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A B S T R A C T

The development and clinical implementation of direct-acting antivirals (DAAs) has revolutionized the treat-
ment of chronic hepatitis C. Infection with any hepatitis C virus (HCV) genotype can now be eliminated in more
than 95% of patients with short courses of all-oral, well-tolerated drugs, even in those with advanced liver
disease and liver transplant recipients. DAAs have proven so successful that some now consider HCV amenable to
eradication, and continued research on the virus of little remaining medical relevance. However, given 400,000
HCV-related deaths annually important challenges remain, including identifying those who are infected, pro-
viding access to treatment and reducing its costs. Moreover, HCV infection rarely induces sterilizing immunity,
and those who have been cured with DAAs remain at risk for reinfection. Thus, it is very unlikely that global
eradication and elimination of the cancer risk associated with HCV infection can be achieved without a vaccine,
yet research in that direction receives little attention. Further, over the past two decades HCV research has
spearheaded numerous fundamental discoveries in the fields of molecular and cell biology, immunology and
microbiology. It will continue to do so, given the unique opportunities afforded by the reagents and knowledge
base that have been generated in the development and clinical application of DAAs. Considering these critical
challenges and new opportunities, we conclude that funding for HCV research must be sustained.

1. Introduction – the public health imperative

Infections with hepatitis C virus (HCV) are a major cause of acute
and especially chronic liver disease. The World Health Organization
(WHO) estimates that at least 71 million people are persistently

infected with HCV and are at risk for serious liver diseases, including
potentially fatal hepatic cirrhosis and hepatocellular carcinoma (HCC)
(WHO, 2017). At least 400,000 people die from HCV infection annually,
almost half of the one million deaths attributable to HIV/AIDS in 2016
(UN AIDS, 2016). In the U.S., HCV-related deaths have exceeded HIV-
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related deaths for well over a decade, and opioid addiction is now
driving dramatic increases in new HCV infections – truly a ‘syndemic’.
HCV-related deaths are increasing worldwide, while HIV-related mor-
tality is declining according to the WHO, yet there are staggering dis-
parities in both public health and research investments aimed at con-
trolling these viruses. One in four cases of liver cancer, the second most
common cause of cancer death worldwide and accounting for about
800,000 deaths annually, results from HCV infection, making HCV one
of only 7 viruses (and the only positive-strand RNA virus) known to be
oncogenic in humans. Yet HCV-mediated oncogenesis has received re-
latively little attention from the United States National Cancer Institute
and many other cancer research agencies.

The recent development of highly effective direct-acting antivirals
(DAAs) that cure the vast majority of HCV infections after only 8 weeks
of oral therapy represents an outstanding success of modern medicine.
It started with the discovery of HCV in 1989 (Choo et al., 1989) and the
generation and rapid implementation of HCV screening tests to protect
the blood supply (Kuo et al., 1989), and culminated 25 years later with
the approval of interferon-free therapies that eliminate the virus
in> 95% of treated individuals (reviewed in (Pawlotsky et al., 2015)).
These drugs are the results of sustained and collaborative efforts be-
tween industry, academia, and government funding agencies, a joint
endeavor that has unfortunately fallen victim to its success. Some now
consider mistakenly that HCV is a vanquished pathogen, capable of
being controlled or even eradicated on a global scale solely by antiviral
therapy. This general perception has found its way into some funding
agencies where the imperative for support of HCV research has been
lost, and applications for support are confronted with the argument that
HCV is no longer clinically relevant and further research is unnecessary.
Such a view is naïve and short-sighted, and overlooks several major
obstacles to global control of HCV with antivirals (Fig. 1). First, a large
proportion of persistent HCV infections are clinically silent, often un-
diagnosed, and will not be recognized by patients or practitioners until
liver damage is advanced. Second, DAAs are expensive, and will likely
remain out of the reach of a majority of infected persons worldwide for
many years (Iyengar et al., 2016). Third, clinically-relevant antiviral
resistance, now relatively uncommon, will likely increase with broader
use of DAAs. Forth, protective immunity after viral clearance is most
often insufficient and reinfection with HCV, in the absence of a vaccine,
is all too easy following curative DAA therapy (Midgard et al., 2016).
Another factor, poorly understood and discussed in greater detail
below, is that eliminating HCV infection with DAAs does not eliminate
the risk of developing liver cancer. Finally, in the history of mankind no
infectious disease has been eradicated by antimicrobial therapy,

whereas this has been proven possible by vaccination.
Apart from the continuing need to develop more effective ap-

proaches to control the spread of HCV worldwide, the two-decade
search for effective DAAs has provided investigators with a unique
molecular “toolbox” that offers unparalleled opportunities to make
important fundamental discoveries in virology, cell biology and im-
munology. In addition to its real and compelling impact on human
health, the continuing value of HCV as a model pathogen should not be
overlooked.

