ∈ C, u ∈ U , t ∈ Tu, (15)
µu,c+1 ≤ µuc ∀c ∈ C,∀u ∈ U ,∀t ∈ T , (16)

ytω, z
t
uc, µuc ∈ {0, 1} ∀c ∈ C, u ∈ U , t ∈ T , ω ∈ Ω, (17)

δtω, h
t
us
−
uc, s

+
uc, v ∈ R+ ∀c ∈ C, u ∈ U , t ∈ T , ω ∈ Ω. (18)

Constraints (5) are partitioning constraints ensuring the satisfaction of the users demand.
Constraints (6) count the number of vehicles needed during the planning horizon. Constraints (7)

state that each user served in period t ∈ T should be given a single time-class. Constraints (8) determine
the service time for each user of route ω when its departure is shifted by the value δtω. Constraints (10)
and (11) linearize the following logical expression:

zcut = 1⇒ s−uc ≤ htu ≤ s+
uc ∀u ∈ U , t ∈ Tu, c ∈ C. (19)

They state that if a user u is assigned to the time-class c at period t, then its service time should be
within the bounds of this time-class c. Constraints (12) set the width of a time-class. Constraints (13)
avoid overlap between time-classes. Constraints (14) link the number of routes that serve one given user
and the number of time-class variables. Constraints (15) define variables µuc necessary for counting the
number of time-classes of each user. Constraints (16) ensure that time-classes are defined in increasing
order. For example, time-class #2 is allocated to a user only if time-class #1 already exists and is not
compatible with a given service time. Finally, the definition of variables is given by constraints (17) and
(18).

4 Solution method
This section presents the Set Partitioning-based ε–constraint matheuristic, denoted spεc, that has been
designed to solve the bi-objective TC-DARP. This method iteratively solves Set Partitioning Problems
(SPPs) in an ε-constraint framework. SPPs correspond to a route-based formulation of the TC-DARP
considering a subset of the whole set of feasible routes. This subset of routes, called pool of routes,
contains routes generated by an auxiliary heuristic solution method to solve the TC-DARP. Here we
generate the pool of routes by using a Large Neighborhood Search algorithm (LNS). This section is
structured as follows: Section 4.1 presents the general framework of spεc, that traces a Pareto front
approximation between the two objectives of the TC-DARP. Section 4.2 presents the first component of
the framework, which finds the initial solution as well as an initial pool of routes. Section 4.3 details
the second key component, which is a mono-objective optimization procedure for the TC-DARP. Then,
Section 4.4 presents the rules to select an appropriate subset of routes at each step of the algorithm.

4.1 The spεc matheuristic framework
The general framework, introduced in Algorithm 1, is based on an ε-constraint procedure [9, 3]. It finds
an approximation of the Pareto front between the two objectives of the TC-DARP: the transportation
cost f , and the time inconsistency g. This is illustrated in Figure 2. In a nutshell, the algorithm starts
from the best solution found by lexicographically minimizing cost and then inconsistency. Then, the
inconsistency objective is progressively improved by allowing an increase of the transportation cost by ε
percent. Every time a new non-dominated solution is found, it is stored in the Pareto front approximation.
The procedure stops when every user has 1 time-class.

Algorithm 1 presents the spεc framework, the ε–constraint matheuristic. In this algorithm, a pool
of routes L is generated together with the initial solution. Two types of solution are used, a temporary
solution S (line 3) and a best found solution S∗. They are initialized with the procedure described in
Section 4.2 (line 4). This procedure solves a multi-period DARP in which cost f is minimized. The
routes found while solving this multi-period DARP are appended to the pool L. The cost of solution S∗
is taken as the cost upper limit f̄ (line 5).

Lines 7 to 15 describe an iteration of the algorithm. The procedures described in lines 7 and 8 aim at
finding a new temporary solution S, as detailed in Figure 3. First inconsistency g is minimized subject
to a maximal cost constraint. Given that this procedure starts with a feasible solution S∗, it results in
a solution S such that g(S) ≤lex g(S∗). Then the cost objective f is minimized subject to a maximal
inconsistency level g(S). During these two procedures, pool L is updated with new routes.
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 (inconsistency)

   Pareto front approximation
(set of non dominated solutions)

Non dominated solution with one time-class per user

Non dominated solution with minimal cost

(cost)

Figure 2: Pareto front approximation designed by the spεc algorithm

Algorithm 1: The spεc framework
Parameters ε : initial value of epsilon, φ : increase factor of epsilon,
Result: Pareto front approximation
/* Initialization */

1 ParetoFront← ∅
2 L ← ∅: Pool of routes
3 S ← ∅: temporary solution
4 (S∗,L)← initialize() /* See Section 4.2 */
5 f̄ ← f(S∗): cost upper limit

/* Iterations */
6 while stopping criterion is not met do

/* Optimize inconsistency and cost objectives, see Section 4.3 */
7 (S,L)← solveMonoTCDARP (lexmin g, f ≤ f̄ , S∗,L)

8 (S,L)← solveMonoTCDARP (min f, g ≤lex g(S), S,L)

/* Update solution */
9 if (f(S) < f(S∗)) ∨ (g(S) <lex g(S∗)) then

10 S∗ ← S

11 Update ParetoFront with solution S∗

12 else
13 ε← φ× ε
14 end

/* End of one iteration */
15 Update epsilon constraint: f̄ ← f(S∗)× (1 + ε)

16 Limit the size the L to Nmax
17 end
18 return ParetoFront
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(cost)

 (inconsistency)

       (temporary)

1) Optimize      subject to 
a maximal cost 

2) Optimize    subject to
a maximal inconsistency 

Figure 3: Pareto front exploration with the two optimization procedures of one iteration (Algorithm 1
lines 7 and 8).

If the temporary solution S is strictly better than S∗ for at least one of the objectives (i.e. if
f(S) < f(S∗) or g(S) <lex g(S∗), line 9) then solution S∗ is updated with S (line 10) and S∗ is added
to the Pareto front approximation (line 11). Otherwise, the step ε is geometrically increased by a factor
φ (line 13). At the end of an iteration, the cost limit f̄ is updated based on the cost of S∗ (line 15) and
ε value.

Note that the size of pool L increases at each iteration, which can eventually cause memory issues.
Thus, the routes in L are ordered by the consistency-first criteria described in Section 4.4 and the first
Nmax routes are kept (line 16).

Since the fleet size is not limited, there is an extreme point in the Pareto front such that every user
has only one time-class (i.e. g = (0, . . . , |U|)). Therefore the stopping criterion used in line 6 is met when
g = (0, . . . , |U|).

4.2 Initialization: cost minimization
The set of non-dominated solutions of the TC-DARP defines a Pareto front in which one of the extreme
points corresponds to a solution with minimum cost and possibly with a high number of time-classes.
This extreme point can be found by solving a simplified version of the TC-DARP, called multi-period
DARP (MP-DARP) that ignores the consistency requirements. This MP-DARP is modeled as follows:

min f =λv +
∑
ω∈Ω

∑
t∈T

Cωy
t
ω (20)

s.t.∑
ω∈Ωu

ytω ≥ 1 ∀u ∈ U , t ∈ Tu (21)

∑
ω∈Ω

ytω ≤ v ∀t ∈ T (22)

ytω ∈ {0, 1} ∀ω ∈ Ω, t ∈ T (23)
v ∈ N (24)

The objective function (20) is the same as Equation (1). It represents the transportation costs.
Constraints (21) are set covering constraints for demand satisfaction. Constraints (22) enforce the number
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of vehicles to be less than or equal to v at each period. This problem is a set covering problem that
is easily solved to optimality by a solver, provided the number of routes remains reasonable. Moreover,
MP-DARP solutions provide feasible routes for the TC-DARP. Hence, the MP-DARP model can be used
to build a good initial solution to the TC-DARP.

In order to define a non-dominated route, we define route dominance as follows:

Definition 4.1. Route dominance. Let us consider two routes ω ∈ Ω and ω′ ∈ Ω, with respective
costs Cω and Cω′ . Route ω is said to dominate ω′ if both routes visit the same set of users (in any order)
and Cω ≤ Cω′ . A route is said to be non-dominated in a set if there is no other route in this set that
dominates it.

