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The so-called l0 pseudonorm, or cardinality function, counts the number of nonzero components of a vector. In this paper, we analyze the l0 pseudonorm by means of so-called Capra (constant along primal rays) conjugacies, for which the underlying source norm and its dual norm are both orthant-strictly monotonic (a notion that we formally introduce and that encompasses the lp norms, but for the extreme ones). We obtain three main results. First, we show that the l0 pseudonorm is equal to its Caprabiconjugate, that is, is a Capra-convex function. Second, we deduce an unexpected consequence, that we call convex factorization: the l0 pseudonorm coincides, on the unit sphere of the source norm, with a proper convex lower semicontinuous function. Third, we establish a variational formulation for the l0 pseudonorm by means of generalized top-k dual norms and k-support dual norms (that we formally introduce).

Introduction

The counting function, also called cardinality function or ℓ 0 pseudonorm, counts the number of nonzero components of a vector in R d . It is used in sparse optimization, either as objective function or in the constraints, to obtain solutions with few nonzero entries. However, the mathematical expression of the ℓ 0 pseudonorm makes it difficult to be handled as such in optimization problems. This is why most of the literature on sparse optimization resorts to surrogate problems, obtained either from lower approximations for the ℓ 0 pseudonorm, or from alternative sparsity-inducing terms (especially suitable norms). The literature on sparsity-inducing norms is huge, and we just point out a very succint part of it. We refer the reader to [START_REF] Nikolova | Relationship between the optimal solutions of least squares regularized with l0-norm and constrained by k-sparsity[END_REF] that provides a brief tour of the literature dealing with least squares minimization constrained by k-sparsity, and to [START_REF] Hiriart-Urruty | A variational approach of the rank function[END_REF] for a survey of the rank function of a matrix, that shares many properties with the ℓ 0 pseudonorm. We refer the reader to [START_REF] Argyriou | Sparse prediction with the k-support norm[END_REF] for the support norm, to [START_REF] Tono | Efficient DC algorithm for constrained sparse optimization[END_REF] (and references therein) for top norms, and to [START_REF] Mcdonald | New perspectives on k-support and cluster norms[END_REF] for generalizations.

Our approach to tackle the ℓ 0 pseudonorm uses so-called capra (constant along primal rays) conjugacies, introduced in [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]. More precisely, in [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF], we presented the class of couplings capra (dependending on an underlying source norm) and we established expressions for capra-conjugates and biconjugates, and capra-subdifferentials of nondecreasing functions of the ℓ 0 pseudonorm. In [START_REF] Chancelier | Hidden convexity in the l 0 pseudonorm[END_REF], we introduced the coupling E-capra related to the Euclidean norm and we showed that the ℓ 0 pseudonorm is E-capra-convex and displays hidden convexity in the following sense. The ℓ 0 pseudonorm satisfies a convex factorization property: it can be written as the composition of a proper convex lower semi continuous (lsc) function with the normalization mapping that maps any nonzero vector onto the Euclidean unit sphere, hence it coincides with a proper convex lsc function on the Euclidean unit sphere.

In this paper, we go beyond the two above papers in several directions. We generalize the results of [START_REF] Chancelier | Hidden convexity in the l 0 pseudonorm[END_REF] by showing that not only the ℓ 0 pseudonorm but any nondecreasing function of the ℓ 0 pseudonorm is capra-convex and displays hidden convexity (convex factorization property), and not only for the Euclidean norm but for a class of norms that encompasses it (including the ℓ p -norms for p ∈]1, ∞[). Moreover, we extend the hidden convexity property to subdifferentials. Indeed, we show that the capra-subdifferential of a nondecreasing function of the ℓ 0 pseudonorm coincides, on the unit sphere, with the Rockafellar-Moreau subdifferential of the associated convex lsc function (in the convex factorization property). We also add the result that the capra-subdifferential is a closed convex set. Whereas, in [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF], we obtained capra-convex lower bounds (inequalities) for nondecreasing functions of the ℓ 0 pseudonorm, we now obtain identities. Whereas we obtained an expression for the capra-subdifferential of a nondecreasing function of the ℓ 0 pseudonorm, we now prove that it is not empty.

The paper is organized as follows. In Sect. 2, we provide background on the ℓ 0 pseudonorm and on capra-conjugacies. We also introduce a new class of orthant-strictly monotonic norms, as well as sequences of generalized top-k and k-support dual norms. We show that nondecreasing functions of the ℓ 0 pseudonorm are capra-convex. In Sect. 3, we show that any nondecreasing function of the ℓ 0 pseudonorm coincides, when restricted to the unit sphere, with a proper convex lsc function. Then, we deduce variational formulations for nondecreasing functions of the ℓ 0 pseudonorm which involve the sequence of generalized k-support dual norms. Appendix A gathers background on properties of norms that are relevant for the ℓ 0 pseudonorm, Appendix B reproduces [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Proposition 4.5] to make easier the reading of proofs, and Appendix C gathers background on the Fenchel conjugacy.

2 Capra-convexity of the ℓ 0 pseudonorm with orthantstrictly monotonic norms

In §2.1, we provide background on the ℓ 0 pseudonorm and on the family of capra conjugacies (introduced in [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]). Then, in §2.2, we introduce norms that are especially relevant for the ℓ 0 pseudonorm, like orthant-strictly monotonic norms. Finally, in §2.3, we prove that the ℓ 0 pseudonorm is capra-convex when the underlying norm and its dual norm are both orthant-strictly monotonic.

Background on the ℓ 0 pseudonorm and the Capra conjugacy

We work on the Euclidean space R d (where d is a nonzero integer), equipped with the scalar product •, • (but not necessarily with the Euclidean norm). We use the notation j, k = {j, j + 1, . . . , k -1, k} for any two integers j, k such that j ≤ k.

Let |||•||| be a norm on R d , that we will call the source norm. We denote the unit sphere S and the unit ball B of the source norm |||•||| by

S = x ∈ R d |||x||| = 1 , B = x ∈ R d |||x||| ≤ 1 . (1) 
For any vector

x ∈ R d , supp(x) = j ∈ 1, d x j = 0 ⊂ 1, d is the support of x. The so-called ℓ 0 pseudonorm is the function ℓ 0 : R d → 0, d defined by ℓ 0 (x) = |supp(x)| = number of nonzero components of x , ∀x ∈ R d , (2) 
where |K| denotes the cardinality of a subset K ⊂ 1, d . The ℓ 0 pseudonorm shares three out of the four axioms of a norm: nonnegativity, positivity except for x = 0, subadditivity. The axiom of 1-homogeneity does not hold true. By contrast, the ℓ 0 pseudonorm is 0homogeneous:

ℓ 0 (ρx) = ℓ 0 (x) , ∀ρ ∈ R \ {0} , ∀x ∈ R d . (3) 
Following [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF], we introduce the coupling capra.