In this opinion paper we summarize important challenges in public
health, translational and basic science, review some key aspects of HCV
and briefly discuss new research opportunities that have emerged in the
HCV field. We conclude that the mission is far from over, and that re-
ductions in support for HCV research will compromise an opportunity
to eradicate HCV on a global scale, and to make important discoveries
that reach far beyond hepatitis C.

2. Important public health research challenges

At a first glance the availability of highly effective antiviral drugs
might make the development of novel therapies for chronic hepatitis C
obsolete. However, the costs are too high for most high-prevalence
countries, which are often resource limited. Although costs have been
lowered due to competition in the HCV drug market or facilitated ac-
cess to generic drugs in some high-prevalence countries, a global era-
dication will not be possible unless these drugs become widely available
with no strings attached. In principle, the conditions for such a strategy
are good because treatment with pan-genotypic activity, minor side
effects and minimal contraindications have recently become available.
This should allow provision of treatment outside of specialized primary
care centers.

Another major public health challenge is to reduce under-diagnosis.
In fact, it is estimated that in most countries the rate of diagnosis of
HCV infection is below 50% or just unknown (Bruggmann et al., 2014;
Gower et al., 2014). While this requires nation-wide hepatitis-specific
action plans that have been implemented only in 18 countries according
to WHO (Lazarus et al., 2013), costs for diagnosis especially to measure
viremia, an important marker to monitor antiviral therapy, is a major
hurdle, especially in resource-limited countries where costs for HCV
RNA testing may surpass the costs for HCV treatment. Thus, cheaper
diagnostic tests to measure HCV viremia or core antigen have to be
implemented that are also easy to use and do not require expensive
equipment or specialized training. Such tests, ideally combined with
antiviral therapy would be one important step to move treatment out of

Fig. 1. Summary of the most urgent requirements to control the global HCV epidemic.
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specialized clinical centers.
In parallel to intensified diagnosis of chronic hepatitis C, surveil-

lance of incidence as well as therapy success will be required to monitor
the disease burden and to make recommendations to governments and
health agencies. These are required in order to set the budgetary frame
to cover treatment costs, but also to monitor HCV prevalence in high-
risk groups such as persons who inject drugs (PWIDs). In fact, in high-
and many middle-income countries, injection drug use is a main cause
of HCV transmission (Bruggmann et al., 2014). In those groups, pro-
phylactic DAA treatment might in principle be considered, similar to a
strategy pursued for HIV infection control (Cohen et al., 2011). How-
ever, such a strategy most likely will increase the risk for the selection
of DAA-resistant HCV variants and will be unaffordable, at least under
current circumstances.

3. Important clinical and translational research challenges

3.1. The case for a HCV vaccine

The greatest unmet medical need in the hepatitis C field is a pro-
phylactic vaccine. In developed countries, most new HCV infections
occur in PWIDs and even a partially effective vaccine would sub-
stantially lower the overall incidence of infection. Emerging data in-
dicate that individuals who have been cured with DAAs remain sus-
ceptible to reinfection and viral persistence (Grebely et al., 2017;
Midgard et al., 2016; Pineda et al., 2015; Simmons et al., 2016), a
substantial risk for PWIDs that likely can be averted only by im-
munization. An HCV vaccine could also benefit other risk groups with
high transmission rates including HCV/HIV co-infected men who have
sex with men, infants born to HCV-positive mothers and healthcare
workers with frequent exposure to blood and bodily fluids. Outside of
North America and Western Europe, many countries experience a much
higher prevalence and incidence of HCV infection where implementa-
tion of a vaccine would be expected to be highly beneficial (Strickland
et al., 2008).

In spite of considerable scientific and clinical challenges (see
below), effective immunization against HCV appears to be feasible. At
least partial natural immunity has been demonstrated in the chim-
panzee model (Bukh et al., 2008; Lanford et al., 2004; Major et al.,
2002; Weiner et al., 2001) and in humans (Mehta et al., 2002) and
immunity has been correlated with both virus-specific CD4+ and
CD8+ T cell responses (Bowen and Walker, 2005) and neutralizing
antibodies (Ball et al., 2014; Pestka et al., 2007). Direct evidence for the
protective efficacy of neutralizing antibodies has been derived from the
chimpanzee model (Bukh et al., 2015; Morin et al., 2012) and a chi-
meric mouse model populated with human liver cells (Meuleman et al.,
2011). However, since the virus has an extensive glycan shield and is
coated with various apolipoproteins, the development of neutralizing
antibodies is delayed in infected individuals (Logvinoff et al., 2004);
and when they appear they are less effective at neutralizing the in-
fectivity of apolipoprotein-associated virus (Bankwitz et al., 2017) as
compared to antibodies induced by infection with more accessible
viruses like e.g., hepatitis A virus (HAV) or hepatitis B virus (HBV).

