
HAL Id: hal-02459966
https://hal.science/hal-02459966v1

Submitted on 29 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partial and Stochastic Differential Equations:
Theoretical and Numerical Aspects

Ludovic Goudenège, Adam Larat

To cite this version:
Ludovic Goudenège, Adam Larat. Partial and Stochastic Differential Equations: Theoretical and
Numerical Aspects. Doctoral. France. 2014. �hal-02459966�

https://hal.science/hal-02459966v1
https://hal.archives-ouvertes.fr


Partial and Stochastic Differential Equations:
Theoretical and Numerical Aspects

Ludovic Goudenège and Adam Larat

January 29, 2020

Abstract

A certain vision of PDEs and SDEs. How mathematics are
thouroughly used in some very different ways to allow the transition
from physics and reality to models and computational prediction.
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1 Introduction

1.1 From reality to models. Computational prediction

1.1.1 Ordinary Differential Equations (ODEs)

Newton’s second law: "The rate of change of the linear momentum of
an object is directly proportional to the external force acting on this object".

d

dt
(m~v) =

−−→
Fext ⇒ m

d2~x

dt2
=
−−→
Fext. (1)

Case of pure gravity:

z̈ = −g, z(t = 0) = z0 and ż(t = 0) = v0
z

⇒ z(t) = −1
2gt

2 + v0
z t+ z0.

(2)

Definition 1.1 (Ordinary Differential Equation)

An Ordinary Differential Equation (ODE) is an equation involving a
function (possibly vectorial) of one independant variable, f : t 7→ f(t),
its derivatives f ′, f ′′, . . . , f (n), . . . and the variable t itself.

Definition 1.2 (Order of an ODE)
An ODE is said to be of order n ∈ N∗ when it involves only the first n
derivatives of f and n is the smallest such number:

h(f, f ′, . . . , f (n), t) = 0. (3)

Definition 1.3 (Cauchy Problem)
A Cauchy Problem is a mathematical problem maid of:

• An n-th order ODE, n ∈ N∗,

• A set of initial conditions, which can be considered at t0 = 0 with-
out loss of generality:

f(0) = f0, f ′(0) = f1, . . . , f (n)(0) = fn. (4)

Property 1.4
A n-th order ODE can always be reduced to a system of n first order
ODEs.
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Proof :
u0 ↔ f
u1 ↔ f ′

...
un−1 ↔ f (n−1)

=⇒


(u0)′ − u1 = 0

...
(un−2)′ − un−1 = 0

h (u0, u1, . . . , un−1, (un−1)′, t) = 0

⇐⇒ H
(
U,U′, t

)
= 0

Definition 1.5 (Explicit ODE)
An ODE is said to be explicit of order n when it can be written under
the form:

f (n) = h((f, f ′, . . . , f (n−1), t) (5)

Then, using the same techniqe as in the previous proof, it can obviously
be turned into a system of n first order explicit ODEs:

U′ = H (U, t) ,


u0 ↔ f
u1 ↔ f ′

...
un−1 ↔ f (n−1)

 (6)

Theorem 1.6 (Cauchy-Lipschitz )
Consider the initial value problem:{

U′(t) = H (U(t), t), t ∈ [−ε, ε], ε > 0,
U(0) = U0.

(7)

Suppose H is continuous in t and Lipschitz-continuous in U in a
neighborhood of the initial value U0. Then, for some value of ε, there
exists a unique solution U(t) of (7) on the interval [−ε, ε].

Corollary 1.7 (Global existence)
If H is moreover globally Lipschitz-continuous on the whole set of pos-
sible states U, the solution is global (t ∈ R).

String at rest between two walls: See Figures 1 and 2 for notations.
Static equilibrium of the infinitesimal section drawn in Figure 2 is given

by the equality
ρdx~g + ~τ(x) + ~τ(x+ dx) = ~0. (8)

By projecting this vectorial relation on the horizontal coodinate, we get

|τx(x)| = |τx(x+ dx)| = τ. (9)
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Then, on the vertical axis, we come with

−τDw
Dx

(x) + τ
Dw
Dx

(x+ dx)− ρdxg = 0

⇒ τdx
d2w

dx2
(x) +O(dx2) = ρdxg

⇒ d2w

dx2
= κρg, (10)

where w is the vertical position of the string, ρ is the linear density of the
rope, g is gravity and κ is the surface tension coefficient.

Figure 1: 1D string attached to two
walls situated at abscissa x1 and x2

and subject to gravity.

Figure 2: Detail of previous figure
1 on an infinitesimal section. Two
forces apply on this section: its
weight and the tension of the string
on both sides of section.

This equation comes with two constraints which expresse the fact the
string it attached on both walls:

w(x1) = z1, w(x2) = z2. (11)

The considered problem is not a Cauchy problem. However it is well-
posed, as the solution is obviously a parabola between the two attachement
point, which curvature is driven by the elasticity κ of the rope, its linear
density ρ and the intensity g of the gravity.

1.1.2 Partial Differential Equations (PDEs)

A soap membrane at rest On each infinitesimal element of surface
dx× dy apply two forces: it own weight and the tension of the surrounding
membrane. By a reasoning analogous to the one for the string at rest (1D),
one can prove that the inner membrane tension, also called surface tension,
is proportional to the total local curvature:

τ = κ

(
∂2w

∂x2
+
∂2w

∂y2

)
= κ∆w.
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Figure 3: Static string

The fundamental principle of statics then claims:

κ

(
∂2w

∂x2
+
∂2w

∂y2

)
= ρg ⇔ ∆w = f. (12)

Figure 4: A soap membrane is attached to
a rim. It hangs down due to gravity. rim
is shown on the bottom figure. Top figure
shows a lateral view of the rim. We vizual-
ize the vertical displacement w(x, y) of the
membrane due to gravity.

Boundary conditions:

w = 0, on Γ = ∂Ω.

The mathematical problem combining this boundary condition with the Pois-
son equation (12) is called the Dirichlet problem.

Circular bubble: if the rim is a circle C (0, 1), then the solution is
obviously

w(x, y) =
f

4

(
x2 + y2 − 1

)
• ∂2w

∂x2
+ ∂2w

∂y2
= f,

• wherever x2 + y2 = 1, w(x, y) = 0.

What if the rim is now a potato shape (see Figure 5)? Or worse, it is not
regular anymore, like a square or a fractal curve?

6



Figure 5: If solv-
ing the soap mem-
brane problem seems
fairly easy with a cir-
cular rim, the ques-
tion is much harder
with any shape, es-
pecially when it lacks
regularity.

Definition 1.8 (PDE)

A Partial Differential Equation (PDE) is a differential equation involving
an unknown multivariate (possibly vectorial) function u and its partial
derivatives.

In the case of a scalar function, one can write:

−→
F (x1, . . . ,xd, u,

∂u

∂x1
, . . . ,

∂u

∂xd
,
∂2u

∂xi∂xj
, . . . ) = 0 (13)

Definition 1.9 (Order of a PDE)
The order of a PDE is defined as the biggest order of the differential
operator implied in the PDE. Sometimes this order can be reduced using
various technics but there is no general method.

Definition 1.10 (Quasi-Linear PDE)
A PDE of order n is said to be quasi-linear when it can be written into
the form:

n∑
k=0

∑
i1,...,ik∈J1,dK

Ai1...ik (x1, . . . , xd, u)
∂ku

∂x1 . . . ∂xk
= 0. (14)

The coefficients Ai1...ik may depend on the space variables and u but not
on its partial derivatives.

1.1.3 Computational prediction

What is a good numerical method? How do I rely on my computational
prediction?

