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Localization system in GPS-denied environments using radar and IMU
measurements: application to a smart white cane

Jeremy Barra1,3, Suzanne Lesecq1, Mykhailo Zarudniev1, Olivier Debicki2, Nicolas Mareau1, Laurent Ouvry1

Abstract— This paper presents the development of a local-
ization system in GPS-denied environments using an Inertial
Measurement Unit (IMU) and a Pulse-Doppler radar. A ground
speed estimation from radar measurements is first proposed.
This estimation is combined with noisy measurements from
an IMU in a Luenberger observer, allowing accurate dead-
reckoning. The methodology proposed provides short-term
position of the sensors embedded in a white cane, the ultimate
goal being obstacle detection through the computation of a
model of the surroundings. The results show that this solution
gives an error growth rate of the position estimation of 0.026m/s,
which is a hundred times better than the one obtained with the
naive double integration of the accelerometer data.

I. INTRODUCTION

According to the World Health Organization, 1.3 billion
people are estimated to be visually impaired worldwide. With
regards to distance vision, about 405 million have low vision
and 36 million are blind [11]. For these people, the risks of
falls and collisions in unknown environments is increased.
About 40% of them suffer from a head level accident and
30% suffer a fall accident at least once a month [9]. In
this context, Electronic Travel Aids (ETA) could help to
improve these statistics by providing to the visually impaired
information about their environment.

ETA examples such as smart white canes embedding an
environment perception system can be found in the literature
[5]. These solutions provide more information to the users
about their environment than a standard white cane. In such
systems, obstacle detection is often performed using only
distance measurements from sensors such as ultrasound or
lidar. Other solutions use a radar to detect and localize
stationary and moving obstacles [3] [12].

In the context of the INSPEX project [13], several sensors
including a Pulse-Doppler radar and an IMU are embed-
ded on a white cane. Note that the IMU contains 3-axis
accelerometer, gyroscope and magnetometer. The measure-
ments of the sensors embedded on the cane are used to
produce a model of the user’s surroundings using occupancy
grids [14]. An accurate computation of the occupancy grid
requires the knowledge of the sensors position and their
orientation over the observation time.

The present paper proposes an estimation method of the
position of the embedded sensors that do not rely on strong
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hypotheses regarding the white cane motion. To this end, we
propose to combine the noisy and biased measurements from
the IMU with information provided by the Pulse-Doppler
radar. Usually, radar measurements are used to estimate the
relative speed between the radar and the obstacles thanks to
the Doppler effect. Here we propose to go a step ahead and to
use these measurements to determine the radar ground speed.
This estimation is then combined with IMU measurements to
estimate the position of the sensors embedded on the white
cane in 3 dimensions (3D).

In the next section, a short overview of the previous work
on the localization in GPS-denied environments is given.
Section III presents the referential frames and sensors used
in this study. Then, a method to estimate the speed of the
radar with respect to the ground is introduced in section IV.
This speed estimate is merged with information extracted
from the IMU to improve the estimation of the sensors
position in 3D. The whole approach being implemented on
a microcontroller embedded in the white cane, a Luenberger
observer has been designed to merge the information in a
computing-efficient way in section V. Finally, section VI
presents the experimental results of this position estimation
method which highly improves the position estimate.

II. RELATED WORK

Several solutions for localization in GPS-denied envi-
ronments have been presented in the literature, especially
for indoor pedestrian navigation [6]. To ensure the ver-
satility of the proposed solution, focus is given here to
infrastructure-free localization techniques also called dead-
reckoning techniques. These solutions are mainly based on
IMU measurements. They can be divided into two groups:
Inertial Navigation Systems (INS) and Step-and-Heading-
System (SHS).