Despite these inherent challenges, a recombinant envelope glyco-
protein prophylactic vaccine was shown to be sterilizing against ex-
perimental challenge with a homologous HCV strain (Choo et al., 1994)
and was effective at significantly reducing the ensuing carrier state
following experimental challenge with heterologous genotype 1a HCV,
which is a common clade around the world (Houghton, 2011). This
vaccine candidate was also shown to elicit cross-neutralizing antibodies
in humans (Law et al., 2013), chimpanzees (Meunier et al., 2011) and
goats (Wong et al., 2014). Other forms of recombinant envelope gly-
coproteins have also been shown to elicit cross-neutralizing antibodies
in animals (Vietheer et al., 2017). Vaccination methods to elicit strong
virus-specific cellular immune responses that have been shown to
ameliorate the early acute phase of HCV infection have also been

elucidated (Folgori et al., 2006; Houghton, 2011). Efforts to activate
both arms of the adaptive immune response via vaccination are now
underway. Such a vaccine eventually combined with the HBV vaccine,
would be an important step towards global HCV eradication.

A major roadblock for vaccine development is the lack of an im-
mune-competent small animal model (see below), because predictive in
vivo models of vaccine efficacy are crucial to prioritize vaccine candi-
dates before initiation of costly clinical development (Winer et al.,
2016). This issue has only been compounded by recent changes in NIH
policies that prevent further studies in chimpanzees, the only animal
species other than humans that is fully permissive for HCV infection
(Bukh, 2012). Therefore, further research is required to develop an
immune competent and permissive small animal model that can be used
for vaccine studies but also to study HCV-associated pathogenesis. The
recent discovery of the Norway rat hepacivirus that can be propagated
in lab strains of mice and that appears to share basic immunological
features with HCV is an important step in this direction (Billerbeck
et al., 2017; Trivedi et al., 2017).

The current lack of detailed knowledge concerning the correlates of
immune protection is another major roadblock for devising vaccination
strategies that overcome viral escape mechanisms. For instance, rela-
tively little is known about how HCV continuously escapes antibodies.
Clearly, one mechanism is the decoration of HCV particles with lipo-
proteins that facilitate cellular attachment and thus antibody escape
(Bartenschlager et al., 2011). However, does this feature also reduce
viral immunogenicity? Are there viral epitopes that are not protected by
lipoproteins? How do rare broadly neutralizing antibodies evolve in
vivo? What are productive B cell maturation pathways that govern their
development? Which vaccination strategies elicit such responses? And
which immune components in the cellular repertoire are important for
successful recall immune responses and can the virus escape them?
These are just a few important questions that merit future investigation.
The recent determination of the 3D structure of the major target of
neutralizing antibodies, the E2 envelope glycoprotein of HCV, at atomic
resolution is an important step towards addressing these questions and
should facilitate rational vaccine design (Khan et al., 2014a; Kong et al.,
2013). Moreover, the large patient cohorts that were recruited during
the licensing studies of DAAs and subjected to precise clinical mon-
itoring as well as the associated biobanks provide a fantastic foundation
to dissect key features of protective immunity in humans. Research
taking advantage of these opportunities should guide and transform
HCV vaccine development.

3.2. HCV-associated liver cancer

Liver cancer is the second leading cause of cancer-related death
world-wide with increasing morbidity and mortality (Ryerson et al.,
2016). Chronic hepatitis C is a major predisposing condition for liver
cancer and owing to the high prevalence of chronic hepatitis C, the
number of patients developing HCC will remain high (Chhatwal et al.,
2016; Hoshida et al., 2014). Of note, HCC can occur even more than 10
years after successful HCV clearance with the annual post-therapy HCC
incidence of ∼1% being higher than cancer in other organs (Baumert
et al., 2017). A reduction in HCC risk upon successful therapy has been
reported in multiple retrospective studies of earlier interferon treat-
ments. Although it is well possible that these data can be extrapolated
to persons cured with DAAs, the risk of developing HCC persists espe-
cially in patients with advanced fibrosis or cirrhosis, genotype 3 in-
fection or certain co-morbidities such as diabetes mellitus (El-Serag
et al., 2016; Kanwal et al., 2017; van der Meer et al., 2012). Moreover,
it is becoming clear that the decline of HCC incidence after successful
therapy depends on how far liver disease had advanced at the time
therapy was initiated. Indeed, patients suffering from decompensated
liver disease have the highest risk to develop HCC in spite of successful
HCV elimination. Future prospective studies will be needed to de-
termine the extent with which DAA treatment reduces HCC incidence
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and to define the “point-of-no-return” when persistent HCV infection
has advanced to a stage where HCC will develop regardless of viral
infection (Baumert et al., 2017).

