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ABSTRACT10

Characterizing the time-domain response of a random multiple-degree-of-freedom dynamical sys-11

tem is challenging and often requires Monte Carlo simulation (MCS). Differential equations must12

therefore be solved for each sample, which is time consuming. This is why polynomial chaos ex-13

pansion (PCE) has been proposed as an alternative to MCS. However, it turns out that PCE is not14

adapted to simulate a random dynamical system for long-time integration. Recent studies have shown15

similar issues for the frequency response function of a random linear system around the deterministic16

eigenfrequencies. A Padé approximant approach has been successfully applied; similar interesting17

results were also observed with a random mode approach. Therefore the latter two methods were18

applied to a random linear dynamical system excited by a dynamic load to estimate the first two19

statistical moments and the probability density function at a given instant of time. Whereas the20

random modes method has been very efficient and accurate to evaluate the statistics of the response,21

the Padé approximant approach has given very poor results when the coefficients were determined in22

time domain. However, if the differential equations were solved in the frequency domain, the Padé23
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approximants, which were also calculated in the frequency domain, provided results in excellent24

agreement with the MCS results.25

keywords: Random dynamical systems; polynomial chaos expansion; transient response; random26

modes; extended Padé approximants.27

INTRODUCTION28

Over recent decades, numerical methods to solve nonlinear multiphysics multiscale models have29

been successfully developed. However the focus of these complex formulations has mainly concerned30

deterministic problems.31

The challenge has been to account for the uncertainties to describe more accurately real systems.32

Neumann expansion (?), and polynomial chaos expansion (PCE) (Ghanem and Spanos 1991) can be33

considered as the first methods used to study random systems in an engineering context, and PC is34

now one of the most popular tools to propagate uncertainties through numerical models. Ghanem35

and Spanos (Ghanem and Spanos 1991) proposed to model the random parts of a quantity with a36

polynomial chaos (PC) expansion (PCE), which had been developed by Wiener (Wiener 1938). The37

original polynomial chaos has been extended to several families of random variables (?; Witteveen38

and Bijl 2006).39

The objective of this work is to study random linear dynamical systems in the time domain.40

Polynomial chaos expansion has been already used to describe the time domain response of nonlinear41

random systems. It has been observed that accurate long-time integration would require a lot of terms42

in the expansion (Gerritsma et al. 2010; Le Maître et al. 2010) and is not effective in determining43

limit cycles of random oscillators (Beran et al. 2006; Le Meitour et al. 2010). Some methods have44

been proposed to improve the method, such as introducing a transformnation in the time domain45

(Le Maître et al. 2010; ?), identifying a random nonlinear autoregressive exogenous model (?), and46

updating the PC basis with a Gram-Schmidt orthogonalisation. This method aims to find a basis to47

describe the random response that leads to a low number of terms in the expansion.48

A similar issue arises to evaluate the steady-state response around the mean natural frequencies49

of a random dynamical system. Methods based on Padé approximants (XPA) and random modes50
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(RM) have been successfully applied to tackle this issue (Jacquelin et al. 2017). Therefore, it is51

interesting to explore the ability of these techniques to estimate the transient response of random52

linear dynamical systems.53

First a brief presentation of the PCE, Padé approximants and random modes is given. The54

methods are then illustrated on an example. Finally conclusions are drawn.55

POLYNOMIAL CHAOS EXPANSION (PCE) IN THE TIME-DOMAIN56

A linear uncertain system is studied. The uncertainty is modelled with r random variables,57

{ξi}i=1,··· ,r, gathered in vector Ξ. The response, x(t,Ξ) ∈ IRN , satisfies the following equation58

M(Ξ) ẍ(t,Ξ) + C(Ξ) ẋ(t,Ξ) + K(Ξ) x(t,Ξ) = F(t) (1)59

where F(t) is the force, and60

M(Ξ) = M0 +
r∑

i=1
ξiMi, K(Ξ) = K0 + ∑r

i=1 ξiKi, C(Ξ) = C0 +
r∑

i=1
ξiCi (2)61

Random variables {ξi}i=1··· ,r are assumed to be independent, and to be zero mean. The system is62

deterministic when all the random variables are equal to zero, i.e. is defined with (M0, K0, and C0).63

In the following, only the stiffness matrix is assumed to be random, but the results can be easily64

obtained with random mass and damping matrices.65

The solution of Eq. (1) is random and can be represented in terms of the PC basis {ΨJ(Ξ), J ∈ IN}66