Approximate problem:

• Instead of considering the continuous problem, we discretize it and try
to obtain an approximation of the exact solution at a certain number of
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degrees of freedom (DoFs). The latter could be certain points in space,
coefficients of a decomposition of the solution onto a smart chosen
basis, etc.

The algorithm cost is technically reachable:

• Only a finite number of DoFs are available,

• The amount of calculation per DoF is finite and decent.

The continuous problem is well-posed:

• If the problem arising from modelling does not have a solution or have
many of them, it is not worth developping a numerical method. One
could obtain anything!

The numerical method converges toward the exact solution:

• One wants to prove that the accuracy of the result increases monoton-
ically with the number of DoFs and that the result becomes exact in
the limit on an infinite number on degrees of freedom.

• The method is accurate enough that a good level of prediction is
reached within the limited amount of computational power available.

The numerical method is stable:

y′ + y = 0, y(0) = 1 ⇒ y(t) = exp(−t).

y(t+ dt) = y(t) + dty′(t) +����O(dt2) ⇒ yn+1 = yn − dtyn = (1− dt)yn.

• dt = 0: y(t) = 1 . . . ,

• dt ∈]0, 1[: monotone decrease toward zero, first order accurate scheme,

• dt = 1 or 2: yn ∈ {−1, 0, 1},∀n ∈ N∗,

• dt ∈]1, 2[: oscillatory behavior. Numerician try to avoid this behavior
because it can be quite dangerous:

y′ + y = 0.1, t > 0,
y(0) = 1,
y > 0.

(15)

The last constraint of positivity is automatically verified by the con-
tinuous solution of the two first equations (y(t) = exp(t) + 0.1). It
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could however be violated by an oscillatory scheme. Imagine if this
is an equation on the density or the temperature. What can you say
about a result predicting negative energies?

On the other hand, if you look at the solution, we still have a good
picture of the trend of the exact solution and engineers do employ
those methods in industrial codes. For example, one could filter the
first oscillating mode to recover a smoother solution. This is called
post-processing.

• dt > 2: unstable: |yn| is exponentially increasing.
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Figure 6: Stability for various dt.

9



1.2 PDE Classification

You may have already seen the classification of second order quasi-linear
PDEs

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu = 0, (16)

A,B,C not simultaneously all null.
Lets consider the conic section:

AX2 +BXY + CY 2 +DX + EY + F = 0. (17)

We know that the nature of this curve of the plan is determined by the sign
of ∆ = B2 − 4AC:

• ∆ > 0: Hyperbola, (16) is said to be hyperbolic,

• ∆ = 0: Parabola, (16) is said to be parabolic,

• ∆ < 0: Ellipse, (16) is said to be elliptic.

This classification is very restrictive. It is nonetheless mostly the only
way the classification of PDEs is taught. Fortunately, there is a much better
and more general explanation.

In the general case, we can associate to a PDE a differential operator (say
L) and rewrite the equation in the form Lu = 0. Computing the eigenvalues
of this operator we can classify the PDE in the following sense:

• elliptic : The eigenvalues are all positive or negative,

• parabolic : The eigenvalues are all positive or negative, except one that
is zero.

• hyperbolic : There is one positive value and all the rest are negative
(or respectively the inverse).

• hybrid : Other cases.

1.3 On the necessity to weaken the notion of derivative

1.3.1 Linear scalar transport equation{
∂tu+ a∂xu = 0, x ∈ R, t > 0
u(x, 0) = u0(x), x ∈ R, u0 ∈ C∞

(18)

• u(x, t) = u0(x − at) is obviously the unique solution of this problem.
Uniqueness comes from the linear caracter of the equation.

∂xu = u′0, ∂tu = −au′0 ⇐ ∂tu+ a∂xu = −au′0 + au′0 = 0.

• The solution is just a shift in time at velocity a of the initial profile,
see Figure 7.
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Figure 7: The initial
profile u0(x) is sim-
ply advected at ve-
locity a.

1.3.2 Non-Linear Burgers’ equation{
∂tu+ u∂xu = 0, x ∈ R, t > 0
u(x, 0) = u0(x), x ∈ R, u0 ∈ C∞

(19)

• Now the velocity a = u depends on the height of the solution.

• This is for example the behavior of a wave in the sea. In the middle
of the ocean, the height of the perturbation is negligeable compared
to the water depth and the propagation of the wave is nearly linear.
When approaching the shore, we tend to a more non-linear regime, see
figure 8.

• At some finite time T ∗, the spatial derivative ∂xu becomes infinite and
the wave breaks on the shore.

• In fact, the mathematical solution does not get multivalued. The dis-
continuity generated at time T ∗ start propagating with the flow. This
is what is called a shock.

Figure 8: In the case of the Burgers’ equation, the propagation of the profile
depends on the height. The top of the wave propagates faster than its foot
and the wave is suppose to break. In fact, at some point a discontinuity is
produced (∂xu = +∞) and starts to propagates in the domain. This is what
is called a shock

We now come to a difficult mathematical problem. Even though the
initial condition is maximum regular (C∞), the solution of problem (19)
becomes discontinuous in finite time and stays so for the rest of the time.
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"How do you define a solution of a differential problem when you know this
solution is not differentiable itself?"
Remark 1.11

In fact, we could ask the same question for the linear advection (18) with
an irregular initial condition:

u0(x) = H(x)−H(x− 1) = (x > 0)− (x > 1).

Obviously u0(x−at) is still a solution (and it is the only one). But under
which framework? It is not differentiable everywhere!
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2 Some tools for the theoretical analysis of PDEs

2.1 Algebraical and topological duals

• Let E be a K-vectorial space, K being a topological field, possibly a
subfield of C. A linear form on E is a morphism of vectorial spaces
from E to K:

f :

{
E −→ K
x 7−→ f(x)

, f linear. (20)

• E∗ = {f linear form on E} is also a K-vectorial space called the alge-
braical dual of E.

• When E is of finite dimension, it can be proven that
dimE = dimE∗
E ∼ E∗
E∗∗ ≡ E

• If E is a topological vectorial space (with a topology compatible
with that of the underlying field K. ie. : the sum of two vectors is a
continuous application from E × E to E and the scalar multiplication
is a continuous application from K × E to E.), one can define the
notions of neighborhood, of limit, and therefore of continuity. Its
topological dual E′ is the set of continuous linear forms:

E′ ⊂ E∗
E′ = E∗, in finite dimension
E′′ ≡ E, for all Hilbert spaces, thanks to Riesz Theorem.

2.2 Some functional spaces

Let Ω ⊂ Rn be an open subset. It could be bounded or not. For each
function on Ω, we define its support by:

Supp (f) = {x ∈ Ω / f(x) 6= 0} . (21)

Its support is compact when it is a compact subset of Ω.
On this open subset we define the following functional spaces:

• D (Ω) = {ϕ ∈ C∞ (Ω) / Supp (ϕ) is compact.} is the space of test
functions.

• D ′ (Ω) = {linear continuous forms on D (Ω)} is the space of distribu-
tions.
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• S (Ω) =
{
ϕ ∈ C∞ (Ω) / ∀(α, β) ∈ R+, ‖xαDβϕ‖∞ < +∞

}
. The sup-

port of ϕ is no more necessarily compact, but all derivatives of ϕ de-
cay faster than any polynomial at infinity. This space is called the
Schwartz space.

• S ′ (Ω), the topological dual of S (Ω) is the space of tempered dis-
tributions. It is essential for the extension of the Fourier transform
to less regular functions.

• Lp (Ω) =
{
f : Ω→ R /

∫
Ω|f |

p dX < +∞
}
, p− 1 ∈ R+.

