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ABSTRACT 

 

Aims 

Cyclic AMP phosphodiesterases (PDEs) are important modulators of the cardiac response to β-

adrenergic receptor (β-AR) stimulation. PDE3 is classically considered as the major cardiac PDE 

in large mammals and human, while PDE4 is preponderant in rodents. However, it remains 

unclear whether PDE4 also plays a functional role in large mammals. Our purpose was to 

understand the role of PDE4 in cAMP hydrolysis and excitation-contraction coupling (ECC) in 

the pig heart, a relevant pre-clinical model. 

Methods and Results 

Real-time cAMP variations were measured in isolated adult pig right ventricular myocytes 

(APVMs) using a Förster resonance energy transfer (FRET) biosensor. ECC was investigated in 

APVMs loaded with Fura-2 and paced at 1 Hz allowing simultaneous measurement of 

intracellular Ca2+ and sarcomere shortening. The expression of the different PDE4 isoforms was 

assessed by Western blot in pig right ventricle and APVMs. Similarly to PDE3 inhibition with 

cilostamide (Cil), PDE4 inhibition with Ro 20-1724 (Ro) increased cAMP levels and inotropy 

under basal conditions. PDE4 inhibition enhanced the effects of the non-selective β-AR agonist 

isoprenaline (Iso) and the effects of Cil, and increased spontaneous diastolic Ca2+ waves 

(SCWs) in these conditions. PDE3A, PDE4A, PDE4B and PDE4D isoforms are expressed in pig 

ventricle.. In APVMs isolated from a porcine model of repaired tetralogy of Fallot which leads to 

right ventricular failure, PDE4 inhibition also exerts inotropic and pro-arrhythmic effects. 

Conclusions  

Our results show that PDE4 controls ECC in APVMs and suggest that PDE4 inhibitors exert 

inotropic and pro-arrhythmic effects upon PDE3 inhibition or β-AR stimulation in our pre-clinical 

model. Thus, PDE4 inhibitors should be used with caution in clinics as they may lead to 

arrhythmogenic events upon stress.  
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INTRODUCTION 

The β-adrenergic receptor (β-AR) signaling pathway is the main route for cardiac stimulation 

upon stress. It allows cardiac adaptation to increase blood supply to muscles during exercise. 

The so called “fight or flight” response starts with β-AR stimulation by catecholamines, leading to 

Gs activation of adenylyl cyclases which catalyze the conversion of adenosine triphosphate 

(ATP) to the second messenger 3',5'-cyclic AMP (cAMP) and pyrophosphate. Subsequently, 

cAMP promotes protein kinase A (PKA) activity which in turn phosphorylates key proteins of the 

excitation-contraction coupling (ECC) such as L-type Ca2+ channels (CaV1.2), ryanodine 

receptors (RYR2), phospholamban (PLB) and contractile proteins like troponin I and myosin-

binding protein C (MyBP-C).[1] These events underlie the classical positive inotropic and 

lusitropic effects of acute β-AR stimulation.  

The levels of cAMP are not only determined by synthesis, but are also finely tuned by 

degradation enzymes called cyclic nucleotide phosphodiesterases (PDEs).[2-4] PDEs are 

subdivided into 11 families, among which five hydrolyse cAMP in the heart: PDE1, which is 

activated by Ca2+/calmodulin; PDE2, which is stimulated by cGMP; PDE3, which is inhibited by 

cGMP; PDE4 and PDE8. While PDE1 and PDE2 can hydrolyse both cAMP and cGMP, PDE3 

preferentially hydrolyses cAMP and both PDE4 and PDE8A are specific for cAMP.[3, 5] In the 

myocardium which species??, the PDE3 and PDE4 families prevail to degrade cAMP and 

regulate ECC. PDE3 predominates in other large mammals[6] and in human.[7] PDE3 inhibition 

was once privileged as a therapeutic strategy to boost the weakening pump in heart failure (HF) 

where the β-AR cascade is desensitized.[8] However, although the clinically used PDE3 

inhibitors milrinone and enoximone improve systolic function and alleviate the symptoms in 

acute HF,[9] their chronic use increases mortality, presumably by favoring cardiac 

arrhythmias.[10] Despite the fact that these drugs are widely presented as selective inhibitors of 

PDE3, milrinone and enoximone also inhibit PDE4 with similar potency.[11] This raises the 

intriguing possibility that PDE4 inhibition might contribute to both inotropic and pro-arrhythmic 

effects of PDE3 inhibitors in HF.  

Numerous studies performed in rodents demonstrated the predominance of PDE4 for the control 

of cAMP signals generated by β-ARs,[12-14] of PKA phosphorylation of ECC proteins, and of 

Ca2+ homeostasis and contraction.[15, 16] Pharmacological inhibition of PDE4 was shown to 

enhance the pro-arrhythmic effect of β-AR stimulation in rat[16] and mouse ventricular 

cardiomyocytes.[17] The PDE4 family consists of four genes (Pde4a-d) but only Pde4a, Pde4b, 

and Pde4d appear to be expressed in rodents’ heart.[18, 19] In mice, genetic ablation of Pde4b 
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or Pde4d enhances the susceptibility to stress-induced ventricular tachycardia.[17, 19] This was 

attributed to hyperphosphorylation of RyR2 by PKA in Pde4d-deficient mice[17] and to 

exacerbated β-AR stimulation of L-type Ca2+ current in Pde4b-deficient mice. [19]  

Hyperphosphorylation of PLB was also reported in the latter study, probably because PDE4D 

associates with the PLB-SERCA2A complex to control its phosphorylation.[20] However, the role 

of PDE4 in the heart of human or large mammals remains elusive and even controversial. PDE4 

is expressed in the human heart, [7, 17, 21] but it constitutes only ≈10% of the total cAMP-PDE 

activity (versus 40-60% in rat and mouse). [7, 17, 22] This appears to be due to a much higher 

activity of other PDEs in human versus rodents. [7] While it was initially reported that PDE4 does 

not control the contractile responses to catecholamines in atria from non-failing patients[23] or 

ventricular trabeculae from HF patients,[24] others showed redundancy of PDE3 and PDE4 to 

control the positive inotropic effects of serotonin in failing human hearts[25] and we 

demonstrated that these enzymes control β-AR responses and arrhythmias in human atria. [21] 