Definition 1 ([5, Definition 4.1]) The constant along primal rays coupling ¢ : R d ×R d → R, or capra, between R d and itself, is the function

¢ : (x, y) ∈ R d × R d → x, y |||x||| , x = 0 , 0 , else. (4) 
In the case of the Capra coupling, the primal and dual space are the same space R d but the Capra coupling is not symmetric in the primal and dual variables. To stress the point, we use the letter x for a primal vector and the letter y for a dual vector. We also underline that, in (4), the Euclidean scalar product x, y and the norm term |||x||| need not be related, that is, the norm |||•||| is not necessarily the Euclidean norm.

The coupling capra has the property of being constant along primal rays, hence the acronym capra (Constant Along Primal RAys). We introduce the primal normalization mapping n : R d → S ∪ {0}, from R d towards the unit sphere S united with {0}, as follows:

n : x ∈ R d → x |||x||| x = 0 , 0 , else. (5) 
Now, we introduce notions and notation from generalized convexity [START_REF] Singer | Abstract Convex Analysis[END_REF][START_REF] Rubinov | Abstract convexity and global optimization[END_REF][START_REF] Martínez-Legaz | Generalized convex duality and its economic applications[END_REF]. As we manipulate functions with values in R = [-∞, +∞], we adopt the Moreau lower and upper additions [START_REF] Moreau | Inf-convolution, sous-additivité, convexité des fonctions numériques[END_REF] that extend the usual addition with (+∞

) • + (-∞) = (-∞) • + (+∞) = -∞ or with (+∞) ∔ (-∞) = (-∞) ∔ (+∞) = +∞. The ¢-Fenchel-Moreau conjugate of a function f : R d → R, with respect to the coupling ¢, is the function f ¢ : R d → R defined by f ¢ (y) = sup x∈R d ¢(x, y) • + -f (x) , ∀y ∈ R d . ( 6a 
)
The ¢-Fenchel-Moreau biconjugate of a function f : R d → R, with respect to the coupling ¢, is the function

f ¢¢ ′ : R d → R defined by f ¢¢ ′ (x) = sup y∈R d ¢(x, y) • + -f ¢ (y) , ∀x ∈ R d . (6b) 
The biconjugate of a function f : R d → R satisfies the inequality

f ¢¢ ′ (x) ≤ f (x) , ∀x ∈ R d . ( 6c 
)
When the coupling ¢ is replaced by the Euclidean scalar product 

Restriction norms, generalized coordinate-k norms, dual coordinate-k norms

For any subset K ⊂ 1, d , we define the subspace

R K = x ∈ R d x j = 0 , ∀j ∈ K ⊂ R d (7) 
with R ∅ = {0}, and then three norms on the subspace R K of R d , as follows.

• The K-restriction norm |||•||| K is defined by |||x||| K = |||x|||, for any x ∈ R K . • The (⋆, K)-norm |||•||| ⋆,K is the norm |||•||| ⋆ K ,
given by the restriction to the subspace R K of the dual norm |||•||| ⋆ (first dual, as recalled in definition (27) of a dual norm, then restriction),

• The (K, ⋆)-norm |||•||| K,⋆ is the norm |||•||| K ⋆ ,
given by the dual norm (on the subspace R K ) of the restriction norm |||•||| K to the subspace R K (first restriction, then dual).

For any x ∈ R d and subset K ⊂ 1, d , we denote by x K ∈ R K ⊂ R d the vector which coincides with x, except for the components outside of K that vanish (this definition is valid for We denote the unit sphere S R (k),⋆ and the unit ball B R (k),⋆ by: ∀k ∈ 1, d ,

K = ∅, giving x ∅ = 0 ∈ R ∅ = {0}).
S R (k),⋆ = y ∈ R d |||y||| R (k),⋆ = 1 , B R (k),⋆ = y ∈ R d |||y||| R (k),⋆ ≤ 1 . (9) 
We give examples of generalized coordinate-k and dual coordinate-k norms in [5, Table 1].

Generalized top-k and k-support dual norms

We introduce two new families of norms, that we call generalized top-k and k-support dual norms.

Definition 3 For k ∈ 1, d , the expression |||y||| tn ⋆,(k) = sup |K|≤k |||y K ||| ⋆ = sup |K|≤k |||y K ||| ⋆,K , ∀y ∈ R d ( 10 
)
defines a norm on R d , called the generalized top-k dual norm (associated with the source norm |||•|||). Its dual norm

|||•||| ⋆sn ⋆,(k) = |||•||| tn ⋆,(k) ⋆ , ∀k ∈ 1, d (11) 
is called generalized k-support dual norm. It has unit sphere S ⋆sn ⋆,(k) and unit ball B ⋆sn ⋆,(k) given by: ∀k ∈ 1, d ,

S ⋆sn ⋆,(k) = x ∈ R d |||x||| ⋆sn ⋆,(k) = 1 , B ⋆sn ⋆,(k) = x ∈ R d |||x||| ⋆sn ⋆,(k) ≤ 1 . (12) 
We use the symbol ⋆ in the superscript in Equation [START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF] to indicate that the generalized k-support dual norm |||•||| ⋆sn ⋆,(k) is a dual norm. To stress the point, we use the letter x for a primal vector, like in |||x||| ⋆sn ⋆,(k) , and the letter y for a dual vector, like in |||y||| tn ⋆,(k) . We also adopt the conventions |||•||| tn ⋆,(0) = 0 and |||•||| ⋆sn ⋆,(0) = 0, although these are not norms but seminorms.

We now give examples of generalized top-k and k-support dual norms in the case of ℓ p source norm. We recall that the ℓ p -norms • p on the space R d are defined by

x p = d i=1 |x i | p 1 p for p ∈ [1, ∞[, and by x ∞ = sup i∈ 1,d |x i |.
It is well-known that the dual norm of the norm • p is the ℓ q -norm • q , where q is such that 1/p + 1/q = 1 (with the extreme cases q = ∞ when p = 1, and q = 1 when p = ∞).

We start with a Lemma, whose proof is easy. For any y ∈ R 

= |||y ↓ 1,k ||| ⋆ , where y ↓ 1,k ∈ R d is given by (y ↓ ) 1,k , for all y ∈ R d .
We first present examples of generalized top-k dual norms as in [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I[END_REF] (see the second column of Table 1). When the norm |||•||| is the Euclidean norm • 2 of R d , the generalized top-k dual norm is known under different names: the top-(k, 2) norm in [23, p. 8], or the 2-ksymmetric gauge norm [START_REF] Mirsky | Symmetric Gauge Functions and Unitarily Invariant Norms[END_REF] or the Ky Fan vector norm [START_REF] Obozinski | A unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond[END_REF]. Indeed, in all these cases, the norm of a vector y is obtained with a subvector of size k having the k largest absolute values of the components, because the assumptions of Lemma 1 are satisfied. More generally, when the norm |||•||| is the ℓ p -norm • p , for p ∈ [1, ∞], the assumptions of Lemma 1 are also satisfied, as ℓ p -norms are permutation invariant and monotonic. Therefore, we obtain that the corresponding generalized top-k dual norm