The INS method consists in computing the position of
the IMU from the double integration of the acceleration
measured in 3D. Due to the sensor noise and bias drift, the
error on the position estimation grows quickly, especially
when low-cost IMU are used. A common approach for
pedestrian navigation is a foot-mounted IMU configuration,
which constrains the movement of the sensor. Basically, the
foot can be considered periodically stationary while the user
is walking. This information is combined with the current
position and velocity estimate to reset the velocity hence
correct the state estimate. This technique called zero-velocity
update (ZUPT) [10] helps to reduce the error growth. A



similar approach adapted for the white cane can be found
in [1]. In this paper, the white cane motion (called swing)
is described. It is shown that a stationary interval can be
found between each swing of the cane, when the gyro
measurements for the three axes are approximately zero. A
temporary coordinate frame for each swing is defined from
the accelerometer measurements under the assumption that
during a walk at constant speed, the IMU measures only
gravity at stationary points.

The SHS method is specific to pedestrians and gives a
position estimate only in two dimensions. After detecting
the stationary interval of a step, i.e. when the gyro measure-
ments norm is approximately zero, the new position of the
pedestrian is computed given the step length and its heading.
This approach can be adapted to the white cane by observing
that at each step, the user of a white cane usually performs
one swing which can be detected as explained previously
from gyro measurements.

The white cane motion is unconstrained and there are
different situations in which the user can be found other than
stable walk. The solutions proposed in the literature often
rely on strong assumptions on the motion of the mobile,
e.g. on the step length of the user or the swing motion
of the white cane. However, these assumptions can easily
be unsatisfied. For example, the step of a user walking
in a crowded environment will be shorter than in normal
situation. For this reason a hypothesis-based dead-reckoning
approach such as a white cane adapted SHS or ZUPT-INS
algorithm is not suitable in the present study.

III. PROBLEM CONFIGURATION
A. Frames of reference

Three frames are used in this study, they are represented
on figure 1. Under the hypothesis of a flat ground surface,
they are defined as:
• R0 = (O, ~x0, ~y0, ~z0) is a local reference frame in

which the sensors location has to be determined. Its
plan ( ~x0O~y0) is tangential with the ground.

• R = (O′, ~x, ~y, ~z = ~z0) is a referential attached to the
user of the white cane. Its origin is a projection of the
center of gravity of the user on the ground. Its ~y axis
is oriented in the direction of the user’s walk such that
there is a rotation between R0 and R of angle ψ around
the ~z axis.

• Rb = (Ob, ~xb, ~yb, ~zb) is the referential attached to the
body of the sensors.

B. Inertial Measurement

An IMU usually consists in 3-axes sensors of 3 modalities,
namely, accelerometer, gyroscope and magnetometer that
measure respectively the sensor acceleration, the angular
velocity and the local magnetic field in the sensor body
referential Rb. It has been shown in the literature that
the measurements from these three sensors can be merged
to estimate the absolute orientation measurement of the
IMU [4]. In the present work, the estimation of the IMU
orientation is not addressed as the IMU mounted on the cane

Fig. 1: Frames of reference

already uses a state of the art attitude estimation algorithm.
Therefore, the measurements in Rb can be expressed in
R0 using a rotation matrix Rb0 defined from the estimated
attitude. For the position estimation of the sensors, the linear
acceleration is expressed in the R0 frame. This corresponds
to the acceleration measured by the accelerometers without
the influence of gravity.

C. Pulse-Doppler radar

The beam emitted by the radar can be assimilated to a
cone named ”field of view” (FOV). The radar is mounted
on the white cane such that the axis of that FOV intersects
the ground with angle α0 and coincides with the ~yb axis of
the IMU. With this configuration, the angle α0 is estimated
from the IMU measurements as the pitch angle. Figure 2
represents the IMU mounted on the white cane as well as
the FOV of the radar as a right circular cone of an aperture
angle δ which depends of the used antenna.

Fig. 2: White cane sensors configuration

D. Data fusion procedure overview

The measurements from these two sensors are used to
obtain an estimation of their position, i.e. the position of
Ob in the R0 frame. First, the attitude computed from
the IMU measurements and the raw signal from the radar
are processed through a ground speed estimation algorithm
to estimate the velocity of the sensors in R0. Then, this
estimation is combined with the linear acceleration estimated
from the IMU measurements and expressed in R0. This



provides an estimation of the position of the sensors in frame
R0. The whole procedure is illustrated in figure 3.

