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bLAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.

cDepartment of Electrical Engineering-Systems, Tel Aviv University, Israel.

Abstract

This work addresses distributed event-triggered control law of 1-D nonlinear Korteweg-de Vries (KdV) equation
posed on a bounded domain. Such a system, in a continuous framework, is exponentially stabilizable by a linear
state feedback as a source term. Here we consider the situation where the feedback is sampled in time and
piecewise averaged in space, and an event-triggering mechanism is designed to maintain stability of this infinite
dimensional system. Both well-posedness of the closed-loop system and avoiding the Zeno behaviour issues are
addressed. Sufficient LMI-based conditions are constructed to guarantee the regional exponential stability. A
numerical example illustrates the efficiency of the method.
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1 Introduction

In fluid mechanics, the Korteweg-de Vries (KdV)
equation is a mathematical model of waves on shal-
low water surfaces in a rectangular channel, equation
in which the effects of dispersion, dissipation and non-
linearity are taken into account. When adding a diffu-
sion term, the KdV equation becomes Korteweg-de Vries
Burgers (KdVB) equation. The study of KdV/ KdVB
systems has been an active research topic because of
its potential applications, see e.g. [2–4,6,14,16]. In the
field of automatic control, a backstepping approach has
been applied in [4,6,16] for the feedback stabilization
of KdV equation, and Lyapunov-based arguments have
been employed to ensure the stability of the original sys-
tem under the proposed control law. On the other hand,
the survey paper [3] gives a detailed overview of bound-
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ary controllability and internal stabilization approaches
and results for the KdV equation. One can read in [2]
two different approaches (from a Lyapunov functional or
from an observability inequality) employed to exponen-
tially stabilize the nonlinear KdV equation via delayed
boundary damping terms.

In [14], distributed control of KdVB system has been
suggested under point or averaged localised measure-
ments in space but the proof rely strongly on the pres-
ence of a diffusion term that is missing in the KdV equa-
tion. Such distributed control was introduced for heat
equation under point [9] and under averaged [10] mea-
surements. In the latter papers, sampled-data control
via time-delay approach and Lyapunov-Krasovskii func-
tionals were studied, and the results of [9,10] were ex-
tended to event-triggered control in [23]. However, since
the Lyapunov-Krasovskii functionals for sampled-data
control depend on the state-derivative (see Chapter 7
of [11]), this method cannot be applied to sampled-data
control of KdVB equation. So [14] considered the con-
stant input delay case.

To the best of our knowledge, no event-triggered con-
trol of KdV equation has been studied yet. The goal of
event-triggering mechanism to a sampled control law is
to update the control input only at meaningful instants.



Its drawback, well-known in hybrid systems problemat-
ics, could be the exhibition of a Zeno behaviour. This
can be summed up as the law bringing an infinite num-
ber of updates in a finite amount of time. The present
paper aims at contributing to the study of this topic via
a Lyapunov approach, where sufficient LMI-based con-
ditions for the closed-loop system with the avoidance of
Zeno behaviour will be investigated.

In recent years, event-triggered control systems
have been extensively studied (see e.g. [8,23,26–28,31]),
bringing an important alternative to periodic sampling
of control laws. There are many important results on
event-triggering mechanisms [13,27,28,31]. In order to
reduce out the number of updates, three main event-
triggering mechanisms are proposed as follows: contin-
uous event-triggering mechanism (see e.g. [27]), peri-
odic event-triggering mechanism (see e.g. [13,31]), and
event-triggering mechanism with a dwell time (see e.g.
[28,25]). It is worth pointing out that most works focus
on event-triggered control of finite-dimensional systems.
However, to the best of our knowledge, there are few pa-
pers studying this technique in the infinite-dimensional
systems framework (see e.g. [7,8,23]).

In this work, the main contribution lies in the con-
struction of the event-triggering mechanism and the de-
sign of event-triggered control law for nonlinear KdV
equation. It can also be stressed that the Lyapunov-
Krasovskii approaches for sampled-data control design
under point/averaged measurements cannot work for
KdV equation. As a by-product, the distributed control
via the spatial decomposition (or sampling) for PDEs in-
troduced in [9] and [10] for systems with diffusion terms,
is, for the first time, extended to KdV equation that has
no such a term. This is achieved due to using a Vµ term
in Lyapunov funcytional V defined by (4.5). Such a term
is borrowed from [2].