• p tn ⋆,(k) has the expression • p tn ⋆,(k) (y) = sup |K|≤k y K q = y ↓ 1,k q
, for all y ∈ R d , and where 1/p + 1/q = 1. Notice that • p tn ⋆,(k) is expressed in function of q, which can be misleading (this phenomenon is manifest in Table 1). When the source norm 10) is called thetop-(q,k) norm and is denoted by ||•|| tn q,k (we invert the indices in the naming convention of [23, p. 5, p. 8], where top-(k, 1) and top-(k, 2) were used). Notice that d . Now, we turn to examples of generalized k-support dual norms as in [START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF] (see the third column of Table 1). When the norm |||•||| is the Euclidean norm • 2 of R d , the generalized k-support norm is the so-called k-support norm [START_REF] Argyriou | Sparse prediction with the k-support norm[END_REF]. More generally, in [START_REF] Mcdonald | New perspectives on k-support and cluster norms[END_REF]Definition 21], the authors define the k-support p-norm or (p,k)-support norm for p ∈ [1, ∞]. They show, in [START_REF] Mcdonald | New perspectives on k-support and cluster norms[END_REF]Corollary 22], that the dual norm ( • p ) tn (k) ⋆ of the above top-(p,k) norm is the (q,k)-support norm, where 1/p + 1/q = 1. Therefore, the generalized k-support dual norm in [START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF] 

|||•||| is the ℓ p -norm ||•|| p , the generalized top-k dual norm |||•||| tn ⋆,(k) in (
||•|| tn ∞,k = • ∞ for all k ∈ 1,
is the (p,k)-support norm -denoted by ||•|| sn p,k -when the source norm |||•||| is the source norm |||•||| |||•||| tn ⋆,(k) , k ∈ 1, d |||•||| ⋆sn ⋆,(k) , k ∈ 1, d ||•|| p top-(q,k) norm (p,k)-support norm ||y|| tn q,k ||x|| sn p,k ||y|| tn q,k = k l=1 |y ν(l) | q 1 q no analytic expression ||•|| 1 top-(∞,k) norm (1,k)-support norm ℓ ∞ -norm ℓ 1 -norm ||y|| tn ∞,k = ||y|| ∞ , ∀k ∈ 1, d ||x|| sn 1,k = ||x|| 1 , ∀k ∈ 1, d ||•|| 2 top-(2,k) norm (2,k)-support norm ||y|| tn 2,k = k l=1 |y ν(l) | 2 ||x|| sn 2,k no analytic expression (computation [2, Prop. 2.1]) ||y|| tn 2,1 = ||y|| ∞ ||x|| sn 2,1 = ||x|| 1 ||•|| ∞ top-(1,k) norm (∞,k)-support norm ||y|| tn 1,k = k l=1 |y ν(l) | ||x|| sn ∞,k = max{ ||x|| 1 k , ||x|| ∞ } ||y|| tn 1,1 = ||y|| ∞ ||x|| sn 1,1 = ||x|| 1
|||•||| = ||•|| p for p ∈ [1, ∞], where 1/p + 1/q = 1. For y ∈ R d , ν denotes a permutation of {1, . . . , d} such that |y ν(1) | ≥ |y ν(2) | ≥ • • • ≥ |y ν(d) |. ℓ p -norm ||•|| p , for p ∈ [1, ∞]. The formula ||x|| sn ∞,k = max{||x|| 1 /k, ||x|| ∞ } can be found in [3, Exercise IV.1.18, p. 90].

Orthant-monotonic and orthant-strictly monotonic norms

We recall the definition of orthant-monotonic norms and we introduce the new definition of orthant-strictly monotonic norms, that will prove especially relevant for the ℓ 0 pseudonorm.

Definition 4 A norm |||•||| on the space R d is called • orthant-monotonic [8, Definition 2.6] if, for all x, x ′ in R d , we have |x| ≤ |x ′ | and x • x ′ ≥ 0 ⇒ |||x||| ≤ |||x ′ ||| , where |x| ≤ |x ′ | means |x i | ≤ |x ′ i | for all i ∈ 1, d , and where x • x ′ = (x 1 x ′ 1 , . . . , x d x ′ d ) is the Hadamard (entrywise) product, • orthant-strictly monotonic if, for all x, x ′ in R d , we have |x| < |x ′ | and x • x ′ ≥ 0 ⇒ |||x||| < |||x ′ ||| , where |x| < |x ′ | means that |x i | ≤ |x ′ i | for all i ∈ 1, d , and there exists j ∈ 1, d , such that |x j | < |x ′ j |.
All the ℓ p -norms • p on the space R d , for p ∈ [1, ∞[, are strictly monotonic, hence orthantstrictly monotonic. By contrast, the ℓ ∞ -norm • ∞ is orthant-monotonic but not orthantstrictly monotonic.

Capra-convexity of the ℓ 0 pseudonorm

The main result of this section is Theorem 1 which states that, when both the source norm |||•||| and its dual norm |||•||| ⋆ are orthant-strictly monotonic, then any nondecreasing function of the ℓ 0 pseudonorm is equal to its capra-biconjugate, that is, is a capra-convex function. This considerably generalizes the result in [4, Theorem 3.5], which was established for the Euclidean norm and only for the ℓ 0 pseudonorm.

The proof of Theorem 1 relies on Proposition 2, which establishes the nonemptiness of a suitable capra-subdifferential. In [5, Equation (32)], we define the capra-subdifferential of the function f :

R d → R at x ∈ R d by ∂ ¢ f (x) = y ∈ R d f ¢ (y) = ¢(x, y) • + -f (x) , (13) 
where f ¢ (y) has been defined in (6a).

Proposition 1 Let f : R d → R be any function. For all x ∈ R d , the Capra-subdifferential ∂ ¢ f (x) is a closed convex set. Proof. We prove that ∂ ¢ f (x), as in (13), is a closed convex set. Let x ∈ R d .
By definition (6a) of f ¢ , the Capra-subdifferential (13) can be written as

∂ ¢ f (x) = y ∈ R d ¢(x ′ , y) -f (x ′ ) ≤ ¢(x, y) -f (x) , ∀x ′ ∈ R d ,
where we use the usual addition because -∞ < ¢(x, y) < +∞ by ( 4). As a consequence, when f (x) = -∞, we get that ∂ ¢ f (x) = R d , which is closed and convex. In the case where f (x) = +∞, we have that ∂ ¢ f (x) = ∅ if f is not identically +∞, and that ∂ ¢ f (x) = R d otherwise; in either cases, the Capra-subdifferential is closed and convex. Now, suppose that f (x) ∈ R. By definition (6a) of f ¢ , the Capra-subdifferential (13) can be written as

∂ ¢ f (x) = y ∈ R d f ¢ (y) ≤ ¢(x, y) -f (x)
where the function f ¢ is a Fenchel conjugate by [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Equation (30b)], hence is closed convex (see the background material in Appendix C), and the function g

x : R d ∋ y → ¢(x, y)-f (x) is affine. As a consequence, ∂ ¢ f (x) = y ∈ R d f ¢ (y) -g x (y) ≤ 0 is a closed convex set.
It follows that the capra-subdifferential of the ℓ 0 pseudonorm is a (possibly empty) closed convex set (by contrast, it is shown in [9, Section 8] that all the generalized [Fenchel] subdifferentials [proximal, Fréchet, viscosity, limiting, Clarke] of the rank function coincide and define a vector space). We now provide conditions under which the caprasubdifferential of any nondecreasing function of the ℓ 0 pseudonorm is not empty. 