Fig. 3: Illustration of the sensors position estimation algo-
rithm

IV. GROUND-SPEED ESTIMATION

The following section presents the proposed method to
estimate the ground-speed v of the sensors mounted on
the white cane using raw Pulse-Doppler measurements. The
different steps of this method are summarized on figure 4.

Fig. 4: Ground-speed estimation steps

A. From raw measurements to Range-Doppler map

The Pulse-Doppler radar emits coherent pulses at the pulse
repetition frequency through its antenna. Each time a pulse is
sent by the radar, its energy is reflected by the environment,
here, the ground. The reflection is returned to the antenna
with a time delay:

τ = 2
R

c
⇔ R =

cτ

2
(1)

R is the distance from the antenna to the ground and c =
3.108m.s−1 is the electromagnetic wave speed in vacuum.
According to (1), the time axis in the received time-domain
signal can be replaced by a range axis. This allows to express
the energy received as a function of the distance from the
radar to the obstacle (the ground), which is sampled in M
values, see figure 5.

Fig. 5: Single time-domain measurement

The acquisition of N time-domain measurements gives a
N ×M time-domain matrix. A Fast Fourier Transform is
then applied to this matrix, leading to a frequency-domain
spectrum, sometimes called Range-Doppler map [8] shown
at figure 6.

Fig. 6: Range-Doppler map representation

B. Range-Doppler map analysis

Figure 6 shows that the frequency-domain spectrum is
spread in the range and Doppler direction. The spreading in
the range direction is caused by the aperture δ of the FOV
in the (~yO′~z) plan, see figure 7. In this plan, the FOV is
discretized in K rays intersecting the ground with an angle
αRi ∈ [α0 − δ

2 ;α0 +
δ
2 ], i = 1 : K.

Fig. 7: Discretization of the field-of-view (side view)

In this configuration, the ground speed vRi
perceived along

a ray Ri is given by the formula:

vRi =
cfRi

2ftrcos(αRi)
, i = 1 : K (2)

where ftr is the transmitted frequency, fRi
is the Doppler

frequency received at a given range Ri and αRi is the angle
between the ray Ri and the ground, see figure 7.

The spreading of the frequency-domain spectrum in the
Doppler direction is due to the aperture angle δ in the plan
of the ground (~xO′~y). At a given point at range Ri (say B
on figure 8), a projection of the velocity is measured instead
of its real value measured at point A.

Fig. 8: Top view of the field-of-view

As a result, the Doppler frequency perceived for a given
range Ri is not unique. The frequency corresponding to the
non-projected velocity will be found on the superior edge
of the frequency-domain spectrum, see Doppler frequencies
associated to points A and B on figure 6. The Doppler



frequency fRi
at a range Ri used in (2) is then determined

with a standard edge-detection technique based for instance
on the determination of the maximum gradient [2].

Note that the solution proposed supposes that the velocity
vector ~v and the line of sight of the radar are both included in
the (~yO′~z) plan. This is not always the case as the white cane
is subject to a swing movement [1] induced by the user to
scan the ground in front of him. However, the superior edge
of the frequency-domain spectrum can still provide the non-
projected velocity value. This is verified under the condition
that the angle θ between the velocity ~v direction and the line
of sight does not exceed δ

2 , as shown on figure 9.

Fig. 9: Non-projected velocity value still in the FOV

C. Speed estimation and quality index

From the K rays chosen at different ranges in the FOV,
K independent speed estimations are obtained from (2) after
detecting the superior edge of the frequency-domain spec-
trum at these given ranges. The redundancy of information
that comes from the aperture δ allows to filter eventual
perturbations in the FOV. The final speed estimation is
obtained as a function of the K values of vRi

. In this work,
f is the mean of the K values of vRi

.

v = f(vRi), i = 1 : K (3)

A quality index can also be given as a function g of vRi .
For instance, g can correspond to the standard deviation of
the K values of vRi

.

q = g(vRi
), i = 1 : K (4)

V. RADAR & IMU INFORMATION COUPLING

Coupling the ground-speed estimate proposed above with
the information extracted from IMU measurements allows
to address a large variety of movements of the white cane.
This section shows how information extracted from both
modalities can be merged to efficiently estimate the sensors
position in 3D.