This article addresses the event-triggered control de-
sign for KdV system under in domain measurements av-
eraged in space, and for the record, [3] gathers the re-
sults for distributed continuous-in-time controller to sta-
bilize the KdV equation exponentially. Our concern here
is then mainly to prove that distributed event-triggered
control can still bring, under appropriate assumptions
and choice of triggering mechanism, the expected expo-
nential stability. Finally, different from our present work
but somehow related to the same area of interrest, the
exact boundary controllability for the KdV equation was
studied in [21], and [22] is devoted to the design of dis-
tributed control for KdV equation on a periodic domain
and to the design of boundary control for KdV equation
on a finite domain.

The remainder of this work is organized as follows.
The problem setting is described in Section 2 while Sec-
tion 3 details the main result of this paper and give some
remarks. Section 4 is devoted to the technical proofs,

both of well-posedness of the closed loop system, avoid-
ance of the Zeno behaviour that an event triggering
mechanism could introduce, and of the main regional ex-
ponential stability theorem. Finally, Section 5 contains
a numerical example to illustrate the effectiveness of the
proposed control strategy and Section 6 briefly concludes
the article.

Notation. For any matrix P in Rn×n, P � 0 means
that P is symmetric positive definite. For a partitioned
matrix, the symbol ∗ stands for symmetric blocks and I
is the identity, 0 the zero matrix. Using L2(0, L) for the
Hilbert space of square integrable scalar functions, one

writes ‖u‖2L2(0,L) = 〈u, u〉 =
∫ L

0
|u(x)|2 dx, and we also

define the Sobolev spacesH1(0, L) = {u ∈ L2(0, L), u′ ∈
L2(0, L)} and its norm by ‖u‖2H1(0,L) = ‖u‖2 + ‖u′‖2,

H1
0 (0, L) = {u ∈ H1(0, L), u(0) = u(L) = 0} and

H3(0, L) = {u ∈ L2(0, L), u′, u′′, u′′′ ∈ L2(0, L)} where
all the derivatives are to be considered in the weak
sense. Finally, L∞(0, L) denotes the space of essentially
bounded function. For a function z of several variables,
the partial derivative with respect to a variable ξ is
denoted ∂ξy = ∂y

∂ξ .

2 Preliminaries and problem formulation

2.1 State feedback control of a nonlinear KdV equation

Before proceeding to our problem’s setting, let us
explain the essential idea of the Lyapunov-based state
feedback control for KdV equation. Consider the initial
and boundary value problem

∂tz + z∂xz + ∂xz + α∂xxxz − λz = f(x, t),

∀x ∈ (0, L), t ≥ 0,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,

z(x, 0) = z0(x), ∀x ∈ (0, L),

(2.1)

with the initial state z0 ∈ L2(0, L) and the source in-
put f ∈ L1(0, T ;L2(0, L)), where α > 0, λ ≥ 0, and
z = z(x, t) is the state of the nonlinear KdV equation.
For λ > 0, the open-loop system may be unstable (see
the example below). Note that destabilizing λ > 0 was
considered in [29]. Also, λ > 0 may stand for the de-
sired decay rate achieved after stabilization of (2.1) with
λ = 0 (see Remark 3 below).
By selecting the control law

f(x, t) = −Kz(x, t), K > λ, (2.2)

one obtains a closed-loop system that is globally expo-
nentially stable, as it will be shown later. In this arti-
cle, we would like to address the question of the robust-
ness of this stability with respect to the presence of both
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an event triggering in time and a localized averaging in
space of the of the feedback control law. Noticing that we
cannot really apply infinite dimensional feedback con-
trol law, we will consider here a finite dimensional ap-
proximation of (2.2) that still stabilizes the system (see
Section 3 below).

More precisely, we will consider that the control law
will be implemented in such a way that for all x ∈ (0, L),
for all t ∈ [tk, tk+1[,

f(x, t) = −K
N∑
j=1

z̄j(tk)1Ωj
(x), K > λ, (2.3)

where the sampling times tk are following an appropri-
ate event trigger law to be given later, while 1Ωj

are
the characteristic functions of the intervals Ωj covering
(0, L), and z̄j(t) = 1

|Ωj |
∫

Ωj
z(x, t)dx.