(Ghanem and Spanos 1991) as67

x(t,Ξ) =
∑

J∈Nr

YJ(t)ΨJ(Ξ) (3)68

where J is a multi-index J = (J1, · · · , Jr); |J | = ∑r
i=1 Ji is the order of polynomial ΨJ . The PC69

basis are calculated from r orthogonal polynomial sets {PJj
(ξj)}Jj∈IN for j = 1, · · · , r; Jj is the order70

of PJj
(ξj) (?)71

ΨJ(Ξ) =
r∏

j=1
PJj

(ξj) (4)72
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The choice of the j-th family {PJj
} is related to the probability distribution of ξj (e.g., Legendre73

polynomial if ξj has a uniform distribution): if the random variables follow a different statistical law,74

different families of PC are used. In the following the polynomials are normalized with respect to75

their probability distribution (see Eq. (8)).76

For a numerical study, Eq. (3) is truncated at order m, with P + 1 = (m + r)!/(m! r!) terms.77

Consequently the approximate solution xP is an expansion over Im, a set of multi-index J such that78

Im = {J ∈ Nr/|J | ≤ m}79

xP (t,Ξ) =
∑

J∈Im

YJ(t)ΨJ(Ξ) =
P∑

j=0
Yj(t)Ψj(Ξ)Ψj(Ξ) (5)80

Exponent P is no longer written explicitly to simplify the notation and the more tractable single81

index notation is used.82

Substituting x from Eq. (5) into Eq. (1), and considering the orthogonality between the polyno-83

mials, Eq. (1) becomes84

M̃Ÿ(t) + C̃Ẏ(t) + K̃Y(t) = F̃(t) (6)85

86

with87
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Ak ∈ R(P +1)×(P +1) with (7)88

[A0]ij =
∫
· · ·

∫
Ψi(Ξ)Ψj(Ξ)p(Ξ) dξ1 . . . dξr = δij (8)89

[Ak>0]ij =
∫
· · ·

∫
ξk Ψi(Ξ)Ψj(Ξ)p(Ξ) dξ1 . . . dξr (9)90

M̃ =
r∑

k=0
Ak ⊗Mk ∈ Rn(P +1)×n(P +1) (10)91

C̃ =
r∑

k=0
Ak ⊗Ck ∈ Rn(P +1)×n(P +1) (11)92

K̃ =
r∑

k=0
Ak ⊗Kk ∈ Rn(P +1)×n(P +1) (12)93

Y = [ Y>0 Y>1 . . .Y>P ]> ∈ Rn(P +1) (13)94

F̃ = [ F> 0 0 . . .0 ]> ∈ Rn(P +1) (14)95

where p(Ξ) is the joint probability density function (PDF), δij is the Kronecker delta, ⊗ is the96

Kronecker product, “[•]>” is the transpose of [•], and [•]ij represents an element of [•].97

The frequency response function of such a system has been studied in several publications (?; ?;98

?; ?; Jacquelin et al. 2015; ?; Yaghoubi et al. 2017). It was shown in (Jacquelin et al. 2015) that99

PCE provides excellent results except about the deterministic eigenfrequencies. Two methods based100

on PCE were proposed and proved their efficiency: the extended Padé approximants (XPA) and the101

random modes (RM).102

As already mentioned, it has been highlighted in the literature that the PCE in the time domain103

loses its accuracy when the time increases, or many terms would be required in the expansion; this104

will be also verified in the following example. Therefore the Padé approximant approach and the105

random modes were applied to estimate the response and to test their efficiency in the time domain.106

PADÉ APPROXIMANTS AND RANDOM MODES107

eXtended Padé Approximants (XPA): a rational function expansion108

Originally the Padé approximant (PA) technique consists in determining a rational function109

approximation from a known Taylor expansion of a function: it is supposed to converge much faster110
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than the Taylor expansion (Baker and Graves-Morris 1996) when the function has poles.111

The extended Padé approximants (XPA) are defined by replacing the monomials by PC in both112

the numerator and the denominator (Chantrasmi et al. 2009; Emmel et al. 2003; Guillaume et al.113

2000; Matos 1996)114

[Nk/Dk]XP C
k

(t, Ξ) =
∑nk

j=0 N
XP A
k,j (t) Ψj(Ξ)∑dk

j=0 D
XP A
k,j (t) Ψj(Ξ)

(15)115

where k refers to the k-th degree of freedom (DOF); DXP A
k,0 is equal to unity.116

NXP A
k,i and DXP A

k,i are derived by comparing Eq. (5) to Eq. (15):117

P∑
i=0

Yik(t) Ψj(Ξ) =
∑nk

j=0 N
XP A
k,j (t) Ψj(Ξ)

1 + ∑dk
j=1 D

XP A
k,j (t) Ψj(Ξ)