It will also be essential to understand the molecular mechanisms
driving HCV-related HCC. Since HCV does not integrate its genetic
material into the host genome it most likely contributes to cancer de-
velopment indirectly. For instance, chronic HCV infection has been
shown to modulate hepatocyte gene expression associated with pro-
gression of liver disease, cancer and death (Bandiera et al., 2016).
Moreover, viral proteins can disrupt signal transduction pathways that
affect cell survival, proliferation, and transformation (Tu et al., 2017).
Apart from these virus-dependent mechanisms, the genetic background
of the host has also been shown to play a role in HCC pathogenesis, as
demonstrated by the identification of specific mutations or poly-
morphisms that are associated with HCC development (Bandiera et al.,
2016; Kumar et al., 2011). Since HCV and other HCC aetiologies share
common pathways and produce similar genetic footprints (Fujimoto
et al., 2016; Guichard et al., 2012; Schulze et al., 2015) chronic HCV
infection may serve as model to understand hepatocarcinogenesis in
general, which is of utmost importance given that tumor resection and
liver transplantation are still the predominant therapeutic options.
Moreover, the investigation of the molecular mechanisms of HCV-in-
duced HCC should ultimately contribute to the development of urgently
needed strategies for HCC prevention as well as treatment and identify
biomarkers for predicting cancer risk.

3.3. DAA resistance

The proportion of patients with chronic hepatitis C failing DAA-
based therapy is small but the absolute numbers are nevertheless im-
portant given the high prevalence of HCV infection. DAA failure is as-
sociated with the selection of viral variants harboring resistance-asso-
ciated substitutions (RAS), especially in NS5A, which is a target of
virtually all currently approved antiviral regimens (Pawlotsky, 2016;
Sarrazin, 2016). Variants harboring these RAS are fit and persist for
years. Second-generation DAA combinations can achieve high rates of
sustained virological responses in this situation (Bourliere et al., 2017).
However, these combinations are costly and not broadly available yet.
In addition, regimens comprising protease inhibitors cannot be ad-
ministered to patients with decompensated cirrhosis, limiting treatment
options for patients with very advanced liver disease. Hence, DAA re-
sistance represents a challenge; however, its dimensions are currently
difficult to foresee and therefore, it will be critical to develop surveil-
lance programs to detect and characterize resistance development
against DAAs as their use will become more widespread, and for patient
groups with a high risk of transmission. In fact, transmission of resistant
variants has been demonstrated (Franco et al., 2014). In addition, it will
be important to look at natural occurrence of RAS at a global scale
(Smith et al., 2018) as it appears that some key RAS might be prevalent
in specific geographical regions (Li et al., 2017). Moreover, it will be
important to continue research with the aim to determine the potential
of HCV for developing variants with resistance to the various DAA
classes. For example, it has recently been demonstrated in vitro that
HCV genotype 3 and 6 strains can readily develop highly fit variants
with resistance to the nucleotide analog sofosbuvir, a key component of
one of the two pangenotypic DAA regimens (Ramirez et al., 2016),
arguing that RAS in one drug target severely compromises the effect of
these regimens. These results and the experience with resistance de-
velopment against HIV-specific antivirals collected over the past 25
years (van Zyl et al., 2018) should keep the HCV community alert, in
spite of the high effectiveness of current drug regimens.

3.4. Risk of HBV reactivation under DAA-based therapy

An increased risk of reactivating HBV infection has been observed in
HBV-HCV co-infected individuals undergoing treatment with DAAs

(Holmes et al., 2017; Perrillo, 2017). At least in cell culture both viruses
can co-replicate in the same cell without discernable differences be-
tween co- and mono-infected cells (Bellecave et al., 2009). This argues
that the inverse relationship between HBV and HCV replication levels
observed in co-infected patients might be linked to antiviral immune
responses. Interestingly, interference with both HAV and HBV infection
by prior HCV infection has been documented in experimentally infected
chimpanzees (Bradley et al., 1983). The underlying mechanisms are
unknown, but can now be elucidated by studying the immune recon-
stitution that occurs in patients undergoing DAA-based HCV elimina-
tion (see below).

4. New opportunities and impact on other fields

4.1. Understanding viral persistence by in vivo studies of DAA-treated
patients

Considering its high rate of persistence it is obvious that HCV must
employ highly effective strategies to escape innate and adaptive im-
mune responses (Heim and Thimme, 2014; Thimme et al., 2012). Pre-
vious HCV research in this area has led to numerous important dis-
coveries with implications far beyond the HCV field. For example, HCV
served as an important tool to elucidate signaling pathways that induce
interferon responses, and to identify and characterize MAVS (mi-
tochondrial antiviral-signaling protein) that is cleaved by the viral NS3-
4A protease (Cheng et al., 2006; Loo et al., 2006; Meylan et al., 2005).
Moreover, HCV-related studies have spearheaded research on inter-
feron lambda, an important antiviral cytokine discovered only more
recently (Boisvert and Shoukry, 2016). Clinical studies revealed distinct
polymorphisms in the interferon lambda gene that correlate with the
ability to eliminate HCV during acute infection or by treatment with
interferon-based regimens (reviewed in (Heim et al., 2016)). These
studies laid the groundwork for dissecting the organization of the in-
terferon-lambda gene locus and the identification of lambda interferon
variants with different biological activities.