Similarly, we found in dog ventricular myocytes that PDE4 controls cAMP levels upon β-AR 

stimulation and modulate β-AR stimulation of the L-type Ca2+ current when PDE3 is 

inhibited.[26]Pig constitutes another classical pre-clinical model that exhibits gross anatomic 

structure very similar to that of humans and have been the subject of translational studies.[27] It 

closely resembles human cardiac physiology and HF pathophysiology is very similar to that of 

humans, thus it is widely used to study new therapeutic targets. PDE4 is expressed in the pig 

heart.[28] Jointly with PDE3, it controls basal cAMP levels and modulates the response to 

serotonin in pig atria.[29] It is also critical to control atrial inotropic and cAMP responses to β1-AR 

stimulation in newborn piglets.[30] Surprisingly, unlike what was found at the atrial level, PDE3 

and PDE4 were reported as minor to control ventricular responses to catecholamines in 

newborn piglets and only PDE3 inhibition increased the inotropic effect of β2-AR stimulation[30] 

and of serotonin 5-HT4 receptors stimulation[29] Nonetheless, in open-chest pigs, 

intramyocardial infusion of rolipram, a PDE4 inhibitor, induced ventricular tachycardia suggesting 

a role of this enzyme to control cAMP levels.[31] Furthermore, in adolescent animals, both PDE3 

and PDE4 control ventricular responses to 5-HT.[29] suggesting age-dependent changes of 

relative activities. Therefore, the respective role of PDE3 and PDE4 in the adult pig heart, 

especially upon β-AR stimulation, remains elusive.This study was thus designed to characterize 

the functional role of PDE4 in this classical pre-clinical model.  

We isolated ventricular myocytes from adult pig hearts and measured cAMP levels, using a 

Förster resonance energy transfer (FRET)-based sensor; Ca2+ transients (CaT) and sarcomere 

shortening (SS). Our study demonstrates that PDE4, along with PDE3, controls basal cAMP 
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levels and inotropic responses to β-AR stimulation. We also show that like PDE3, PDE4 limits 

ventricular arrhythmias by controlling Ca2+ homeostasis in normal adult pig right ventricular 

myocytes (APVMs) and in APVMs isolated from a model with right ventricular dysfunction 

reproducing repaired tetralogy of Fallot (rTOF).[32, 33] Like in rodents’ heart, PDE3A, PDE4A, 

PDE4B and PDE4D isoforms are expressed in pig. Thus, our study suggests that many findings 

obtained in rodents concerning the role of PDE4 to control cardiac function might be 

transposable to pre-clinical model. 

 

METHODS 

All experiments were carried out according to the European Community guiding principles in the 

care and use of animals (2010/63/UE, 22 September 2010), the local Ethics committee 

(CEEA26 CAPSud) guidelines and the French decree n°2013-118, 1st February 2013 on the 

protection of animals used for scientific purposes (JORF n°0032, 7 February 2013 p2199, text 

n°24). Animal experiments were approved by the French Ministry of Agriculture (agreements 

N°14-027 and N°2016-125-7914). A surgical procedure mimicking repaired Tetralogy of Fallot 

(rTOF) to obtain right ventricular dysfunction secondary to chronic overload[32] was performed 

on 7 Landrace piglets (operated group) that were between 50 to 67 days old. 12 age-matched 

animals were used as healthy controls.. All animals were male to avoid bias related to hormonal 

variations. Echocardiographic assessment of RV function was performed before euthanasia. 

After completion of the study, animals were euthanized using lethal propofol infusion and 

exsanguination. (For more details, please see supplemental material). 

Reagents 

Isoproterenol from Sigma-Aldrich (Saint-Quentin, France) was freshly prepared in a 1 mg/mL 

ascorbic acid solution at 10 mM (Sigma-Aldrich, Saint-Quentin, France). Cilostamide (Cil) was 

from Tocris Bioscience (Bristol, UK): it blocks PDE3 with an IC50 ranging from 5 nM[34] to 27 

nM,[35] and was used here at a 1 µM concentration. Ro 20-1724 (Ro, 4-(3-butoxy-4-

methoxybenzyl)-2-imidazolidone) was from Calbiochem (Darmstadt, Germany): it blocks PDE4 

with an IC50 value around 1 µM[36] and was used here at 10 µM. At these concentrations, Cil 

and Ro were shown to be selective for PDE3 and PDE4 respectively. 

Myocyte isolation procedure  

Hearts were excised from adult (5 to 7 months old) pigs and ventricular myocytes were 

enzymatically isolated from the right ventricular (RV) free wall as previously described. [32, 



6 
 

33]Briefly, the right coronary artery ostium was cannulated and the tissue was perfused with a 

constant flow of approximately 200 ml/min; temperature was maintained at 37°C. After 10 min 

washing with a Ca2+-free Krebs-Ringer solution, tissue digestion was made by adding 0.354 

UI/ml of collagenase A (Roche Diagnostic). After 15-20 minutes of enzymatic perfusion, the RV 

was removed and myocytes from endocardia and myocardial layers were mechanically 

collected, filtered, washed with a buffer solution (HEPES-BSA 2%), and resuspended in this 

buffer containing increasing Ca2+ concentrations up to 1.2 mM. Finally, isolated myocytes were 

plated on laminin-coated glass-bottom-dishes in Dulbecco's modified Eagle's medium (DMEM) 

supplemented with 5% fetal calf serum (FCS) for 1h and maintained at 37°C. After 1h, the 

medium was replaced by 300 μL of FCS-free MEM or transduced with an adenovirus encoding 

the Epac-SH187 FRET-based sensor[37] at a multiplicity of infection (MOI) of 1000 pfu/cell. 

Measurement of sarcomere shortening and Ca2+ transient 

All experiments were performed at 30 ± 2°C. Freshly isolated APVMs were loaded with 1 µmol/L 

Fura-2 AM (Invitrogen) for 15 min in a Ringer solution containing (in mM): NaCl 121.6; KCl 5.4; 

Na-pyruvate 5; NaHCO3 4.013; NaH2PO4 0.8; CaCl2 1.8; MgCl2 1.8; glucose 5 and HEPES 10 

(pH 7.4 with NaOH). Sarcomere shortening and Fura-2 ratio (measured at 512 nm upon 

excitation at 340 and 380 nm) were simultaneously recorded in Ringer solution, using a double 

excitation spectrofluorimeter coupled with a video detection system (IonOptix, Milton, MA, USA). 