2.2 Well-posedness and exponential stabilization result
under (2.2)

The proof of existence and regularity of solutions for
the KdV equation has been investigated in many refer-
ences, in particular in the field of controllability studies
and even if several results rely on the smallness of the
initial and source data (e.g. [3,6]), one can find in [5] the
proof of the following general result :

Lemma 1. For any T > 0, L > 0, if z0 ∈ L2(0, L)
and f ∈ L1(0, T ;L2(0, L)), then the Cauchy problem
(2.1) is well posed in the space C([0, T ];L2(0, L)) ∩
L2(0, T ;H1(0, L)), meaning that there exists a unique
solution z to the system (2.1) that satisfies, for a constant
c = c(T, L) > 0,

‖z‖L∞(0,T ;L2(0,L)) + ‖z‖L2(0,T ;H1(0,L))

≤ c‖z0‖L2(0,L) + c‖f‖L1(0,T ;L2(0,L)).

The proof of this lemma is detailed in [5] and relies on
a fixed point argument for the local well-posedness (as
also referenced and described in [3]) of the problem, that
allows to handle the non-linearity z∂xz, and on clever a
priori estimates of the local solution to extend arbitrarily
the time frame and get a global existence and regularity
result.

The proof of the well-posedness of the closed-loop
system (2.1)-(2.2) stems from the same arguments and
is not detailed here. Besides, it is easy to prove its expo-
nential stability, stated here:

Lemma 2. Let L > 0, T > 0, K > λ and z0 ∈ L2(0, L).
The closed-loop KdV system (2.1)-(2.2) is exponentially
stable, and there exists δ > 0 such that

‖z(·, t)‖2L2(0,L) ≤ e
−2(K−λ)t‖z0‖2L2(0,L), ∀t ≥ 0.

Indeed : define the energy (that will act as a Lya-
punov functional) of the solution of a KdV equation by

E(t) = ‖z(·, t)‖2L2(0,L), ∀t ≥ 0. (2.4)

Taking the time derivative of E(t) along (2.1)-(2.2), we
have, for any t ≥ 0,

Ė(t) ≤ −2(K − λ)

∫ L

0

|z(x, t)|2dx− α|∂xz(0, t)|2

≤ −2(K − λ)E(t)

implying E(t) ≤ e−2(K−λ)tE(0), ∀t ≥ 0.

Furthermore, [3] gathers several internal stabi-
lization results for nonlinear KdV equations, and
specifically, the stabilization through a localized dis-
tributed internal damping f(x, t) = −a(x)z(x, t) with
a ∈ L∞(0, L) such that a(·) ≥ a0 > λ in ω ⊂ (0, L),
is actually also true, see e.g. [18,20]. However, in our
study, we focus on the case described by (2.3).

As already mentioned before, in this paper we will
use a Lyapunov approach to deal with an event-triggered
control of the KdV equation under averaged measure-
ments. The next section is devoted to the description of
our technical setting.

3 Problem formulation and main result

We consider the following closed-loop KdV system:

∂tz + z∂xz + ∂xz + α∂xxxz − λz = −K
N∑
j=1

z̄j(tk)1Ωj (x),

in (0, L)× [tk, tk+1[, k ∈ N,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,

z(x, 0) = z0(x), ∀x ∈ (0, L).

(3.1)
where the chosen control law for (2.1) is (2.3),

z̄j(tk) =
1

|Ωj |

∫
Ωj

z(x, tk)dx. (3.2)

This closed-loop system is defined under the following
assumptions:

• Space averaging: As in [1,9,10,15], we assume that the
points 0 = x0 < x1 < · · · < xN = L divide the
interval [0, L] intoN intervals Ωj = [xj−1, xj [ covering
it all. The width of each sub-interval is supposed to
be upper bounded by some constant: 0 < xj−xj−1 =
|Ωj | ≤ ∆ and as expected, the characteristic functions
1Ωj

(x) are such that{
1Ωj (x) = 0, x /∈ Ωj ,

1Ωj
(x) = 1, otherwise ,

j = 1, · · · , N. (3.3)
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• Time sampling: The update instants satisfy 0 = t0 <
t1 < · · · < tk < tk+1, limk→∞ tk = ∞. We define the
event trigger mechanism by the law

tk+1 = inf
{
t ≥ tk such that (3.4)

‖z(·, t)− z(·, tk)‖2L2(0,L) ≥ γE(t) + γ0E(0)e−2θt
}

where the energy E is defined by (2.4) as the
L2(0, L)−norm of the state, and γ, γ0 and θ are posi-
tive constants to be determined.
It should be noticed that due to the term γ0E(0)e−2θt,
here no dwell time is needed to be defined.

Our main objective is to design a regionally stabilizing
event-trigger controller

uj(t) = −Kz̄j(tk)1[tk,tk+1[(t)

that has a control gain K > λ to be determined later. In
other words, we aim at deriving sufficient conditions for
regional exponential stability of the closed-loop system
(3.1) and to find a bound on the domain of attraction.