If Ω is bounded, the series of Lp spaces is decreasing:

L1 ⊃ L2 ⊃ . . . ⊃ L∞ (22)

The topological dual of Lp is given by:

(Lp)′ = Lq, with
1

p
+

1

q
= 1, p, q > 1 (23)

In particular (
L2
)′

= L2. (24)

• ∀f ∈ L1
loc (Ω), one can define the distribution Tf ∈ D ′ (Ω) by:

∀ϕ ∈ D (Ω) , Tf [ϕ] = 〈Tf , ϕ〉D ′,D =

∫
Ω
fϕ dX (25)

– it is obviously linear,

– For all sequence (ϕn)n∈N converging to ϕ in D (Ω), there exist K
compact such that ∪nSupp (ϕn) ⊂ K and

|〈Tf , ϕn − ϕ〉| ≤ ‖f1K‖1‖ϕn − ϕ‖∞,

which proves the continuous character of the linear form.

• Such a distribution is uniquely defined by f and L1
loc (Ω) can then be

identified to a subset of D ′ (Ω). In particular, D ′ (Ω) contains D (Ω)
and all the Lp spaces, since by (22)

L1
loc (Ω) ⊃ Lp (Ω) , ∀p ≥ 1.

• A classification of these functional spaces is illustrated in Figure 2.2.

Remark 2.1

As one can see, S (Ω) includes D (Ω) and as a consequence, D ′ (Ω) in-
cludes S ′ (Ω). So one can say the following fact: the "smaller" the space

14



Figure 9: Classification of the functional spaces described above.

of test function, the "larger" its topological dual. This transformation
occurs across a neutral element: L2.

2.3 Weak derivatives

2.3.1 Definition

• Let T ∈ D ′ (Ω) a distribution. The partial derivative ∂xiT is the
distribution such that

∀ϕ ∈ D (Ω) , 〈∂xiT, ϕ〉D ′,D = −〈T, ∂xiϕ〉D ′,D . (26)

– ∂xiT is a linear form on D (Ω),
– it is continuous: forall sequence (ϕn)n∈N converging to ϕ in D (Ω),

|〈∂xiT, ϕ− ϕn〉D ′,D | = |〈T, ∂xiϕ− ∂xiϕn〉D ′,D | −→ 0.

• If f ∈ C1 (Ω), this definition matches exactly the definition you know.
Indeed, ∂xif ∈ C0 (Ω) ⊂ L1

loc (Ω), so that

〈∂xif, ϕ〉D ′,D =

∫
Ω
∂xifϕ dX = −

∫
Ω
f∂xiϕdX+

�
�
��

∫
∂Ω
fϕ = −〈f, ∂xiϕ〉D ′,D

The partial derivative of the distribution associated to f is the distri-
bution associated to the partial derivative of f .
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2.3.2 Examples

• f : x 7−→ |x| is L1
loc (Ω), so ∀ϕ ∈ D (Ω)〈

f ′, ϕ
〉

= −
〈
f, ϕ′

〉
= −

∫
R
fϕ′dx =

∫
R−

xϕ′dx−
∫
R+

xϕ′dx,

= −
∫
R−

ϕdx+
����[xϕ]0−∞ +

∫
R+

ϕdx−����[xϕ]+∞0 ,

=

∫
R

(
21R+ − 1

)
ϕdx =

〈
21R+ − 1, ϕ

〉
D ′,D

,

because (21R+ − 1) ∈ L1
loc (Ω) and therefore

f ′ = 21R+ − 1.

Figure 10: The derivative of the absolute value in the sense of the distribution
is a discontinuous L1

loc (Ω) function, having the value of the strong derivative
wherever the function is differentiable.

• H : x 7−→ 1R+ , the Heavyside function is L1
loc (Ω), so ∀ϕ ∈ D (Ω)〈

f ′, ϕ
〉

= −
〈
f, ϕ′

〉
= −

∫
R+

ϕ′dx = +ϕ(0).

f ′ is then the distribution which to each test function ϕ associate its
value at x = 0, ϕ(0). This distribution is called the Dirac distribu-
tion:

f ′ = δ0.
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Figure 11: The derivative of the Heavyside function in the sense of the
distribution is the Dirac delta function.

• Exercise: prove that δ0 has no representant in L1
loc(R).

2.4 Weak formulation of a PDE

Let’s come back to the soap membrane problem. Let Ω be a compact subset
of R2 and Ω̊ it open interior. The static shape of the membrane under simple

Figure 12: Domaine of study Ω for
the Poisson equation ∆w = f̄ .
Ω̊ is its open iterior, ∂Ω is the out-
side boundary.

gravity is the solution of the following problem:{
∆w = f̄ , X ∈ Ω̊
w = 0, X ∈ ∂Ω

(27)

f̄ is indicated with a bar to emphasize it is a constant function in our prob-
lem. It could be different.

Let’s look at the weaker definition of this problem. Let ϕ ∈ D (Ω), a test
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function. A solution of (27) in the sense of distributions would verify〈
∆w − f̄ , ϕ

〉
D ′,D

= 0

⇔ −〈∂xw, ∂xϕ〉D ′,D − 〈∂yw, ∂yϕ〉D ′,D −
〈
f̄ , ϕ

〉
D ′,D

= 0
(28)

If the test function ϕ is taken in D (Ω), the solution w is sought in D ′ (Ω)
which is a very large space and one cannot really conclude. The next part
of the reasoning is to widden the space of test functions until the space of
solution is restricted enough to be able to conclude.
Remark 2.2

Beware of keeping the constraints at the boundary ∂Ω, which in this case
is

• ϕ = 0, because Supp (ϕ) ( Ω̊,

• w = 0, because of the boundary condition.

For this problem (27), the good answer is L2. Then, for the duality
bracket of (28) to be well defined, we need:{

∂xϕ ∈ L2, ∂yϕ ∈ L2, ϕ ∈ L2

∂xw ∈
(
L2
)′

= L2, ∂yw ∈
(
L2
)′

= L2.

f̄ being constant and Ω being bounded, it is not a problem.

2.5 Sobolev spaces

• We define

∀α =

 α1
...
αd

 ∈ Nd, |α| =
d∑
i=1

αi. (29)

∀α ∈ Nd, ∀u ∈ D ′ (Ω) , Dαu =
∂|α|u

∂α1x1 . . . ∂αdxd
(30)

Hk (Ω) =
{
u ∈ L2 / ∀α ∈ Nd, |α| ≤ k,Dαu ∈ L2

}
(31)

Hk0 (Ω) =
{
u ∈ Hk (Ω) / u|∂Ω = 0

}
(32)

• The weak formulation of problem (27) reads:

Find w ∈ H1
0 (Ω), such that ∀ϕ ∈ H1

0 (Ω):∫
Ω

−−→
∇w ·

−→
∇ϕdX +

∫
Ω
f̄ϕ dX = 0 (33)
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2.6 Lax-Milgram theorem and well-posedness
Definition 2.3

A mathematical problem is well-posed in the sense of Hadamard, if:

• it admits a unique solution,

• this solution depends continuously on the parameters of the prob-
lem (the source term and the boundary conditions in our case)

Theorem 2.4 (Lax-Milgram)
Let H be a Hilbert space, a : H×H→ K a bilinear form which is:

• continuous: ∃C > 0, ∀(u, v) ∈ H2, |a(u, v)| ≤ C‖u‖H‖v‖H,

• coercive: ∃α > 0, ∀u ∈ H, a(u, u) ≥ α‖u‖H,

and Φ ∈ H′. Then the problem

"Find u ∈ H, such that ∀v ∈ H

a(u, v) = 〈Φ, v〉H′,H ”

admits a unique solution.
Moreover, we have the following estimation

‖u‖H ≤
‖Φ‖H′
α

(34)

Proof : Similar to Riesz Theorem

2.7 Finite element approximation

• LetMh be a triangular meshing of the domain. To each node i of the

Figure 13: Structured mesh on
the unit square. Meshes do
not have to be structured. But
they usually have to be confor-
mal.

mesh situated in Ω̊, we associate the unique piecewise linear continuous
function with value 1 at Xi and 0 at all the other nodes.
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Figure 14: ϕi is defined as
the unique continuous func-
tion, which restriction to every
triangle of the mesh is linear,
and which takes value 1 at i
and 0 at every other node of
the mesh.