Myocytes were electrically stimulated with biphasic field pulses (5 V, 4 ms) at a frequency of 1 

Hz. Ca2+ transient amplitude was measured by dividing the twitch amplitude (difference between 

the peak systolic and the end-diastolic ratios) by the end-diastolic ratio, thus corresponding to 

the percentage of variation in the Fura-2 ratio. Similarly, sarcomere shortening was assessed by 

its percentage of variation, obtained by dividing the twitch amplitude (ΔL, difference between the 

end-diastolic and the peak systolic sarcomere length) by the end-diastolic sarcomere length (L0). 

Relaxation kinetics were estimated by a non-linear fit of the decaying part of the Ca2+ transient 

and sarcomere shortening traces with the following equation: Y(t)=A*exp(-t/)+A0, where t is the 

time, A0 the asymptote of the exponential, A the relative amplitude of the exponential, and  the 

time constant of the exponential. 

FRET imaging 

FRET experiments were performed at room temperature 24h after cell plating. Cells were 

maintained in a Ringer solution containing (in mM): NaCl 121.6, KCl 5.4, MgCl2 1.8; CaCl2 1.8; 

NaHCO3 4, NaH2PO4 0.8, D-glucose 5, sodium pyruvate 5, HEPES 10, adjusted to pH 7.4. 

Images were captured every 5 s using the 40x oil immersion objective of a Nikon TE 300 
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inverted microscope connected to a software-controlled (Metafluor, Molecular Devices, 

Sunnyvale, CA, USA) cooled charge coupled (CCD) camera (Sensicam PE, PCO, Kelheim, 

Germany). Cells were excited during 150-300 ms by a Xenon lamp (100 W, Nikon, Champigny-

sur-Marne, France) using a 440/20BP filter and a 455LP dichroic mirror. Dual emission imaging 

was performed using an Optosplit II emission splitter (Cairn Research, Faversham, UK) 

equipped with a 495LP dichroic mirror and BP filters 470/30 (CFP) and 535/30 (YFP), 

respectively. Spectral bleed-through into the YFP channel was subtracted using the formula: 

YFPcorr=YFP-0.6xCFP.  

Cell extracts and western blot analysis 

RV tissue or isolated APVMs were homogenized in an ice-cold buffer containing 150 mM NaCl, 

20 mM HEPES (pH 7.4), 2 mM EDTA and 0.2 mM EGTA, supplemented with 10% glycerol, 

0.2% Triton X-100 and Complete Protease Inhibitor Tablets (Roche Diagnostics). Lysates were 

rotated at 4˚C for 30 min followed by a 10 min centrifugation at 20,000 x g and 4°C. 

Supernatants were directly used for Western blotting. 15 µg protein extracts were loaded. 

PDE3A was detected using a rabbit polyclonal anti-PDE3A antibody from Fabgenix. For specific 

PDE4A and PDE4B detection, rabbit polyclonal antibodies generated against their respective C-

termini were used (anti-PDE4A: AC55; anti-PDE4B: 113-4). Mouse monoclonal antibody (ICOS 

PDE4D) was used to specifically detect PDE4D. PDE3A antibody was a generous gift from Dr 

Chen Yan (Rochester University, NY, USA). PDE4A, PDE4B and PDE4D antibodies were kindly 

provided by Pr Marco Conti (University of California San Francisco, CA, USA).  

Statistics 

All results are expressed as mean ± SEM. Statistical analysis was performed using GraphPad 

Prism software (GraphPad software, Inc., La Jolla, CA, USA). Normal distribution was tested by 

a Shapiro-Wilk normality test. For normally distributed data, differences between multiple groups 

were analyzed using a nested ANOVA (which takes into account both the number of 

observations and the number of animals) was performed using the lmer function in the nlme 

v3.1–131 package for R (R version 3.4.1 and RStudio version 1.0.153), followed by Tukey’s 

post-hoc test for all data obtained on individual cells. When the data obtained did not follow a 

normal distribution, a Kruskal-Wallis followed by a Dunn’s post hoc test was used. To analyze 

results obtained with western blots, the mean values of two groups were analyzed by a Mann-

Whitney test. A Chi2 test followed by a Fischer exact test was used to compare number of 

arrhythmic cells. Differences with p-values <0.05 were considered as statistically significant. The 
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number of independent experiments performed and the statistical tests performed are indicated 

in the figures and their legends respectively. 
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RESULTS 

Both PDE3 and PDE4 control cAMP levels in APVMs 

To evaluate cAMP levels in isolated cardiomyocytes, the FRET-based sensor Epac-SH187 was 

expressed in APVMs using a recombinant adenovirus. As shown in Figure 1, continuous 

application of the non-selective β-AR agonist isoprenaline (Iso, 10 nM) increased the CFP/YFP 

ratio by 45.5 ± 4.8% (n=20, p<0.05) indicating an increased global cytosolic cAMP 

concentration. Addition of Ro 20-1724 (Ro, 10 µmol/L), a selective inhibitor of PDE4, increased 

the CFP/YFP ratio up to 184 ± 12.6% (n=20, p<0.001) demonstrating a major role for this 

enzyme to degrade cAMP produced upon β-AR stimulation. The selective PDE3 inhibitor 

cilostamide (Cil, 1 µmol/L) also increased the CFP/YFP ratio to similar levels (187.9 ± 15.3%, 

n=20, p<0.001). In the absence of β-AR stimulation, Ro or Cil alone induced a slight (<20%) but 

significant increase in basal CFP/YFP ratio (Figure 1B and D). However, concomitant inhibition 

of PDE3 and PDE4 resulted in a substantial cAMP elevation (+130.2 ± 13.9 %, n=12, p<0.001, 

Figure 1B and D). These results indicate that both PDE3 and PDE4 are important to 

counterbalance basal and β-AR-stimulated cAMP synthesis in APVMs. 

PDE3 and PDE4 were reported to be decreased in pathological conditions such as hypertrophy 

and HF[17, 38-40] although this may depend on disease etiology and stage.[41-43] Thus, in a 

next series of experiments, we investigated the respective contribution of these enzymes in 

APVMs isolated from a pig model of right ventricle dysfunction induced by chronic overload as 

observed in humans with repaired tetralogy of Fallot (rTOF). [32, 33] As indicated in 

Supplemental Table 1, four months after pulmonary valve surgery and pulmonary artery 

banding, RV dimensions were largely increased, and Tricuspid Annular Plane Systolic Excursion 

(TAPSE) was decreased, attesting RV remodeling and dysfunction due to combined volume and 

pressure overload. Measurements of cAMP levels by FRET in APVMs from these animals 

showed no apparent effect of PDE3 and PDE4 inhibitors under basal conditions, whereas 

concomitant application of Ro and Cil was still able to increase cAMP (Supplemental Figure 1). 