: 0, d → R is a nondecreasing function, then ∂ ¢ (ϕ • ℓ 0 )(x) = ∅ , ∀x ∈ R d .
More precisely, when x = 0, we have that ∂ ¢ (ϕ • ℓ 0 )(0) = j∈ 1,d ϕ(j)ϕ(0) B R (j),⋆ = ∅, where the unit ball B R (k),⋆ is defined in [START_REF] Hiriart-Urruty | A variational approach of the rank function[END_REF]. When x = 0, there exists y ∈ R d satisfying supp(y) = supp(x) and x, y = |||x||| × |||y||| ⋆ , and for all such y ∈ R d we have that λy ∈ ∂ ¢ (ϕ • ℓ 0 )(x) for λ > 0 large enough.

Proof. The proof relies on results established in Appendix A. Since the norm |||•||| is orthant-strictly monotonic, it is orthant-monotonic, so that we have

|||•||| R (j) = |||•||| ⋆sn ⋆,(j) and |||•||| R (j),⋆ = |||•||| tn ⋆,(j)
, for j ∈ 0, d by (32) in Proposition 7 in Appendix A.3 (with the convention that these are the null seminorms in the case j = 0). Therefore, we can translate all the results with generalized top-k and k-support dual norms (Definition 3) instead of coordinate-k and dual coordinate-k norms (Definition 2).

When x = 0, we have by [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Equation (39) 

in Proposition 4.7] that ∂ ¢ (ϕ • ℓ 0 )(0) = j∈ 1,d ϕ(j) ∔ -ϕ(0) B R (j),⋆ = j∈ 1,d ϕ(j) -ϕ(0) B R (j),⋆ ∋ 0 , because ϕ(j) ∔ -ϕ(0) = ϕ(j) -ϕ(0) ≥ 0 since ϕ : 0, d → R is a nondecreasing function.
From now on, we consider x ∈ R d \{0} such that ℓ 0 (x) = l ∈ 1, d , and we will use the following equivalence, established in [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Equation (40) 

in Proposition 4.7] y ∈ ∂ ¢ (ϕ • ℓ 0 )(x) ⇐⇒    y ∈ N B R (l) ( x |||x||| R (l) ) and l ∈ arg max j∈ 0,d |||y||| R (j),⋆ -ϕ(j) , (14) 
where the normal cone

N B R (l) ( x |||x||| R (l)
) is defined in (29).

Since the norm |||•||| is orthant-strictly monotonic, we know by Item (b) in Proposition 6 (Appendix A.2) that there exists a vector y ∈ R d such that

L = supp(x) = supp(y) hence ℓ 0 (y) = ℓ 0 (x) = l > 1 , (15a) 
x, y

= |||x||| × |||y||| ⋆ . (15b) 
Since the dual norm |||•||| ⋆ is orthant-strictly monotonic, we know by (33

) in Proposition 8 (Ap- pendix A.3) that |||y||| R (1),⋆ < • • • < |||y||| R (l-1),⋆ < |||y||| R (l),⋆ = • • • = |||y||| R (d),⋆ = |||y||| ⋆ . (16) 
We now show that y

∈ ∂ ¢ (ϕ • ℓ 0 )(x).
First, we are going to establish that y

∈ N B R (l) ( x |||x||| R (l)
), that is, the first of the two conditions in the characterization [START_REF] Mirsky | Symmetric Gauge Functions and Unitarily Invariant Norms[END_REF] of the subdifferential ∂ ¢ (ϕ • ℓ 0 )(x).

On the one hand, because ℓ 0 (y) = l and by ( 16), we have that |||y||| ⋆ = |||y||| R (l),⋆ . On the other hand, because ℓ 0 (x) = l we have that |||x||| = |||x||| R (l) by [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Equation (25a)]. Hence, from (15b), we get that x, y

= |||x||| R (l) × |||y||| R (l),⋆ , from which we obtain y ∈ N B R (l) ( x |||x||| R (l)
) by property (30) of the normal cone as x = 0. To close this part, notice that, for all λ > 0, we have that λy

∈ N B R (l) ( x |||x||| R (l)
), because this last set is a cone.

Second, we prove the other of the two conditions in the characterization ( 14) of the subdifferential ∂ ¢ (ϕ • ℓ 0 )(x). More precisely, we are going to show that, for λ large enough, |||λy||| R (l),⋆ϕ(l) = sup j∈ 0,d |||λy||| R (j),⋆ϕ(j) . For this purpose, we consider the mapping ψ : ]0, +∞[→ R defined by

ψ(λ) = |||λy||| R (l),⋆ -ϕ(l) -sup j∈ 0,d |||λy||| R (j),⋆ -ϕ(j) , ∀λ > 0 ,
and we are going to show that ψ(λ) = 0 for λ large enough. We have

ψ(λ) = inf j∈ 0,d λ |||y||| R (l),⋆ -|||y||| R (j),⋆ + ϕ(j) -ϕ(l) = inf λ|||y||| R (l),⋆ + ϕ(0) -ϕ(l), inf j∈ 1,l-1 λ |||y||| R (l),⋆ -|||y||| R (j),⋆ + ϕ(j) -ϕ(l) , (as |||y||| R (0),⋆ = 0 by convention) inf j∈ l,d λ |||y||| R (l),⋆ -|||y||| R (j),⋆ + ϕ(j) -ϕ(l) = inf λ|||y||| R (l),⋆ + ϕ(0) -ϕ(l), inf j∈ 1,l-1 λ |||y||| R (l),⋆ -|||y||| R (j),⋆ + ϕ(j) -ϕ(l) , inf j∈ l,d ϕ(j) -ϕ(l) (as |||y||| R (j),⋆ = |||y||| R (l),⋆ for j ≥ l by (16)) = inf λ|||y||| R (l),⋆ + ϕ(0) -ϕ(l), inf j∈ 1,l-1 λ |||y||| R (l),⋆ -|||y||| R (j),⋆ + ϕ(j) -ϕ(l) , 0 , as inf j∈ l,d ϕ(j) -ϕ(l) = 0 because ϕ : 0, d → R is a nondecreasing function.
Let us show that the two first terms in the infimum go to +∞ when λ → +∞. The first term λ|||y||| R (l),⋆ + ϕ(0)ϕ(l) goes to +∞ because, by [START_REF] Nikolova | Relationship between the optimal solutions of least squares regularized with l0-norm and constrained by k-sparsity[END_REF], we have that |||y||| R (l),⋆ = |||y||| ⋆ > 0 as y ∈ R d \ {0} since ℓ 0 (y) = l ≥ 1. The second term inf j∈ 1,l-1 λ |||y||| R (l),⋆ -|||y||| R (j),⋆ + ϕ(j)ϕ(l) also goes to +∞ because ℓ 0 (y) = l ≥ 1, so that |||y||| ⋆ = |||y||| R (l),⋆ > |||y||| R (j),⋆ for j ∈ 1, l -1 again by [START_REF] Nikolova | Relationship between the optimal solutions of least squares regularized with l0-norm and constrained by k-sparsity[END_REF]. Therefore, we deduce that ψ(λ) = 0 for λ large enough, and thus |||λy||| R (l),⋆ϕ(l) = sup j∈ 0,d |||λy||| R (j),⋆ϕ(j) , that is, l ∈ arg max j∈ 0,d |||λy||| R (j),⋆ϕ(j) . Wrapping up the above results, we have shown that, for any vector y ∈ R d such that supp(y) = supp(x), and that x, y = |||x||| × |||y||| ⋆ , then, for λ > 0 large enough, λy satisfies the two conditions in the characterization [START_REF] Mirsky | Symmetric Gauge Functions and Unitarily Invariant Norms[END_REF] 

