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bLAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.

cDepartment of Electrical Engineering-Systems, Tel Aviv University, Israel.

Abstract

This work addresses distributed event-triggered control law of 1-D nonlinear Korteweg-de Vries (KdV) equation
posed on a bounded domain. Such a system, in a continuous framework, is exponentially stabilizable by a linear
state feedback as a source term. Here we consider the situation where the feedback is sampled in time and
piecewise averaged in space, and an event-triggering mechanism is designed to maintain stability of this infinite
dimensional system. Both well-posedness of the closed-loop system and avoiding the Zeno behaviour issues
are addressed. Sufficient LMI-based conditions are constructed to guarantee the regional exponential stability.
Numerical examples illustrate the efficiency of the method.
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1 Introduction

In fluid mechanics, the Korteweg-de Vries (KdV)
equation is a mathematical model of waves on shal-
low water surfaces in a rectangular channel, equation
in which the effects of dispersion, dissipation and non-
linearity are taken into account. When adding a diffu-
sion term, the KdV equation becomes Korteweg-de Vries
Burgers (KdVB) equation. The study of KdV/ KdVB
systems has been an active research topic because of
its potential applications, see e.g. [2–4,6,14,16]. In the
field of automatic control, a backstepping approach has
been applied in [4,6,16] for the feedback stabilization
of KdV equation, and Lyapunov-based arguments have
been employed to ensure the stability of the original sys-
tem under the proposed control law. On the other hand,
the survey paper [3] gives a detailed overview of bound-
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ary controllability and internal stabilization approaches
and results for the KdV equation. One can read in [2]
two different approaches (from a Lyapunov functional or
from an observability inequality) employed to exponen-
tially stabilize the nonlinear KdV equation via delayed
boundary damping terms.

In [14], distributed control of KdVB system has been
suggested under point or averaged localised measure-
ments in space but the proof rely strongly on the pres-
ence of a diffusion term that is missing in the KdV equa-
tion. Such distributed control was introduced for heat
equation under point [9] and under averaged [10] mea-
surements. In the latter papers, sampled-data control
via time-delay approach and Lyapunov-Krasovskii func-
tionals were studied, and the results of [9,10] were ex-
tended to event-triggered control in [22]. However, since
the Lyapunov-Krasovskii functionals for sampled-data
control depend on the state-derivative (see Chapter 7
of [11]), this method cannot be applied to sampled-data
control of KdVB equation. So [14] considered the con-
stant input delay case.

To the best of our knowledge, no event-triggered con-
trol of KdV equation has been studied yet. The goal of
event-triggering mechanism to a sampled control law is
to update the control input only at meaningful instants.



Its drawback, well-known in hybrid systems problemat-
ics, could be the exhibition of a Zeno behaviour. This
can be summed up as the law bringing an infinite num-
ber of updates in a finite amount of time. The present
paper aims at contributing to the study of this topic via
a Lyapunov approach, where sufficient LMI-based con-
ditions for the closed-loop system with the avoidance of
Zeno behaviour will be investigated.

In recent years, event-triggered control systems
have been extensively studied (see e.g. [8,22,24–26]),
bringing an important alternative to periodic sam-
pling of control laws. There are many important re-
sults on event-triggering mechanisms [13,25,26]. In or-
der to reduce out the number of updates, three main
event-triggering mechanisms are proposed as follows:
continuous event-triggering mechanism (see e.g. [25]),
periodic event-triggering mechanism (see e.g. [13]), and
event-triggering mechanism with a dwell time (see e.g.
[23,26]). It is worth pointing out that most works focus
on event-triggered control of finite-dimensional systems.
However, to the best of our knowledge, there are few pa-
pers studying this technique in the infinite-dimensional
systems framework (see e.g. [7,8,22]).

In this work, the main contribution lies in the con-
struction of the event-triggering mechanism and the de-
sign of event-triggered control law for nonlinear KdV
equation. It can also be stressed that the Lyapunov-
Krasovskii approaches for sampled-data control design
under point/averaged measurements cannot work for
KdV equation. As a by-product, the distributed control
via the spatial decomposition (or sampling) for PDEs in-
troduced in [9] and [10] for systems with diffusion terms,
is, for the first time, extended to KdV equation that has
no such a term. This is achieved thanks to using a Vµ
term in Lyapunov functional V defined by (4.5). Such a
term is borrowed from [2].

This work addresses the event-triggered control de-
sign for KdV system under in domain measurements av-
eraged in space, and for the record, [3] gathers the re-
sults for distributed continuous-in-time controller to sta-
bilize the KdV equation exponentially. Our concern here
is then mainly to prove that distributed event-triggered
control can still bring, under appropriate assumptions
and choice of triggering mechanism, the expected expo-
nential stability. Finally, different from our present work
but somehow related to the same area of interest, the ex-
act boundary controllability for the KdV equation was
studied in [20], and [21] is devoted to the design of dis-
tributed control for KdV equation on a periodic domain
and to the design of boundary control for KdV equation
on a finite domain.

The remainder of this work is organized as follows.
The problem setting is described in Section 2 while Sec-
tion 3 details the main result of this paper and give
some remarks. We suggest finite-dimensional feedback

controllers which are distributed on the whole domain
or on subdomains under averaged measurements. For
both cases, we provide the event-triggering mechanism.
Section 4 is devoted to the technical proofs, both of
well-posedness of the closed loop system, avoidance of
the Zeno behaviour that an event triggering mechanism
could introduce, and of the main regional exponential
stability theorem. Section 5 contains an extension to dis-
tributed on subdomains control and Section 6 presents
numerical examples to illustrate the effectiveness of the
proposed control strategy. Finally, Section 7 briefly con-
cludes the article.