Definition 4.2. Projection and complementarity A route ω′ is called a projection of a route ω in
period t ∈ T if it contains only the users of ω who have a demand in period t, in the same sequence as
in ω. The route ω′′ = ω \ ω′ is called the complementary route of ω′.

The definition 4.2 is illustrated by Figure 4. At period t, Route ω starts from depot D, serves user
requests 1, 2 and 3 and returns to the depot. If users 1 and 2 have a transportation request at period t′
and user 3 does not, the route ω′ serving user requests 1 and 2 is the projection of ω and the route ω′′
serving request 3 is the complementary of ω.

complementary route for period t'

D

D

Dprojection route for period t'

route for period t  p1

p1

p3

p3

p2

p2

D

D

D

d1

d1

d3

d3

d2

d2

Figure 4: Example of projection and complementary routes

Algorithm 2 presents the MP-DARP algorithm. A key element of this algorithm is the pool of routes
L, that is initialized with the routes found while solving one independent DARP for each period t ∈ T
(line 4). Each independent DARP minimizes the total transportation cost composed by the distance-
related cost and the time-related cost for a specific period t. In our case, we use the LNS-SCP matheuristic
proposed by Tellez et al. [29]. It is a large neighborhood search-based procedure that quickly yields feasible
routes with minimal duration and optimized with respect to the cost.

During the execution of the LNS-SCP algorithm, every time a new solution is accepted as the current
solution, all the routes of this solution are saved in the pool L. As we can see in the model of MP-DARP,
the order of the nodes and the service times of the routes are not considered. Thus, this problem can be
solved by using a subset of L considering only non-dominated routes (see Definition 4.1). Note that, we
still save all the routes of every new current solution in L, even if they are dominated, because dominated
routes can be useful to solve the TC-DARP.

Each iteration of Algorithm 2 consists of four steps:
In step 1, a subset l ⊂ L of N init non-dominated routes is selected with some selection rule r ∈ R

(line 11). The selection rules will be described in Section 4.4. The set l is enriched with the projection
and complement of its routes (line 12) and then added to the restricted pool of routes L′ (line 13).

In step 2, an MP-DARP instance is defined in the pool L′. It is solved by an MILP solver with a
time limit tmax (line 14). If the best solution S∗ is not empty, it is used as a warm start to initialize the
MILP solver, which considerably reduces computation time.

Given that the formulation of the MP-DARP is a set covering problem and not a set partitioning
problem, solution S may contain users’ demands served by more than one route. In this case, removing
one of the duplicated visits reduces the solution cost (the triangular inequality is supposed). This is done
(line 16) by solving the MP-DARP again with another pool of routes and a warm-start on S. The other
pool of routes is initialized with the routes of the solution S and enriched as follows. For each user u
visited more than once and for each route ω that visits user u, a new route ω′ identical to route ω but
that does not visit user u is added to the pool. All the new routes constructed during the repair of the
solution (line 16) are also added to L (line 17).

Step 3 performs pool management (lines 19-21). The current pool of routes is cleared if the MP-DARP
could not be solved to proven optimality. This mechanism keeps a manageable pool size and is inspired
by previous research [7, 29]. Step 4 updates the current best solution S∗ and the counter of iterations
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Algorithm 2: initialize()
Parameters: tmax: solver time limit, N init: number of selected routes, R: list of selection rules,
MaxIter: maximal number of iterations without improvement

1 L ← ∅: Pool of routes
2 for each period t ∈ T do
3 Solve a DARP for period t with algorithm LNS-SCP [29]
4 Add all routes generated to L
5 end
6 S ← ∅: current solution
7 S∗ ← ∅: best solution found
8 L′ ← ∅: restricted pool of routes
9 itNonImp← 0: number of iterations without improvement of S∗

10 while itNonImp < MaxIter do

/* 1. Select routes */
11 Select a subset l ⊆ L of N init non-dominated routes using a selection rule r ∈ R
12 Enrich l with the projection and complement of its routes
13 Add routes l into L′

/* 2. Solve the MP-DARP */
14 Compute S by solving an MP-DARP with time limit tmax, pool L′ and warm start on S∗
15 if at least one user is visited more than once on a period then
16 Repair S such that each user is visited exactly once
17 Add to L all new routes created during the reparation
18 end

/* 3. Pool management */
19 if MP-DARP is not solved to proven optimality then
20 L′ ← ∅;
21 end

/* 4. Update best solution and itNonImp */
22 if f(S) < f(S∗) then
23 S∗ ← S
24 itNonImp← 0

25 else
26 itNonImp← itNonImp+ 1
27 end
28 end
29 return S∗,L
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without improvement. Thanks to the warm start, the value of the objective function z(S) cannot increase
from one iteration to another. Given this property, when the value of z(S∗) has not been improved for
MaxIter iterations, we suppose that the algorithm has reached a local optimum. This is why, the number
itNonImp of iterations without any improvement is used as a stopping criterion.

4.3 Mono-objective optimization procedure
This section presents the procedure to solve the TC-DARP with one objective with a constraint on the
maximal value of the other objective. This procedure, detailed in Algorithm 3, is called by Algorithm 1,
either to minimize inconsistency subject to a maximal cost constraint (line 7) , or to minimize cost
subject to a maximal inconsistency constraint (line 8) .

Algorithm 3: solveMonoTCDARP( z, E , Sini, L )

Arguments: z: objective, E : epsilon constraint, Sini: initial solution, L: pool of routes.
Parameters: tmax: solver time limit, N : number of routes to append to the pool L at each
iteration, MaxIter: maximum number of iterations without improvement, O: list of policies.
Result: best solution found S∗

1 S ← ∅: current solution
2 S∗ ← Sini: best solution found
3 L′ ← ∅: restricted pool of routes
4 itNonImp← 0: number of iterations without improving S∗

5 while itNonImp < MaxIter do

/* 1. Select routes */
6 Select a policy composed by a route source s and a selection rule r from the list O
7 if the route source s is the pool L then
8 Select a subset l ⊆ L of N routes using r /* see Section 4.4 */
9 else

10 Generate new routes by solving a DARP with multiple time windows:
Lnew ← solveDARPmTW (S∗) /* See Section 5 */

11 Save new routes: L ← L ∪ Lnew
12 Select a subset l ⊆ Lnew of N routes using r /* see Section 4.4 */
13 end
14 Enrich l computing for each route the projection and complementary routes
15 L′ ← L′ ∪ l

/* 2. Solve a modified TC-DARP model. */
16 Compute solution S by solving model (5–18) with objective z, epsilon constraint E , on route

pool Ω = L′, time limit tmax and initial solution S∗

/* 3. Pool management */
17 if TC-DARP is not solved to proven optimality then
18 L = {}
19 end

/* 4. Update best solution and itNonImp */
20 if z(S) < z(S∗) then
21 S∗ ← S

22 itNonImp← 0

23 else
24 itNonImp← itNonImp+ 1

25 end
26 end
27 return S∗,L

Algorithm 3 uses the same structure as Algorithm 2. However, it solves a TC-DARP instead of an
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MP-DARP.
The arguments of Algorithm 3 are the objective function z to be minimized, epsilon constraint E

which defines the upper bound on the previous objective, the initial solution Sini, and the pool of routes
L. The main variables of the algorithm are the restricted pool of routes L′ (initially empty), the current
solution S, and the best found solution S∗ which is initialized to the solution Sini (lines 1-4).

Each iteration of Algorithm 3 consists in four steps: 1) selecting routes; 2) solving the mono-objective
TC-DARP given a set of selected routes; 3) managing the pool of routes; and 4) updating the best
solution. This process iterates until MaxIter iterations without any improvement of S∗ having been
performed (see line 5). Steps 3 and 4 are the same as in Algorithm 2. We therefore detail here steps 1
and 2 only.

Again, a key element of this algorithm is the pool of routes L. This pool has been initialized by
Algorithm 2. In Step 1, the set of selected routes is chosen by using a policy defined by one source of
routes s and one selection rule r. The source s provides a pool of routes from which a selection rule r
chooses a subset l. There are two distinct sources of routes. The first one is the pool of routes L that
was generated in Algorithm 2 (lines 7–8). The second source of routes is a pool of new routes denoted
Lnew (lines 9–12). New routes are created by solving a Dial a Ride Problem with multiple Time Windows
(DARPmTW). The construction and the solving of the DARPmTW will be presented in Section 5. The
new routes in Lnew are added to L (line 11) to enable their selection in further iterations.