• The family
{
ϕi, Xi ∈ Ω̊

}
spans a subspace of H1

0 (Ω) of piecewise
linear continuous functions taking all possible values at the nodes Xi.
We denote it by Hh. Because the ϕi’s are linearly independant, it is a
basis of Hh.

• In this context, we approximate (33) by the following reduced problem

"Find wh ∈ Hh such that ∀ϕh ∈ Hh∫
Ω

−−→
∇wh ·

−−→
∇ϕh dX +

∫
Ω
f̄ϕh dX = 0”

By extension of the properties of H in Hh, this reduced problem verifies
the conditions of the theorem of Lax-Milgram and the discrete problem
is well-posed.

• Considering that {ϕi, i ∈ J1,NK} is a basis of Hh and that every func-
tion of Hh writes

w =

N∑
j=1

wjϕj , WWW = (w1, . . . , wN )t ∈ RN , (35)

the discrete problem is equivalent to∫
Ω

 N∑
j=1

wjϕj

ϕi dX +

∫
Ω
f̄ϕidX = 0, ∀i ∈ J1, NK,

⇔
N∑
j=1

wj

(∫
Ω
ϕiϕjdX

)
= −

∫
Ω
f̄ϕidX, ∀i ∈ J1, NK,

⇔ AWWW = B,

with

Aij =

∫
Ω
ϕiϕjdX, WWW =

 w1

. . .
wN

 , and Bi = −
∫

Ω
f̄ϕidX.
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Since the problem is well-posed in Hh, we already know the matrix A is
invertible and the numerical problem comes to a N ×N linear system!
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3 Numerical discretization of hyperbolic conserva-
tion laws

3.1 What is a hyperbolic conservation law?

3.1.1 Description

Let D be an open subset of Rm, and U a vector of m variables

U = (u1, . . . , um)t ∈ D. (36)

U is called the state variable or the vector of conserved quantities. It is a
function of space and time, with values in D:

U : Rd × R+ −→ D.

We call system of m conservation laws, the differential system

∂U
∂t

+
∂Fi (U)

∂xi
= 0, X = (x1, . . . , xd)

t ∈ Rd, t ≥ 0 (37)

where Fi, i = 1, . . . , d, are called the flux-functions. They are smooth func-
tions from D into Rm. We also introduce the flux-vector

−→
F = (F1, . . . ,Fd),

which enables us to rewrite equation (37) into an equivalent more compact
and general form

∂U
∂t

+
−→
∇ .
−→
F (U) = 0, X ∈ Rd, t ≥ 0. (37)

Furthermore, if we suppose that the flux-functions are differentiable and
the solution U regular enough, the system can be put into a so-called quasi-
linear form

∂U
∂t

+ ~λ.
−−→
∇U = 0, X ∈ Rd, t ≥ 0 (38)

with ~λ =

(
∂F1

∂U
, . . . ,

∂Fd
∂U

)
, the flux Jacobians.

System (37) expresses the conservation of the quantities u1, . . . , um: if Ω
is an arbitrary sub-domain of Rd and ~n is the outward unit normal to ∂Ω,
the boundary of Ω, it follows from the integration of (37) over Ω and the
Gauss-Ostrogradsky formula that:

d

dt

(∫
Ω
UdX

)
+

∫
∂Ω

−→
F (U) .~n ds = 0. (39)

This means that the time variations of
∫

Ω UdX (the total amount of U in Ω)
is equal to the average flux

−→
F (U) · ~n entering Ω. Because the flux entering

Ω is also the flux going out of Rd\Ω, the quantities u1, . . . , um are conserved
inside the whole space.
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Definition 3.1 (Hyperbolicity)
An differential operator

D = ∂t ·+
d∑
i=1

Ai(X, t)∂i· (40)

is called

• hyperbolic, if the matrices

A (ξ) =
∑
i

Aiξi (41)

are diagonalizable with real eigenvalues for all ξ in
Sd−1 =

{
x ∈ Rd; ‖x‖L2 = 1

}
,

• constantly hyperbolic, if moreover the multiplicities of the eigen-
values remain constant as ξ covers the sphere Sd−1,

• strictly hyperbolic, in the special case where all eigenvalues are real
and simple for every ξ.

Remark 3.2 (Stability L2)
In the case when matrices Ai may depend on time but not on the space
variable X, we can show that these conditions of hyperbolicityt imply
stability in L2.

To do so, we search the solutions of this problem for an initial condi-
tion taken in the set of tempered distributions, S ′(Rd). On this space,
the Fourier transform is defined as the adjoint of the Fourier transform
on the Schwartz class, S (Rd). Then, if ξ ∈ Rd is the Fourier variable in
space and Û the Fourier transform of U, the equation becomes:

∂Û
∂t

= −iA (ξ)Û, ∀ξ ∈ Rd, t ∈ [0;T ] , (42)

where we have used the notation A (ξ) =
∑
i

Aiξi.

Because the Fourier transform is an isometry of L2, operator (40) is
well-posed in L2(R2) if and only if

sup
ξ∈Rd

‖exp(−iA (ξ))‖ < +∞. (43)

This is in particular true when the system is hyperbolic, ie. when the
spatial part of the differential operator is diagonalizable with real eigen-
values.
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Examples of hyperbolic conservation laws

• 1D Euler equations
∂tρ + ∂xρu = 0,
∂tρu + ∂x(ρu2 + p) = 0,
∂tρE + ∂x(ρuH) = 0,

(44)

where ρ is the density, u the velocity, p the pressure given by a equation
of state (p = (γ − 1)ρe for polytropic perfect gases), E = e + 1

2u
2 is

the total energy and H = E + p/ρ is the total enthalpy.

• Multi-D Euler equations
∂tρ +

−→
∇ . (ρ~u) = 0,

∂tρ~u +
−→
∇ . (ρ~u⊗ ~u + pI) = 0,

∂tρE +
−→
∇ . (ρ~uH) = 0.

(45)

In the following, we restrict our study to 1D scalar conservation laws:{
∂tu+ ∂xf(u) = 0, x ∈ R, t > 0,
u(t = 0, x) = u0(x).

(46)

u : R× R+ → R, f ∈ C1(R), u0 ∈ L∞(R).

3.1.2 Characteristic curves
Definition 3.3 (Characteristic Curves)

Let us consider the family of parametric curves{ DX
Dt

= f ′ (u(X(t), t)) ,

X(0) = x0 ∈ R
(47)

The solutions of (46) are constant along these curves and these curves
are therefore straight lines. We call these parametric curves the "char-
acteristics" of equation (46).

Proof : Along the characteristics, we can define

v : t 7−→ u(X(t), t).

Then, by the differentiation chain rule we have:

v′(t) = ∂tu+
DX
Dt

∂xu = ∂tu+ f ′(u)∂xu = 0.