Notation. For any matrix P in Rn×n, P � 0 means
that P is symmetric positive definite. For a partitioned
matrix, the symbol ∗ stands for symmetric blocks and I
is the identity, 0 the zero matrix. Using L2(0, L) for the
Hilbert space of square integrable scalar functions, one

writes ‖u‖2L2(0,L) = 〈u, u〉 =
∫ L

0
|u(x)|2 dx, and we also

define the Sobolev spacesH1(0, L) = {u ∈ L2(0, L), u′ ∈
L2(0, L)} and its norm by ‖u‖2H1(0,L) = ‖u‖2L2(0,L) +

‖u′‖2L2(0,L), H
1
0 (0, L) = {u ∈ H1(0, L), u(0) = u(L) =

0} where all the derivatives are to be considered in the
weak sense. Finally, L∞(0, L) denotes the space of es-
sentially bounded function. For a function y of several
variables, the partial derivative with respect to a vari-
able ξ is denoted ∂ξy = ∂y

∂ξ .

2 Preliminaries and problem formulation

2.1 State feedback control of a nonlinear KdV equation

Before proceeding to our problem’s setting, let us
explain the essential idea of the Lyapunov-based state
feedback control for KdV equation. Consider the initial
and boundary value problem

∂tz + z∂xz + ∂xz + ν∂xxxz − λz = f(x, t),

∀x ∈ (0, L), t ≥ 0,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,

z(x, 0) = z0(x), ∀x ∈ (0, L),

(2.1)

with the initial state z0 ∈ L2(0, L) and the source in-
put f ∈ L1(0, T ;L2(0, L)), where ν > 0, λ ≥ 0, and
z = z(x, t) is the state of the nonlinear KdV equation.
For λ > 0, the open-loop system may be unstable (see
the example below). Note that destabilizing λ > 0 was
considered in [27]. Also, λ > 0 may stand for the de-
sired decay rate achieved after stabilization of (2.1) with
λ = 0 (see Remark 3 below).
By selecting the control law

f(x, t) = −Kz(x, t), K > λ, (2.2)
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one obtains a closed-loop system that is globally expo-
nentially stable, as it will be shown later. In this arti-
cle, we would like to address the question of the robust-
ness of this stability with respect to the presence of both
an event triggering in time and a localized averaging in
space of the feedback control law. Noticing that we can-
not really apply infinite dimensional feedback control
law, we will consider here a finite dimensional approxi-
mation of (2.2) that still stabilizes the system (see Sec-
tion 3 below).

More precisely, we will consider that the control law
will be implemented in such a way that for all x ∈ (0, L),
for all t ∈ [tk, tk+1),

f(x, t) = −K
N∑
j=1

z̄j(tk)1Ωj (x), K > λ, (2.3)

where the sampling times tk are following an appropri-
ate event trigger law to be given later, while {1Ωj

}j are
the characteristic functions of the intervals {Ωj}j cov-
ering (0, L), and z̄j(t) = 1

|Ωj |
∫

Ωj
z(x, t)dx. We will also

consider the case that the event-triggered controller does
not cover the whole domain [0, L], which is distributed
on some parts of subdomains (see (5.1) in Section 5 be-
low).

2.2 Well-posedness and exponential stabilization result
under (2.2)

The proof of existence and regularity of solutions for
the KdV equation has been investigated in many refer-
ences, in particular in the field of controllability studies
and even if several results rely on the smallness of the
initial and source data (e.g. [3,6]), one can find in [5] the
proof of the following general result:
Lemma 1. For any T > 0, L > 0, if z0 ∈ L2(0, L)
and f ∈ L1(0, T ;L2(0, L)), then the Cauchy problem
(2.1) is well posed in the space C([0, T ];L2(0, L)) ∩
L2(0, T ;H1(0, L)), meaning that there exists a unique
solution z to the system (2.1) that satisfies, for a constant
c = c(T, L) > 0,

‖z‖L∞(0,T ;L2(0,L)) + ‖z‖L2(0,T ;H1(0,L))

≤ c‖z0‖L2(0,L) + c‖f‖L1(0,T ;L2(0,L)).

The proof of this lemma is detailed in [5] and re-
lies on a fixed point argument for the small time well-
posedness (as also referenced and described in [3]) of the
problem, that allows to handle the non-linearity z∂xz,
and on clever a priori estimates of the local solution to
extend arbitrarily the time frame and get a global exis-
tence and regularity result.

The proof of the well-posedness of the closed-loop
system (2.1)-(2.2) stems from the same arguments and

is not detailed here. Besides, it is easy to prove its expo-
nential stability, stated here:
Lemma 2. Let L > 0, T > 0, K > λ and z0 ∈ L2(0, L).
The closed-loop KdV system (2.1)-(2.2) is exponentially
stable in the sense that

‖z(·, t)‖2L2(0,L) ≤ e
−2(K−λ)t‖z0‖2L2(0,L), ∀t ≥ 0.

Indeed : define the energy (that will act as a Lya-
punov functional) of the solution of a KdV equation by

E(t) = ‖z(·, t)‖2L2(0,L), ∀t ≥ 0. (2.4)

Taking the time derivative of E(t) along (2.1)-(2.2), we
have, for any t ≥ 0,

Ė(t) ≤ −2(K − λ)

∫ L

0

|z(x, t)|2dx− ν|∂xz(0, t)|2

≤ −2(K − λ)E(t)

implying E(t) ≤ e−2(K−λ)tE(0), ∀t ≥ 0.

Furthermore, [3] gathers several internal stabi-
lization results for nonlinear KdV equations, and
specifically, the stabilization through a localized dis-
tributed internal damping f(x, t) = −a(x)z(x, t) with
a ∈ L∞(0, L) such that a(·) ≥ a0 > λ in some subdo-
main ω of (0, L), is actually also true, see e.g. [17,19].
However, in our study, we focus on the case described
by (2.3).

As already mentioned before, in this paper we will
use a Lyapunov approach to deal with an event-triggered
control of the KdV equation under averaged measure-
ments. The next section is devoted to the description of
our technical setting.

3 Problem formulation and main result

We consider the following closed-loop KdV system:

∂tz + z∂xz + ∂xz + ν∂xxxz − λz

= −K
N∑
j=1

z̄j(tk)1Ωj (x)

in (0, L)× [tk, tk+1), k ∈ N,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,

z(x, 0) = z0(x), ∀x ∈ (0, L).