Whatever the sources, a subset l of N routes is selected in the source using the selection rule r
(line 8 and 12). Multiple selection rules have been designed. Each selection rule proposes a different way
of choosing routes from a source according to a given criterion. A detailed description of each rule is
presented in Section 4.4.

For diversification purposes, we define several policies combining the sources and the selection rules
into a list O = {(s1, r1), . . . , (s|O|, r|O|)}. Policies are selected sequentially with the following rule: if
solution S∗ has not been improved at the current iteration, the next policy is selected. Otherwise, the
same policy is kept at the next iteration. When the last policy in O is reached, the procedure starts again
from the first policy.

The selected routes as well as their projection and complementary routes are added to the current
pool L′ (lines 14 and 15).

In step 2, line 16, an MILP is solved. This problem optimizes objective z subject to constraints (5–18),
presented in Section 3, and subject to epsilon constraint E . The current pool L′ is used (Ω = L′). Then,
the MILP solver time limit is set at tmax and the solution S∗ is used as initial solution.

There are two cases, depending on whether Algorithm 3 is called at line 7 or 8 of Algorithm 1. In the
first case, the objective z is to minimize the inconsistency and the epsilon constraint limits the maximal
cost. In second case, the objective z is to minimize the cost and the lexicographic epsilon constraint
limits the maximal inconsistency.

4.4 Selection rules
When the restricted pool L′ becomes too large, the MILP solver cannot improve the given initial solution.
Hence, a key element is to select a subset of routes of reasonable size in L (line 8) or Lnew (line 12). We
present in this section three performance indicators used to guide route selection and two route selection
strategies called Sequential Selection and Random Biased Selection.

4.4.1 Performance indicators

The route selection algorithms are based on the following performance indicators which aim at evaluating
if a route ω ∈ L should be integrated in the TC-DARP route pool.

• Solution cost Fω: This is the cheapest solution cost among all TC-DARP solutions found so far
that uses route ω on at least one period. Initially, Fω is set to infinity.

• Solution inconsistency Gω: This is the inconsistency of the least inconsistent solution found
among all TC-DARP solutions found so far that uses route ω in at least one period. Initially, Gω
is set to infinity.

• Sub-problem cost Jω: This is the cost of the cheapest one-period solution containing route ω.

Two sorting criteria are defined. The first sorting criterion is the cost-first criterion (Fω, Jω, Cω) that
lexicographically sorts the routes in ascending order, first by the solution cost Fω, then by the sub-problem
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cost Jω and finally by the route routing cost Cω. The second sorting criterion is the inconsistency-first
criterion (Gω, Fω, Jω) that lexicographically sorts the routes in ascending order, first by the solution
inconsistency Gω, then by the solution cost Fω, and finally by the sub-problem cost Jω. This last
criterion is also used to limit the size of the pool L in line 16 of Algorithm 1.

4.4.2 Random Biased Selection (RBS)

The Random Biased Selection rule is inspired by the randomized selection mechanisms used in Pisinger
and Ropke [20]. The pool L is first sorted according to the lexicographic order defined by criterion
(Fω, Jω, Cω) when the objective is to minimize costs, and criterion (Gω, C

t
ω, Cω) when the objective is

to minimize time-inconsistency. N routes are then chosen based in their position in the sorted list L,
according to the following rule: the route at position ξρ × |L| is selected, where 0 ≤ ξ < 1 is a random
number and ρ > 1. This route is then removed from the list and the process repeats until N routes are
selected. Because the list is sorted in decreasing order of the performance indicator, this mechanism gives
a higher selection probability to the routes with better performance.

4.4.3 Sequential Selection (SS)

The purpose of the Sequential Selection (SS) rule is to browse the pool of routes L in decreasing order of
their performance indicator, selecting a significant number of new routes at each iteration and allowing
for the selection again of a few of the previously selected routes.

This rule is based on the same sorting principle as the RBS rule: depending on the considered objective
function, routes are first sorted according to either a cost-first criterion (Fω, Jω, Cω) or an inconsistency-
first criterion (Gω, Jω, Cω). From the sorted list, routes are processed one by one until N routes are
selected. For each route, we check if it was selected in a previous call or not. If it was previously selected,
it can be selected again with a probability γ. Otherwise, it is always selected. Figure 5 shows an example
of SS with N = 6.

Selected route Available route Route selected in previous calls

1st call

2nd call

3rd call

(...)

Figure 5: Example of 3 successive calls to the sequential selection rule with N = 6.

The sequential selection mechanism increases the probability of selecting together routes that have
been part of the same solution with the same overall performance (Fω or Gω). The routes must be sorted
each time the sequential selection is called, as performance indicators such as Fω and Gω may change
from one iteration to another.

The record of previously selected routes is re-initialized every time the solveMonoTCDARP (Algo-
rithm 3) is called.

5 New routes generation: the DARP with multiple time windows
The spεc framework is initialized with routes that have been generated by solving independent DARPs.
These routes are combined in order to form more consistent solutions. Time-consistency can nevertheless
be improved by generating routes that are dominated in terms of costs (i.e. routes of which the cost can
be improved by modifying the sequence of visits).

These dominated routes, used in Algorithm 3 (line 10), may never be generated by the LNS operators
used to solve the DARP. This section describes the procedure used to generate new routes that are likely
to improve time-consistency. The proposed approach was inspired by Feillet et al. [6].
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Section 5.1 presents the main process for the generation of a new set of routes denoted Lnew. Sec-
tion 5.2 shows how time windows are defined.

5.1 Main process for the generation of new routes
The process for generating new routes consistent with the current solution works as follows:

1. One user ū is selected randomly among the set of users that have the maximum number of time-
classes Cmax.

2. For each period t ∈ T , new routes are generated as follows:

(i) A set Wt
u of multiple time windows are defined for each user u ∈ U according to their service

times: if u = ū, multiple time windows are defined in order to decrease its current number of
time-classes, while for the rest of users (u 6= ū) the number of time-classes can be maintained
(Section 5.2).

(ii) Routes are generated by solving an auxiliary Dial-A-Ride Problem with multiple Time Win-
dows (DARPmTW) for period t. The routes generated during this process are gathered into
a sub-pool of routes denoted Ltnew (Section 5.3).

3. The sub-pools Ltnew are gathered into a single pool denoted Lnew = ∪t∈T Ltnew and returned to
spεc (line 10, Algorithm 3).

In Feillet et al. [6], the TC-VRP does not have time windows. The auxiliary problem solved is a
vehicle routing problem with multiple time windows and no waiting time (VRPmTW-nw). The multiple
time windows help to define new routes that can decrease the number of time-classes for user ū. Waiting
times are forbidden since the insertion of unnecessary waiting times could artificially improve consistency.

In our case, the initial problem integrates time windows. The sub-problem is a Dial-A-Ride Problem
with multiple Time Windows and minimal route duration (DARPmTW). Routes may integrate waiting
times due to time windows but waiting times that artificially improve time-consistency are still forbidden.

5.2 Definition of time windows for the DARPmTW
Let Wt

u be the set of multiple time windows to be defined for each user u ∈ U in the DARPmTW solved
to generate new routes for period t. If u = ū,Wt

u is defined to decrease its current number of time-classes,
while for the rest of users (u 6= ū) Wt

u is defined such that the number of time-classes can be maintained.
Let us recall some of the notations: we consider a user u ∈ U with a pickup time window [apu , bpu ],

the subset of time periods with transportation demands Tu ⊆ T and variables htu representing the pickup
service time of user u at period t ∈ Tu. We denote by µ(H) the number of time-classes for the set of
service times H. So µ(Hu) is the number of time-classes of user u. The service times are allocated to
time-classes as in Feillet et al. [6].

In the formal definition ofWt
u, we use a functionW(H, u). This function returns a set of time windows

within [apu , bpu ]. Any service time inserted in these time windows will not create a new class. This is
illustrated on Figure 6. The detailed construction process is given in Appendix A.1.

For each user u ∈ U , the answers to the following two yes/no questions determine how the multiple
time windows Wt

u are defined:

Q1 Is u the selected user ū?