In terms of adaptive immunity, the role a of vigorous and multi-
specific CD4+ and CD8+ T cell responses for the control of HCV in-
fection, the strong association between certain class I and class II HLA-
alleles and spontaneous HCV elimination as well as the impact of CD4+
and CD8+ T cell depletion on the course of HCV infection in vivo have
been described (Grakoui et al., 2003; Heim and Thimme, 2014; Park
and Rehermann, 2014; Shoukry et al., 2003). However, in chronic he-
patitis C T cell exhaustion predominates, driven most likely by ongoing
antigen recognition in the absence of viral escape (reviewed in (Heim
and Thimme, 2014)). Exhausted T cells are ineffective and unable to
secrete antiviral cytokines or proliferate and kill infected hepatocytes.
Moreover, they up-regulate several inhibitory receptors, such as PD-1
(Wherry and Kurachi, 2015), but PD-1 blockade alone does not restore
the function of strongly inhibited HCV-specific CD8+ T cells in the liver
and targeting of additional inhibitory receptors, such as CTLA-4 is re-
quired to increase T cell function (Nakamoto et al., 2008). While the
underlying mechanisms are still poorly understood, the availability of
highly efficient DAA-based therapies has made it possible to monitor
(partial) immune reconstitution in patients as HCV antigen load de-
clines and interferon-stimulated genes are downregulated (Meissner
et al., 2014). For example, a normalization of NK cell phenotype and
function (Serti et al., 2015) and a partial restoration of HCV-specific
CD8+ T cell response has been observed (Martin et al., 2014; Wieland
et al., 2017). Since HCV reinfection is possible it remains unclear
whether CD8+ T cells that persist after DAA-mediated HCV clearance
are protective.

HCV has also evolved strategies to escape humoral immunity. Some
of the underlying principles are similar to HIV such as high antigen
variability and shielding targets for neutralizing antibodies within the
viral envelope glycoprotein structures (reviewed in (Ball et al., 2014)).
However, novel strategies have been discovered by studying HCV,
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notably the protection of the virus particle through its association with
components of the low density lipoprotein machinery (Bartenschlager
et al., 2011). Other strategies are glycan shielding of the viral envelope
proteins (Helle et al., 2007) and the use of the N-terminal region of E2
that ‘protects’ other functionally important, but less mutable epitopes
(Bankwitz et al., 2010; Prentoe et al., 2016). It has also been suggested
that HCV may evade neutralization by direct cell-to-cell spread (Timpe
et al., 2008). While these properties are challenging hurdles for the
development of an effective prophylactic vaccine, these examples il-
lustrate the wealth of knowledge that has been gained from studies on
HCV.

In this respect, the revolution in antiviral treatment of chronic he-
patitis C has transformed HCV infection into an important and unique
immunological model to study the impact of chronic inflammation,
accompanied by persistent antigen stimulation, and its clearance on
innate and adaptive immunity. Important questions can now be ad-
dressed. For example, what are the mechanisms governing the differ-
ential responsiveness of immune cell subsets? Is the partial restoration
of the cellular immune response after antiviral therapy due to the
normalization of cytokines such as interferon or the removal of viral
antigens? Does the early induction of the innate response suppress HCV
viremia to below the threshold required for efficient induction of
adaptive immunity? Are vigorous T cell responses linked to the single
nucleotide polymorphisms near the IL-28B gene encoding type III IFNs
that predict spontaneous resolution of HCV infection? It is very likely
that future discoveries made with HCV will continue to have profound
impact on understanding of viral persistence in general.

4.2. Understanding the mode-of-action of effective antiviral drugs and
resistance against them

Numerous highly effective antiviral drugs targeting HCV or host
factors used by this virus have been developed and these antivirals
provide unique opportunities to conduct drug-related mechanism-of-
action studies as well as studies on the nature of antiviral resistance by
using HCV as a model. For instance replicon-based screens identified a
novel class of DAAs targeting a non-enzymatic factor of the HCV re-
plicase, i.e. NS5A (Gao et al., 2010). This protein that lacks known
enzymatic activity has been regarded as non-druggable, but turned out
to be an extremely valid target. In fact, NS5A inhibitors have an un-
precedented high potency and became a cornerstone in all recently
approved combination therapies. Recent studies have shown that NS5A
inhibitors block the HCV replication cycle at several steps (Berger et al.,
2014; McGivern et al., 2014) most likely because NS5A can form
multiple protein-protein and protein-RNA complexes with each of them
exerting a different function (RNA replication, virion assembly, coun-
teracting antiviral responses) (Bartenschlager et al., 2013). Since many
viruses utilize multi-functional proteins the clinical success of HCV
NS5A inhibitors should encourage future development of antivirals
targeting such proteins without caring too much whether or not they
are enzymes.