(3.1)

where the chosen control law for (2.1) is (2.3),

z̄j(tk) =
1

|Ωj |

∫
Ωj

z(x, tk)dx. (3.2)
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This closed-loop system is defined under the following
assumptions:

• Space averaging: As in [1,9,10,15], we assume that the
points 0 = x0 < x1 < · · · < xN = L divide the inter-
val [0, L] into N intervals Ωj = [xj−1, xj) covering it
all. The width of each sub-interval is supposed to be
upper bounded by some constant: 0 < xj − xj−1 =
|Ωj | ≤ ∆ and as expected, the characteristic functions
1Ωj (x) are such that{

1Ωj
(x) = 0, x /∈ Ωj ,

1Ωj (x) = 1, otherwise ,
j = 1, · · · , N. (3.3)

• Time sampling: The update instants satisfy 0 = t0 <
t1 < · · · < tk < tk+1, limk→∞ tk = ∞. We define the
event trigger mechanism by the law

tk+1 = inf
{
t ≥ tk such that

‖z(·, t)− z(·, tk)‖2L2(0,L) ≥ γE(t) + γ0E(0)e−2θt
}

(3.4)

where the energy E is defined by (2.4) as the
L2(0, L)−norm of the state, and γ, γ0 and θ are posi-
tive constants to be determined.
It should be noticed that due to the term “γ0E(0)e−2θt”,
here no dwell time is needed to be defined.
• Though the feedback is of finite dimension, both tk

and ∆ depend on the initial data. The larger initial
data is, the smaller tk and ∆ need to be.

Our main objective is to design a regionally stabilizing
event-trigger controller

uj(t) = −Kz̄j(tk)1[tk,tk+1)(t)

that has a control gain K > λ to be determined later. In
other words, we aim at deriving sufficient conditions for
regional exponential stability of the closed-loop system
(3.1) and to find a bound on the domain of attraction.

Theorem 1. Let L > 0, T > 0. Given a desired decay
rate δ > 0, a control gain K > λ + δ, a length bound
∆ > 0, and positive tuning parameters λ0, R, θ > δ,
γ0 > 0, assume that there exist positive scalars µ, λ1, λ2,
γ, and Γ that solve the following optimization problem:

min Γ subject to

−3µν + λ1 + λ2 +
2

3
µRL

√
L < 0, (3.5)

Φ =


φ11 K(1 + µL) K(1 + µL)

∗ −λ2
π2

∆2
0

∗ ∗ −λ0

 ≺ 0, (3.6)

(1 + µL)

(
1 +

λ0γ0

2(θ − δ)

)
< R2Γ, (3.7)

where

φ11 = −2K + 2λ+ µ+ λ0γ − λ1
π2

L2
+ 2δ. (3.8)

Then for any initial function z0 ∈ L2(0, L) satisfying

‖z0‖L2(0,L) <
1√
Γ

, the closed-loop system (3.1) under the

event-triggering mechanism (3.4) is exponentially stable:

E(t) ≤
(

1 +
λ0γ0

2(θ − δ)

)
(1 + µL)E(0)e−2δt (3.9)

for all t ≥ 0. Moreover, if the above LMIs hold with δ = 0,
then the closed-loop system is exponentially stable with a
small enough decay rate.
Remark 1. One could wish here that we do not make
the assumption K ≥ λ+δ on the gain we need to apply to
stabilize our system, but we shall recall that the decay rate
of the exponential stability of the system with continuous
feedback law −Kz is excatly δ = K − λ (Lemma 2) so
that it’s not reasonable to expect better when applying an
approximated feedback law as we do.
Remark 2. If γ and γ0 are small enough, then the
event-triggering mechanism (3.4) gets more sensitive to
the output change and transmits the signals more often,
what makes the control more similar to the stabilizing
continuous-time controller.
Remark 3. Consider (3.1) with λ = 0

∂tz + z∂xz + ∂xz + ν∂xxxz = −K
N∑
j=1

z̄j(tk)1Ωj
(x),

in (0, L)× [tk, tk+1), k ∈ N,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,

z(x, 0) = z0(x), ∀x ∈ (0, L),

(3.10)
where z̄j(tk) is given by (3.2).
Let z̄ = eλtz. It is easy to see that z̄ is governed by

∂tz̄ + e−λtz̄∂xz̄ + ∂xz̄ + ν∂xxxz̄ − λz̄

= −K
N∑
j=1

ẑj(tk)1Ωj (x),

in (0, L)× [tk, tk+1), k ∈ N,

z̄(0, t) = z̄(L, t) = 0, ∂xz̄(L, t) = 0, ∀ t ≥ 0,

z̄(x, 0) = z0(x), ∀x ∈ (0, L),

(3.11)

where ẑj(tk) =
1

|Ωj |

∫
Ωj

z̄(x, tk)dx.

From the proof of Theorem 1, it follows that LMIs of this
Theorem guarantee stability of (3.11) since the nonlinear
term “e−λtz̄z̄x” with the multiplier e−λt ≤ 1 will not
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change the proof of stability. Hence, if the LMI conditions
of Theorem 1 hold with δ = 0, then the decay rate λ of
original system (3.10) can be guaranteed since z = e−λtz̄.

4 Technical proofs

4.1 Well-posedness of the controlled system and avoid-
ance of Zeno behaviour

From Lemma 1, the following well-posedness result
can be obtained by an induction approach.
Proposition 1. Let L > 0, T > 0 and assume that
z0 ∈ L2(0, L). Then system (3.1) under the event trig-
gering law (3.4) has a unique solution z satisfying z ∈
C(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)). Furthermore, the
Zeno phenomenon is avoided.

Proof. In oder to prove the existence, uniqueness and
regularity of the solution, we proceed by induction.