Thus, u is constant along the characteristics and so is f ′ =
DX
Dt

. The
characteristics are therefore straight lines.
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Examples:

• Linear advection, f ′(u) = a ∈ R:

∂tu+ a∂xu = 0.

We have seen in Section 1.3.1 that u(x, t) = u0(x − at) is a solution
of the system. The method of characteristics proves it is the only one,
see Figure 15.

Figure 15: The existence of
characteristic curves X = at
imposes u0(x−at) as a unique
solution.

• Burgers’ equation, f ′(u) = u:

∂tu+ u∂xu = 0

u0(x) =


1, x < 0
1− x, 0 ≤ x ≤ 1
0, x > 1

(48)

The solution steepens from t = 0 to t = 1. At t = 1 all the characteris-
tics which originate in the interval [0, 1] cross at the same point in the
plan (t, x) and the solution is multi-valued at x = 1, see Figure 16.

Figure 16: Solution of the
1D scalar Burgers equa-
tion with initial conditions
(48). All the character-
istics meet at point (1, 1)
and the solution cannot
stay continuous there. A
shock has been created.

3.1.3 Weak formulation

As in the introductory section, we see that the solution cannot stay contin-
uous, whatever the regularity of the initial condition (in our example, u0 is
not maximum regular, but it regularization into a C∞ function would not
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change the conclusion). To move on, we then need to consider the weak
formulation of equation (46).

We define the set of C1 test functions with compact support in Rx ×R+
t

C1
c

(
Rx × R+

t

)
=
{
f ∈ C1

(
Rx × R+

t

)
, Supp (f) is compact.

}
(49)

Note that since R+
t is closed in t = 0, the test function do not necessarily

have to vanish along the line t = 0. But its support is compact in x and
bounded in t.

With these test functions, we now formally multiply (46) by any ϕ ∈
C1
c

(
Rx × R+

t

)
and integrate by part to obtain the following definition of its

weak solutions:
Definition 3.4 (Weak Solutions)

Let u0 ∈ L∞(R). Then u ∈ L∞(Rx ×R+
t ) is a weak solution of problem

(46) if for any ϕ ∈ C1
c

(
Rx × R+

t

)
, we have∫ ∞

0

∫
Rx

(
u.
∂ϕ

∂t
+ f(u).

∂ϕ

∂x

)
dx dt+

∫
Rx

u0(x).ϕ(x) dx = 0. (50)

Remark 3.5
As for the Poisson problem, by integration by part it is obvious that
a "classical" C1 solutions of problem (46) are naturally solutions in the
weak sense of Definition 3.4.

3.1.4 Rankine-Hugoniot condition

Now that we have a weaker formulation of the differential equation (46)
allowing solutions in L∞(R), the following theorem gives a compatibility
condition for the discontinuities of u:
Theorem 3.6 (Rankine-Hugoniot)

We consider equation (46) where f ∈ C1 and u0 ∈ L∞ and piecewise
differentiable. Then, u ∈ L∞ is a piecewise C1 solution in the sense of
distributions on Rx × R+

t if and only if:

(i) u is a classical solution of (46) at all the points where it is C1;

(ii) at all the discontinuities, u satisfies the jump condition, called
Rankine-Hugoniot condition:

(f(ul)− f(ur)) = σ (ul − ur) , (51)

where ul and ur are respectively the limit left and right states of
the discontinuity and σ is the velocity at which this discontinuity
moves.
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Proof : TODO!!!

Example: Burgers’ flux, f(u) = u2/2. In the case of the Burgers’ flux,
jump condition (51) alway reads:

σ =
(ul)

2/2− (ur)
2/2

ul − ur
=
ul − ur

2
. (52)

Then, we can finish example (48). At (x, t) = (1, 1), the characteristics
coming on both sides give limit states ul = 1 and ur = 0. Therefore, the
velocity of the shock is σ = 1

2 and the solution is yet completely determined,
see Figure 17.

Figure 17: Complete solution
of problem (48). Shock gen-
erated at point (x, t) = (1, 1)
propagates at speed σ = 1

2 .

3.1.5 Non-Uniqueness of the weak solution

Let us consider the following so-called scalar Riemann problem for the Burg-
ers’ equation: 

∂u

∂t
+ u

∂u

∂x
= 0, (x, t) ∈ Rx × R+

t ,

u0(x) =

{
ul, x < 0,
ur, x > 0.

(53)

• We suppose that ul ≥ ur. The initial characteristics cross immediately
and the solution is given by two uniform states ul and ur separated
by a shock. The Rankine-Hugoniot condition imposes the velocity of
propagation of this discontinuity: s = (ul + ur)/2.

u(x, t) =

{
ul, x < st,
ur, x > st.

(54)

• When ul < ur, because the characteristic curves are never intersecting,
one can build a continuous solution:

u(x, t) =


ul, x < ult,
x/t, ult < x < urt,
ur, x > urt.

(55)
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But for any a between ur and ul, we have a family of admissible solu-
tions:

u(x, t) =


ul, x < s1t,
−a, s1t < x < 0,
a, 0 < x < s2t,
ur, x > s2t.

(56)

with discontinuities propagating at speeds s1 = 0.5(ul − a) and s2 =
0.5(ur + a).

3.1.6 Entropy solution

The mathematical problem of existence and uniqueness of the solution of
problem (46) has come to a dead end. We have seen that some well chosen
cases do not admit classical solutions. Then, we have extended the space
of existence of the solutions to a larger class of functions and eventually
obtained a possible infinity of solutions. But realistic problems admit only
one reproducible solution. Now, we are looking for a sorting criterion that
would select the phisically relevant solution among the set of possible weak
solutions. This criterion is based on the concept of entropy.

Hyperbolic conservation laws propagate the information perfectly, at per-
fectly defined velocities given by the eigenvalues of the differential operator.
In really, there is always a dissipation phenomenon which scatters the phase
velocities around the group velocity: no real problem is perfectly reversible.
Let us consider the following one-dimensional scalar regularized problem,
ε > 0 being a small viscous parameter:

∂uε
∂t

+ div (f(uε)) = ε∆uε, (57)

with initial condition uε(x, 0) = uε0 → u0 when ε → 0. We still suppose
that uε takes its value in D, a sub-domain of R (m = 1). If f is regular
enough (Lipschitz), it has been shown that for any positive ε, for any initial
condition u0ε ∈ L2, equation (57) admits a unique solution. This result is
partly demonstrated in [3].

If we now consider a sequence of ε going to zero, and a sequence of
solutions of (57) such that :

a) ∃C ∈ R, ‖uε‖∞ ≤ C, independently of ε;

b) uε −→
ε→0

u almost everywhere in R2 × [0; +∞[ ,

then u is a weak solution of (37) and it verifies, in the sense of distributions,
any inequality of the form:

∂

∂t
S(u) + div (G (u)) ≤ 0, (58)

where
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(i) S : D→ R is a smooth convex function;

(ii) G is a scalar smooth functions such that

S′(u)f ′(u) = G ′(u). (59)

(S,G ) is called a pair of Entropy-Flux, S an entropy function and G an
entropy flux. This result may also be extended to systems, see [3] page 27.

If we now take relation (46) and multiply it formally by S′(u), quick
calculation shows that S(u) satisfies an additional conservation relation

∂

∂t
S(u) + ∂xG (u) = 0, x ∈ R, t > 0. (60)

So a mathematical entropy is:

• a convex function of the state variables,

• conserved in the subdomains where the solution is smooth, with a
associated entropy flux G ,

• a signed function across discontinuities, which forbids certain transfor-
mation such as those in (56).