Q2 Is the number of time-classes of user u decreased by 1 if the service time htu at period t is removed?
This question can be answered by checking if the inequality |µ(Hu \ {htu})| < |µ(Hu)| holds.

The answers to questions Q1 and Q2 yield four ways to define multiple time windows:

Yes/Yes Changing the service time htū to any service time in the time windows Wt
ū has to decrease the

number of time-classes for this user. So Wt
ū =W(Hū \ {htū}, ū).

Yes/No Let [etū, l
t
ū] ∈ W(Hū, ū) be the time window satisfied by service time htū (etū ≤ htū ≤ ltū).

Defining Wt
ū = W(Hū, ū) \ {[etū, ltū]} will enforce a decrease in the number of time-classes for this

user.

15



h1
u h5

u h3
u h4

u

apu bpu

−Λ

+Λ

−Λ +Λ

TW1 TW2

Figure 6: Construction of W(H, u) = {TW1, TW2} for user u with pickup time windows [apu , bpu ] and
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u}.

No/Yes In this case, the service time htu defines a time-class on its own, so Wt
u = {[apu , bpu ]}. As a

result, any feasible service time at period t can be accepted.

No/No We distinguish two possibilities. In the first one, Wt
u is defined similarly as in case Yes/No.

This possibility is selected with a probability ν = θ× (Cmax−µ(Hu)), where Cmax is the maximum
number of time-classes in the current solution, and θ is a fixed parameter. In the second one
(selected with probability 1− ν), time windows Wt

u are set as in Case No/Yes. This may generate
routes that increase the number of time-classes of this user. However, as in Feillet et al. [6], we
observe that this temporary relaxation helps decrease the number of time-classes of user ū.

These four cases are summarized in Table 4.

Q2: µ(Hu \ {htu}) < µ(Hu)?
Yes No

Q
1:

u
=
ū
?

Y
es Wt

ū =W(Hū \ {htū}, ū) Wt
ū =W(Hū, ū) \ {[etū, ltū]}

N
o Wt

u = {[apu , bpu ]} With probability ν: Wt
u =W(Hu, u) \ {[etu, ltu]}

Otherwise: Wt
u = {[apu , bpu ]}

Table 4: Overview of cases for the definition of Wt
u.

5.3 Solving the DARPmTW
This section details Line 10 of Algorithm 3. It consists in solving a DARP with multiple time windows
(DARPmTW) as defined in the previous section. To the best of our knowledge the DARPmTW has not
been treated in the literature.

We adapt the LNS-SCP used in Section 4.2 to solve single period DARPs with one time window at
each pickup or delivery point. As the SCP component is somewhat redundant with the set partitioning
problems solved in spεc, we do not activate it here. The algorithm is therefore called LNS in the
following.

In this LNS, each route duration is minimized and the DARP temporal constraints are checked through
a route scheduling algorithm (called the DARP scheduling algorithm). More specifically, let us consider
an insertion check in a route ω ∈ Ω. The DARP scheduling algorithm considers a maximum ride time
T̄u, a pickup time window [apu , bpu ] and a delivery time window [adu , bdu ] for each user u visited by the
route. It checks temporal constraints and if the route is feasible, the algorithm computes a service time
hi for each vertex such that: (i) the route duration is minimized and (ii) service times are scheduled as
early as possible within the vertex time windows. In this algorithm, a maximum route time shift ∆+

ω is
computed. This value indicates how much the route schedule can be shifted forward, while preserving
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both its feasibility and the route duration. Note that since the duration of the route is minimized, the
route includes waiting times only when ∆+

ω is zero. Otherwise it would be possible to reduce the route
duration by postponing its departure time. Hence, when ∆+

ω is strictly positive, there is no waiting time
on the route and shifting its departure by a value δ shifts the service times of all vertices on the route by
the same value. The detailed procedure, proposed in Tellez et al. [29], can be found in Appendix A.2.

Once the pickup time window [apu , bpu ], the delivery time window [adu , bdu ] and ride time constraints
T̄u are satisfied, we check the satisfaction of the multiple time windows Wt

u with a new procedure.
Specifically, this procedure checks if there is a service time for each user u compatible with a time
window in Wt

u.
Given a route ω ∈ Ω with a minimal duration and service times scheduled as early as possible,

Algorithm 4 checks if each user u on this route can be picked up within a set of multiple time windows
Wt
u without increasing the duration of the route. Accordingly, the only variable in this algorithm is the

departure time of the route, which can be postponed by a value 0 ≤ δ ≤ ∆+
ω called route time shift.

Note that, for morning routes the service in multiple time windows is only verified at pickups because
time-consistency is measured at these nodes. For afternoon routes, only deliveries will be checked.

Algorithm 4: Scheduling algorithm for a route ω for which additional multiple time windows have
been defined
Parameters: a route ω; Uω: set of users ordered by non-decreasing pickup times; Wt

u: set of
multiple time windows sorted in non-decreasing order of the earliest value; hu: earliest service
time for the pickup of user u given the duration of route ω is minimal; ∆+

ω : maximum route time
shift of route ω.
Output: if route ω is feasible or unfeasible

1 δ = 0 /* the route time shift */
2 for u ∈ Uω do
3 scheduledUser ← false
4 while not scheduledUser and Wt

u 6= ∅ do
5 [a, b]← first time window in Wt

u

6 if hu + δ > b then /* the time window is too early */
7 remove first time window [a, b] from Wt

u

8 else if a ≤ hu + δ ≤ b then /* the time window is satisfied */
9 scheduledUser ← true

10 else if hu + δ < a then /* the departure of ω should be delayed to meet the
time window */

11 δ = a− hu
12 if δ ≤ ∆+

ω then
13 jump to line 2: the for loop is restarted to the first user u in Uω

14 if not scheduledUser then
15 return unfeasible

16 return feasible

Let Uω be the set of users ranked according to the non-decreasing order of their pickup service time.
Algorithm 4 looks for a route time shift δ ∈ [0,∆+

ω ] such that for all users u ∈ Uω there exists a time
window [a, b] ∈ Wt

u in which the shifted service time hu + δ can be scheduled. Note that all nodes in
route are shifted forward by the same quantity of time. Thus, it is not possible to increase the duration
of the route in order to ensure feasibility.

First, the route time shift δ is initialized to 0 (line 1). Users are considered sequentially (line 2). For
each user u ∈ U , its first time window [a, b] is evaluated (lines 4-5). Three cases are considered:

(i) If the shifted service time takes place after the end of the time window (hu+δ > b), the time window
[a, b] can never be satisfied: it is removed from set Wt

u (lines 6-7). The next iteration of the while
loop will directly check the next time window for user u.

(ii) If the shifted service time takes place in time window [a, b], the shifted service time is feasible for
the pickup of user u (lines 8-9). The algorithm continues with the next user.
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(iii) If the shifted service time takes place before the opening of the time window (hu + δ < a, line 10),
the route shift δ has to be increased to a − hu, so that the new shifted service time is exactly a
(line 11). At this point, two cases are possible a) the new value of route time shift δ is feasible (i.e.
δ ≤ ∆+

ω ), and the the main loop is restarted from the first user with the new value of δ (jump from
line 13 to line 2); b) δ is larger than the maximum allowed shift ∆+

ω and the route is infeasible
(line 15).

Finally, if each user has a feasible time window given the same time shift δ, then the route is declared
feasible (line 16).

In the worst case, all time windows are removed (
∑
u∈Uω |W

t
u| operations). For each removal, the route

time shift is increased and then the procedure is restarted. One iteration of the main loop (2–13) cannot
take more than |Uω| operations. So the worse-case time complexity of Algorithm 4 is O(|Uω|

∑
u∈Uω |W

t
u|).

6 Computational experiments
The matheuristic described in Section 4.1 was coded in C++ and the mathematical models were solved
with CPLEX Concert Technology 12.6 running on a single thread on an Intel Xeon E5-1620 v3 @3.5Ghz
processor.

This section details computational experiments in two families of instances. It is structured as follows:
Section 6.1 presents the value of parameters used by our algorithms. Section 6.2 introduces the instances
used to evaluate our approach. They are built from real data provided by the Synergihp Rhône-Alpes
Company. Section 6.3 evaluates the main components of the matheuristic approach. In Section 6.4,
spεc is assessed on benchmark instances of [8] and [6] for the time-consistent VRP. Finally, Section 6.5
presents managerial insights regarding cost performance and time-consistency.