(i) Initialization. On the first time interval, (3.1) reads

∂tz + z∂xz + ∂xz + ν∂xxxz − λz = −K
N∑
j=1

z̄0
j1Ωj (x),

∀x ∈ (0, L), t ∈ [0, t1),

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,

z(x, 0) = z0(x), ∀x ∈ (0, L),

where z̄0
j = z̄j(0) = 1

|Ωj |
∫

Ωj
z0(x)dx, and K > λ. This is

a nonlinear KdV equation with initial data z0 ∈ L2(0, L)

and source term f = −K
N∑
j=1

z̄0
j1Ωj

∈ L1(0, t1;L2(0, L)).

Lemma 1 allows to conclude that there exists a unique
solution z ∈ C([0, t1];L2(0, L)) ∩ L2(0, t1;H1

0 (0, L)) to
the latter system.

(ii) Heredity. Let us only highlight that the previously
obtained solution satisfies z(t1) ∈ L2(0, L) so that sys-
tem (3.1) considered on the next time interval [t1, t2) has
an initial condition z(t1) ∈ L2(0, L) and a source term

−K
N∑
j=1

z̄1
j1Ωj

∈ L1(t1, t2;L2(0, L) where z̄1
j = z̄j(t1).

Therefore, the same argument using Lemma 1 holds
again and the heredity is proved similarly at any step
k ∈ N.

(iii) Conclusion. By induction, for any k ∈ N,
z ∈ C([tk, tk+1];L2(0, L)) ∩ L2(tk, tk+1;H1(0, L)).
Therefore, from the extension by continuity at the in-
stants tk, one can conclude that (3.1) has a unique
solution z ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)).

(iv) Convergence. The solution will never blow up before
T as a contrary of the Zeno behaviour (i.e. ∃tk > T ).

Now we aim at showing that the event-triggering
mechanism (3.4) rules out the Zeno behaviour, where an
infinite number of updates may occur in a finite amount
of time. It is actually sufficient to show that for a given
T > 0, there exists τ∗ > 0 such that all the sampling in-
stants tk ≤ T complying to (3.4) satisfy tk+1 − tk ≥ τ∗.
Let us denote by ek the deviation from the continuous
time position: for any x ∈ [0, L] and t ∈ (0, T ), there
exists k ∈ N such that t ∈ [tk, tk+1), and we set

ek(x, t) , z(x, t)− z(x, tk). (4.1)

Since the solution of closed-loop system (3.1) satisfies
z ∈ C([0, T ];L2(0, L)) and [0, T ] is a compact set, this
error function ek is uniformly continuous in time with
values in L2(0, L). This means that for any ε > 0 there
exists τ∗ > 0 such that for all t, s ∈ [0, T ], if |t− s| < τ∗

then we have ‖ek(·, t)− ek(·, s)‖L2(0,L) < ε.
Thus, the following reasoning by contraposition holds:
∀ε > 0, ∃τ∗ > 0, ∀t, s ∈ [0, T ],

‖ek(·, t)− ek(·, s)‖L2(0,L) ≥ ε =⇒ |t− s| ≥ τ∗. (4.2)

Since ek(tk) = 0, we have

‖ek(·, tk+1)− ek(·, tk)‖L2(0,L) = ‖ek(·, tk+1)‖L2(0,L).

Next the substitution t → tk+1 and s → tk into (4.2),
together with the definition of tk+1 in (3.4), leads to

‖ek(·, tk+1)‖2L2(0,L) ≥ γE(tk+1) + γ0E(0)e−2θtk+1

≥ γ0‖z0‖2L2(0,L)e
−2θT

implying that |tk+1 − tk| ≥ τ∗. Indeed, given z0 6= 0,

we choose ε =
√
γ0‖z0‖2L2(0,L)e

−2θT so that there exists

τ∗ > 0, depending on z0, θ, γ0, γ and T for which for
any k such that tk, tk+1 ∈ [0, T ], one has tk+1− tk ≥ τ∗,
so that the Zeno behaviour is avoided.

4.2 Regional stability analysis

Now we focus on the regional stability analysis of the
closed-loop system and prove Theorem 1. Let us mention
two things.
On the one hand, the event-triggering mechanism (3.4)
yields that the event-triggering error function is bounded
on each time sub-interval as follows: ∀t ∈ [tk, tk+1)

‖ek(·, t)‖2L2(0,L) ≤ γE(t) + γ0E(0)e−2θt. (4.3)
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On the other hand, f defined by (2.3) can be rewritten
as

f(x, t) = −K
N∑
j=1

1Ωj (x) [z(x, t)− fj(x, t)− ρj(t)] ,

∀x ∈ [0, L], ∀t ∈ [tk, tk+1), ∀k ∈ N (4.4)

where

fj(x, t) = z(x, t)− z̄j(t) = z(x, t)− 1

|Ωj |

∫
Ωj

z(x, t)dx,

ρj(t) = z̄j(t)− z̄j(tk) =
1

|Ωj |

∫
Ωj

ek(x, t)dx.

Proof of Theorem 1

Writing Vµ(t) = µ

∫ L

0

x|z(x, t)|2dx with µ > 0, we de-

fine the following functional (see [2]):

V (t) , E(t)+Vµ(t) =

∫ L

0

|z(x, t)|2dx+µ

∫ L

0

x|z(x, t)|2dx.

(4.5)
First, this Lyapunov functional candidate V (t) is equiv-
alent to the energy of the system E(t) in the sense that

E(t) ≤ V (t) ≤ (1 + µL)E(t). (4.6)

Then, let us estimate its time derivative. For t ∈
[tk, tk+1), substituting (4.4) into (3.1) and differentiat-
ing V (t) along (3.1), one gets

V̇ (t) = Ė(t) + V̇µ(t)

= 2

∫ L

0

z(x, t)∂tz(x, t)dx+ 2µ

∫ L

0

xz(x, t)∂tz(x, t)dx

= 2

∫ L

0

(1 + µx)z(x, t)
[
− ν∂xxxz(x, t)− z(x, t)∂xz(x, t)

− ∂xz(x, t) + λz(x, t)−Kz(x, t)
]
dx

+ 2K

N∑
j=1

∫
Ωj

(1 + µx)z(x, t)
[
fj(x, t) + ρj(t)

]
dx.