Proof of concept studies demonstrated the capacity of HCV to escape
the most potent drugs, including DAAs (e.g. (Ramirez et al., 2016)),
host-targeted agents (Badillo et al., 2017; Li et al., 2011) and human
monoclonal antibodies (Keck et al., 2009; Velazquez-Moctezuma et al.,
2017). Taking advantage of the large arsenal of drugs targeting pretty
much every step of the HCV replication cycle, we are now in the po-
sition to dissect the molecular mechanisms of viral resistance by using
HCV as tool. Such studies involve virology, evolution, chemistry, and
structural biology. Research in this direction might provide much
needed basic knowledge on resistance mechanisms and identify classes
of molecules with high resistance barriers. For instance, the resolution
of the crystal structures of NS5B ternary complexes in primed initiation
and elongation states not only provided a model about the structural
changes involved in HCV RNA replication (initiation and elongation),
but also explained the extremely high resistance barrier to the

nucleotidic inhibitor sofosbuvir (Appleby et al., 2015).

4.3. HCV as a tool to study fundamental principles in virology and cell
biology

Studies of the HCV replication cycle and its interaction with the host
cell have provided important insights into fundamental aspects of mo-
lecular and cellular biology. Since an exhaustive list of major con-
tributions is beyond the scope of this opinion paper here we give a few
arbitrarily selected examples. Readers who are more interested in this
topic are referred to excellent recent reviews (Alvisi et al., 2011;
Johnson et al., 2017; Lindenbach and Rice, 2013; Paul et al., 2014;
Scheel and Rice, 2013).

Viral entry pathways: HCV entry is mediated by multiple host cell
factors including CD81, claudin 1, occludin and scavenger receptor BI
acting in a concerted manner (Zeisel et al., 2013). Interestingly, several
kinases such as the epidermal growth factor receptor regulate cell entry
by modulating host cell-receptor associations or trafficking. Deci-
phering the molecular mechanisms of cell entry paved the way for
antiviral therapies targeting entry factors – an approach that is being
pursued for other viruses such as HBV, hepatitis D virus (HDV), HIV or
dengue virus (Zeisel et al., 2015) and shown for HCV to be not only
prophylactic, but also having the potential to be curative (Mailly et al.,
2015). HCV cell entry is also highly relevant for the pathogenesis of
virus-induced liver disease and cancer since relevant signaling path-
ways become activated during the early steps of the viral replication
cycle. Thus, the study of HCV - host cell interactions during cell entry
such as virus-triggered signaling will yield important contributions to
our understanding of the pathogenesis of liver disease and cancer in
general.

Lipid metabolism: Like all positive-strand RNA viruses, HCV hijacks
and expands cellular endomembrane systems to generate its membra-
nous replication organelle. This requires multiple reprogramming steps
of cellular lipid biosynthesis and transport pathways. By these me-
chanisms, HCV shapes the membrane composition of the infected cell in
general and the membranes associated with viral replication in parti-
cular. This includes enhanced transcription of genes involved in lipid
synthesis, resulting in steatohepatitis in a genotype-specific manner
(Syed et al., 2010), activation of enzymatic activities of lipid generating
enzymes (e.g. phosphatidylinositol 4-kinase IIIα, PI4KA) (Berger et al.,
2011; Reiss et al., 2011) and exploitation of lipid transfer proteins such
as OSBP (oxysterol-binding protein 1), FAPP2 (Golgi-associated four-
phosphate adaptor protein 2), Sec14L2 and NPC1 (Niemann-Pick dis-
ease, type C1) (Khan et al., 2014b; Saeed et al., 2015; Stoeck et al.,
2017; Wang et al., 2014) to generate a lipid environment conducive for
viral replication.

By using HCV as tool, studies of virus - host lipid interaction not
only have strongly increased our understanding of mechanisms gov-
erning HCV replication, but also have important implications for future
research in virology, pathobiology of lipid-associated diseases, in-
cluding liver cancer, and cell biology. The following examples shall
illustrate that:

• First, HCV genotype-specific induction of liver steatosis in patients is
well established and has been linked to the HCV core protein, thus
providing an excellent model to study the fundamental mechanisms
underlying steatohepatitis and its contribution to HCC.