Theorem 1. Let L > 0, T > 0. Given a desired decay
rate δ > 0, a control gain K > λ + δ, a length bound
∆ > 0, and positive tuning parameters R, θ > δ, γ0 > 0,
assume that there exist positive scalars µ, λ1, λ2, γ, and
Γ that solve the following optimization problem:

min Γ subject to

−3µα+ λ1 + λ2 +
2

3
µRL

√
L < 0, (3.5)

Φ =


φ11 K(1 + µL) K(1 + µL)

∗ −λ2
π2

∆2
0

∗ ∗ −1

 ≺ 0, (3.6)

where

φ11 = −2K + 2λ+ µ+ γ − λ1
π2

L2
+ 2δ, (3.7)

(1 + µL)

(
1 +

γ0

2(θ − δ)

)
< R2Γ. (3.8)

Then for any initial function z0 ∈ L2(0, L) satisfying

‖z0‖L2(0,L) <
1√
Γ

, the closed-loop system (3.1) under the

event-triggering mechanism (3.4) is exponentially stable:

E(t) ≤
(

1 +
γ0

2(θ − δ)

)
(1 + µL)E(0)e−2δt (3.9)

for all t ≥ 0. Moreover, if the above LMIs hold with δ = 0,
then the closed-loop system is exponentially stable with a
small enough decay rate.

Remark 1. One could wish here that we do not make
the assumption K ≥ λ+δ on the gain we need to apply to
stabilize our system, but we shall recall that the decay rate
of the exponential stability of the system with continuous
feedback law −Kz is excatly δ = K − λ (Lemma 2) so
that it’s not reasonable to expect better when applying an
approximated feedback law as we do.

Remark 2. If γ and γ0 are small enough, then the
event-triggering mechanism (3.4) gets more sensitive to
the output change and transmits the signals more often,
what makes the control more similar to the stabilizing
continuous-time controller.

Remark 3. Consider (3.1) with λ = 0

∂tz + z∂xz + ∂xz + α∂xxxz = −K
N∑
j=1

z̄j(tk)1Ωj
(x),

in (0, L)× [tk, tk+1[, k ∈ N,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,

z(x, 0) = z0(x), ∀x ∈ (0, L),

(3.10)
where z̄j(tk) is given by (3.2).
Let z̄ = eλtz. It is easy to see that z̄ is governed by

∂tz̄ + e−λtz̄∂xz̄ + ∂xz̄ + α∂xxxz̄ − λz̄

= −K
N∑
j=1

z̃j(tk)1Ωj
(x),

in (0, L)× [tk, tk+1[, k ∈ N,

z̄(0, t) = z̄(L, t) = 0, ∂xz̄(L, t) = 0, ∀ t ≥ 0,

z̄(x, 0) = z0(x), ∀x ∈ (0, L),

(3.11)

where z̃j(tk) =
1

|Ωj |

∫
Ωj

z̄(x, tk)dx.

From the proof of Theorem 1, it follows that LMIs of this
Theorem guarantee stability of (3.11) since the nonlinear
term “e−λtz̄z̄x” with the multiplier e−λt ≤ 1 will not
change the proof of stability. Hence, if the LMI conditions
of Theorem 1 hold with δ = 0, then the decay rate λ of
original system (3.10) can be guaranteed since z = e−λtz̄.

4 Technical proofs

4.1 Well-posedness of the controlled system and avoid-
ance of Zeno behaviour

From Lemma 1, the following well-posedness result
can be obtained by an induction approach.

Proposition 1. Let L > 0, T > 0 and assume that
z0 ∈ L2(0, L). Then system (3.1) under the event trig-
gering law (3.4) has a unique solution z satisfying z ∈
C(0, T ;L2(0, L)) ∩ L2(0, T ;H1(0, L)). Furthermore, the
Zeno phenomenon is avoided.

Proof. Let us start with the proof of existence, unique-
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ness and regularity of the solution. We proceed by in-
duction.

(i) Initialization. On the first time interval, (3.1) reads

∂tz + z∂xz + ∂xz + α∂xxxz − λz = −K
N∑
j=1

z̄0
j1Ωj

(x),

∀x ∈ (0, L), t ∈ [0, t1[,

z(0, t) = z(L, t) = 0, ∂xz(L, t) = 0, ∀ t ≥ 0,

z(x, 0) = z0(x), ∀x ∈ (0, L),

where z̄0
j = z̄j(0) = 1

|Ωj |
∫

Ωj
z0(x)dx, and K > λ. This is

a nonlinear KdV equation with initial data z0 ∈ L2(0, L)

and source term f = −K
N∑
j=1

z̄0
j1Ωj

∈ L1(0, t1;L2(0, L)).