Hence,

V̇ (t) = −ν|∂xz(0, t)|2− 3µν

∫ L

0

|∂xz(x, t)|2dx

+ µ

∫ L

0

|z(x, t)|2dx+
2

3
µ

∫ L

0

z3(x, t)dx

− 2(K − λ)

∫ L

0

(1 + µx)|z(x, t)|2dx

+ 2K

N∑
j=1

∫
Ωj

(1 + µx)z(x, t)[fj(x, t) + ρj(t)]dx.

Using (4.3), for any λ0 > 0 we can deduce that

V̇ (t) ≤ V̇ (t) + λ0

[
γE(t) + γ0E(0)e−2θt − ‖ek(·, t)‖2L2(0,L)

]
≤−3µν

∫ L

0

|∂xz(x, t)|2dx−(2K−µ−λ0γ − 2λ)

∫ L

0

|z(x, t)|2dx

+
2

3
µ

∫ L

0

z3(x, t)dx− (2K − 2λ)µ

∫ L

0

x|z(x, t)|2dx

+ 2K

N∑
j=1

∫
Ωj

(1 + µx)z(x, t)[fj(x, t) + ρj(t)]dx

+ λ0γ0E(0)e−2θt − λ0‖ek(·, t)‖2L2(0,L).

(4.7)
Several estimates can now be obtained to deal with each
of these terms and bring this into a quadratic form. First,
Cauchy-Schwarz inequality and Sobolev’s inequality (see
Lemma A.3) leads to

∫ L

0

z3(x, t)dx ≤ ‖z(·, t)‖2L∞(0,L)

∫ L

0

|z(x, t)|dx

≤ L
√
L‖∂xz(·, t)‖2L2(0,L)‖z(·, t)‖L2(0,L) (4.8)

Then from Lemma A.4, Wirtinger’s inequality yields

λ1

[
‖∂xz(·, t)‖2L2(0,L) −

π2

L2
‖z(·, t)‖2L2(0,L)

]
≥ 0. (4.9)

for any λ1 > 0.
Moreover, since

∫
Ωj
fj(x, t)dx = 0, from Lemma A.5,

Poincaré’s inequality rewrites

‖fj(·, t)‖2L2(Ωj) ≤
∆2

π2
‖∂xz(·, t)‖2L2(Ωj),

bringing for any λ2 > 0

λ2

N∑
j=1

[
‖∂xz(·, t)‖2L2(Ωj) −

π2

∆2
‖fj(·, t)‖2L2(Ωj)

]
≥ 0.

(4.10)
Applying the Cauchy-Schwarz inequality, we obtain

N∑
j=1

∫
Ωj
ρ2
j (t) =

N∑
j=1

ρ2
j (t)|Ωj | ≤

N∑
j=1

1

|Ωj |

(∫
Ωj

ek(x, t)dx

)2

≤
N∑
j=1

∫
Ωj
e2
k(x, t)dx =

∫ L
0
e2
k(x, t)dx.

(4.11)
Hence,

λ0

[
‖ek(·, t)‖2L2(0,L) −

N∑
j=1

∫
Ωj
ρ2
j (t)

]
≥ 0. (4.12)

Set η(x, t) = col{z(x, t), fj(x, t), ρj(t)}. Substituting
(4.8) and (4.11) into (4.7), and adding (4.9), (4.10) and
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(4.12) to V̇ (t), we obtain

V̇ (t) + 2δV (t) ≤
N∑
j=1

∫
Ωj

η(x, t)>Φ(x)η(x, t)

−
(

3µν −λ1 −λ2 −
2µ

3
L
√
L‖z(·, t)‖L2(0,L)

)
‖∂xz(·, t)‖2L2(0,L)

−2(K − λ− δ)µ
∫ L

0

x|z(x, t)|2dx+ λ0γ0E(0)e−2θt,

(4.13)
where

Φ(x) =


φ11 K(1 + µx) K(1 + µx)

∗ −λ2
π2

∆2
0

∗ ∗ −λ0



and φ11 = −2K + 2λ+µ+λ0γ−λ1
π2

L2
+ 2δ as in (3.8).

Applying Schur complement theorem [11], one gets that
Φ(x) ≺ 0 is equivalent to

φ11 +K2(1 + µx)2

(
∆2

λ2π2
+ λ−1

0

)
< 0,

that also writes

− 2K + 2λ+ µ+ λ0γ − λ1
π2

L2

+ 2δ +K2(1 + µx)2

(
∆2

λ2π2
+λ−1

0

)
< 0 (4.14)

Since we need that property for all x ∈ [0, L], and since
we have 1 ≤ (1 + µx)2 ≤ (1 + µL)2, then it proves

Φ(L) ≺ 0 =⇒ Φ(x) ≺ 0, ∀x ∈ [0, L].

Hence, denoting Φ = Φ(L) so that (3.6) holds, we have
proved that

N∑
j=1

∫
Ωj

η(x, t)>Φ(x)η(x, t) ≤ 0. (4.15)

A final step as to be performed to handle the non-
quadratic estimate (4.8). Let us first assume that

‖z(·, t)‖L2(0,L) < R, ∀t ≥ 0. (4.16)

Under assumptions (3.5)-(3.6) and (4.16), from (4.13)
and (4.15) and choosing K > λ+ δ, we obtain

V̇ (t)+2δV (t) ≤ λ0γ0E(0)e−2θt ≤ λ0γ0V (0)e−2θt, ∀t ≥ 0.