• Second, studies of HCV replication in cell culture have largely relied
on cell culture adapted variants, whereas propagation of patient
isolates has been almost impossible. Recent studies have identified
two independent mechanisms that allow replication of patient HCV
isolates in cell culture, both linked to lipid metabolism (Harak et al.,
2016; Saeed et al., 2015). While this will enable experiments using
serum-derived virus and non-adapted primary isolates, e.g., to test
for phenotypic drug resistance, the underlying mechanisms remain
to be determined.
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• Third, some HCV isolates are highly sensitive to lipid peroxidation
while others are not, yet the molecular determinants have not been
identified (Yamane et al., 2014). However, such virus pairs are ex-
cellent tools to understand the induction of lipid peroxidation by
virus-induced oxidative stress, the deleterious effects of peroxidized
lipids on protein function and the action of scavengers such as to-
copherol (vitamin E) and its cellular transporters (e.g. Sec14L2) in
counteracting lipid peroxidation.

• Forth, HCV dramatically re-shapes the lipid composition of ER
membranes, by enhancing the enzymatic activity of PI4KA to gen-
erate lipid gradients that allow the recruitment and delivery of
cholesterol and sphingolipids by lipid transfer proteins (Paul et al.,
2014). In this regard, HCV is an attractive tool to study the cellular
functions of these lipids as well as the contribution of alterations in
lipid homeostasis to the pathogenesis of liver disease. In addition, a
deeper understanding of the interactions of viral proteins with dis-
tinct lipids or lipid metabolizing enzymes will also provide valuable
tools to engineer the lipid composition of intracellular membranes
in living cells.

miRNAs in viral replication and pathogenesis: miRNAs are well
established as negative regulators either blocking the translation of a
targeted mRNA or inducing its degradation. However, studies con-
ducted with HCV showed for the first time that miRNAs can act posi-
tively, i.e. enhance the function of an RNA, i.e. in this case the HCV
genome (Jopling et al., 2005). The miRNA in question is miR-122, a
tumor suppressor that is highly abundant in liver cells and regulates the
expression of many lipogenic genes. It was shown that miR-122 binds to
the HCV genome to stabilize the viral RNA, affect its translation and
enhance its amplification (Masaki et al., 2015; Sarnow and Sagan,
2016). Moreover, in the infected cell HCV sequesters miR-122, thus
causing a derepression of target genes that might contribute to liver
cancer development (Luna et al., 2015). Of note, subsequent studies
conducted for other viruses revealed an analogous stimulatory role for
other miRNAs in viral replication (Scheel et al., 2016). Moreover, the
discovery of miR-122 as a critical host dependency factor for HCV lead
to the development of antagomirs sequestering miR-122 and making it
unavailable for HCV. This approach turned out to be highly efficient in
animal models and clinical studies revealing high tolerability of an-
tagomirs with no induction of drug resistance in patients and high
antiviral potency (Janssen et al., 2013; Sarnow and Sagan, 2016). This
example nicely illustrates a new research direction seeded by studies on
HCV that led to the discovery of fundamental new principles of miRNA
biology, as well as the development of a new therapeutic paradigm.

4.4. RNA virus evolution and the origin of HCV

RNA viruses are characterized by high mutation rates allowing for
rapid adaptation to the host and escape from antiviral drugs as well as
antiviral immunity triggered by natural infection or vaccination. HCV is
extremely heterogeneous and exists as at least 7 major genotypes with
more than 85 subtypes. The frequent mutations create a population of
variant RNA genomes that circulates as quasispecies in individual pa-
tients. The mutations are distributed throughout the genome, but fre-
quently are linked on an individual virus genome and function in
concert. This linkage can be important for efficient adaptation e.g. to
drug treatment or antiviral immune responses, the latter being a major
obstacle in vaccine development (Bukh, 2016; Simmonds et al., 2017).
In this context, HCV samples collected longitudinally from infected
individuals or from various HCV culture models offer unique opportu-
nities to perform basic studies of virus evolution. Such studies profit a
lot from novel sequencing techniques offering the opportunity to ana-
lyze entire HCV genomes and accurately link mutations. For example, a
recent study elegantly evaluated how host and virus genomics are
linked functionally (Ansari et al., 2017). Thus, HCV with its amazing
heterogeneity offers an excellent opportunity to map in detail the

multitude of mechanisms permitting or restricting the evolution of RNA
viruses.