of the subdifferential ∂ ¢ (ϕ • ℓ 0 )(x). Hence, we get that λy ∈ ∂ ¢ (ϕ • ℓ 0 )(x).
This ends the proof. 

(ϕ • ℓ 0 ) ¢ = sup j∈ 0,d |||•||| tn ⋆,(j) -ϕ(j) . ( 17 
)
If both the norm |||•||| and the dual norm |||•||| ⋆ are orthant-strictly monotonic, then, for any nondecreasing function ϕ : 0, d → R, we have that

(ϕ • ℓ 0 ) ¢¢ ′ = ϕ • ℓ 0 . (18) 
Proof. Suppose that the norm |||•||| is orthant-monotonic. Then, by (32) in Proposition 7

(Appendix A.3), we get that |||•||| R (k) = |||•||| ⋆sn ⋆,(k) and |||•||| R (k),⋆ = |||•||| tn ⋆,(k) . Moreover, it is proved in [5, Equation (33) in Proposition 4.4] that (ϕ • ℓ 0 ) ¢ = sup j∈ 0,d |||•||| R (j),⋆ -ϕ(j) . As |||•||| R (j),⋆ = |||•||| tn ⋆,(j)
, we obtain [START_REF] Obozinski | A unified perspective on convex structured sparsity: Hierarchical, symmetric, submodular norms and beyond[END_REF].

Suppose that both the norm |||•||| and the dual norm |||•||| ⋆ are orthant-strictly monotonic. Then, Proposition 2 applies. Therefore, for any vector x ∈ R d and any 4), so that the usual addition applies)

y ∈ ∂ ¢ (ϕ • ℓ 0 )(x) = ∅, we obtain (ϕ • ℓ 0 ) ¢¢ ′ (x) ≥ ¢(x, y) • + -(ϕ • ℓ 0 ) ¢ (y) (by definition (6b) of the biconjugate) = ¢(x, y) -(ϕ • ℓ 0 ) ¢ (y) (because -∞ < ¢(x, y) < +∞ by (
= ¢(x, y) -¢(x, y) -(ϕ • ℓ 0 )(x)
by definition ( 13) of the capra-subdifferential ∂ ¢ (ϕ • ℓ 0 )(x), and where again we can use the usual addition

= (ϕ • ℓ 0 )(x) .
On the other hand, we have that (ϕ

• ℓ 0 ) ¢¢ ′ (x) ≤ (ϕ • ℓ 0 )(x) by (6c). We conclude that (ϕ • ℓ 0 ) ¢¢ ′ (x) = (ϕ • ℓ 0 )(x), which is (18).
This ends the proof.

Our proof of Proposition 2, hence of Theorem 1, uses the property that the nondecreasing function ϕ : 0, d → R takes finite values. What happens for a function ϕ with values in the extended real numbers? A typical case of ϕ : 0, d → R is that of the characteristic function of a subset K ⊂ 1, d : δ K (j) = 0 if j ∈ K, and δ K (j) = +∞ if j ∈ K. Regarding capra-convexity of a nondecreasing function of the ℓ 0 pseudonorm taking infinite values, we suspect that a proof would rely on different assumptions than those of Proposition 2 and Theorem 1. As an indication, the comment after the proof of [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Corollary 4.6] points out that, when the normed space R d , |||•||| is strictly convex (that is, when the unit ball B is rotund), then δ 0,k • ℓ 0 is ¢-convex for k ∈ 0, d . As the normed space R d , • p , equipped with the ℓ p -norm • p (for p ∈ [1, ∞]), is strictly convex if and only if p ∈]1, ∞[, we get that the characteristic functions of the level sets of the ℓ 0 pseudonorm are ¢-convex when the source norm

|||•||| = • p for p ∈]1, ∞[.

Convex factorization and variational formulation for the ℓ 0 pseudonorm

In this section, we suppose that both the norm |||•||| and the dual norm |||•||| ⋆ are orthantstrictly monotonic. In §3.1, we show that any nonnegative nondecreasing function of the pseudonorm ℓ 0 coincides, on the unit sphere, with a proper convex lsc function on R d , and we provide various expressions for this latter function. In §3.2, we deduce a variational formula for nonnegative nondecreasing functions of the ℓ 0 pseudonorm.

Convex factorization and hidden convexity in the ℓ 0 pseudonorm

We now present a (rather unexpected) consequence of the just established property that any nondecreasing function of the pseudonorm ℓ 0 is capra-convex (Theorem 1). Indeed, we prove that any nonnegative nondecreasing function of the pseudonorm ℓ 0 coincides, on the unit sphere S = x ∈ R d |||x||| = 1 , with a proper convex lsc function on R d , and that this property extends to subdifferentials. We also provide various expressions for the underlying proper convex lsc function.

In this part, we make use of the Fenchel conjugacy, denoted by ⋆ in (37a), and of the reverse Fenchel conjugacy ⋆ ′ in (37b) (see Appendix C). In the case of the Fenchel conjugacy, the primal and dual space are the same space R d and the scalar product coupling is symmetric in the primal and dual variables. Hence, we could use the notation ⋆ in (37b) instead of ⋆ ′ . By contrast, in the case of the Capra conjugacy, the primal and dual space are the same space R d but the Capra coupling is not symmetric in the primal and dual variables. Hence, ¢ ′ = ¢ and we cannot use the notation ¢¢ , but we have to use the notation ¢¢ ′

. For the sake of consistency, we maintain the notations ⋆ ′ and ⋆⋆ ′ . 

L ϕ 0 = (ϕ • ℓ 0 ) ¢ ⋆ ′ . ( 19 
)
Then, the following statements hold true. 