(16)118

Projecting Eq. (16) on a sufficient number of polynomial chaos gives the algebraic system verified119

by the unknown coefficients (Jacquelin et al. 2017).120

Random modes (RM)121

The response of a linear system can be determined with mode superposition as122

X(t,Ξ) =
N∑

n=1
q̃n(t,Ξ) φ̃n(Ξ) (17)123

where {ω̃k, φ̃k} are the random modes, and q̃n is the random modal coordinate.124

The random modes can be estimate from the deterministic modes, {ωk, φk}, and a PCE (Des-125

sombz et al. 1999; Jacquelin et al. 2017):126

ω̃2
k = ω2

k

 P∑
p=0

ak
p Ψp(Ξ)

 (18)127

φ̃k =
N∑

n=1
λ̃k

n φn =
N∑

n=1

 P∑
p=0

λk
np Ψp(Ξ)

 φn (19)128

where {ak
p, {λk

np}n=1···N}p=0···P are identified according to a procedure proposed in (Dessombz et al.129

1999).130

EXAMPLE131
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2-DOF random system132

Stiffnesses k1 and k2 of the 2-DOF system shown in Fig. 1 are random variables with133

k1 = k (1 + δK ξ1) (20)134

k2 = k (1 + δK ξ2) (21)135

where random variables ξ1 and ξ2 are independent; k = 15000 N/m, δK = 5%. The other character-136

istics are m = 1 kg and c = 1 kg.s−1. The two deterministic eigenvalues (i.e. for ξ1 = ξ2 = 0) are137

12.05 Hz and 31.54 Hz, and the modal damping ratios are 0.25 % and 0.66 %.138

Mass 1 is excited by force F1(t) = F0 sin(ωe t) if t ∈ [0, 2π/ωe] and F1(t) = 0 otherwise; F2(t) is139

equal to zero; F0 = 1 N; ωe = 2.5 rad/s but two other values were also investigated.140

The uncertain stiffness matrix is K = K0 + ξ1 K1 + ξ2 K2.141

Both random variables ξ1 and ξ2 follow a normal distribution truncated at ±5 standard deviations142

so that the stiffnesses are positive.143

Statistics in the time domain144

The history of the first two statistical moments (mean and standard deviation) were evaluated145

in several ways. The reference quantities are obtained with a Monte Carlo simulation, where the146

responses are calculated for each sample of the stiffness matrix; a latin hypercube sampling method147

with 10000 samples were used to get the samples.148

There are two ways to calculate the response: the most usual method consists in integrating149

motion equation (1); however it is also possible to solve it in the frequency domain by applying150

a Fourier transform, then dividing the two signals, and finally returning to the time domain with151

an inverse Fourier transform. The latter method may be much faster than the direct integration,152

although appropriate signal processing must be applied (Doyle 1997) as well as specific procedures153

to account for non-zero initial conditions (Siqueira Meirelles and Arruda 2005).154

First, the results have been calculated by integrating motion equation (1) with a β− γ-Newmark155
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method (β = 1/4, γ = 1/2: constant average acceleration) over the interval [0, 20] s with a time step156

equal to 0.01 s. The reference results obtained with the Monte Carlo simulation are represented by a157

blue line in all the following figures. Similarly the PCE (resp. XPA, RM) results are represented by158

a red (resp. black, magenta) dotted line. A relative error errS is calculated to compare the reference159

results,MCS, and the results obtained from method S (where S is obtained with either PCE, XPA160

or RM):161

errS = ‖S −MCS‖2

‖MCS‖2
(22)162

All the errors are listed in Table 1.163

The PCE had an order equal to 15 (which means 136 terms in the expansion). The error is quite164

high (greater than 18 %) for the first two statistical moments (see Figs. 2(a) and 3(a)). The XPA165

results are presented in Figs. 2(b) and 3(b) for N1 = 2 and D1 = 2: the figures and the errors show166

that the method is not acceptable. Higher degrees for both the numerator and the denominators167

were unsuccessfully used. On the contrary the random modes determined with PC of order equal168

to 1 were very efficient to estimate the statistics of the response: in Figs. 2(c) and 3(c), it is not169

possible to distinguish the random mode results from the MCS results.170

The PDF of the response at t = 6 s are shown in Fig. 4 and the quality of the approximation is171

assessed by calculating the Kullback-Leibler (KL) divergence (Kullback and Leibler 1951; Basseville172

2013), DKL. It was found that DKL is greater than 20 for both the PCE and the XPA, whereas173

DKL = 3× 10−3 for the random modes. The results show that the PDF obtained with the random174

modes are in good agreement with the MCS, whereas the PDFs estimated with the PCE and the175