The response to β-AR stimulation (Iso, 10 nM) was virtually absent in APVMs from the rTOF 

model, but cAMP could still be increased by concomitant application of PDE3 or PDE4 

inhibitors.. 
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Both PDE3 and PDE4 inhibition produce inotropic effects under basal conditions and 

promote pro-arrhythmogenic Ca2+ waves in APVMs 

To investigate the role of PDE4 in ECC in APVMs, calcium transients (CaT) and sarcomere 

shortening (SS) were simultaneously recorded in cells loaded with 1 µmol/L Fura-2 and paced at 

1 Hz (Figure 2A). Average diastolic sarcomere length was 1.79 ± 0.01 µm (n=13). Under control 

conditions (Ctrl), mean CaT amplitude was 35.5 ± 6.0% above diastolic Fura-2 ratio, and SS was 

3.1 ± 0.9% of diastolic sarcomere length (n=13). CaT and SS declined to diastolic levels with 

average time constants () of 0.42 ± 0.04 s and 0.15 ± 0.03 s, respectively (Figure 2B and C). 

Under basal conditions, Ro increased SS by about 3-fold (to 10.8 ± 3.1%, n=6, p<0.01) and 

increased CaT amplitude to 60.2 ± 11.4%, although this increase did not reach statistical 

significance (n=6). Similarly, inhibition of PDE3 by Cil potentiated both SS (8.7 ± 1.4 %, n=7, 

p<0.01) and CaT amplitude but not significantly (68.9 ± 12.1%, n=7, p=0.06). These inotropic 

effects were accompanied with a slight but not significant lusitropic effect (Figure 2C). 

Combination of both Ro and Cil produced a robust inotropic effect, increasing SS up to 13.7 ± 

1.0% and systolic Ca2+ levels up to 72.0 ± 8.9% above diastolic ratio (n=13, p<0.01). Cil+Ro 

accelerated the return to diastolic Ca2+ by decreasing the  value to 0.18 ± 0.03 s (n=13, 

p<0.01). However, the lusitropic effects of Cil, Ro or the combination of both inhibitors were not 

strong enough to reach statistical significance, suggesting that the low turnover of cAMP 

synthesis under basal conditions revealed by FRET imaging (Figure 1) could influence Ca2+ 

refilling of the SR but not contractile protein phosphorylation.  

The crucial role for PDE4 and PDE3 to control cAMP levels and Ca2+ homeostasis was further 

demonstrated by the appearance of spontaneous Ca2+ waves (SCWs) upon cessation of pacing 

when PDE inhibitors were applied. When cells were subjected to Ro or Cil alone, very few 

SCWs were observed (Figure 3) but upon concomitant Ro and Cil perfusion, ~80% of the 

cardiomyocytes (n=14, p<0.01) exhibited spontaneous Ca2+ waves (SCWs) between two 

stimulations or during a 10 s pause of stimulation (2.3 ± 0.9 SCWs per 10 s, p<0.01). Because 

inhibition of both enzymes leads to pro-arrhythmic events, it demonstrates that both PDE4 and 

PDE3 contribute to Ca2+ homeostasis in APVMs. Interestingly, similar results were observed in 

APVMs isolated from rTOF animals. Whereas SS and CaT amplitude measured in APVMs 

isolated from healthy or rTOF animals were identical (Supplemental Table 2), relaxation and 

CaT decay were slower in rTOF (Supplemental Table 2), evoking a decreased velocity of SR 

Ca2+ uptake as we previously observed in this model.[33]  
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In rTOF APVMs, PDE4 or PDE3 inhibition had no significant inotropic or lusitropic effects under 

basal conditions, but concomitant application of these inhibitors nearly doubled CaT amplitude 

(n=12, p<0.01, Figure 4B), produced a 5-fold increase in SS amplitude (n=12, p<0.001, Figure 

4C) and significantly accelerated CaT and SS relaxation (n=12, p<0.05, Figures 4B, 4C). 

Inhibition of both enzymes was also required to induce pro-arrhythmogenic SCWs in 50% of 

these cells (n=14, p<0.01, Figure 4E, 4F), demonstrating that not only in physiological but also 

under pathological conditions, both PDE4 and PDE3 control ECC and contribute to Ca2+ 

homeostasis in APVMs. 

PDE4 and PDE3 modulate β-AR stimulation of ECC in APVMs 

To investigate the functional consequences of PDE4 inhibition compared to PDE3 inhibition on 

β-AR-stimulated ECC in APVMs, cells were first subjected to a submaximal concentration of the 

non-selective β-AR agonist Iso (10 nM) and then to either inhibition of PDE4 with Ro or of PDE3 

with Cil, as illustrated by the individual traces of CaT and SS in Figure 5A and 5B. As shown in 

Figure 5C, on average, Iso increased CaT amplitude from 19.3 ± 2.6% to 70.5 ± 7.1% (n=16, 

p<0.001 vs Ctrl), and SS was increased from 1.5 ± 0.3% to 11.9 ± 1.1% (n=16, p<0.001 vs Ctrl). 

Iso also strongly accelerated the relaxation rates of both parameters, with  values decreasing 

from 0.4 ± 0.03 s to 0.26 ± 0.04 s for CaT (n=16, p<0.05 vs Ctrl) and from 0.24 ± 0.05 s to 0.04 ± 

0.005 s for SS (n=15, p<0.001 vs Ctrl). These inotropic and lusitropic effects were potentiated by 

PDE4 inhibition. CaT was further increased to 78.5 ± 7.1% and SS to 15.0 ± 0.8% under Iso+Ro 

(n=16). Decay kinetics of CaT were also further accelerated by Ro ( = 0.12 ± 0.01s, n=16, 

p<0.05 vs Iso, Figure 5C). This was also the case for SS relaxation, although the difference with 

Iso alone was modest because β-AR stimulation alone already accelerated drastically myocyte 

relaxation. PDE3 inhibition with Cil induced very similar effects as Ro (Figure 5D).  

In these experiments, we also analyzed the occurrence of SCWs upon cessation of stimulation 

(Figure 6). Figure 6A and 6B illustrate representative recordings of CaT in normal Ringer, upon 

stimulation with Iso 10 nM alone and in combination with either Ro (Figure 6A) or Cil (Figure 6B). 