Lemma 1 allows to conclude that there exists a unique
solution z ∈ C([0, t1];L2(0, L)) ∩ L2(0, t1;H1

0 (0, L)) to
the latter system.

(ii) Heredity. Let us only highlight that the previously
obtained solution satisfies z(t1) ∈ L2(0, L) so that sys-
tem (3.1) considered on the next time interval [t1, t2[ has
an initial condition z(t1) ∈ L2(0, L) and a source term

−K
N∑
j=1

z̄1
j1Ωj

∈ L1(t1, t2;L2(0, L) where z̄1
j = z̄j(t1).

Therefore, the same argument using Lemma 1 holds
again and the heredity is proved similarly at any step
k ∈ N.

(iii) Conclusion. By induction, for any k ∈ N,
z ∈ C([tk, tk+1];L2(0, L)) ∩ L2(tk, tk+1;H1(0, L)).
Therefore, from the extension by continuity at the in-
stants tk, one can conclude that (3.1) has a unique
solution z ∈ C([0, T ];L2(0, L)) ∩ L2(0, T ;H1(0, L)).

We aim at showing that the event-triggering mech-
anism (3.4) rules out the Zeno behaviour, where an in-
finite number of updates may occur in a finite amount
of time. It is actually sufficient to show that for a given
T > 0, there exists τ∗ > 0 such that all the sampling in-
stants tk ≤ T complying to (3.4) satisfy tk+1 − tk ≥ τ∗.

Let us denote by ek the deviation from the continuous
time position: for any x ∈ [0, L] and t ∈ (0, T ), there
exists k ∈ N such that t ∈ [tk, tk+1), and we set

ek(x, t) , z(x, t)− z(x, tk). (4.1)

Since the solution of closed-loop system (3.1) satisfies
z ∈ C([0, T ];L2(0, L)) and [0, T ] is a compact set, this
error function ek is uniformly continuous in time with
values in L2(0, L). This means that for any ε > 0 there
exists τ∗ > 0 such that for all t, s ∈ [0, T ], if |t− s| < τ∗

then we have ‖ek(·, t)− ek(·, s)‖L2(0,L) < ε.

Thus, the following reasoning by contraposition holds:
∀ε > 0, ∃τ∗ > 0, ∀t, s ∈ [0, T ],

‖ek(·, t)− ek(·, s)‖L2(0,L) ≥ ε =⇒ |t− s| ≥ τ∗. (4.2)

Since ek(tk) = 0, we have

‖ek(·, tk+1)− ek(·, tk)‖L2(0,L) = ‖ek(·, tk+1)‖L2(0,L).

Next the substitution t → tk+1 and s → tk into (4.2),
together with the definition of tk+1 in (3.4), leads to

‖ek(·, tk+1)‖L2(0,L) ≥ γE(tk+1) + γ0E(0)e−2θtk+1

≥ γ0‖z0‖2L2(0,L)e
−2θT

implying that |tk+1 − tk| ≥ τ∗. Indeed, given z0 6= 0,
we choose ε = γ0‖z0‖2L2(0,L)e

−2θT so that there exists

τ∗ > 0, depending on z0, θ, γ0, γ and T for which for
any k such that tk, tk+1 ∈ [0, T ], one has tk+1− tk ≥ τ∗,
so that the Zeno behaviour is avoided.

4.2 Regional stability analysis

Now we focus on the regional stability analysis of the
closed-loop system and prove Theorem 1. Let us mention
two things.
On the one hand, the event-triggering mechanism (3.4)
yields that the event-triggering error function is bounded
on each time sub-interval as follows: ∀t ∈ [tk, tk+1)

‖ek(·, t)‖2L2(0,L) ≤ γE(t) + γ0E(0)e−2θt. (4.3)

On the other hand, f(x, t) defined by (2.3) can be rewrit-
ten as

f(x, t) = −K
N∑
j=1

1Ωj (x) [z(x, t)− fj(x, t)− ρj(t)] ,

∀x ∈ [0, L], ∀t ∈ [tk, tk+1), ∀k ∈ N (4.4)

where

fj(x, t) = z(x, t)− z̄j(t) = z(x, t)− 1

|Ωj |

∫
Ωj

z(x, t)dx,

ρj(t) = z̄j(t)− z̄j(tk) =
1

|Ωj |

∫
Ωj

ek(x, t)dx.