= x ∈ R d |||x||| = 1 , with the function L ϕ 0 , that is, (ϕ • ℓ 0 )(s) = L ϕ 0 (s) , ∀s ∈ S . (20a) 
(c) The capra-subdifferential of the function ϕ • ℓ 0 coincides, on the unit sphere S, with the (Rockafellar-Moreau) subdifferential of the function L ϕ 0 , that is,

∂ ¢ (ϕ • ℓ 0 )(s) = ∂L ϕ 0 (s) , ∀s ∈ S . (20b) 
(d ) Convex factorization property. The function ϕ • ℓ 0 can be expressed as the composition of the proper convex lsc function L ϕ 0 with the normalization mapping n, that is,

ϕ • ℓ 0 = L ϕ 0 • n (20c)
or, equivalently,

(ϕ • ℓ 0 )(x) = L ϕ 0 x |||x||| , ∀x ∈ R d \ {0} . (20d) 
(e) The function L ϕ 0 is given by

L ϕ 0 = sup j∈ 0,d |||•||| tn ⋆,(j) -ϕ(j) ⋆ ′ . ( 21a 
)
(f ) The function L ϕ 0 is the largest convex lsc function below the integer valued function

R d ∋ x → inf j∈ 0,d δ B ⋆sn ⋆,(j) (x) + ϕ(j) , (21b) 
that is, below the function x ∈ B ⋆sn ⋆,(j) \ B ⋆sn ⋆,(j-1) → ϕ(j) for j ∈ 1, d and x ∈ B ⋆sn ⋆,(0) = {0} → 0, the function being infinite outside B ⋆sn ⋆,(d) = B (the above construction makes sense as

B ⋆sn ⋆,(1) ⊂ • • • ⊂ B ⋆sn ⋆,(j-1) ⊂ B ⋆sn ⋆,(j) ⊂ • • • ⊂ B ⋆sn ⋆,(d) = B).
(g ) The function L ϕ 0 is the largest convex lsc function below the integer valued function

R d ∋ x → inf j∈ 0,d δ S ⋆sn ⋆,(j) (x) + ϕ(j) , (21c) 
that is, below the function x ∈ R d → inf ϕ j ∈ 0, d x ∈ S ⋆sn ⋆,(j) , with the convention that S ⋆sn ⋆,(0) = {0} and that inf ∅ = +∞.

(h) The proper convex lsc function L ϕ 0 also has three variational expressions as follows, where ∆ d+1 is the simplex of R d+1 ,

L ϕ 0 (x) = min (λ 0 ,λ 1 ,...,λ d )∈∆ d+1 x∈ d l=1 λ j B ⋆sn ⋆,(l) d l=1 λ j ϕ(j) , ∀x ∈ R d (22a) = min (λ 0 ,λ 1 ,...,λ d )∈∆ d+1 x∈ d l=1 λ j S ⋆sn ⋆,(l) d l=1 λ j ϕ(j) , ∀x ∈ R d (22b) = min x (1) ∈R d ,...,x (d) ∈R d d j=1 |||x (j) ||| ⋆sn ⋆,(j) ≤1 d j=1 x (j) =x d j=1 ϕ(j)|||x (j) ||| ⋆sn ⋆,(j) , ∀x ∈ R d . ( 22c 
)
Proof. As in the beginning of the proof of Proposition 2, we make the observation that, since the norm |||•||| is orthant-strictly monotonic, it is orthant-monotonic, so that we have

|||•||| R (j) = |||•||| ⋆sn ⋆,(j)
and |||•||| R (j),⋆ = |||•||| tn ⋆,(j) , for j ∈ 0, d by (32) in Proposition 7 in Appendix A.3 (with the convention that these are the null seminorms in the case j = 0).

(a ) As the Fenchel conjugacy induces a one-to-one correspondence between the closed convex functions on R d and themselves [START_REF] Rockafellar | Conjugate Duality and Optimization[END_REF]Theorem 5], the function 19) is closed convex. We now show that it is proper. Indeed, on the one hand, it is easily seen, by the very definition (6a), that the function (ϕ • ℓ 0 ) ¢ takes finite values, from which we deduce that the function (ϕ • ℓ 0 ) ¢ ⋆ ′ never takes the value -∞, by (37b). On the other hand, we have (ϕ

L ϕ 0 = (ϕ • ℓ 0 ) ¢ ⋆ ′ in (
• ℓ 0 ) ¢¢ ′ = (ϕ • ℓ 0 ) ¢ ⋆ ′ • n by [5, Equation (30d)], and (ϕ • ℓ 0 ) ¢¢ ′ ≤ ϕ • ℓ 0 by (6c)
, from which we deduce that, for any x ∈ S, we have (ϕ

• ℓ 0 ) ¢ ⋆ ′ (x) = (ϕ • ℓ 0 ) ¢¢ ′ (x) ≤ (ϕ • ℓ 0 )(x) < +∞ since ϕ : 0, d → R + .
As a consequence, the function (ϕ

• ℓ 0 ) ¢ ⋆ ′ is proper. (b)
The assumptions make it possible to conclude that (ϕ • ℓ 0 ) ¢¢ ′ = ϕ • ℓ 0 , thanks to Theorem 1. We deduce from [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Proposition 4.3] that, being ¢-convex, the function ϕ • ℓ 0 coincides, on the unit sphere S, with the closed convex function L ϕ 0 : R d → R given by [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Equation (30d)] namely

L ϕ 0 = (ϕ • ℓ 0 ) ¢ ⋆ ′
. Thus, we have proved (20a).

(c) Let s ∈ S. We prove (20b) as follows:

y ∈ ∂L ϕ 0 (s) ⇐⇒ (L ϕ 0 ) ⋆ (y) = s, y • + -L ϕ 0 (s)
by definition (38a) of the (Rockafellar-Moreau) subdifferential of a function

⇐⇒ (ϕ • ℓ 0 ) ¢ ⋆ ′ ⋆ (y) = s, y • + -(ϕ • ℓ 0 ) ¢ ⋆ ′ (s) (by definition (19) of L ϕ 0 = (ϕ • ℓ 0 ) ¢ ⋆ ′ ) ⇐⇒ (ϕ • ℓ 0 ) ¢ (y) = s, y • + -(ϕ • ℓ 0 ) ¢ ⋆ ′ (s) because the function (ϕ • ℓ 0 ) ¢ is a Fenchel conjugate by [5, Equation (30b)], hence is closed convex, hence is equal to its Fenchel biconjugate (ϕ • ℓ 0 ) ¢ ⋆ ′ ⋆ ⇐⇒ (ϕ • ℓ 0 ) ¢ (y) = ¢(s, y) • + -(ϕ • ℓ 0 ) ¢ ⋆ ′ (s)
(by definition (4) of ¢(s, y) as s ∈ S)

⇐⇒ (ϕ • ℓ 0 ) ¢ (y) = ¢(s, y) • + -(ϕ • ℓ 0 ) ¢¢ ′ (s) because (ϕ • ℓ 0 ) ¢¢ ′ = (ϕ • ℓ 0 ) ¢ ⋆ ′
• n by [5, Equation (30d)], and using that n(s) = s since s ∈ S by definition (5) of the normalization mapping n

⇐⇒ (ϕ • ℓ 0 ) ¢ (y) = ¢(s, y) • + -(ϕ • ℓ 0 )(s) (as (ϕ • ℓ 0 ) ¢¢ ′ = ϕ • ℓ 0 by Theorem 1) ⇐⇒ y ∈ ∂ ¢ (ϕ • ℓ 0 )(s) .
(by definition ( 13) of the capra-subdifferential)

(d ) The equality (20c) is a consequence of the formula ϕ • ℓ 0 = (ϕ • ℓ 0 ) ¢¢ ′ = (ϕ • ℓ 0 ) ¢ ⋆ ′
• n given by [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Equation (30d)]. The equality (20d) is an easy consequence of (20c) and of the definition (5) of the normalization mapping n.