Shocks are then irreversible transformations characterized by the pair of
Entropy-Flux.

The next important result is available in the scalar case for entropy so-
lutions. It is the main result of chapter 2 of [3] were one can find a complete
and rigorous demonstration.
Theorem 3.7 (Kruzhkov)

A weak solution u of a scalar conservation law with a bounded initial
condition u0 ∈ L∞(Ω), verifying relation (58) for any pair of Entropy-
Flux (S,G ) is unique and called the entropy solution. Moreover this
solution is bounded

∀T > 0, u ∈ L∞(Ω× [0;T ]).

We were looking for the solution of a sort of idealistic problem (without
viscosity), and we found that the only relevant solution is the one coming
from the physics. By "the one coming from the physics", we mean the
solution being the limit of a sequence of solutions of an associated more
realistic perturbed problem for a decreasing viscosity coefficient ε. But we do
not have to construct such a sequence of realistic solutions in order to find our
sought solution. We can simply sort the solutions of the idealistic problem
with an entropy criterion. Entropy is then a set of additional conservation
relations the solution of problem (46) has to verify.
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Remark 3.8 (Physical interpretation)
Another point of view is the following: we have started with a system
verifying just the first principle of thermodynamics (conservation of the
variables), and could find either no solutions (in the class of regular
ones) or an infinity (in a weaker class of functions). But by looking at
the physics intrinsic to the problem, we found the system of conservation
laws is well-posed when it comes with an additional entropy condition.
This is the second principle of thermodynamics. This proves that the
mathematical problem is strongly bound to the physical one.

3.1.7 Maximum Principle

We can go further in the analysis of the solution and show that the entropy
solution of a conservation law respects a maximum principle. This prevents
the sudden appearence of a new global extrema in the solution. This property
is very important from a numerical point of view, because one would need
it to be transposed to the solution of the numerical scheme used and hence
ensure the L∞ stability of the scheme and prevent the approximated solution
to explode in finite time. The next theorem comes from [3], where it is
explained and demonstrated in details. It is true only in the scalar case but
for any dimension of the spatial domain. It claims the entropy solution is
bounded in L∞ norm and monotonically depends on the initial condition.
Theorem 3.9

Let u0 belong to L∞(R2). Then the unique entropy solution u of problem

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= 0, x = (x, y) ∈ R2, t ≥ 0

u(x, 0) = u0(x), x ∈ R2

with smooth scalar fluxes f and g, belongs to L∞(R2 × [0, T ]). This
solution satisfies for almost all t ≥ 0,

i)
‖u(., t)‖L∞(R2) ≤ ‖u0‖L∞(R2)

ii) If v is also the entropy solution of (61) associated with initial con-
dition v0, we have

u0 ≥ v0 a.e. =⇒ u(., t) ≥ v(., t) a.e.
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3.1.8 Boundary Conditions

Boundary conditions for hyperbolic conservation laws is a relatively tough
and yet unsolved topic. It is quite easy to see that in the case of one dimen-
sional scalar conservation laws, we need to impose boundary conditions only
on boarders of the computational domain where the characteristics enter the
domain. See Figure 18. In a more general context it is however not easy,

Figure 18: Illustration of boundary condition problem by looking at the lin-
ear advection problem on R+. If the advection velocity (here λi) is negative,
the solution at x = 0 depends on the initial condition and therefore cannot
be impose. On the other hand, when the advection velocity is positive, the
solution above the straight line X = λit depends on the boundary function
imposed at x = 0.

especially with physical boundary conditions such as "slip wall", "farfield",
"free stream", etc. The context of this class is to short to enter these con-
sideration and in the following section we consider test cases which allow us
to simply ignore these boundary constraints.

3.2 Numerical Methods for hyperbolic conservation Laws

In the following, we consider two problems:

• the linear advection of a smooth profile:
∂tu+ ∂xu = 0, x ∈ R/N

u0(x) =

{
cos4 (2πx) , 1

4 ≤ x ≤
3
4

0, otherwise,
(61)

which exact solution is u0(x− t).

• the burger equation with shock:
∂tu+ ∂x

u2

2 = 0, x ∈ R

u(x, t = 0) =


1, x < 1

4 ,
−2x+ 3

2 ,
1
4 ≤ x ≤

3
4

0, x > 3
4 .

(62)
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It creates a shock at time t = 0.5, propagating at speed 0.5.

We solve these two problems on the fixed interval I = [0, 1] that we
subdivide in N sub-intervals

Ii = [xi, xi+1], i ∈ J0, N − 1K, where xi =
i

N
= i∆x. (63)

We thus obtain N + 1 nodes and N associated cells at which we wish to
approximate the solutions of problems (61) and (62).

3.2.1 Finite Differences

Finite Difference discretization of a PDE is essentially based on the Taylor
developments:

uni+1 = u(xi+1, t
n) = uni + ∆xu′(xi, t

n) +
∆x2

2
u′′(xi, t

n) +O(∆x3) (64a)

uni−1 = u(xi−1, t
n) = uni −∆xu′(xi, t

n) +
∆x2

2
u′′(xi, t

n) +O(∆x3) (64b)

Same developements can be made in the time direction. From which we
obtain that

ui+1 − ui
∆x

,
ui − ui−1

∆x
,

un+1
i − uni

∆t
,

are approximation of order 1 of the spatial and time derivatives and

ui+1 − ui−1

2∆x
and

un+1
i − un−1

i

2∆t

are second order approximations. Higher order developments can be lead but
these are the only consistent approximations of the first order derivatives on
the compact 3-points stencil {xi−1, xi, xi+1}. It is enough to illustrate the
main features of a numerical scheme for hyperbolic conservation laws.

Explicit Schemes:

un+1
i = uni −

a∆t

∆x

(
uni − uni−1

)
Upwind (65a)

un+1
i = uni −

a∆t

2∆x

(
uni+1 − uni−1

)
Centered (65b)

un+1
i = uni −

a∆t

∆x

(
uni+1 − uni

)
Downwind (65c)

From now on, the non-dimensional ratio a∆t
∆x will be noted α. These explicit

schemes rewrite

un+1
i = (1− α)uni + αuni−1 (66a)

un+1
i =

α

2
uni−1 + uni −

α

2
uni+1 (66b)

un+1
i = (1 + α)uni+1 − αuni+1 (66c)
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From (66), we see immediatly that under an upper constraint on the time
step:

α =
a∆t

∆x
≤ 1, (67)

the update of un+1
i is a convex combination of the values of ui in the stencil

at time tn. Then, the solution respect a discrete version of the maximum
principle and the discrete solution is stable in L∞. Such a scheme is called
monotone.

On the contrary, schemes (66) and (66) show negative coefficients. We
can then always think about situation which will violate the discrete maxi-
mum principle

min
(
uni−1, u

n
i , u

n
i+1

)
≤ un+1

i ≤ max
(
uni−1, u

n
i , u

n
i+1

)
. (68)

These schemes are not monotone. In fact it is worse than that and we will
show now that these schemes are not stable in the L2 norm.

Von Neumann’s Analysis: Let’s look at what happens to a certain
Fourier mode of the discrete solution:

u(x, t) = û(t) exp(ikx) −→ uni = ûn exp(ikxi).