When cells were subjected to Iso alone, only sparse SCWs were observed (~1.5 per 10 s) in 

~40% of cells. However, when Ro was applied in combination with Iso, 75% of the cells 

exhibited pro-arrhythmogenic SCWs at a frequency of 2.2 ± 0.5 per 10 s (Figure 6C). Again, 

these pro-arrhythmic effects were very similar to those observed upon PDE3 inhibition (Iso+Cil) 

which triggered SCWs at a frequency of 3.9 ± 1.6 per 10 s in 73.3% of cells (p<0.05 vs Iso) 

(Figure 6D). 
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PDE3A, PDE4A, PDE4B and PDE4D isoforms are expressed in pig right ventricle  

PDE3A is a major PDE3 isoform degrading cAMP in human[44] and rodent[45] cardiomyocytes 

to control ECC coupling. PDE4 activity is due to the expression of PDE4A, PDE4B, and PDE4D 

variants in mouse[19] , rat[18, 40] and human[7] heart. To investigate whether these isoforms 

are also expressed in the porcine myocardium, we performed Western blot analysis using 

subtype-specific antibodies against PDE3A, PDE4A, PDE4B, and PDE4D. All four variants were 

detected in right ventricle homogenates (Figure 7A), indicating conservation between rodents, 

human and pig cardiac tissue. Importantly, the three PDE4 isoforms were also detected in 

protein extracts obtained from isolated cardiomyocytes (Figure 7B) demonstrating their 

expression in contractile cells.  

 

DISCUSSION 

Cyclic nucleotide phosphodiesterases are essential enzymes degrading cAMP not only to 

terminate β-AR stimulation of cardiac function, but also to compartmentalize cAMP signals within 

discrete domains inside cardiomyocytes.[3, 4] Literature is sparse and functional data are often 

missing in studies dedicated to the role of PDEs especially PDE4 in large mammals and human 

heart, . This is due to the limited access to human biopsies and the difficulty to isolate 

cardiomyocytes from explanted human ventricles. Compared to rodents, pig cardiac anatomy 

and physiology is much more similar to humans.[27] Therefore, it constitutes a good alternative 

model and a bridge to fill the gap between proof-of-concept studies performed in rodents and 

clinical trials in patients. Because genetic engineering of pigs is developing, its use as a 

preclinical model will rise.[46] However, despite a large amount of work realized in rodents that 

unveiled the preponderant role of PDE4 to control cardiac function, its participation in large 

mammals, especially in pig heart, remains elusive. Our study provides a unique panel of data 

describing for the first time at the cellular level, the respective role of PDE3 and PDE4 in this 

large mammal preclinical model. 

 

Similar PDE4 isoforms are expressed in pig ventricular tissue than in rodents and human 

heart 

We show here that the three PDE4 isoforms, PDE4A, PDE4B and PDE4D known to be 

expressed in rodents[19] and humans[17] are also expressed in pig ventricular tissue and 
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myocytes. This suggests that the expression profile of PDE4 isoforms is conserved in this 

preclinical model. In the rodent heart, PDE4 variants are localized in discrete microdomains, 

allowing fine tuning of cAMP signaling to control the phosphorylation and hence the activity of 

individual proteins such as β-ARs,[47] Cav1.2, [19] RyR2,[17]  and PLB/SERCA2[20] within 

these compartments. PDE4 has also been found tethered to similar macromolecular signaling 

complexes in humans, including the RyR2, [17] PLB/SERCA2 and the β1-AR complexes.[7] The 

inotropic and lusitropic effects of PDE4 inhibition reported here suggests that PDE4 might also 

control CaV1.2, RyR2, PLB phosphorylation by PKA and activity in APVMs. In rodents, different 

β-AR subtypes, namely β1-AR and β2-AR, mediate these effects under the control of both PDE3 

and PDE4.[14, 15, 48] β2-AR are localized within the t-tubules in rodent ventricular cells where 

cAMP is confined by PDE4,[49] and more specifically by PDE4B and PDE4D isoforms.[50] 

Interestingly, we show here that PDE4B and PDE4D isoforms are also expressed in pig 

ventriculocytes. Whether cAMP emanating from β1-AR and β2-AR within the t-tubules is confined 

by the same PDE4 isoforms in pigs will require further investigations. A more detailed 

comparison in terms of level of expression of various PDE families, association with the key 

proteins of the ECC and function is also required to determine whether this model fully 

recapitulates the role of PDEs in the rodent and human hearts. 

 

Both PDE3 and PDE4 control cAMP and ECC in pig ventricular myocytes 

It is widely recognized that PDE3 is the main PDE isozyme controlling ventricular contractility in 

large animal models, which are believed to exhibit a pattern of PDE expression close to human, 

where PDE3 dominates.[6, 21, 51]  PDE3 being one of the main enzyme degrading cAMP in 

human heart, .[7] PDE3 inhibitors are potent cardiotonic agents with proven beneficial 

hemodynamic actions,[9] but their use is now limited to acute heart failure or post-surgery since 

chronic treatment promotes sudden cardiac death due to arrhythmias.[10] As expected, we 

confirm here that PDE3 inhibition increases cAMP levels under basal conditions and upon β-AR 

stimulation and exerts inotropic and lusitropic effects in APVMs. This is compatible with PDE3 

being a major enzyme controlling cAMP levels in this species where, like in other large 

mammals such as bovine[52] and dog,[26, 51] [53]it is predominantly expressed. We also show 

that the PDE3A isoform is present in porcine ventricular tissue, like in human heart where it is 

the main isoform controlling PLB phosphorylation.[54] Similarly to PDE3 inhibition, PDE4 

inhibition also increases basal cAMP levels, contraction and relaxation in APVMs. While these 

effects of either PDE3 or PDE4 inhibitors are relatively modest, their concomitant application has 

a drastic impact on cAMP levels and consequently amplifies calcium transient amplitude and 
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sarcomere shortening. This reveals that both PDE3 and PDE4 are redundant and concur to 

counterbalance cAMP synthesis under basal conditions as previously shown.[29] Upon β-AR 

stimulation, inhibition of either enzyme leads to an increase of cAMP levels potentiating ECC in 

APVMs, similarly to what was reported in ventricular cardiomyocytes isolated from rat,[14, 15] 

dog hearts[26] and from human atrial cells.[21] Our observations demonstrate the importance of 

the PDE4 family to control cardiac ECC in pig ventriculocytes like it has been described in rodent 

ventricular myocytes.[14-16] revealing that the role of this enzyme is conserved across species.  