(e) As L ϕ 0 = (ϕ • ℓ 0 ) ¢ ⋆ ′ by definition [START_REF] Rockafellar | Variational Analysis[END_REF], and as we have that (ϕ

• ℓ 0 ) ¢ ⋆ ′ = sup j∈ 0,d |||•||| tn ⋆,(j) -ϕ(j) ⋆ ′
by ( 17), we get (21a).

(f ) We use Proposition 9 (Appendix B) and especially Equations (35b) and (35c) to obtain (21b). Indeed, we have that

L ϕ 0 = (ϕ • ℓ 0 ) ¢ ⋆ ′ = sup j∈ 0,d |||•||| tn ⋆,(j) -ϕ(j) ⋆ ′ (by (21a) proved in Item (e)) = sup j∈ 0,d |||•||| R (j),⋆ -ϕ(j) ⋆ ′ (23) since |||•||| tn ⋆,(j) = |||•||| R (j),⋆ as recalled at the beginning of the proof = inf j∈ 0,d δ B R (j) ∔ ϕ(j) ⋆⋆ ′ (by (35b) and (35c)) = inf j∈ 0,d δ B ⋆sn ⋆,(j) ∔ ϕ(j) ⋆⋆ ′ , (as B R (j) = B ⋆sn ⋆,(j) since |||•||| R (j) = |||•||| ⋆sn ⋆,(j)
, as recalled at the beginning of the proof) which gives (21b). The inclusions and equality 35c) and (35e), to obtain (21c). Indeed, we have that

B R (1) ⊂ • • • ⊂ B R (j) ⊂ B R (j+1) ⊂ • • • ⊂ B R ( 
L ϕ 0 = inf j∈ 0,d δ B R (j) 
∔ ϕ(j)

⋆⋆ ′ (as seen in Item (f )) = inf j∈ 0,d δ S R (j) 
∔ ϕ(j)

⋆⋆ ′
(by (35c) and (35e))

= inf j∈ 0,d δ S ⋆sn ⋆,(j) ∔ ϕ(j) ⋆⋆ ′ , (since S R (j) = S ⋆sn ⋆,(j) as |||•||| R (j) = |||•||| ⋆sn ⋆,(j) )
which gives (21c). This ends the proof.

Variational formulation for the ℓ 0 pseudonorm

As an application of Proposition 3, we obtain the second main result of this paper, namely a variational formulation for (nonnegative nondecreasing functions of) the ℓ 0 pseudonorm.

Theorem 2 Let |||•||| be a norm on R d with associated sequence |||•||| tn ⋆,(j) j∈ 1,d
of generalized k-support dual norms as in Definition 3, and with associated capra coupling ¢ as in (4). Suppose that both the norm |||•||| and the dual norm |||•||| ⋆ are orthant-strictly monotonic. Let ϕ : 0, d → R + be a nonnegative nondecreasing function such that ϕ(0) = 0. Then, we have the equality

ϕ ℓ 0 (x) = 1 |||x||| min x (1) ∈R d ,...,x (d) ∈R d d j=1 |||x (j) ||| ⋆sn ⋆,(j) ≤|||x||| d j=1 x (j) =x d j=1 ϕ(j)|||x (j) ||| ⋆sn ⋆,(j) , ∀x ∈ R d \ {0} , (24) 
where the sequence of generalized k-support dual norms |||•||| ⋆sn ⋆,(j) j∈ 1,d has been introduced in Definition 3.

When ℓ 0 (x) = l ≥ 1, the minimum in (24) is achieved at (x (1) , . . . , x (d) ) ∈ (R d ) d such that x (j) = 0 for j = l and x (l) = x.

Proof. Equation (24) derives from (20c) where we use the expression (22c) for the function L ϕ 0 in [START_REF] Rockafellar | Variational Analysis[END_REF]. Now for the argmin. When ℓ 0 (x) = l ≥ 1, we have that . Therefore, the vectors x (1) ∈ R d , . . . , x (d) ∈ R d defined by x (j) = 0 for j = l and x (l) = x are admissible for the minimization problem (24). We deduce from (24) that ϕ(l) = ϕ ℓ 0 (x) ≤ 1 |||x||| ϕ(l)|||x||| ⋆sn ⋆,(l) = ϕ(l). This ends the proof.

|||x||| = |||x||| R (d) = • • • = |||x||| R ( 
As an illustration, Theorem 2 applies when the norm |||•||| is any of the ℓ p -norms ||•|| p on the space R d , for p ∈]1, ∞[, and Equation (24) then gives (see the notations in the second column of Table 1

): ∀x ∈ R d \ {0} , ∀p ∈]1, ∞[, (ϕ • ℓ 0 )(x) = 1 ||x|| p min x (1) ∈R d ,...,x (d) ∈R d d j=1 ||x (j) || sn p,j ≤||x||p d j=1 x (j) =x d j=1 ϕ(j)||x (j) || sn p,j . (25) 
Indeed, when p ∈]1, ∞[, the ℓ p -norm |||•||| = ||•|| p is orthant-strictly monotonic, and so is its dual norm |||•||| ⋆ = ||•|| q where 1/p + 1/q = 1. When p = 1, the ℓ 1 -norm |||•||| = ||•|| 1 is orthant-strictly monotonic, but the dual norm |||•||| = ||•|| ∞ is not; when p = ∞, the ℓ ∞ -norm |||•||| = ||•|| ∞
is not orthant-strictly monotonic; hence, in those two extreme cases, we cannot conclude (but we obtain inequalities like in [5, Equation (25a)]). Finally, with the novel expression (24) for the ℓ 0 pseudonorm, we deduce a possible reformulation of exact sparse optimization problems as follows (the proof is a straightforward application of Theorem 2). 