Proof of Theorem 1

Writing Vµ(t) = µ

∫ L

0

x|z(x, t)|2dx for µ > 0, we define

the following functional (using simplified notations [2]):

V (t) , E(t)+Vµ(t) =

∫ L

0

|z(x, t)|2dx+µ

∫ L

0

x|z(x, t)|2dx.

(4.5)
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First, this Lyapunov functional candidate V (t) is equiv-
alent to the energy of the system E(t) in the sense that

E(t) ≤ V (t) ≤ (1 + µL)E(t). (4.6)

Then, let us estimate its time derivative. For t ∈
[tk, tk+1), substituting (4.4) into (3.1) and differentiat-
ing V (t) along (3.1), one gets

V̇ (t) = Ė(t) + V̇µ(t)

= 2

∫ L

0

z(x, t)∂tz(x, t)dx+ 2µ

∫ L

0

xz(x, t)∂tz(x, t)dx

= 2

∫ L

0

(1 + µx)z(x, t)
[
− α∂xxxz(x, t)− z(x, t)∂xz(x, t)

− ∂xz(x, t) + λz(x, t)−Kz(x, t)
]
dx

+ 2K

N∑
j=1

∫
Ωj

(1 + µx)z(x, t)
[
fj(x, t) + ρj(t)

]
dx.

Hence,

V̇ (t) = −α|∂xz(0, t)|2− 3µα

∫ L

0

|∂xz(x, t)|2dx

+ µ

∫ L

0

|z(x, t)|2dx+
2

3
µ

∫ L

0

z3(x, t)dx

− 2(K − λ)

∫ L

0

(1 + µx)|z(x, t)|2dx

+ 2K

N∑
j=1

∫
Ωj

(1 + µx)z(x, t)[fj(x, t) + ρj(t)]dx.

Using (4.3) we can deduce that

V̇ (t) ≤ V̇ (t) +
[
γE(t) + γ0E(0)e−2θt − ‖ek(·, t)‖2L2(0,L)

]
≤−3µα

∫ L

0

|∂xz(x, t)|2dx−(2K − µ− γ − 2λ)

∫ L

0

|z(x, t)|2dx

+
2

3
µ

∫ L

0

z3(x, t)dx− (2K − 2λ)µ

∫ L

0

x|z(x, t)|2dx

+ 2K

N∑
j=1

∫
Ωj

(1 + µx)z(x, t)[fj(x, t) + ρj(t)]dx

+ γ0E(0)e−2θt − ‖ek(·, t)‖2L2(0,L).

(4.7)
Several estimates can now be obtained to deal with each
of these terms and bring this into a quadratic form. First,
Cauchy-Schwarz inequality and Sobolev’s inequality (see
Lemma A.3) leads to

∫ L

0

z3(x, t)dx ≤ ‖z(·, t)‖2L∞(0,L)

∫ L

0

|z(x, t)|dx

≤ L
√
L‖∂xz(·, t)‖2L2(0,L)‖z(·, t)‖L2(0,L) (4.8)

Then from Lemma A.4, Wirtinger’s inequality yields

‖z(·, t)‖2L2(0,L) ≤
L2

π2
‖∂xz(·, t)‖2L2(0,L).

Thus, for any λ1 > 0,

λ1

[
‖∂xz(·, t)‖2L2(0,L) −

π2

L2
‖z(·, t)‖2L2(0,L)

]
≥ 0. (4.9)

Moreover, since
∫

Ωj
fj(x, t)dx = 0, from Lemma A.5,

Poincaré’s inequality rewrites

‖fj(·, t)‖2L2(Ωj) ≤
∆2

π2
‖∂xz(·, t)‖2L2(Ωj),

bringing for any λ2 > 0

λ2

N∑
j=1

[
‖∂xz(·, t)‖2L2(Ωj) −

π2

∆2
‖fj(·, t)‖2L2(Ωj)

]
≥ 0.

(4.10)
Applying the Cauchy-Schwarz inequality, we obtain

N∑
j=1

∫
Ωj

ρ2
j (t) =

N∑
j=1

ρ2
j (t)|Ωj | ≤

N∑
j=1

1

|Ωj |

(∫
Ωj

ek(x, t)dx

)2

≤
N∑
j=1

∫
Ωj

e2
k(x, t)dx =

∫ L

0

e2
k(x, t)dx. (4.11)

Set
η(x, t) = col{z(x, t), fj(x, t), ρj(t)}.