Now let θ > δ. Then, for all t ≥ 0 we can write

V (t) ≤ e−2δtV (0) + λ0γ0e
−2δtV (0)

∫ t

0

e−2(θ−δ)sds

≤ e−2δtV (0) +
λ0γ0V (0)

2(θ − δ)
[
e−2δt − e−2θt

]
≤
(

1 +
λ0γ0

2(θ − δ)

)
e−2δtV (0)− λ0γ0

2(θ − δ)
V (0)e−2θt

From (4.6) it follows that

E(t) ≤
(

1 +
λ0γ0

2(θ − δ)

)
(1 + µL)e−2δtE(0)

− λ0γ0

2(θ − δ)
E(0)e−2θt, (4.17)

which implies (3.9).
In order to end the proof of Theorem 1, we need to prove
that (4.16) holds. On the one hand, for t = 0, inequality
(4.16) holds by hypothesis in Theorem 1, so that E(0) <
1

Γ
. On the other hand, let (4.16) be false for some t > 0

and let t∗ be the smallest instant such that E(t∗) ≥ R2.
Since E is continuous in time, we have E(t∗) = R2 and
E(t) < R2 for t ∈ [0, t∗). Therefore, the feasibility of
inequality (3.5) and LMI (3.6) guarantee that (4.17) is
true for all t ∈ [0, t∗). Hence, by continuity,

E(t) ≤
(

1 +
λ0γ0

2θ − 2δ

)
(1 + µL)e−2δtE(0)

≤
(

1 +
λ0γ0

2θ − 2δ

)
(1 + µL)

1

Γ
, ∀t ∈ [0, t∗].

The above inequality, together with the assumption
(3.7), implies

E(t) ≤
(

1 +
λ0γ0

2θ − 2δ

)
(1 + µL)

1

Γ
< R2

for all t ∈ [0, t∗], which contradicts the definition of t∗.
Therefore, (4.16) holds.
Note that the feasibility of the strict LMI (3.6) with
δ = 0 implies its feasibility with a slightly larger δ0 > 0.
Therefore, if the strict LMI (3.6) holds for δ = 0, then the
closed-loop system is exponentially stable with a small
decay rate.
Remark 4. It must be stressed that the present Lya-
punov function cannot work for the case of a simple
sampled-data control under averaged measurement and
that the event-triggered law is critical in the proof of sta-
bility.
Remark 5. Given K > λ + δ, the LMI conditions of
Theorem 1 are always feasible for small enough γ, γ0,
∆ and large enough λ0 such that λ0γ is small. By Schur
complement, Φ ≺ 0 is equivalent to (4.14) with x = L.
The latter holds for µ = λ1 = γ = ∆ = 0, and large
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enough λ0. Thus, LMIs hold for small enough µ, λ1, γ,
∆, γ0, R with appropriate (large enough) λ0.
Remark 6. Let us explain here what prevents us from
obtaining such results under point measurements. For
the case of averaged measurements, in the proof of The-
orem 1, we need the Lyapunov functional to be contin-
uous in L2-norm. For the case of point measurements,
for a matter of continuity in the space variable, we need
to guarantee that the Lyapunov functional is continu-
ous in H1-norm. But this requires that the solution is in
C([0, T ];H1(0, L)), therefore requiring more regular ini-
tial and boundary data than it is the case here.

5 Extension to the controller distributed on
subdomains

In this subsection, we are concerned with the case
that the actuation does not cover the whole domain Ω
and the averaged measurements are measured over the
parts of the subdomains. As in [28], let

0 ≤ x̃1 < x̃2 ≤ x̃3 < x̃4 ≤ · · · ≤ x̃2N−1 < x̃2N ≤ L,

[x̃2j−1, x̃2j ] ⊂ [xj−1, xj ], j = 1, 2, · · · , N.

Denote Ω̃j , [x̃2j−1, x̃2j ]. Now we study the system (2.1)
under the event-triggered controller

f(x, t) = −K
N∑
j=1

z̃j(tk)1
Ω̃j

(x), K > λ, (5.1)

where

z̃j(tk) =
1

|Ω̃j |

∫
Ω̃j

z(x, tk)dx, |Ω̃j | = x̃2j − x̃2j−1.

(5.2)
By applying the first mean value theorem, since z ∈
C([0, T ], L2(0, L)) we obtain that there exists a point

x̄jt ∈ Ω̃j such that

1

|Ω̃j |

∫
Ω̃j

z(x, t)dx = z(x̄jt , t). (5.3)

Then the controller (5.1) can be rewritten as

f(x, t) = −K
N∑
j=1

[z(x̄jt , t)− ρ̃j(t)]1Ω̃j
(x), (5.4)

where ρ̃j(t) =
1

|Ω̃j |

∫
Ω̃j

ek(x, t)dx.

This leads to the closed-loop system

∂tz + z∂xz + ∂xz + ν∂xxxz − λz

= −K
N∑
j=1

[z(x̄jt , t)− ρ̃j(t)]1Ω̃j
(x),

in (0, L)× [tk, tk+1), k ∈ N,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,

z(x, 0) = z0(x), ∀x ∈ (0, L).

(5.5)

Denote

lj , max{x̃2j − xj−1, xj − x̃2j−1}. (5.6)

xj−1 xj

x̃2j−1 x̄jt x̃2j

lj

Fig. 1. Subdomain Ω̃j = [x̃2j−1, x̃2j ], point x̄jt and lj

Then we have the following result:
Proposition 2. Consider the closed-loop system (5.5).
Let L > 0, T > 0. Denote

l , max
j
lj , ∆̄ , min

j

|Ω̃j |
|Ωj |

. (5.7)

Given a desired decay rate δ > 0, a control gain K >
λ + δ, length bounds l > 0, ∆̄ > 0, and positive tuning
parameters λ0, R, θ > δ, γ0 > 0, assume that there exist
positive scalars µ, λ1, βi (i = 1, 2), γ, and Γ that solve
the following optimization problem:

min Γ subject to

−3µν + λ1 + β2 +
2

3
µRL

√
L < 0, (5.8)

Φ =


φ11 β2

π2

4l2
0 K(1 + µL)

∗ −2K∆̄− β2
π2

4l2
−KµL 0

∗ ∗ −β1 0

∗ ∗ ∗ −λ0

 ≺ 0,

(5.9)

(1 + µL)

(
1 +

λ0γ0

2(θ − δ)

)
< R2Γ, (5.10)

where

φ11 = µ+λ0γ+ (2λ+ 2δ)(1 +µL) +β1−β2
π2

4l2
−λ1

π2

L2
.