In accordance with the decreased PDE3 and PDE4 activities in a rat model of cardiac 

hypertrophy induced by chronic aortic constriction[40] and in HF patients,[17, 38] we show here 

that in a porcine model of right ventricular dysfunction secondary to chronic overload, mimicking 

the rTOF, [32, 33] PDE3 and PDE4 inhibitors are less effective to increase cAMP levels as 

previously reported in hypertrophied rat cardiomyocytes[40] and HF dogs. [38] This is also 

probably due to reduced cAMP synthesis as observed generally in HF[8] and suggested here by 

the reduced capacity of Iso to increase cAMP in APVMs from rTOF pigs (Supplemental Figure 

1). This is probably this desensitization which might have hindered previous attempts to detect 

the effects of PDE4 inhibitors in human explanted biopsies from HF patients. [24] However, 

despite this desensitization, concomitant application of PDE3 and PDE4 inhibitors still resulted in 

significant increase in cAMP and in positive inotropic and lusitropic effects, suggesting that 

PDE4 and PDE3 control cardiac function not only in physiological but also in pathological 

conditions.   

 

PDE4 inhibition is pro-arrhythmic in pig ventricular cardiomyocytes 

Unlike the pro-arrhythmic effects of PDE3 inhibitors which are well documented and precluded 

their chronic use in HF,[10] the potential deleterious effects of PDE4 inhibitors on cardiac 

function in large mammals are scarce in the literature. Pro-arrhythmic effects of rolipram, a 

selective PDE4 inhibitor, have been observed in anesthetized open-chest adult pigs[31]  and in 

isolated human atrium. [21] Our results here clearly demonstrate that PDE4 inhibition is pro-

arrhythmic in APVMs but this requires prior elevation of cAMP with either PDE3 inhibition or β-

AR stimulation, similarly to what we observed in rat ventricular cells.[16] Strikingly, the sole 

PDE3 inhibition produces only few arrhythmias and requires concomitant PDE4 inhibition to 

evoke SCWs in the majority of cells. Whether concomitant PDE4 and PDE3 inhibition is also 

required in human ventricular cells is therefore questionable. Indeed, it has been shown that 

milrinone and enoximone are not only PDE3 inhibitors but also showed similar potency to inhibit 
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PDE4. [11]  Whether the deleterious effects of chronic PDE3 inhibition in patients were in fact 

due to concomitant PDE3 and PDE4 inhibition is thus suggested by the present study performed 

in an animal model closer to human than rodents. PDE4 inhibitors are new promising therapeutic 

agents and are currently developed to treat inflammation, chronic obstructive pulmonary 

disease, psoriasis, and neurological illnesses.[55] Our study also underlies that pre-clinical 

studies realized in large animals such as pig should carefully address the potential cardiac 

adverse effects of these new drugs especially under stress conditions, i.e. upon β-AR 

stimulation or combination with PDE3 inhibitors, when PDE4 inhibition has an impact on heart 

function.  

CONCLUSION 

Our results demonstrate that the previously reported conservation of the expression pattern of 

PDE4 isoforms among rodent and human hearts[7] is also applicable to pig ventricle. Our study 

demonstrates that PDE4 controls cAMP levels and ECC in healthy pigs and in a pathological 

model of RV overload. Therefore, it validates the pig as a relevant pre-clinical model to study the 

impact of PDE4 inhibitors on cardiac function under physiological and pathophysiological 

conditions. Importantly, it suggests some vigilance in the use of PDE4 inhibitors in clinic as they 

may lead to arrhythmogenic events. 
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FIGURE LEGENDS 

Figure 1. Effect of PDE4 or PDE3 inhibition on cAMP homeostasis in APVMs 

(A, B) Time courses of the CFP/YFP ratio upon β-AR stimulation by Iso (10 nM) (A) or under 

basal conditions (B), after addition of the PDE3 inhibitor Cilostamide (Cil, 1 µM), the PDE4 

inhibitor Ro 20-1724 (Ro, 10 µM) or combination of both inhibitors in APVMs expressing the 

cAMP sensor Epac-SH187. Pseudo-color images of the CFP/YFP ratio were recorded at the times 

indicated by the letters on the graphs (A). (C, D) Mean variation (± SEM) of the normalized 

CFP/YFP ratio for each condition tested. Numbers indicate the number of cells from 3 pigs. 

Statistical significance is indicated as *, p<0.05, **, p<0.01; ***, p<0.001; a Kruskal-Wallis 

followed by a Dunn’s post hoc test. 

Figure 2. Effect of PDE3 or PDE4 inhibition on EC coupling in APVMs 

(A) Representative traces of Ca2+ transients and sarcomere length variation (ΔL/L0) recorded in 

Fura-2-loaded APVMs paced at 1 Hz in basal conditions (Ctrl), after addition of the PDE4 

inhibitor (Ro 20-1724, Ro, 10 µM) alone or in combination with the PDE3 inhibitor (Cilostamide, 

Cil, 1 µM). (B) Mean amplitude (±SEM) of Ca2+ transients and average relaxation kinetics Tau (± 

SEM) for each condition tested. (C) Sarcomere shortening and average relaxation kinetics Tau 

(± SEM) for all conditions tested. Numbers indicate the number of cells from 3 pigs. Statistical 

significance is indicated as: *, p<0.05; **, p<0.01; ***, p<0.001; a nested ANOVA followed by 

Tukey’s post-hoc test was used to analyse Ca2+ transients and sarcomere shortening 

amplitudes. A Kruskal-Wallis followed by a Dunn’s post hoc test was used to compare relaxation 

kinetics.  

Figure 3. Simultaneous PDE4 and PDE3 inhibition promotes pro-arrhythmogenic 

spontaneous calcium waves in APVMs 

(A) Representative traces of Ca2+ transients in Fura-2 loaded APVMs paced at 1 Hz. The 

occurrence of spontaneous Ca2+ waves (SCWs) was evaluated during a 10 s pause in pacing. 