Substituting (4.8) and (4.11) into (4.7), and adding (4.9)

and (4.10) to V̇ (t), we obtain

V̇ (t) + 2δV (t) ≤
N∑
j=1

∫
Ωj

η(t)>Φ(x)η(t) + γ0E(0)e−2θt

−
(

3µα− λ1 − λ2 −
2µ

3
L
√
L‖z(·, t)‖L2(0,L)

)
‖∂xz(·, t)‖2L2(0,L)

−2(K − λ− δ)µ
∫ L

0

x|z(x, t)|2dx,

(4.12)
where

Φ(x) =


φ11 K(1 + µx) K(1 + µx)

∗ −λ2
π2

∆2
0

∗ ∗ −1



and φ11 = −2K + 2λ+ µ+ γ − λ1
π2

L2
+ 2δ as in (3.7).
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Applying Schur complement theorem, one gets that
Φ(x) ≺ 0 is equivalent to have

φ11 +K2(1 + µx)2

(
∆2

λ2π2
+ 1

)
< 0.

that also writes

−2K+2λ+µ+γ−λ1
π2

L2
+2δ+K2(1+µx)2

(
∆2

λ2π2
+ 1

)
< 0

Since we need that property for all x ∈ [0, L], and since
we have 1 ≤ (1 + µx)2 ≤ (1 + µL)2, then it proves

Φ(L) ≺ 0 =⇒ Φ(x) ≺ 0, ∀x ∈ [0, L].

Hence, denoting Φ = Φ(L) so that (3.6) holds, we have
proved that

N∑
j=1

∫
Ωj

η(x, t)>Φ(x)η(x, t) ≤ 0. (4.13)

A final step has to be performed to handle the non-
quadratic estimate (4.8). Let us first assume that

‖z(t)‖L2(0,L) < R, ∀t ≥ 0. (4.14)

Under assumptions (3.6)-(3.3) and (3.5), from (4.12) and
(4.13) and choosing K ≥ δ, we obtain

V̇ (t) + 2δV (t) ≤ γ0E(0)e−2θt ≤ γ0V (0)e−2θt, ∀t ≥ 0.

Now let θ > δ. Then, for all t ≥ 0 we can write

V (t) ≤ e−2δtV (0) + γ0e
−2δtV (0)

∫ t

0

e−2(θ−δ)sds

≤ e−2δtV (0) +
γ0V (0)

2(θ − δ)
[
e−2δt − e−2θt

]
≤
(

1 +
γ0

2(θ − δ)

)
e−2δtV (0)− γ0

2(θ − δ)
V (0)e−2θt

From (4.6) it follows that

E(t) ≤
(

1 +
γ0

2(θ − δ)

)
(1 + µL)e−2δtE(0)

− γ0

2(θ − δ)
E(0)e−2θt, (4.15)

which implies (3.9).
In order to end the proof of Theorem 1, we need to prove
that (4.14) holds. On the one hand, for t = 0, inequality
(4.14) holds by hypothesis in Theorem 1, so that

E(0) < C2.

On the other hand, let (4.14) be false for some t > 0
and let t∗ be the smallest instant such that E(t∗) ≥ R2.
Since E is continuous in time, we have E(t∗) = R2 and
E(t) < R2 for t ∈ [0, t∗). Therefore, the feasibility of
inequality (3.5) and LMI (3.6) guarantee that (4.15) is
true for all t ∈ [0, t∗). Hence, by continuity,

E(t) ≤
(

1 +
γ0

2θ − 2δ

)
(1 + µL)e−2δtE(0)

≤
(

1 +
γ0

2θ − 2δ

)
(1 + µL)C2, ∀t ∈ [0, t∗].

The above inequality, together with the assumption
(3.8), implies

E(t) ≤
(

1 +
γ0

2θ − 2δ

)
(1 + µL)C2 < R2

for all t ∈ [0, t∗], which contradicts the definition of t∗.
Therefore, (4.14) holds.

Remark 4. It must be stressed that the present Lya-
punov function can not work for the case of a simple
sampled-data control under averaged measurement and
that the event-triggered law is critical in the proof of sta-
bility.

Remark 5. Let us explain here what prevents us from
obtaining such results under point measurements. For
the case of averaged measurements, in the proof of The-
orem 1, we need the Lyapunov functional to be contin-
uous in L2-norm. For the case of point measurements,
for a matter of continuity in the space variable, we need
to guarantee that the Lyapunov functional is continu-
ous in H1-norm. But this requires that the solution is in
C([0, T ];H1(0, L)), therefore requiring more regular ini-
tial and boundary data than it is the case here.