6.1 Parameter settings
After preliminary tests on a representative subset of instances, parameters shown in Table 5 were found
to provide the best average performance.

Global parameters

ε = 0.01 initial value of epsilon
φ = 1.5 epsilon increase factor
MaxIter = 4 maximum number of iterations without improvement
N = 100× d|U|/100e number of routes to be appended to the pool at each call of the TC-DARP
N init = N × |T | number of routes to be appended to the pool at each call of the MP-DARP
tmax = 60s MILP solver time limit
Nmax = 50000 size of the pool L
Nnew = 5000 maximum number of routes in Lnew

Route selection parameters

θ = 10% relaxation parameter in DARPmTW
γ = 10% percentage of routes that can be re-selected in the sequential selection rule
ρ = 6 Random Biased Selection parameter

Table 5: spεc parameters (all defined in Sections 3-5).

The value of parameter ε has a strong impact on the computing time. Higher values of ε help to
reduce the computation time. However, the quality of the Pareto front approximation is considerably
deteriorated. Thus, ε = 0.01 was taken as a good trade-off between computing time and quality of
the solution. spεc is less sensitive to parameter φ but its value needs to be greater than 1.5 to have
significant impact on the value of ε.

We found that a value of MaxIter greater than 4 does not improve the quality of each point of the
Pareto front approximation. Parameters N and tmax were determined in order to maximize the number
of times when the MILP solver is able to solve the TC-DARPs to proven optimality. In the same way,
parameter N init was determined to solve the MP-DARP. Note that parameter N init is much bigger
than N because the MP-DARP contains less binary variables (so is an easier problem to solve) than the
TC-DARP.
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In order to keep the number of routes in memory under control, limits in the maximum size of the
pool L and of the Lnew were set to 50000 routes and to 5000 routes, respectively.

The choice of selection rules for the MP-DARP and route policies for the TC-DARP are the following:

• Selection rules MP-DARP: R = {SS}

• Route policies TC-DARP: O = ({L, SS}, {Lnew, SS})

SS stands for the sequential selection rule and Lnew the pool generated through the DARP with the
multiple time windows (see Section 4.2).

Some of the experiments that lead to these parameter choices are presented in Section 6.3.

6.2 Description of instances
The time-consistent DARP studied in this paper arises in the context of transportation of people with
disabilities. We collected real data from the Synergihp Rhône-Alpes Company based in Lyon, France.
This data concerns the transportation of hundreds of people (users) to MSIs. We decomposed this data
according to geographical areas in three different ways and built 8 small instances with 60 to 80 users,
4 medium-size instances with 120 to 160 users, and 2 large instances with 280 to 295 users. We assume
an infinite homogeneous fleet; each vehicle has a capacity of 4 seats and 3 wheelchair spaces. Vehicle
costs are composed of an hourly cost α =23.8e and a cost per kilometer τ =0.17e. Additionally, we
artificially set an arbitrarily small vehicle fixed cost of λ = 1 in order to favor solutions with the same
variable cost but fewer vehicles.

Travel times and distances are obtained from the Open Source Routing Machine2 (OSRM) proposed
by Luxen and Vetter [17]. For each user u ∈ U , we define maximum ride times according to direct
travel time tpu,du between the pickup location pu and the delivery location du. The following formula
generates maximum ride times (RT ) that are between 15 and 30 minutes longer than direct travel times:
RT = 15× d(tpu,du + 15)/15e.

Time windows at MSIs are 15 minutes wide. The size of time-classes is 10 minutes wide. Finally,
time windows at pickup locations and service times strongly influence the actual design of routes, but
they have no impact on the efficiency of our solution method. We therefore ignored them for the sake of
simplicity.

6.3 Evaluation of the matheuristic components
In this section we present the tests that were used to evaluate the main components of the spεc matheuris-
tic. We compare several settings of the algorithm on a representative sample of five representative in-
stances. Five runs are performed for each instance and setting.

Three variants are tested, each of which allows us to evaluate key components of the algorithm:

• The spεc variant is the default configuration including all parameters defined as presented in
Section 6.1.

• The spεc-noDARPmTW variant corresponds to spεc without the new routes generation proce-
dure presented in Section 5.3, e.g. O = {(L, SS)}.

• The spεc-withRBS variant corresponds to spεc, plus the Random Biased Selection rule presented
in Section 4.4.2, e.g. O = {(L, SS); (L, RBS); (Lnew, SS)}.

6.3.1 Comparison based on cost per time-classes

We first compare each variant based on the best solution cost it is able to find when the number of time-
classes is limited to 3, 2 or 1 for each user. Note that although our instances have 5 time periods, users in
non-dominated solutions present at most 3 time-classes. Table 6 reports the corresponding computational
results.

Instance names are reported in Column 1. Columns 2-4 present the value of the objective function
of the best solutions found, regardless the run and the setting. The best results are shown in bold. In
the next columns we report the relative gap between the average cost obtained with the corresponding
selection rule and the best solution found (Best). It is computed as (Avg Cost - Best) / Best× 100. Row
Avg reports the average value of the corresponding column.

2http://project-osrm.org/
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Instance Best spεc-noDARPmTW spεc-withRBS spεc
Cmax 3 2 1 3 2 1 3 2 1 3 2 1

C01_60 1291.03 1291.73 1345.41 0.11% 2.15% 19.20% 0.11% 0.58% 5.17% 0.11% 0.32% 2.52%
C02_80 2523.21 2528.83 2561.40 0.01% 0.20% 3.74% 0.01% 0.26% 1.09% 0.01% 0.40% 0.49%
C09_135 2857.18 2863.86 3107.12 0.34% 0.93% 15.46% 0.34% 0.99% 8.69% 0.34% 1.22% 3.74%
C10_160 2621.34 2621.34 2779.06 0.19% 1.04% 19.75% 0.14% 0.78% 10.07% 0.15% 0.70% 5.88%
C12_280 7712.22 7730.04 9487.86 0.26% 0.54% 10.25% 0.26% 0.82% 3.55% 0.27% 1.22% 3.67%

Avg 0.18% 0.97% 13.68% 0.17% 0.69% 5.72% 0.17% 0.77% 3.26%

Table 6: Average gaps of spεc variants for solutions with a Cmax of 3, 2 and 1 time-classes.

The first observation of Table 6 is that average values (Avg) among variants differ significantly only
in solutions with one time-class Cmax = 1. Comparing spεc-noDARPmTW to spεc, we find that the
DARPmTW component brings significant improvement in the quality of solutions with one time-class.
New routes have to be generated to improve consistency. Comparing the spεc-withRBS to spεc, we
seen that the Random Biased Selection procedure does not bring significant improvement in solutions
with three and two time-classes, and worsens the performance of one time-class solutions. According
to these experiments, we conclude that the spεc configuration seems to outperform the other variants
when looking at the best cost found for each number of time-classes.

6.3.2 Comparison based on hypervolume indicators

To complete the previous experiments, we provide deeper insights on the quality of the Pareto front
approximations that are produced by each configuration. Since we try to find a good balance between
costs and quality of service, we are particularly interested in solutions with at most two time-classes per
passenger. We compare the hypervolume indicators of the Pareto front approximations found by each
configuration.

The hypervolume indicator was introduced by Zitzler et al. [33] to compare Pareto front approxima-
tions in multi-objective optimization problems. It measures the volume between the set of non-dominated
solutions and a reference point. In this study we use the Nadir point approximation as a reference point.
For a given instance this point is an artificial point in the objective space. It takes as coordinates the
cost of the best solution that has one time-class for each user and the consistency level of the minimum
cost non-dominated solution. The larger the hypervolume indicator, the better the approximation [33].

Table 7 reports the hypervolume indicators for the instances and configurations that were presented
in the previous section.