This protocol was repeated in basal conditions (Ctrl), during PDE4 or PDE3 inhibition by either 

Ro 20-1724 (Ro) or cilostamide (Cil) respectively, and upon concomitant PDE4 and PDE3 

inhibition (Ro + Cil). (B) Average number of SCWs (± SEM) in all conditions tested. Numbers 

indicate the number of cells obtained from 4 pigs. (C) Proportion of arrhythmic cells for all 

conditions tested. Numbers indicate the number of arrhythmic cells over all cells assessed in 

each condition. Statistical significance is indicated as: *, p<0.05; **, p<0.01. A Kruskal-Wallis 

followed by a Dunn’s post hoc test was used to compare the occurrence of SCWs in the different 
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experimental conditions and a Chi2 test followed by a Fischer exact test was used to compare 

the percent of arrhythmic cells. 

Figure 4. Concomitant PDE3 and PDE4 inhibition leads to inotropic, lusitropic and the 

occurrence of SCWs in APVMs isolated from a model of combined RV overload 

reproducing repaired tetralogy of Fallot 

(A) Representative traces of Ca2+ transients and sarcomere length variation (ΔL/L0) recorded in 

a Fura 2- loaded APVM isolated from a repaired tetratology of Fallot (rTOF) pig and paced at 

1 Hz. Basal conditions (Ctrl) and after addition of PDE4 inhibitor alone (Ro 20-1724, Ro, 10 µM) 

or additional PDE3 inhibition (Cilostamide, Cil, 1 µM) (Ro + Cil). (B) Mean amplitude (±SEM) of 

Ca2+ transients and decay kinetic (Tau ± SEM) of Ca2+ transients for each condition tested. (C) 

Sarcomere shortening and average relaxation kinetic (Tau ± SEM) for all conditions tested. (D) 

Representative traces of Ca2+ transients in Ctrl, upon Ro and Ro + Cil when exhibiting a SCW. 

(E) Average number of SCWs (± SEM) in all conditions tested. (F) Proportion of arrhythmic cells 

for all conditions tested. Numbers indicate the number of cells from 3 pigs. Statistical 

significance is indicated as: *, p<0.05; **, p<0.01; ***, p<0.001; a Kruskal-Wallis followed by a 

Dunn’s post hoc test was used to analyse Ca2+ transients, sarcomere shortening amplitudes and 

to compare the occurrence of SCWs in the different experimental conditions. A Chi2 test followed 

by a Fischer exact test was used to compare the percent of arrhythmic cells. 

Figure 5. Similarly to PDE3 inhibition, PDE4 inhibition enhances EC coupling in APVMs 

upon β-AR stimulation 

(A,B) Representative traces of Ca2+ transients and sarcomere length variation (ΔL/L0) recorded 

simultaneously in Fura-2-loaded APVMs paced at 1 Hz in basal conditions (Ctrl), upon β-AR 

stimulation by Iso (10 nM) alone or with PDE4 inhibitor (Ro 20-1724, Ro, 10 µM, A) or PDE3 

inhibitor (Cilostamide, Cil, 1 µM, B). (C) Mean amplitudes (±SEM) and relaxation kinetics Tau (± 

SEM) of Ca2+ transients and sarcomere shortening for Ctrl, Iso, and Iso + Ro. (D) Mean 

amplitude (±SEM) and relaxation kinetics Tau (± SEM) of Ca2+ transients and sarcomere 

shortening for Ctrl, Iso, and Iso + Cil. Numbers indicate the number of cells obtained from 4 pigs. 

Statistical significance is indicated as: *, p<0.05; **, p<0.01; ***, p<0.001; a nested ANOVA 

followed by Tukey’s post-hoc test was used to analyse Ca2+ transients and sarcomere 

shortening amplitudes. A Kruskal-Wallis followed by a Dunn’s post hoc test was used to 

compare relaxation kinetics. 
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Figure 6. PDE4 inhibition like PDE3 inhibition, promotes pro-arrhythmogenic 

spontaneous calcium waves in APVMs upon β-AR stimulation 

(A) Representative traces of Ca2+ transients in Fura-2-loaded APVMs paced at 1 Hz. The 

occurrence of spontaneous Ca2+ waves (SCWs) was evaluated during a 10 s pause in pacing. 

This protocol was repeated in basal conditions (Ctrl), upon β-AR stimulation with isoproterenol 

(Iso, 10 nM) alone or with PDE4 inhibition by Ro 20-1724 (Iso + Ro), or PDE3 inhibition by 

cilostamide (Iso + Cil). (B) Average number of SCWs (± SEM) in all conditions tested. Numbers 

indicate the number of cells obtained from 4 pigs. (C) Proportion of arrhythmic cells for all 

conditions tested. Numbers indicate the number of arrhythmic cells over all cells assessed for 

each condition. Statistical significance is indicated as: *, p<0.05; **, p<0.01; ***, p<0.001. a 

Kruskal-Wallis followed by a Dunn’s post hoc test was used to compare the occurrence of 

SCWs, and a Chi2 test followed by a Fischer exact test was used to compare the percent of 

arrhythmic cells. 

 

Figure 7. PDE3A and PDE4 subtypes expression in right ventricle tissue and isolated 

cardiomyocytes from pigs 

Western blots showing PDE3A, PDE4A, PDE4B and PDE4D protein expression in right ventricle 

tissues (A) or isolated cardiomyocytes  from right ventricles (B) of 3 different pigs. Calsequestrin 

(CSQ) or GAPDH were used as loading controls. For specific PDE4A and PDE4B detection, 

rabbit polyclonal antibodies generated against their respective C-termini were used (anti-PDE4A: 

AC55; anti-PDE4B: 113-4). Mouse monoclonal antibody (ICOS PDE4D) was used to specifically 

detect PDE4D. 15 µg proteins from protein extracts were loaded.  
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SUPPLEMENTAL MATERIAL 

METHODS 

Experimental model of combined right ventricular overload 

Surgical procedure mimicking repaired Tetralogy of Fallot (rTOF) was performed on 50 to 67 

days old male piglets as previously described.1,2 After premedication with ketamine 

hydrochloride (15 mg/kg intramuscularly), general anaesthesia was induced with 1% propofol 

and cisatracurium (0,3 mg/kg each 2 hours), allowing endotracheal intubation, and maintained 

with isoflurane in 100% oxygen (Servo 900, Siemens-Elema AB, Solna, Sweden). Through a left 

thoracotomy approach, a side-biting vascular clamp was longitudinally placed across the 

pulmonary valve annulus without obstruction of the RV outflow tract. A pulmonary valve leaflet 

was excised, and the pulmonary infundibulum, annulus, and trunk were enlarged by a 2 cm–long 

elliptically shaped polytetrafluorethylene patch to ensure loss of valve integrity. This chronic 

pulmonary valve regurgitation led to a right ventricular (RV) volume overload. The RV pressure 

overload was achieved by pulmonary artery banding, made of umbilical tape, placed around the 

artery truncus and secured for a final diameter of approximately 1 cm to ensure a progressive 

pulmonary stenosis with animal growth. Control animals did not have sham surgery. Animals 

were sacrificed ~4 months (Day 164-222) after surgical procedure.  