(5.11)
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Then for any initial function z0 ∈ L2(0, L) satisfying

‖z0‖L2(0,L) <
1√
Γ

, the closed-loop system (5.5) under the

event-triggering mechanism (3.4) is exponentially stable
in the sense that (3.9) holds. Moreover, if the above LMIs
hold with δ = 0, then the closed-loop system is exponen-
tially stable with a small enough decay rate.

Proof. Consider V (t) given by (4.5). Differentiating V (t)
along (5.5), for any λ0 > 0 one gets

V̇ (t) ≤ V̇ (t) + λ0

[
γE(t) + γ0E(0)e−2θt−‖ek(·, t)‖2L2(0,L)

]
≤ −ν|∂xz(0, t)|2− 3µν

∫ L

0

|∂xz(x, t)|2dx

+(µ+ λ0γ)

∫ L

0

|z(x, t)|2dx+
2

3
µ

∫ L

0

z3(x, t)dx

+2λ

∫ L

0

(1 + µL)|z(x, t)|2dx− 2K

N∑
j=1

z2(x̄jt , t)|Ω̃j |

−2Kµ

N∑
j=1

∫
Ωj

x1
Ω̃j

(x)z(x, t)z(x̄jt , t)dx

+2K

N∑
j=1

∫
Ωj

1
Ω̃j

(x)(1 + µx)z(x, t)ρ̃j(t)dx

+λ0γ0E(0)e−2θt − λ0‖ek(·, t)‖2L2(0,L).

(5.12)
Cauchy-Schwarz’s inequality yields

∫
Ωj

[1
Ω̃j

(x)ρ̃j(t)]
2dx = |Ω̃j |ρ̃2

j (t) =
1

|Ω̃j |

[∫
Ω̃j

ek(x, t)dx

]2

≤
∫

Ω̃j

|ek(x, t)|2dx ≤
∫

Ωj

|ek(x, t)|2dx

so that

λ0

N∑
j=1

∫
Ωj

[
|ek(x, t)|2 − [1

Ω̃j
(x)ρ̃j(t)]

2
]
dx ≥ 0.

From Ω̃j ⊂ Ωj , one has β1 > 0 such that

β1

N∑
j=1

∫
Ωj

[
|z(x, t)|2 − [1

Ω̃j
(x)z(x, t)]2

]
dx ≥ 0

Wirtinger’s inequality leads to (4.9) and∫
Ωj

[z(x, t)− z(x̄jt , t)]2dx

=

∫ x̄j
t

xj−1

[z(x, t)− z(x̄jt , t)]2dx+

∫ xj

x̄j
t

[z(x, t)− z(x̄jt , t)]2dx

≤4(x̄jt−xj−1)2

π2

∫ x̄j
t

xj−1

|∂xz(x,t)|2dx+
4(xj−x̄jt )2

π2

∫ xj

x̄j
t

|∂xz(x,t)|2dx.

(5.13)
From (5.7) and (5.13), it follows that∫

Ωj

[z(x, t)− z(x̄jt , t)]2dx ≤
4l2

π2

∫
Ωj

|∂xz(x, t)|2dx,

which implies

β2

N∑
j=1

∫
Ωj

[
|∂xz(x, t)|2 −

π2

4l2
[z(x, t)− z(x̄jt , t)]2

]
dx ≥ 0

for some constant β2 > 0.
Set η̃(x, t) = {z(x, t), z(x̄jt , t),1Ω̃j

(x)z(x, t),1
Ω̃j

(x)ρj(t)}.
Using (4.8), (4.9), (5.7), (5.12) and applying S-
procedure, we have

V̇ (t) + 2δV (t)

≤ V̇ (t)+2δV (t)+λ0

[
γE(t)+γ0E(0)e−2θt−‖ek(·, t)‖2L2(0,L)

]
+λ1

[
‖∂xz(·, t)‖2L2(0,L) −

π2

L2
‖z(·, t)‖2L2(0,L)

]
+λ0

N∑
j=1

∫
Ωj

[
|ek(x, t)|2 − [1Ω̃j

(x)ρj(t)]
2
]
dx

+β1

N∑
j=1

∫
Ωj

[
|z(x, t)|2 − [1Ω̃j

(x)z(x, t)]2
]
dx

+β2

N∑
j=1

∫
Ωj

[
|∂xz(x, t)|2 −

π2

4l2
[z(x, t)− z(x̄jt , t)]2

]
dx

≤
N∑
j=1

∫
Ωj

η̃(x, t)>Φ̃(x)η̃(x, t) + λ0γ0E(0)e−2θt

−
(

3µν−λ1−β2−
2µ

3
L
√
L‖z(·, t)‖L2(0,L)

)
‖∂xz(·, t)‖2L2(0,L),

where

Φ̃(x) =


φ11 β2

π2

4l2
0 K(1 + µx)

∗ −2K∆̄− β2
π2

4l2
−Kµx 0

∗ ∗ −β1 0

∗ ∗ ∗ −λ0

 ,

with φ11 as in (5.11). Thus, by Schur complement, the
LMIs (5.8), (5.9) yield (3.9).
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Remark 7. Given ∆̄ < 1 and K >
λ+ δ

∆̄
, the LMI

conditions of Proposition 2 are always feasible for small

enough γ, γ0,R <
9ν

2L
√
L

, and large enough λ0. By Schur

complement, Φ̃ ≺ 0⇐⇒ φ11 + λ−1
0 K2(1 + µL)2

−(β2
π2

4l2
)2[−2K∆̄−β2

π2

4l2
+β−1

1 K2µ2L2]−1 < 0.Choose

β2 = 2K∆̄
4l2

π2
. The latter holds for µ = λ1 = γ =

0, small enough β1 and large enough λ0. Thus, LMIs

hold for small enough µ, λ1, β1, γ, γ0, R <
9ν

2L
√
L

with

appropriate (large enough) λ0, (small enough) l such that

λ0γ and 2K∆̄
4l2

π2
are small.