In the case of the upwind scheme we have

ûn+1 = (1− α)ûn + αe−ik∆xûn

⇒ ûn+1

ûn
= 1− α+ αe−ik∆x

This last ratio is the dispersion relation for the considered mode k or ξ =
k∆x. In particular, we can get the amplification factor of this mode:

|G (ξ)|2 =
|ûn+1|2

|ûn|2
. (69)

In the case of the upwind scheme, we have:

|G (ξ)|2 = (1− α+ α cos ξ)2+α2 sin2 ξ = (1−α)2+2α(1−α) cos ξ+α2 (70)

Since −1 ≤ cos ξ ≤ 1, we see that{
1− 2α ≤ |G (ξ)|2 ≤ 1, if α ∈ [0, 1]
1 ≤ |G (ξ)|2 ≤ |1− 2α|, otherwise (71)

This confirm that the explicit upwind scheme is stable under condition (67).
If α > 1, some modes start to grow exponentially and the solution blows up
in finite time.
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We do the same work for the explicit centered scheme and get:

G (ξ) = α/2e−iξ + 1− α/2eiξ = 1− i sin ξ,
⇒ |G (ξ)|2 = 1 + sin2 ξ.

This scheme is then unconditionally unstable! Same conclusion can be drawn
for the explicit downstream scheme, since it is equivalent to the upwind
scheme with opposite velocity (α→ −α).

Implicit schemes

un+1
i − uni

∆t
+ a

un+1
i − un+1

i−1

∆x
= 0 Upwind (72a)

un+1
i − uni

∆t
+ a

un+1
i+1 − u

n+1
i−1

2∆x
= 0 Centered (72b)

un+1
i − uni

∆t
+ a

un+1
i+1 − u

n+1
i

∆x
= 0 Downwind (72c)

These schemes are called implicit because the solution at next time step is
the solution of an implicit equation. In this example, since the continuous
equation is linear, this equation is simply a linear system:

(1 + α)un+1
i − αun+1

i−1 = uni (73a)

α/2un+1
i+1 + un+1

i − α/2un+1
i−1 = uni (73b)

αun+1
i+1 + (1− α)un+1

i = uni (73c)

Von Neumann analysis shows that the implicit upwind scheme is un-
conditionally stable, as is the implicit centered one. As can be expected,
the centered version is more accurate since the spatial derivative is approxi-
mated at a better precision. The implicit downwind scheme is stable under
condition α ≥ 1. It is then of no use in practice because it is very dissipative.

3.2.2 Stabilized Finite Elements

We consider here a Finite Element approximation in space of the linear
advection equation. To do so, the solution is decomposed on the Finite
Element basis functions:

uh(t, x) =
∑
j

uj(t)ϕj(x). (74)

Then we proceed to the variational formulation:∫
Ω

(∂tu+ a∂xu = 0)× ϕi ⇔MdtU + aKU = 0,
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where U(t) = (u0(t), . . . , uN (t))t is the vector of unknowns,

Mij =

∫
Ω
ϕiϕjdx =

∆x

6



4 1 (0)

1
. . . . . .
. . . . . . . . .

. . . . . . 1
(0) 1 4


(75)

is called the mass matrix and

Kij =

∫
Ω
ϕi∂xϕjdx =

1

2



0 1 (0)

−1
. . . . . .
. . . . . . . . .

. . . . . . 1
(0) −1 0


(76)

is called the stiffness matrix.
We have yet obtained a implicit ODE on the vectorial unknown U that

we can try to integrate with a adapted method for ODE integration. One
may in particular try the forward Euler scheme

dtU =
Un+1 − Un

∆t
+O

(
∆x2

)
,

and get the following numerical method

MUn+1 =MUn − a∆tKUn. (77)

Von Neumann analysis gives

∆x

6
(4 + 2 cos ξ)Û

n+1
=

∆x

6
(4 + 2 cos ξ)Û

n − a∆ti sin ξÛ
n

⇒ |G (ξ)|2 = 1− 3iα
sin ξ

2 + cos ξ
(78)

and the method is even more unstable than the explicit centered scheme.
Remark 3.10

If one replaces the mass matrixM by an equivalent diagonal matrix ∆xI,
what is called mass lumping, we recover the explicit centered scheme.

Stabilization
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3.2.3 Finite Volume Methods

Instead of considering the degrees of freedom at the nodes of the mesh, Finite
Volume methods attach them to the cells of the mesh. In general, these DoFs
allow a local polynomial reconstruction of the solution. At first order, one
may wish in particular to have a numerical scheme dealing with the time
evolution of the average values of the conserved quantities in each cell:

Ūi =
1

|Ii|

∫
Ii
Udx. (79)

This can be achieved by a variational formulation with the caracteristic
functions of each cells as basis functions: χi. Indeed, these caracteristic
functions span the space of constant per cells solutions.

∫
Ω

(∂tu+ ∂xf(u) = 0)× χi ⇒ |Ii|
d

dt
Ūi +

∫
Ii
∂xf(u) = 0

This last integral is crucial. Indeed, one could say it has the value of the
difference of the fluxes at the extremities of the interval. But the solution
is not defined at the interfaces between two cells because it is spanned by
the caracteristic functions. Then the values of the flux at the interfaces is
replace by a certain function of the two neighboring averaged values: these
are the numerical fluxes. The first order finite volume scheme then reads:

dtūi +
1

∆xi
(F∗F∗F∗(ūi+1, ūi)−F∗F∗F∗(ūi, ūi−1)) = 0 (80)

As in the case of Finite Elements, we have come to an ODE on ūi that
we can integrate by our favorite ODE scheme. Forward Euler in particular
gives the update:

ūn+1
i = ūni −

∆t

∆x
(F∗F∗F∗(ūi+1, ūi)−F∗F∗F∗(ūi, ūi−1)) . (81)

Lax-Friedrichs Flux

F∗F∗F∗(ūi+1, ūi) =
1

2
(f(ūi+1) + f(ūi))−

αi
2

(ūi+1 − ūi) . (82)

Coefficient αi is interface dependant. It has to be larger than f ′(ūi+1) and
f ′(ūi). Its choice will affect the constraint of stability on the time step. The
larger the αi, the more dissipative the method.

Lax-Wendroff Flux

F∗F∗F∗(ūi+1, ūi) = f

(
ū
n+ 1

2

i+ 1
2

)
, where ū

n+ 1
2

i+ 1
2

=
1

2
(ūi+1 + ūi)−

α

2
(f(ūi+1) + f(ūi)) .

(83)
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This scheme is second order in space and time, stable and consistent with
the entropy inequalities. However it is not monotonous and can generate
spurious oscillations. Since the scheme is stable, these oscillations do not
degenerate but they can affect very much the quality of the solution.

Mac-Cormack Method

F∗F∗F∗(ūi+1, ūi) =
1

2
(f(ūi+1) + f(ū∗i )) , where ū∗i = ūi−α (f(ūi+1)− f(ūi)) .

(84)

Godunov Method

3.2.4 Discontinuous Galerkin Methods

3.2.5 Residual Distribution Schemes

3.2.6 Time Integration

3.3 Positivity and convex constraints preservation
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4 Numerical treatment of some SDEs

We want to introduce the differential equations with stochastic terms and
describe their links with the ODEs and PDEs. We will speak about stochastic
differential equations driven by stochastic processW . In a very formal sense,
we are interested in an equation under the form

y′ = h(y) + Ẇ (85)

where Ẇ is some sort of derivative of the stochastic process W . But we
will see that many stochastic processes are not even differentiable, thus the
equation is not well-posed. Like in the previous sections, we will skip this dif-
ficulty by introducing some weak formulation of the equation (85) essentially
by using a new notion of integration named the Itô’s integral.

4.1 Random process and Brownian motion
Definition 4.1

A random process is a temporal function taking possibly different values
at fixed time t as a random variable.