5 Numerical example

Consider the KdV system:

∂tz + z∂xz + ∂xz + α∂xxxz − λz = f(x, t),

∀0 < x < L, t ≥ 0

z(0, t) = z(L, t) = ∂xz(L, t) = 0,

z(x, 0) = z0(x) = 0.32

(
1− cos(

2πx

L
)

)
, x ∈ [0, L],

(5.1)
where α > 0 will be chosen below.
We will give simulation for the following cases:

• Open-loop system without input (i.e. f(x, t) = 0)
• Closed-loop system under continuous-time controller
f(x, t) = −Kz(x, t)

• Closed-loop system under event-triggered controller
with averaging f(x, t) = −Kz̄j(x, tk)1Ωj

(x)

where K > λ is a controller gain.
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Fig. 1. State of the open-loop system with λ = 0.5

For the event-triggered control law (2.3) under av-
eraged measurements, we verify LMI conditions of The-
orem 1 with K = L = 1, λ = 0.5, α = 0.3, δ = 0.4,
∆ = 0.1, R = 0.5. We find that the closed-loop sys-
tem under event-triggering mechanism (3.4) with θ =
2, γ = 0.00029 and γ0 = 0.02 is exponentially sta-
ble for µ = 0.5401 and for any initial values satisfying

‖z0‖L2(0,1) <
1√

6.1997
≈ 0.4.

A finite difference method is used to illustrate the
effect of the proposed event-triggered control law. The
steps of space and time are chosen as 0.05 and 0.0001,
respectively. Fig. 1 illustrates the evolution of the state
of the open-loop KdV system. It is seen that the open-
loop system is unstable. Fig. 2 illustrates the evolution
of the state of the closed-loop KdV system under the
event-triggering mechanism

tk+1 = inf
{
t ≥ tk

∣∣∣∣
‖ek(·, t)‖2L2(0,L) ≥ 0.00029 · E(t) + 0.02E(0)e−4t

}
.

with the control law (2.3) where

z̄j(tk) = 10

∫
Ωj

z(ζ, tk)dζ, t ∈ [tk, tk+1)

subject to xj − xj−1 = |Ωj | = ∆ = 0.1. It shows that
the state of closed-loop KdV system under the event-
triggered controller converges exponentially to zero.
Fig. 3 shows that the release time and release interval
by event-triggering for t ∈ [0, 0.2]. Fig. 4 demonstrates
the time evolution of ln(E(t)) for the open-loop sys-
tem, the closed-loop system under continuous-time
controller, and the closed-loop system under the event-
triggered controller. The simulations show that the
event-triggered controller improves the performance.

6 Conclusion

The present work discusses event-triggered control of
the nonlinear KdV equation. An event-triggering mech-

Fig. 2. State of the closed-loop system with the event-trig-
gered control law under averaged measurements
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Fig. 3. Release instants and release interval by event-trigger-
ing

t
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
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(E

(t
))

-10
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0

5

10

15

20
Energy

Energy of open-loop

Energy of closed-loop with controller −
∑

j z̄j(tk)

Energy of closed-loop with controller −z(x, t)

Fig. 4. ln(E(t)) of the open-loop system, closed-loop system
under continuous-time/event-triggered controller

anism has been proposed to reduce the number of con-
trol update. By constructing an appropriate Lyapunov
functional, sufficient LMI-based conditions have been in-
vestigated while ensuring that the closed-loop system is
regionally exponentially stable. The avoidance of Zeno
behaviour is guaranteed. The presented method gives
efficient tools for various event-triggered controller and
observer design problems for nonlinear PDEs.
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Appendix A

Lemma A.3 (Sobolev embedding and inequality). The
embedding H1(0, L) ⊂ C([0, L]) is compact and for any
g ∈ H1

0 (0, L), it holds ‖g‖L∞(0,L) ≤ L‖g′‖L2(0,L).
Lemma A.4 (Wirtinger inequality [12]). Assume that
g ∈ H1(0, L) with g(a) = 0 or g(b) = 0. Then

‖g‖2L2(0,L) ≤
4L2

π2
‖g′‖2L2(0,L).

Moreover, if g ∈ H1
0 (0, L), then

‖g‖2L2(0,L) ≤
L2

π2
‖g′‖2L2(0,L).

Lemma A.5 (Poincaré inequality [17]). Assume that

g ∈ H1(0, L) with
∫ L

0
g(x)dx = 0. Then

‖g‖2L2(0,L) ≤
L2

π2
‖g′‖2L2(0,L).
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