XPA are in poor agreement with the MCS. Accordingly, the only efficient method is the random176

modes method.177

It seems that integrating the motion differential equation, Eq. (6), produces a cumulative error178

from all the previous times on all the coefficients of the PCE: this error spoils the sequence of the179

coefficients at a given instant. However the extended Padé approximant technique has proved its180

efficiency for estimating the PDF of the steady-state response (Jacquelin et al. 2017), and hence181

an investigation of the XPA method based on PC coefficients obtained in the frequency domain is182
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proposed.183

Statistics in frequency domain184

The Padé approximant technique is therefore applied in frequency domain together with a Monte185

Carlo simulation (MCS) to calculate a sample of responses in the frequency domain: an inverse186

Fourier transform transfers all the responses from the frequency domain to the time domain.187

In the frequency domain, a PCE of the Fourier transform of the response, X , is carried out188

X (ω,Ξ) =
P∑

j=0
Yj(ω)Ψj(Ξ) (23)189

and substituted into the Fourier transform of the motion equation, which in turn is projected on each190

of the PC; this Galerkin projection provides coefficients Yj(ω) (Jacquelin et al. 2015). Coefficients191

Yj(t) are obtained by applying an inverse Fourier transform to Yj(ω)192

Further, {Yj(ω)}{j=0···P} can be used to calculate the XPA of X (ω,Ξ), [M/N ]X (ω,Ξ), in the193

frequency domain. Therefore the inverse Fourier transform of the XPA is an estimate of x(t,Ξ).194

For completeness, the modal equations were also solved in the frequency domain for all the random195

modes: an inverse Fourier transform gives the random mode solution in the time domain.196

The first two statistical moments were estimated, and the errors with respect to the MCS sim-197

ulations are listed in Table 2. The results show that the XPA gives very accurate estimates of the198

mean and the standard deviation of the response, whereas the accuracy of the PCE and the random199

modes method is not modified by solving the equations in the frequency domain. Similarly the KL200

divergence at t = 6 s is now reduced to 5 × 10−3. This is confirmed by the history of the first two201

statistics and the PDF at t=6 s, which are plotted in Fig. 5: it is not possible to distinguish the202

MCS curves and the XPC curves.203

In (Jacquelin et al. 2015), it was shown that in case of a harmonic excitation, the PCE model204

is not efficient for a frequency close to the deterministic eigenfrequencies, tand hence the results205

for two other frequency are also given in Table 2. ωe = 75.7 rad/s (12 Hz) is close to to the first206

eigenfrequency and ωe = 125.7 rad/s (20 Hz) is a frequency between the two eigenfrequencies. It can207
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be seen that the quality of the results has not deteriorated.208

CONCLUSION209

Linear random multiple DOF systems were addressed in this study. It was shown that the random210

modes were very efficient to estimate the statistics of the transient response. Conversely, the Padé211

approximant method based on polynomial chaos did not give satisfactory results.212

It has been shown in a previous work that XPA is efficient in the frequency domain; hence the213

XPA is calculated in the frequency domain and then transformed into the time domain by an inverse214

Fourier transform. The results were then in excellent agreement with the ones obtained with Monte215

Carlo simulations. The proposed methods are alternatives to the TDgPC presented in (Gerritsma216

et al. 2010).217

One issue not addressed in this paper is the presence of close modes, which can give problems in218

the estimation of the PDFs of the random modes. The example had well separated modes and hence219

the random modes approach worked well, but this is not guaranteed with close modes. Of course the220

frequency domain approach using the XPA does not require any modal transformation and hence221

will work equally well for systems with close modes.222
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TABLE 1. Error on some statistics: time domain
method mean (%) standard deviation (%)
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TABLE 2. Error on some statistics: frequency domain

ωe (rad/s) method mean (%) std (%)
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FIG. 1. A two degree-of-freedom system with random stiffnesses
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FIG. 2. Time history of x1 mean; MCS (blue solid line) vs. (a): PCE (degree 15, P = 135 -
red line); (b): XPA ([1/2], P = 14 - black line); (c): random modes solution (magenta line)
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FIG. 3. Time history of x1 standard deviation; MCS (solid blue line) vs. (a): PCE (degree
15, P = 135 - red line); (b): XPA ([1/2], P = 14 - black line); (c): random modes solution
(magenta line)
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FIG. 4. PDF of x1 at t=6 s; MCS (solid blue line) vs. (a): PCE (degree 15, P = 135 - red
line); (b): XPA ([1/2], P = 14 - black line); (c): random modes solution (magenta line)
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FIG. 5. statistics of x1 obtained through time-frequency transformations; MCS (solid blue line)
vs XPA ([1/2], P = 14 - black line); (a): history of mean; (b): history of standard deviation;
(c): PDF of x1 at t=6 s

21 Jacquelin, January 21, 2020