Its complete understanding needs the theory of probability and stochastic
processes. But we can consider simple processes and skip all the general
theory. The most classical random variable with density is the Gaussian
random variable. It is completely determined by two given real numbers
named the mean and the variance.
Definition 4.2

We say that G is a Gaussian random variable of mean µ and standard
deviation σ if the density of G is given by the Gaussian function

P(G ∈ dx) =
1

σ
√

2π
e(µ−x)2/2σ2

dx

A Brownian motion is a very complex (probabilistic) process defined on
[0, 1]. But it is a universal process which is completely defined by only three
properties (see [10])

Definition 4.3
A stochastic process

B :
[0, 1] → R

t 7→ B(t) = Bt

is a Brownian motion if and only if it verifies the following properties:

• B(0) = 0,
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Figure 19: Gaussian curve

• B(t)−B(s) is a gaussian random variable of mean 0 and variance
σ2 = t− s,

• the increments are independent.

Given the existence of this random process we can solve our first stochas-
tic differential equation (SDE) driven by the stochastic process W := B a
Brownian motion. Roughly speaking we are looking for a random process y
such that

y′ = c+ Ẇ

where ′ and ˙ have certainly the “same” sense since acting on similar objects.
The solution is obviously y(t) = y0 +ct+Wt where y0 is the initial condition
of the SDE (y(0) = y0). This is a Gaussian process with independent incre-
ment but this is not a Brownian motion. Actually we speak about a drifted
Brownian motion.

Now can we solve an other more complex SDE ?

y′ = −by + Ẇ (86)

The solution without Ẇ is y(t) = y0e
−bt. By a classical method named the

variation of the constant, we expect that the solution has the form:

y(t) = y0e
−bt + e−bt

∫ t

0
ebsẆsds. (87)

But what is the sense of the derivative of the integral part ? Is this term
sufficiently smooth according to the regularity of Ẇ ? Since Ẇ is certainly
not a continuous function, the integral part is certainly neither well defined
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nor differentiable. But, if ′ and ˙ are the corresponding operators of integral
operators

∫
, perhaps we can have a formulation in the form∫ t

0
y′(s)ds = −b

∫ t

0
y(s)ds+

∫ t

0
Ẇs ⇔ y(t) = −b

∫ t

0
y(s)ds+Wt. (88)

In this case, since W has more regularity than Ẇ and y has certainly suffi-
cient regularity, we can look for a solution of this “more regular” equation.

4.2 Stochastic integral

An Itô’s integral is some sort of a Riemann’s integral with respect to a ran-
dom process with possibly infinite quadratic variation. Skiping the details,
suppose that we can construct this integral as a “limiting process”1 using the
following formula∫

(X,dW ) = lim
h→0

N−1∑
i=0

X(ti)(Wti+1 −Wti), (89)

where 0 = t0 < t1 < · · · < tN−1 < tN = 1 (with N depending on h) is
a partition of the interval [0, 1] with a maximum size step h converging to
0. The limit is actually taken over all the possible partitions of maximum
step size h. This limit has possibly no sense in a classical sense and we need
probabilistic notion of convergence in order to fully describe the limiting
process. Given this new integral, we will say that y is an Itô process if it has
a good decomposition.
Definition 4.4

y is an Itô process if there exists two process b and σ (sufficiently smooth
and integrable) such that

y(t) = y(0) +

∫ t

0
b(s)ds+

∫ t

0
(σ, dW ).

In this case, we can compute the “derivative” of y writing

dy = b(t)dt+ σ(t)dW.

Now, using this definition, we can give a more correct writing of a stochastic
differential equation.

1I skip voluntarily all the details about the notion of convergence or the martingale
structure which are completely out of the scope of this introduction about partial differ-
ential equations. The interested reader can find many courses about SDE in the classical
literature see [11].
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4.3 Stochastic differential equations and PDEs

We will say that the solution to the formal equation y′ = b+ σẆ is the Itô
process characterized by b and σ. We will rewrite this equation under the
form. {

dy = bdt+ σdW,
y(0) = y0.

Thanks to this new definition of a solution, we can search a solution to
a stochastic differential equation of a more complex form{

dy = b(t, y(t))dt+ σ(t, y(t))dW,
y(0) = y0.

(90)

Theorem 4.5

Suppose that |b(t, 0)| and |σ(t, 0)| are square integrable (i.e. in L2(R+))
and that there exists K > 0 such that:

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|.

Then for all initial condition y0 ∈ L2 and for all T > 0 there exists a
unique solution to the SDE (90) on [0, T ].

We come back to the equation (86). It verifies the hypotheses of the the-
orem thus we know that we have a unique solution. With our new notations
we expect that the solution is the following Itô process:

y(t) = y(0)− by0

∫ t

0
e−b(t−s)ds+

∫ t

0
(e−b(t−s), dW )

or simply

y(t) = y0e
−bt + e−bt

∫ t

0
(ebs, dW ),

so we have

dy = −by0e
−btdt− be−btdt

∫ t

0
(ebs,dW ) + e−btebtdWt = −bydt+ dWt.

Finally, in order to conclude this part about theoretical description of
stochastic differential equation, we will describe a crucial link between stochas-
tic differential equations and the classical theory of partial differential equa-
tions. This link is fully described by the Feynman-Kac formula.
Theorem 4.6 (Feyman-Kac formula)

Consider the reverse Cauchy problem with a classical PDE{
0 = ∂tu+ µ(t, x)∂xu+ 1

2σ
2(t, x)∂xxu,

u(T, x) = uT (x),
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and yt,x the Itô process solution of{
dy = µ(t, y)dt+ σ(t, y)dW,
y(t) = x,

with an “initial” condition at time t and withW a Brownian motion then

u(t, x) = E[uT (yt,x(T ))].

where E denotes the expectation of the process (i.e. the mean of all
random realizations).

4.4 Numerical treatment of stochastic differential equations

Thanks to the Feyman-Kac formula, the simulation of a solution to a stochas-
tic differential equation can lead to the solution of a partial differential equa-
tion. Moreover the simulation of a stochastic differential equation is very
closed to the simulation of an ordinary differential equation since it does not
imply partial derivative but only differential operators. In this section we
will describe some stochastic schemes.

The simpler scheme is the Euler-Maruyama method.
Definition 4.7

The Euler-Maruyama scheme for the stochastic differential equation{
dy = µ(t, y)dt+ σ(t, y)dW,

y(0) = x,

is the numerical recursive procedure defined for a step size dt > 0

T0 = 0,

Y0 = x,

Tn+1 = Tn + dt,

Yn+1 = Yn + µ(Tn, Yn)dt+ σ(Tn, Yn)(W (Tn+1)−W (Tn)).

Since the increments of a Brownian motion are independent and are Gaussian
random variables, we know that the quantities (W (Tn+1) −W (Tn)) are in
fact independent realizations of a Gaussian random variable of mean 0 and
variance Tn+1 − Tn = dt. The simplified Euler-Maruyama scheme becomes

Y0 = x,

Yn+1 = Yn + µ(ndt, Yn)dt+ σ(ndt, Yn)
√
dtGn,

where Gn are independent Gaussian random variables N (0, 1).
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5 Conclusion

These lectures are only a very short introduction to the theory of partial
and stochastic differential equations. Here are the notes of the two authors
for the lecture given in september 2014 at the “Institut des Hautes Études
Scientifiques” in Bures-sur-Yvette.

The authors are aware that many objects need a complete theory to be
fully understandable but they have tried to illustrate the principal aspects
of these domains of research for the students. They have voluntarily skipped
many details. For this reason many definitions, properties or theorem are
not complete. We apologize to the attentive readers for this.

Anyway, we hope that this document is a good introduction for the be-
ginners and that it will encourage the students to pursue in this area of
research.
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