Avg Gap hypervolume

Instance Best spεc-noDARPmTW spεc-withRBS spεc
C01_60 9979.72 28.93% 3.91% 1.88%
C02_80 2788.82 19.04% 5.61% 4.06%
C09_135 32847.86 20.34% 5.94% 5.36%
C10_160 32969.07 26.48% 4.68% 3.25%
C12_280 253897.10 13.42% 6.49% 6.82%

Avg 21.64% 5.33% 4.28%

Table 7: Avg Gap(%) with respect to the best hypervolume (5 runs)

The instance name is reported in Column 1. Column 2 presents the best hypervolume found regardless
of the run and the setting. The best results are shown in bold. In the next columns, we report the relative
gap between the average value hypervolumes with the corresponding setting and the best hypervolume
found (Best). It is computed as ((Avg hyperpervolume - Best) / Best ) × 100. Row Avg is the average
value of the corresponding column.

The first observation of Table 7 is that spεc has the best results in 4 out of 5 instances. The
spεc-withRBS provides slightly better results for only one instance. Comparing spεc-noDARPmTW
against spεc, we once more conclude that the DARPmTW component is needed to generate routes that
significantly improve the solution quality.

Overall, we can confirm with this experiment that the spεc configuration outperforms other vari-
ants. To illustrate this finding, Figure 7 shows three Pareto front approximations obtained with the
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spεc configurations for instance I01_60.
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Figure 7: Comparison of Pareto fronts for instance C01_60.

6.4 Performance evaluation on benchmarks from the literature
As the TC-DARP is a new problem, there is no benchmark in the literature. However, to evaluate the
performance of spεc, we solve reference instances for two other time-consistent routing problems. The
first benchmark is an adaptation of the conVRP instances of Groër et al. [8]. This adaptation, proposed
by Feillet et al. [6], transforms the small conVRP instances of Groër et al. [8] into TC-VRP instances.
These instances are denoted RconVRP. They include up to 12 users over 3 days and have been solved
to optimality by a MILP solver. The second benchmark set is the TC-VRP from Feillet et al. [6]. It
contains instances for up to 65 users over 5 time periods.

Although the TC-VRP is the closest problem to the TC-DARP, there are some differences between
both problems. The TC-VRP has the following hypothesis: (i) it has a single depot and no time windows;
(ii) it assumes a limited fleet of vehicles; (iii) the consistency objective function is the maximal number of
time-classes over all users (i.e. Cmax); and (iv) routes must start at time 0, with no waiting time allowed.
To be solved by spεc, TC-VRP instances have been converted to TC-DARP instances by defining one
copy of the depot for each request. Ride times and time windows have been relaxed by setting arbitrary
large values. Finally, since the VRP routes are not subject to time windows nor ride times, routes can
be traveled in either direction. Thus, each time a route is appended to the pool, the reverse route is also
appended.

6.4.1 RconVRP instances

This benchmark proposes 10 small instances of the TC-VRP: the first 5 instances with 10 users and
the next 5 with 12 users. Instances have been solved to optimality with CPLEX. Table 8 presents the
comparison with spεc over 10 runs.

Columns 2-4 (Opt Cost), present the cost of optimal solutions for each time-class. In the next 3
columns, we report the average performance of spεc for each time-class. Note that spεc could not
find most of the solutions with 3 time-classes and one with 2 time-classes. For each instance, the Gap
is computed as ( Avg Cost - Best) / Best × 100. The last row is the average gap (Avg Gap) overall
instances which is the average value of the corresponding column.

For single time-class solutions, spεc founds optimal solutions in the 10 runs for 4 instances of 10.
The average gap is 1.5%. The performance is better with 2 time-classes for which 7 of 10 solutions are
optimal and with an average gap of 0.2%.
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Instance Opt. Cost spεc
Cmax ≤3 ≤2 1 ≤3 ≤2 1

RconVRP10-1 92.91 92.91 92.91 92.91 92.91 92.91
RconVRP10-2 80.42 80.42 80.96 80.42 80.42 82.83
RconVRP10-3 94.12 94.12 94.37 94.12 94.12 94.37
RconVRP10-4 93.71 93.71 94.09 93.71 93.71 94.09
RconVRP10-5 83.84 83.84 96.01 83.84 84.50 96.70
RconVRP12-1 103.65 103.65 104.40 103.65 103.65 109.19
RconVRP12-2 73.89 73.89 81.25 73.89 73.89 83.40
RconVRP12-3 82.77 82.77 83.12 82.77 82.77 83.12
RconVRP12-4 97.57 97.57 101.91 97.57 98.55 104.31
RconVRP12-5 83.63 83.63 89.25 83.63 83.63 91.38

Avg Gap (%) 0.0% 0.2% 1.5%

Table 8: Benchmark on RconVRP instances reported in [6]

6.4.2 Instances TC-VRP

This benchmark was built from real data collected in 14 distinct MSIs, with a number of users ranging
from 15 to 65, and a number of time periods equal to 5 (Monday to Friday). For each MSI, 5 profiles of
transportation demands where randomly generated where each profile corresponds to the percentage of
people present during the complete week. This percentage varies between 50% and 90%. This yields a
total of 70 benchmark instances.

Transportation cost of solutions with 1 to 5 time-classes are provided for most instances. Feillet et al.
[6] solved the TC-VRP with an LNS-based matheuristic with a time limit of 1 hour. spεc stops when
all users reach a single time-class. For each value of Cmax, our lexicographic optimization explores all
non-dominated solutions. This approach is more time consuming but returns a more complete Pareto
front approximation that can help decision makers to select intermediate trade-off solutions for each
time-class.

Tables 9 and 10 show the average gap of spεc with respect to the LNS method of Feillet et
al. [6], aggregated in two different ways. For each instance, we compute the gap as (Cost spεc −
Cost LNS)/Cost LNS × 100. Thus, any negative gap represents an improvement.

Table 9 shows the numerical results aggregated by percentage of presence during the week. For
example, data-5-Y aggregates instances where, on average, 50% of users are transported everyday, while
in the group data-9-Y the average percentage of users transported rises to 90%.

Instance Avg Gap Transportation cost

Cmax ≤5 ≤4 ≤3 ≤2 1

data5-Y -1.10% -1.00% -1.02% -0.21% -0.37%
data6-Y -1.03% -1.03% -0.81% -0.26% 0.83%
data7-Y -1.09% -0.96% -0.86% 0.13% -0.13%
data8-Y -1.06% -1.00% -0.72% 0.00% -0.25%
data9-Y -0.61% -0.61% -0.49% -0.27% -1.76%

Avg Gap (%) -0.98% -0.92% -0.78% -0.12% -0.33%
Nb Sols 70 70 70 70 70
Nb new BKS 63 59 53 35 35

Table 9: Results aggregated by percentage of user requests on the benchmark of Feillet et al. [6]

The average relative gap (Avg Gap) overall instances between the results obtained with spεc and
the LNS was improved for all time-classes. However, slightly better results are reported for solutions
with 3, 4 and 5 time-classes. This result is confirmed with the number of new best-known solutions (Nb
new BKW) which is more than 50 for solutions above 3 time-classes, and 35 for solutions with 1 and 2
time-classes. A total number of 245 strictly new best solutions were found, as shown on the last row of
the table. Detailed results can be found in Appendix B.
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Table 10 shows the numerical results aggregated by MSI. The last two digits of the instance name
represent the number of users. This table shows that spεc has better performance with larger instances.
However, dataX-59 instances are in particular the most difficult to solve for spεc, with an extra cost of
3.41% for Cmax = 2 solutions and 2.39% for Cmax = 1 solutions.