A. Geometrical configuration

The ground speed determined with the Doppler radar is
oriented using the yaw angle estimated by the IMU. This is
done under the assumption that the line of sight of the cane
and the velocity ~v are included in the same plan (~yO′~z) as
represented on figure 8. Note with this assumption, there is
an uncertainty on the heading angle of the velocity of ± δ2 .

We finally obtain an estimation of the velocity of the white
cane ~v from the speed over ground v estimated as:

~v =

v cosψv sinψ
0

 (5)

where ψ is the yaw angle computed from by IMU measure-
ments.

B. Linear discrete-time state-space model

To address a large variety of possible movements of the
white cane, a general model of the sensors motion derived
from the standard dynamics equations is chosen. The state-
space model used to estimate the sensors position is given
by: akvk

pk

 =

 I3 03 03
Ts · I3 I3 03
03 Ts · I3 I3

ak−1vk−1
pk−1



yk =

[
I3 03 03
03 I3 03

]akvk
pk


(6)

where Ts is the sampling period, I3 represents the 3 × 3
identity matrix. ak ∈ R3 is the linear acceleration of the
sensors mounted on the white cane in the R0 frame, which
corresponds to the acceleration deprived from its gravity
component. vk ∈ R3 and pk ∈ R3 are respectively the
velocity and the position in the R0 frame. In this model, the
linear acceleration of the white cane is considered constant
over the sampling period. This assumption is valid because
the IMU measurements are acquired at frequency of 100Hz
which is much higher than the motion dynamics.

Note however that with this model, the full-state is not
observable. Therefore, we use the reduced state xk:

xk =

[
ak
vk

]
(7)

The position will consequently only be predicted by integrat-
ing the state xk. The system becomes:

[
ak
vk

]
=

A︷ ︸︸ ︷[
I3 03

Ts · I3 I3

] [
ak−1
vk−1

]

yk =

[
I3 03
03 I3

]
︸ ︷︷ ︸

C

xk

(8)

The state xk is now fully measured, ak being obtained
from the IMU while vk comes from the radar data process-
ing.

C. Multisensor data fusion

In the present work, the measurements ak and vk are
combined using a Luenberger observer [7]:{

x̂k+1 = Ax̂k + L[yk − ŷk]
ŷk = Cx̂k

(9)



where x̂ is the estimated reduced state and yk is the vector of
sensors ”pseudo-measurements” at time k. L is the observer
gain, determined by pole-placement such that the matrix A−
LC has all its eigenvalues inside the unit circle.

In the literature, the localization problem using on-board
sensors such as an IMU is usually solved with a Kalman
filter, considering the equation 8 in a nondeterministic case:[

ak
vk

]
=

[
I3 03

Ts · I3 I3

] [
ak−1
vk−1

]
+

[
a ~wk
v ~wk

]

yk =

[
I3 03
03 I3

]
xk +

[
a~vk
v~vk

] (10)

where a ~wk, v ~wk and a~vk, v~vk are respectively the process
and the measurement Gaussian white noises.

Such a solution has been also implemented and the results
obtained were similar, see table I. The main drawback of the
Kalman filter solution, is that it requires more computational
workload (e.g. computation of a gain at each sampling
time). As the proposed solution will be integrated on a
low computing capability microcontroller with fixed-point
arithmetic, the Luenberger observer seems to be a better
option from a computational point-of-view.

VI. RESULTS

A. Experimental setup

The experiments were carried out with a prototype of the
white cane. An IMU Bosch BNO055 and a Timedomain
Doppler radar Ultra-Wide band P440 were mounted on the
cane (see figure 10), both being sampled at 100Hz.

Fig. 10: Prototype of the electronic white cane

The experiments were conducted indoor. A walk was
performed on a closed rectangular-shaped 8m × 3m loop,
with a length of 22m. In the first set of experiments presented
hereafter, data was acquired on a computer and post-treated
on Matlab.