Echocardiographic analysis 

Echocardiography was performed on closed-chest animals under general anesthesia in dorsal 

decubitus. We used commercially available Vivid E9 ultrasound machine (General Electric 

Medical System, Milwaukee, WI, USA) equipped with a 2.5 MHz transducer. The values of all 

echocardiographic parameters were obtained as the average value of three consecutive cardiac 

cycles during transient apnoea and were analyzed on a comprehensive workstation (EchoPAC 

110.1.2, GE-Healthcare, Horten, Norway). The echocardiographic analysis used for RV 

morphological and functional assessment in this model was previously detailed by our group.2 

Briefly, RV morphology was assessed by RV anterior wall thickness, the right on left ventricle 

end-diastolic diameter ratio, the tricuspid on mitral annular diameter ratio, and RV end-diastolic 

(RVED) and end-systolic (RVES) areas. RV systolic function was assessed by the RV fractional 

area change (FAC), the Tricuspid Annular Plane Systolic Excursion (TAPSE), and the peak 

systolic velocity (S’). Pulmonary annulus diameter and transpulmonary gradient through the 

pulmonary band were both measured to evaluate the degree of pulmonary stenosis. The 

severity of pulmonary regurgitation was assessed using color Doppler flow.3 
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Statistical analyses  

Analyses were performed with statistical software GraphPad (Prism5, 

GraphPadSoftware, http://www.graphpad.com). Echocardiography data were tested for 

normality and expressed as median and range after the result of the Shapiro-Wilk test. 

The 2 groups (control and operated) were compared by Mann-Whitney U test. 

Differences between the mean values of two groups of Ionoptix results were analyzed by 

an unpaired Student’s t-test. 
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Table 1: Echocardiographic characteristics: standard parameters of right ventricular morphology 

and systolic function in the porcine model of combined right ventricular overload reproducing 

repaired tetralogy of Fallot (rTOF) 

 Healthy rTOF 

Clinical characteristics 
Age (d) 
Weight (kg) 

 

 
161 (149 to 170) 

45 (40 to 55) 
 

 
196 (164 to 222) 

50 (37.8 to 68) 
 

RV dimensions 
RVED area (cm2) 
RVES area (cm2) 
RV/LVED diameter ratio 
T/M diameter ratio 
PA annulus diameter (cm) 
RV wall thickness (mm) 

 
8.7 (8.0 to 11.4) 
4.9 (4.4 to 6.0) 

0.43 (0.4 to 0.53) 
0.74 (0.70 to 0.81) 

1.9 (1.8 to 2.0) 
3.0 (3.0 to 3.4) 

 
21.6 (16.7 to 26.2) * 
14.4 (9.3 to 15.0) * 

0.94 (0.84 to 1.51) * 
1.23 (1.12 to 1.84) * 

2.3 (2.1 to 3.0) * 
6.2 (4.6 to 7.5) * 

Trans-pulmonary gradient (mmHg) 
Maximal 
Mean 
 
 

 
2.8 (2.0 to 4.0) 
1.3 (1.0 to 2.0) 

 
33.4 (25.0 to 39.7) * 
19.5 (13.2 to 22.4) * 

RV systolic function indices 
FAC (%) 
TAPSE (mm) 
Peak S’ (cm/s) 

 
 

45.3 (43.5 to 57.0) 
20.0 (17.0 to 21.0) 

8.0 (8.0 to 10.0) 

 
 

37.0 (33.0 to 53.2)  
14 (11.35 to 17.5) * 

7.0 (5.5 to 9.1)  

Data are presented as the median and interquartile range. *, p<0.05 rTOF group (N=7) versus 

controls (N=12). 

ED: end-diastolic; ES: end-systolic; FAC: fractional area change; LV: left ventricle; PA: 

pulmonary artery; RV: right ventricle; TAPSE: tricuspid annular plane systolic excursion; T/M: 

Tricuspid/Mitral. 
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Table 2: Characteristics of sarcomere shortening and calcium transients measured simultaneously 

in right ventricular myocytes isolated from Control and rTOF animals 

 Sarcomere 
Shortening  
(% of resting 
length) 

Tau 
relaxation (s) 

Ca2+ transient 
amplitude  
(% of diastolic 
ratio) 

Tau decrease of Ca2+ 
transient  
(s) 

Healthy 1.6 ± 0.3 
(n=34) 

0.2 ± 0.03 
(n=33) 

20.5 ± 1.8 
(n=34) 

0.4 ± 0.02 
(n=34) 

rTOF 1.3 ± 0.4 
(n=19) 

0.3 ± 0.04 * 
(n=19) 

19.8 ± 1.9 
(n=19) 

0.51 ± 0.05 * 
(n=19) 

 Data are presented as the mean ± SEM. *, p<0.05, rTOF group (N=3) versus controls (N=7). 

 

 

SUPPLEMENTAL FIGURE LEGENDS 

 

Supplemental Figure 1. Effect of PDE4 or PDE3 inhibition on cAMP homeostasis in 

APVMs isolated from the rTOF pig model 

(A, B) Time courses of the CFP/YFP ratio upon PDE3 inhibition (Cilostamide, Cil, 1 µM) or 

PDE4 inhibition (Ro 20-1724, Ro, 10 µM) or concomitant inhibition (Ro + Cil) (A) and upon β-AR 

stimulation (B) by Iso (10 nM) alone or with Ro in APVMs expressing the cAMP sensor Epac-

SH187. (C, D) Mean variation (± SEM) of the normalized CFP/YFP ratio upon application of the 

PDE inhibitors alone (Cil, Ro) or in combination (Ro + Cil) and upon β-AR stimulation by Iso (10 

nM) alone and after addition of Ro (10 µM) or Cil (1 µM). Numbers indicate the number of cells 

from 2 pigs. Statistical significance is indicated as *, p<0.05; Kruskal-Wallis followed by Dunn’s 

multiple comparison post hoc test. 

 

 

 

 

 

 