Instance Avg Gap Transportation cost

Cmax ≤5 ≤4 ≤3 ≤2 1

dataX–15 0.03% 0.03% 0.00% 0.47% 3.04%
dataX–21 -0.15% 0.07% 0.18% 0.24% 1.53%
dataX–25 -0.21% -0.06% 0.01% 0.19% 0.53%
dataX–26 -0.21% -0.21% -0.03% 0.04% 0.08%
dataX–27 -0.27% -0.12% -0.16% 0.03% -0.93%
dataX–32 -0.54% -0.54% -0.19% 0.10% 0.49%
dataX–41 -1.15% -1.15% -1.65% -1.19% -2.46%
dataX–44 -0.75% -0.75% -0.61% -0.72% -1.19%
dataX–46 -1.05% -1.05% -0.62% -0.18% -0.34%
dataX–48 -1.24% -0.98% -0.77% -0.20% -1.38%
dataX–55 -1.91% -1.91% -1.63% -0.92% -4.84%
dataX–59 -2.17% -2.12% -1.62% 3.41% 2.39%
dataX–64 -2.30% -2.30% -2.14% -1.66% -0.18%
dataX–65 -1.77% -1.79% -1.71% -1.33% -1.42%

Avg Gap (%) -0.98% -0.92% -0.78% -0.12% -0.33%

Table 10: Results aggregated by instance size on [6] benchmark

6.5 Managerial insights on time-consistency and transportation costs
This section reports managerial insights regarding the relationship between time-consistency and trans-
portation costs. Figures 8-10 show the Pareto front approximation obtained on Synergihp Rhône-Alpes
instances with 60, 160 and 280 users, respectively. The transportation cost is presented as the percentage
of cost increase with respect to the cheapest solution found in that instance (x-axis). The time-consistency
of non-dominated solutions is shown in a vector form on the vertical axis. Each element of the vector
represents the number of users with 3, 2 and 1 time-classes on that solution, respectively. Note that solu-
tions with 4 or 5 time-classes are not represented because, in our tests, they have always been dominated
by a solution with 3 time-classes.

These Pareto front approximations provide decision makers with a fine intuition of the cost of time-
consistency associated with each user. The first finding is that all Pareto front approximations start with
the majority of users having a single time-class and very few users having 3 time-classes. With a minor
increase of cost, all users have at most 2 time-classes (until the dotted line). This means that an useful
consistent solution can be found with respect to the cost of the cheapest solution, and a small increase
of cost can significantly improve the solution for users with many time-classes.

Depending on the instance size, the increase of cost for reaching single time-class solutions can vary
from 4% in C01_60 to 23% in the C12_280 instance. Note that values on the y-axis are ordered but
non-scaled as the distance between points is always constant. Figure 11 shows the same instances on a
common scale for solutions with a maximum of 2 time-classes per user. The y-axis presents the percentage
of users with 2 time-classes. It shows that each instance has very different trade-offs depending on the
size and the consistency level of the solution.

6.6 Economic impact of shifting route departure times
In this section we compute the impact of having flexible route departure times on cost and time-
consistency. This effect has been studied by Kovacs et al. [11] for the conVRP, showing that depar-
ture time flexibility provides considerable improvement in the solution quality under tight consistency
requirements. As far as the TC-DARP is concerned, the departure flexibility is limited by time windows
and maximum ride-time constraints. The departure of a route can be scheduled at any time between
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Figure 8: Pareto front approximation for instance C01_60
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Figure 9: Pareto front approximation for instance C10_160
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Figure 10: Pareto front approximation for instance C12_280
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its earliest and its latest departure date. We define the maximum time shift of a route as the difference
between these two schedules. The maximum time shift of a route ω is denoted by ∆+

ω .
Table 11 measures the impact of the departure time shift on the complete set of Synergihp Rhône-

Alpes instances. Columns 2–4 present the best results on 5 runs of the spεc when the route time shift
is allowed, for values of Cmax decreasing from 3 to 1. Missing values in column 2 mean that all solutions
found with Cmax = 3 were dominated by another solution with Cmax = 2. Column 5 (%R-Shift) shows
the percentage of routes in which a departure time shift is actually implemented. Columns 6–8 present
the minimum gap on 5 runs with respect to the minimum cost found by the spεc when no time shift is
allowed (∆+

ω = 0). The last row shows the average values.

Instance spεc spεc(∆+
ω = 0)

Cmax 3 2 1 %R-Shift 3 2 1

C00_80 2045.54 2044.43 2061.89 49% -0.07% 0.25% 0.35%
C01_60 1291.03 1291.73 1345.41 40% 0.18% 0.48% 0.46%
C02_80 2523.21 2533.86 2561.40 31% 0.00% -0.01% 0.31%
C03_70 1735.07 1752.43 33% 0.00% 0.30%
C04_80 1207.72 1220.91 32% 0.00% 2.44%
C05_80 1871.25 1871.53 1923.21 40% 0.37% 0.06% 0.08%
C06_60 3304.41 3332.21 42% 0.00% 0.54%
C07_65 1865.46 1868.15 1920.95 50% 0.00% -0.07% 3.22%
C08_120 5500.45 5534.44 39% 0.02% 1.76%
C09_135 2857.18 2880.57 3107.12 38% 0.27% -0.18% 1.17%
C10_160 2621.35 2621.35 2779.06 42% 0.03% 0.00% 8.68%
C11_160 3222.10 3233.17 3549.53 42% 0.21% 0.00% 4.84%
C12_280 7712.44 7740.33 9487.86 33% 0.02% -0.22% 4.64%
C13_295 6294.89 6404.49 7664.17 47% -0.04% -1.05% 6.10%

Avg 40% 0.10% -0.05% 2.49%

Table 11: Economic implications of allowing a later departure of routes in solutions (Best solutions on 5
runs)

The average gain is found only for one time-class solutions with a 2.49% saving.According to these
results, time-consistency can be achieved at a lower cost when route departure times are not fixed in
advance. This also implies that shifting time departure can be a lever to improve time-consistency
without significantly increasing transportation costs in a DARP context.

7 Conclusions
This paper introduces a new variant of the multi-period DARP denoted the time-consistent DARP. It
aims to find trade-off solutions between two objectives: the transportation cost and the time-consistency
of users. The transportation cost includes routing and vehicle ownership costs. The time-consistency
objective is expressed as a lexicographic function of the number of users having significantly different
service times. Regarding the literature on the topic, this is a new formulation of the time-consistency of
the solution, which generalizes the approach of Feillet et al. [6]. Regarding optimization methods, this
formulation is more time-consuming than a traditional min-max objective, but it returns a more detailed
Pareto front approximation that helps decision makers to select the appropriate solution. TC-DARP
extends the TC-VRP by considering time windows and maximum ride times in a problem with multiple
destinations. This problem was studied in the context of door-to-door transportation of children with
disabilities in Auvergne-Rhône-Alpes, a region of France.

To compute Pareto front approximations, we developed a matheuristic framework called spεcbased
on an epsilon constraint procedure and a set partitioning problem. An initial set of routes is produced by
a LNS matheuristic previously proposed for the FSM-DARP-RC in Tellez et al. [29]. Additional routes
are generated by an extension of this algorithm to the DARP with multiple time windows and minimal
waiting time. At each iteration, a subset of routes is chosen to feed the spεc procedure. Different
selection rules are presented to this end. Experiments show the high performance of the spεc on real-
life instances for up to 295 users. spεc was also been tested on literature instances and was shown to
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improve the state-of-the-art algorithm for the TC-VRP benchmark.
Some passengers with disabilities are very sensitive to inconsistent schedules. In this study, we show

that economic solutions are already fairly consistent with very few passengers having 3 time-classes. In
addition, we found that in most instances, with a small increase in transportation costs (<1%), passenger
schedules with at most 2 time-classes are possible. Finally, we show that allowing a flexible departure
of routes improves the transportation costs of highly consistent solutions. Future researches will be
model extensions to add driver-related constraints such as working time, breaks, regulations and driver-
consistency. As regards vehicles, our model can be extended to a heterogeneous fleet.
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A Appendix

A.1 Construction of W(H, u)

Algorithm 5: Construction of W(H, u)

Parameters: u: user considered. H = {h1, . . . , hM}: set of the M service times of user u sorted
in non-decreasing order.
Data: Λ: width of time-classes.
Output: The set of multiple time windows W(H, u)

1 mtw = ∅ /* initialize an empty set of multiple time windows */
2 h = h1

3 h = h1

4 for i = 2, . . . ,M do
5 if hi > h+ Λ then
6 mtw← mtw ∪ {[max{apu ;h− Λ},min{bpu ;h+ Λ}]}
7 h = hi

8 h̄ = hi

9 mtw← mtw ∪ {[max{apu ;h− Λ},min{bpu ;h+ Λ}]}
10 return mtw

A.2 Scheduling algorithm

28



Algorithm 6: Schedule evaluation
Input: Route ω = {1, ...,M}.
Output: The set of service times hi ∀i ∈ ω and the maximal route time shift ∆+

ω , or -1 if
infeasible

1 h1 ← a1 /* beginning of the service */
2 H ← 0 /* total waiting time on the route */
3 F ← b1 − h1 /* FTS latest start at node 1 */
4 F ′ ← b1 − h1 /* FTS earliest start at node 1 */
5