6 Numerical examples

Consider the KdV system:

∂tz + z∂xz + ∂xz + ν∂xxxz − λz = f(x, t),

∀0 < x < L, t ≥ 0

z(0, t) = z(L, t) = ∂xz(L, t) = 0,

z(x, 0) = z0(x) = 0.32

(
1− cos(

2πx

L
)

)
, x ∈ [0, L],

where ν > 0 will be chosen below.
We will give simulation for the following cases:

• Open-loop system without input (i.e. f(x, t) = 0)
• Closed-loop system under continuous-time controller
f(x, t) = −Kz(x, t)
• Closed-loop system under event-triggered controller

distributed on the whole domain with averaging

f(x, t) = −K
∑N
j=1 z̄j(x, tk)1Ωj

(x)
• Closed-loop system under event-triggered controller

distributed on subdomains with averaging f(x, t) =

−K
∑N
j=1 z̃j(x, tk)1Ω̃j

(x)

where K > λ is a controller gain.

Example 1:For the event-triggered control law (2.3)
under averaged measurements, we verify LMI conditions
of Theorem 1 withK = L = 1, λ = 0.5, ν = 0.3, δ = 0.4,
∆ = 0.1, R = 0.5. We find that the closed-loop sys-
tem under event-triggering mechanism (3.4) with θ =
2, γ = 0.00029 and γ0 = 0.02 is exponentially sta-
ble for µ = 0.5401 and for any initial values satisfying
‖z0‖L2(0,1) <

1√
6.1997

≈ 0.4.

A finite difference method is used to illustrate the effect
of the proposed event-triggered control law. The steps
of space and time are chosen as 0.05 and 0.0001, respec-
tively. Fig. 2 illustrates the evolution of the state of the

Fig. 2. State of the open-loop system with λ = 0.5

open-loop KdV system. It is seen that the open-loop sys-
tem is unstable.

Fig. 3 illustrates the evolution of the state of the
closed-loop KdV system under the event-triggering
mechanism

tk+1 = inf
{
t ≥ tk

∣∣∣∣
‖ek‖2L2(0,L)≥0.00029E(t) + 0.02E(0)e−4t

}
.

with the control law (2.3) where z̄j(tk) = 10
∫

Ωj
z(ζ, tk)dζ,

t ∈ [tk, tk+1) subject to xj − xj−1 = |Ωj | = ∆ = 0.1. It
shows that the state of closed-loop KdV system under
the event-triggered controller converges exponentially
to zero. Fig. 4 shows that the release time and release
interval by event-triggering for t ∈ [0, 0.2].

Fig. 3. State of the closed-loop system with the event-trig-
gered control law (2.3) distributed over all domain
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Fig. 4. Release instants and release interval by event-trigger-
ing
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Fig. 5 demonstrates the time evolution of ln(E(t))
for the open-loop system, the closed-loop system un-
der continuous-time controller, and the closed-loop sys-
tem under the event-triggered controller. The simula-
tions show that the event-triggered controller improves
the performance.

t
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ln
(E

(t
))

-10

-5

0

5

10

15

20
Energy

Energy of open-loop

Energy of closed-loop with controller −
∑

j z̄j(tk)

Energy of closed-loop with controller −z(x, t)

Fig. 5. ln(E(t)) of the open-loop system, closed-loop system
under continuous-time/event-triggered controller

Example 2:For the event-triggered control law (5.1)
under averaged and localized measurements, we verify
LMI conditions of Proposition 2 with K = L = 1, λ =
0.5, λ0 = 1, ν = 0.3, δ = 0.4, R = 0.5, l = 0.2, ∆̄ =
1/3. We find that the closed-loop system under event-
triggering mechanism (3.4) with θ = 2, γ = 0.0013 and
γ0 = 0.02 is exponentially stable for µ = 0.0235 and
for any initial values satisfying ‖z0‖L2(0,1) <

1√
4.5603

≈
0.46. We proceed further with numerical simulations of
the closed-loop KdV system under the event-triggering
mechanism

tk+1 = inf
{
t ≥ tk

∣∣∣∣
‖ek‖2L2(0,L)≥ 0.0013E(t) + 0.02E(0)e−4t

}
.

Let x0 = 0, x1 = 0.3, x2 = 0.6, x3 = 0.9 and x4 = 1.
Set x̃1 = 0.1, x̃2 = 0.2, x̃3 = 0.4, x̃4 = 0.5, x̃5 = 0.7,
x̃6 = 0.8, x̃7 = 0.9, x̃8 = 1. The simulations show that
the state of closed-loop KdV system converges to zero
(see Fig. 6).

7 Conclusion

The present work discusses event-triggered control of
the nonlinear KdV equation. An event-triggering mech-
anism has been proposed to reduce the number of con-
trol update. By constructing an appropriate Lyapunov
functional, sufficient LMI-based conditions have been in-
vestigated while ensuring that the closed-loop system is
regionally exponentially stable. The avoidance of Zeno
behaviour is guaranteed. The presented method gives
efficient tools for various event-triggered controller and
observer design problems for nonlinear PDEs.
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Fig. 6. State of the closed-loop system with the event-trig-
gered control law (5.1) distributed over subdomains

Appendix A

Lemma A.3 (Sobolev embedding and inequality). The
embedding H1(0, L) ⊂ C([0, L]) is compact and for any

g ∈ H1
0 (0, L), it holds ‖g‖L∞(0,L) ≤

√
L‖g′‖L2(0,L).

Lemma A.4 (Wirtinger inequality [12]). Assume
that g ∈ H1(0, L) with g(0) = 0 or g(L) = 0. Then

‖g‖2L2(0,L) ≤
4L2

π2 ‖g′‖2L2(0,L). Moreover, if g ∈ H1
0 (0, L),

then ‖g‖2L2(0,L) ≤
L2

π2 ‖g′‖2L2(0,L).

LemmaA.5 (Poincaré inequality [10,12]). Assume that

g ∈ H1(0, L) with
∫ L

0
g(x)dx = 0. Then ‖g‖2L2(0,L) ≤

L2

π2 ‖g′‖2L2(0,L).
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