During the test, we didn’t have access to an indoor position
tracking equipment. Therefore, the criterion used to measure
the performance of the proposed solution is the final distance
error to the starting point.

B. Comparison of estimation algorithms

The radar/IMU coupling solutions based on a Kalman filter
and a Luenberger observer are compared with two state of

the art approaches, namely, a naive double integration of
the linear acceleration (naive INS), a Step-Heading-System
algorithm adapted for the white cane (adapted SHS).

The adapted SHS approach relies on strong hypotheses on
the movement. The main one is to consider that a step of the
user corresponds to a swing of the white cane. At the end of
a swing, the angular velocity of the sensors becomes null as
the next swing will be performed in the opposite direction.
This instant, called stationary point, is detected thanks to
the gyroscope measurement norm that is approximately zero.
The velocity of the sensors ~v at this point is then the velocity
of the user ~vuser, which can be computed considering the
average step length of the user and the elapsed time between
stationary points. Figure 11 represents the sensors trajectory
during the swing.

Fig. 11: Motion hypothesis for the adapted SHS algorithm

C. Experimental results

The results from a first experiment where the swing
movement is performed at each step of the user are presented
on figure 12. It shows that the position estimation from the
naive double integration of the linear acceleration quickly
drifts as expected. As the hypotheses on the movement
for the SHS algorithm are fulfilled, the trajectory obtained
with this approach is similar to the ones obtained with the
coupling of the radar and the IMU. In this case, the adapted
SHS solution gives the smaller final distance error, 0.9m,
whereas the radar/IMU algorithms based on a Luenberger
observer and on a Kalman filter give respectively a 1.4m
and 1.5m final distance error.

Another experiment is presented on figure 13. Note that
the swing of the cane is stopped at some point. The hypothe-
ses on the movement for the adapted SHS are not fulfilled
anymore at this time, leading to a poor quality of the position
estimate. However, the radar/IMU Luenberger and Kalman
approaches still give final distance errors similar to the ones
of the previous experiment, respectively 1m and 1.3m. This
experiment shows the versatility of the radar/IMU coupling
solutions, which do not rely on strong assumptions on the
white cane motion.

Ten experiments have been carried out on the path of
length 22m with an average travel time of 50 seconds. The
white cane swing is performed at each step, to fulfil the



Fig. 12: Swing movement on the whole path

Fig. 13: Swing movement stopped midway

hypotheses of the adapted SHS approach. The final distance
errors are summarised on table I. Even though the hypotheses
of the adapted SHS algorithm are fulfilled, the radar/IMU
coupling algorithms give better results and reduce the final
distance error. We note that the solution based on a Kalman
filter gives close results to the one based on a Luenberger
observer. The latter is the solution chosen to be implemented
in the future on the microcontroller, as explained in section
V-C. Finally, the error growth rate for the chosen solution is
0.026m/s which is a hundred times better than the one of
the naive double integration approach.

Radar/IMU
Luenberger

Radar/IMU
Kalman

Adapted
SHS

Naive INS

Error max 2.7m 2.7m 3.9m 246m
Error sd σ 0.5m 0.4m 0.9m 74m
Error mean 1.3m 1.3m 1.9m 132m
Error growth
rate

0.026m/s 0.026m/s 0.038m/s 2.64m/s

TABLE I: Final distance error on 10 experiments

VII. CONCLUSION

This paper proposes a localization technique for GPS-
denied environments. It aims to obtain a position estimation

of the sensors mounted on a white cane. This method
merges noisy IMU measurements with a velocity estimation
obtained from Pulse-Doppler radar measurements. This latter
is produced using a ground speed estimation algorithm which
can also give a quality index of the speed estimation. The
results show that the final distance mean error on a path of
a length of 22m of the radar/IMU solution is 1.3m. The
error growth rate of this solution is 0.026m/s, which is
a hundred times smaller than the one of a naive double
integration of the accelerometer data approach. The position
estimate will be helpful in the future to build a model of the
user’s surroundings from the measurements of the sensors
mounted on the white cane. This model will finally be used
to enhance the travel capabilities of the users by guiding
them in between the obstacles using an audio feedback.
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