Until recently, HCV was considered the sole major member of the
genus Hepacivirus. However, it has become clear that there are multiple
related viruses circulating in numerous mammalian species, including
horses, cattle, bats and rodents (Scheel et al., 2015). These related
viruses provide new opportunities to dissect unique features of HCV and
common strategies of the hepaciviral replication strategy. At the same
time these comparisons raise important questions regarding the evo-
lution of these viruses and their routes of transmission. For example,
flaviviruses belong to the same family as HCV and are frequently
transmitted via insect vectors, yet for hepaciviruses there is no evidence
for this mode of transmission. Might the existence of HCV relatives in
nature, predict a risk of future zoonoses? Is there cross-species trans-
mission of hepaciviruses? What are the barriers that prevent this? Re-
cent studies indicate that rodent hepaciviruses can be employed to help
dissect mechanisms of liver tropic viral pathogenesis and immunity
(Billerbeck et al., 2017; Trivedi et al., 2017). It will be of interest to
determine whether they can also provide tractable models for exploring
hepacivirus vaccine platforms. Clearly the discovery of novel HCV re-
latives in various species raises important basic scientific questions and
opportunities with a high potential for translational impact.

4.5. Boosting research towards curative HBV therapy

The high rate of HCV elimination with DAAs has ignited hopes of
achieving similar curative therapies also for the two other hepatotropic
viruses causing chronic liver disease and cancer, HBV and HDV. While
the molecular biology of these viruses and their replication cycles are
completely different, they have in common an exquisite hepatotropism
and liver disease biology. Research for curative HBV and HDV therapies
is benefiting from knowledge and concepts obtained in HCV research on
several levels. These include the establishment of robust and high-
throughput cell culture and animal model systems to uncover and va-
lidate curative approaches – a key milestone for the development HCV-
specific DAAs (Winer et al., 2016). Indeed, humanized liver chimeric
mice are a common model for all three viruses and the humanization of
mice by transgenic expression of respective human dependency factors,
a concept pioneered for HCV (Dorner et al., 2013), is currently pursued
for HBV and HDV. Other examples are the discovery of host de-
pendency factors as targets for antiviral therapy by using functional
genomics approaches. This is nicely illustrated by entry inhibitors such
as antibodies targeting claudin 1 that turned out to eliminate HCV in-
fection, at least in animal models (Mailly et al., 2015), and peptidic
inhibitors of NTCP, the entry molecule utilized by HBV and HDV (Yan
et al., 2012), that show great promise in ongoing clinical trials to treat
persistent HDV infection (Blank et al., 2016).

Apart from that, infections with HBV and HCV share several key
features of pathogenesis, such as the induction of an inflammatory
milieu in the liver that is characterized, amongst others, by the pro-
duction of cytokines such as lymphotoxin-alpha/beta (Haybaeck et al.,
2009). Moreover, infections with both viruses are major risk factors for
the development of liver cancer. While in both cases chronic in-
flammation induced by viral infection is regarded as a major driver of
hepato-carcinogenesis, the more direct (viral) contributions appear to
differ between these two viruses (Tu et al., 2017). Thus, comparative
studies with both viruses should reveal important fundamental insights
how viral infection directly or indirectly promotes tumor development.

5. Conclusion

Along with the prevention of post-transfusion HCV infection, the
high level of HCV elimination achieved with all-oral interferon-free
antiviral therapy in chronically infected patients is a remarkable ex-
ample of the power and synergy of basic, translational and clinical re-
search. Although this is rightfully regarded as a triumph of modern
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medicine, a number of critical challenges remain that will substantially
impede efforts to control this virus using DAA-based therapies only.
Insufficient access to antiviral therapy, the urgent need to detect HCV
carriers, the lack of immunity against reinfection, the uncertainty about
the magnitude of viral resistance development and the continued risk
for liver cancer, especially in elderly patients with advanced liver dis-
ease, regardless of HCV elimination, are prime challenges that need to
be overcome. In addition, HCV-related research has played an im-
portant role in making groundbreaking discoveries in basic and trans-
lational science and will continue to do so if adequate funding is pro-
vided. It is surprising that support for basic HCV research is nowadays
often considered of little relevance because of a perceived lack of
medical need, yet studies with other model pathogens are well ac-
cepted. It is inevitable that priorities for HCV research need some re-
adjustment and the availability of DAAs can be considered as starting
point of new research directions. The need for cheaper drugs and
therapies are obvious examples, the possibility to study the immune
reconstitution in patients undergoing DAA-based therapy and elim-
inating the virus is just another one.

Clearly, history suggests that global eradication of a pathogen such
as HCV will not be possible without a vaccine. Although scientifically
challenging and currently met with little interest both by industry and
academia, a vaccine for HCV is an unmet medical need that must be
addressed and should be achievable. Even a partially protective vaccine
able to prevent persistence, but not necessarily infection, would suffice.
Given this need and the many scientific opportunities HCV research
offers, it is disappointing that government and philanthropic funding
agencies focus so little on the development of immunization strategies
for HCV. Many of the scientific issues confronting efforts to develop an
effective HCV vaccine mirror issues in HIV vaccine development, and a
concerted effort to develop vaccines for both viruses could provide
some much needed synergy. Cutting research funding by declaring
“mission accomplished” would be a mistake, and mean missing many
opportunities for new advances with impact far beyond HCV.
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