/* Phase 1: set up nodes at the earliest start */
6 for i = 2, . . . ,M do
7 hi ← max{ai;hi−1 + ζi−1 + ti−1,i}
8 if hi > bi then return -1
9 H ← H + max{0; ai − (hi−1 + ti−1,i + ζi−1)}

10 F ′ = F
11 F ← min{F ;H + max{0; li − hi}}
12 if i = M then
13 F ′ ← min{F ′;H}

14

/* Phase 2: optimize route duration */
15 ∆+

ω = F − F ′ /* route time shift */
16 h1 ← h1 + F ′

17 for i = 2, . . . ,M do
18 hi ← max{hi−1 + ζi−1 + ti−1,i; ai}

/* Check route duration constraint */
19 if (hM − h1) > T then return -1
20

/* Phase 3: check ride time constraints */
21 for i = M − 2, . . . , 1 do
22 if i ∈ P then
23 u← user of pickup i /* implies i = pu */
24 δ ← (hdu − hpu + ζi)− Tu
25 if (δ > 0) then
26 hpu ← hpu + δ
27 if hpu > bi then return -1
28 for j = pu + 1, . . . ,M do
29 wj ← max{aj ;hj−1 + ζj−1 + tj−1,k}
30 if hj > bj then return -1

31 if Tu − (hdu − hpu + ζi) < 0 then
32 return -1

33

34 return {hi|i ∈ ω},∆+
ω
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A.3 Parameters LSN-SCP

Parameters to generate pool L

χ = 5% record-to-record acceptance criterion.
penalty = 10000 penalty cost for incomplete solutions.
Φ− = 10% minimal proportion of removed request used by removal operators.
Φ+ = 45% maximal proportion of removed request used by removal operators.
p = 6 roulette wheel parameter for the historical node-pair operator.
σ+
init = 4-regret repair operator for building the initial solution
η = 1000 launch frequency of the SCP.
Iters = 10000 max number of iterations.
ψ = 1.25 RSCP coefficient to recompute the launch frequency of the SCP.

New parameters to generate pool Lnew

Iters = 250 max number of iterations.
η =∞ the SCP is deactivated.

Table 12: Parameters LNS-SCP [29].
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B TC-VRP

Instance Transportation cost Time

Cmax ≤5 ≤4 ≤3 ≤2 ≤1 (min)

data5–15 663.2 663.2 663.2 674.1 782.3 11.6
data5–21 773.7 779.1 779.1 779.1 817.3 21.9
data5–25 617.4 617.4 617.4 622.2 669.0 29.1
data5–26 767.6 767.6 771.9 778.8 815.9 45.8
data5–27 934.6 934.6 934.6 942.0 1026.1 61.2
data5–32 984.9 984.9 984.9 989.9 1034.5 22.1
data5–41 1420.7 1420.7 1422.6 1461.6 1615.9 126.9
data5–44 1142.9 1142.9 1142.9 1149.4 1220.3 74.3
data5–46 1458.9 1458.9 1465.4 1492.9 1607.2 114.4
data5–48 1440.8 1449.4 1452.4 1459.8 1597.8 154.9
data5–55 1569.1 1569.1 1571.1 1581.0 1696.9 139.4
data5–59 2714.8 2721.5 2721.5 2883.6 3115.9 281.3
data5–64 2082.0 2082.0 2100.8 2112.4 2304.2 118.9
data5–65 1759.4 1759.4 1766.2 1777.1 1923.9 128.6
data6–15 689.4 689.4 689.4 695.6 741.3 2.2
data6–21 792.0 792.0 796.2 798.1 831.7 40.9
data6–25 680.9 680.9 683.5 683.5 728.7 32.9
data6–26 838.7 838.7 838.7 843.2 905.0 56.0
data6–27 949.8 949.8 949.8 954.0 1060.3 57.9
data6–32 991.1 991.1 991.1 996.2 1013.5 10.4
data6–41 1500.3 1500.3 1504.2 1506.7 1735.5 92.8
data6–44 1239.1 1239.1 1243.9 1244.6 1405.9 76.7
data6–46 1485.1 1485.1 1496.6 1526.0 1597.0 93.0
data6–48 1507.4 1507.4 1519.4 1531.6 1702.8 158.5
data6–55 1816.8 1816.8 1826.3 1854.4 1987.7 121.0
data6–59 2931.3 2931.3 2933.0 3037.4 3389.6 204.1
data6–64 2264.3 2264.3 2271.0 2305.6 2527.0 100.6
data6–65 1981.9 1981.9 1990.6 1998.3 2219.5 163.6

Table 13: Benchmark of [6]
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Instance Transportation cost Time

Cmax ≤5 ≤4 ≤3 ≤2 ≤1 (min)

data7–15 746.9 746.9 746.9 752.6 790.3 11.9
data7–21 830.1 833.7 833.7 833.7 899.3 39.8
data7–25 719.5 724.7 724.7 728.8 767.9 34.9
data7–26 880.3 880.3 883.5 887.4 920.7 37.9
data7–27 1053.4 1053.4 1053.4 1056.5 1108.5 39.7
data7–32 1079.7 1079.7 1079.7 1097.3 1154.3 57.2
data7–41 1644.8 1644.8 1648.5 1661.0 1730.4 63.2
data7–44 1295.9 1295.9 1300.3 1307.0 1311.7 20.5
data7–46 1648.6 1648.6 1650.1 1664.6 1715.9 72.4
data7–48 1687.1 1698.9 1698.9 1712.0 1774.3 116.6
data7–55 1889.0 1889.0 1896.3 1918.0 2036.0 136.5
data7–59 3262.4 3262.4 3307.4 3596.6 3892.4 725.2
data7–64 2552.9 2552.9 2552.9 2583.6 2823.4 136.9
data7–65 2196.0 2196.0 2196.0 2224.2 2347.3 159.8
data8–15 773.9 773.9 773.9 780.2 808.5 10.8
data8–21 898.4 898.4 898.4 905.0 956.3 37.8
data8–25 853.3 853.3 853.3 853.3 857.0 0.2
data8–26 962.5 962.5 962.5 970.8 998.2 35.2
data8–27 1184.8 1193.9 1193.9 1193.9 1220.6 17.6
data8–32 1144.0 1144.0 1152.8 1152.8 1181.7 35.8
data8–41 1886.8 1886.8 1888.5 1898.0 1954.3 63.9
data8–44 1409.0 1409.0 1409.0 1414.9 1441.2 28.8
data8–46 1758.5 1758.5 1772.9 1774.8 1817.2 33.8
data8–48 1815.7 1815.7 1820.9 1824.4 1898.1 125.7
data8–55 2007.7 2007.7 2015.4 2037.2 2104.0 120.0
data8–59 3545.7 3545.7 3580.5 3874.4 4020.5 427.4
data8–64 2723.3 2723.3 2723.3 2743.0 2978.2 126.8
data8–65 2404.2 2404.2 2422.9 2433.5 2524.4 159.5
data9–15 797.5 797.5 797.5 804.3 816.1 3.6
data9–21 998.6 998.6 998.6 1003.0 1008.9 5.7
data9–25 894.6 894.6 894.6 894.6 908.1 1.6
data9–26 1024.6 1024.6 1024.6 1024.6 1028.0 0.4
data9–27 1210.6 1210.6 1210.6 1219.5 1241.9 12.3
data9–32 1187.7 1187.7 1199.4 1199.4 1204.9 6.4
data9–41 2022.8 2022.8 2022.8 2022.8 2032.1 6.3
data9–44 1532.5 1532.5 1532.5 1532.5 1595.1 54.1
data9–46 1827.0 1827.0 1827.0 1841.6 1871.0 30.7
data9–48 1973.5 1973.5 1973.5 1992.8 2007.7 28.6
data9–55 2176.0 2176.0 2176.0 2188.1 2275.9 70.3
data9–59 3913.0 3913.0 3916.3 3946.6 4025.3 96.3
data9–64 2942.6 2942.6 2964.9 2964.9 2999.6 28.8
data9–65 2586.5 2586.5 2586.5 2604.7 2624.2 68.0

Table 14: Benchmark of [6]
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