Conclusion

In this paper, we have proven that the ℓ 0 pseudonorm is equal to its capra-biconjugate when both the source norm and its dual norm are orthant-strictly monotonic. In that case, one says that the ℓ 0 pseudonorm is a capra-convex function. A surprising consequence is the convex factorization property, a way to express hidden convexity: the ℓ 0 pseudonorm coincides, on the unit sphere of the source norm, with a proper convex lsc function. More generally, this holds true for any function of the ℓ 0 pseudonorm that is nondecreasing, with finite values. Then, we have obtained exact variational formulations for the ℓ 0 pseudonorm, suitable for exact sparse optimization. For this purpose, we have introduced sequences of generalized top-k and k-support dual norms. We now briefly sketch a few perspectives for exact sparse optimization. The reformulations for exact sparse optimization problems, obtained in Proposition 4, have the nice feature to display partial convexity. However, they make use of as many new (latent) vectors as the underlying dimension d. Thus, the algorithmic implementation may be delicate. However, the variational formulation obtained may suggest approximations of the ℓ 0 pseudonorm, involving generalized k-support dual norms, which, themselves, may lead to new smooth sparsity inducing terms. Finally, we have identified elements of the caprasubdifferential of nondecreasing functions of the ℓ 0 pseudonorm, and we have related this capra-subdifferential with the Rockafellar-Moreau subdifferential of the associated convex lsc function (in the convex factorization property). The identification of such subgradients could inspire "gradient-like" algorithms.
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A Properties of relevant norms for the ℓ 0 pseudonorm

We provide background on properties of norms that prove relevant for the ℓ 0 pseudonorm. In §A.1, we review notions related to dual norms. We establish properties of orthantmonotonic and orthant-strictly monotonic norms in §A. 

y |||•||| x ⇐⇒ x, y = |||x||| × |||y||| ⋆ . (28b) 
The terminology |||•|||-dual comes from [11, page 2] (see also the vocable of dual vector pair in [START_REF] Gries | Characterization of certain classes of norms[END_REF]Equation (1.11)] and of dual vectors in [8, p. 283], whereas it is refered as polar alignment in [START_REF] Fan | Atomic decomposition via polar alignment[END_REF]). It will be convenient to express this notion of |||•|||-duality in terms of geometric objects of convex analysis. For this purpose, we recall that the normal cone N C (x) to the (nonempty) closed convex subset C ⊂ R d at x ∈ C is the closed convex cone defined by [10, p.136]

N C (x) = y ∈ R d y, x ′ -x ≤ 0 , ∀x ′ ∈ C . (29) 
Now, an easy computation shows that the notion of |||•|||-duality can be rewritten in terms of normal cone N B as follows:

y |||•||| x ⇐⇒ y ∈ N B x |||x||| , ∀(x, y) ∈ R d \ {0} × R d . (30) 
A.2 Properties of orthant-strictly monotonic norms

We provide useful properties of orthant-monotonic and orthant-strictly monotonic norms (see Definition 4). We recall that x K ∈ R K denotes the vector which coincides with x, except for the components outside of K that vanish, and that the subspace R K of R d has been defined in [START_REF] Gries | Characterization of certain classes of norms[END_REF]. (b) for any vector u ∈ R d \ {0}, there exists a vector

of J ⊂ 1, d , that is, J ∪ (-J) = 1, d and J ∩ (-J) = ∅). We consider x ∈ R d and J ⊂ K ⊂ 1, d . By setting u = x J ∈ R J and v = x K -x J , we get that v ∈ R -J , hence that |||x J ||| ≤ |||x K |||.
v ∈ R d \ {0} such that supp(v) = supp(u), that u • v ≥ 0, and that v is |||•|||-dual to u, that is, u, v = |||u||| × |||v||| ⋆ . Proof. (a ) Let x ∈ R d and J K ⊂ 1, d be such that x J = x K . We will show that |||x K ||| > |||x J |||.
For this purpose, we set u = x J and v = x Kx J . Thus, we get that u ∈ R K and v ∈ R -K \ {0} (since J K and x J = x K ), that is, u = u K and v = v -K = 0. We are going to show that |||u + v||| > |||u|||.

On the one hand, by definition of the module of a vector, we easily see that

|w| = |w K | + |w -K |, for any vector w ∈ R d . Thus, we have |u+v| = |(u + v) K |+|(u + v) -K | = |u K +v K |+|u -K +v -K | = |u K + 0| + |0 + v -K | = |u K | + |v -K | > |u K | = |u| since |v -K | > 0 as v = v -K = 0,
and since u = u K . On the other hand, we easily get that (u + v)

• u = (u + v) K • u K + (u + v) -K • u -K = u K • u K + v -K • u -K = u K • u K , because u -K = 0. Therefore, we get that (u + v) • u = u K • u K ≥ 0.
is nothing to show for l = 0. Now, for l ≥ 1 and for any k ∈ 0, l -1 , we have = sup (as all the subsets

|K ′ |≤k,K ′ ⊂L |||y K ′ ||| ⋆ (by setting K ′ = K ∩ L) = sup |K|≤k,K⊂L |||y K ||| ⋆ (the same but with notation K instead of K ′ ) = sup |K|≤k,K L |||y K ||| ⋆ (because |K| ≤ k ≤ l -1 < l = |L| implies that K = L) < sup |K|≤k,j∈L\K K L |||y K∪{j} ||| ⋆ because the set L \ K is nonempty (having cardinality |L| -|K| = l -|K| ≥ k + 1 -|K| ≥
K ′ = K ∪ {j} are such that K ′ ⊂ L and |K ′ | = k + 1) ≤ |||y||| tn ⋆, (k+1) 
by definition [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I[END_REF] of the generalized top-(k + 1) dual norm (in fact the last inequality is easily shown to be an equality as y L = y). Thus, for any k ∈ 0, l -1 , we have established that |||y||| tn ⋆,(k) < |||y||| tn ⋆,(k+1) . This ends the proof.

B Proposition 9

We reproduce here [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Proposition 4.5] in order to simplify the reading of the proof of Proposition 3. 1. For any function ϕ : 0, d → R, we have 3. For any function ϕ : 0, d → R + , that is, with nonnegative finite values, and such that ϕ(0) = 0, the function (ϕ • ℓ 0 ) ¢ ⋆ ′ is proper convex lsc and has the following two variational expressions (notice that, in (35g), the sum starts from j = 0, whereas in (35h) and in (35i), the sum starts from j = 1) (ϕ • ℓ 0 ) ¢ ⋆ ′ (x) = min C Background on the Fenchel conjugacy on R d

(ϕ • ℓ 0 ) ¢¢ ′ (x) = (ϕ • ℓ 0 ) ¢ ⋆ ′ ( x |||x||| ) , ∀x ∈ R d \{0} , (35a) 
We review concepts and notations related to the Fenchel conjugacy (we refer the reader to [START_REF] Rockafellar | Conjugate Duality and Optimization[END_REF]). For any function h : R d → R, its epigraph is epih = (w, t) ∈ R d × R h(w) ≤ t , its effective domain is domh = w ∈ R d h(w) < +∞ . A function h : R d → R is said to be convex if its epigraph is a convex set, proper if it never takes the value -∞ and that domh = ∅, lower semi continuous (lsc) if its epigraph is closed, closed if it either lsc and nowhere having the value -∞, or is the constant function -∞ [18, p. 15]. Closed convex functions are the two constant functions -∞ and +∞ united with all proper convex lsc functions. In particular, any closed convex function that takes at least one finite value is necessarily proper convex lsc. For any functions f : R d → R and g : R d → R, we denote

f ⋆ (y) = sup x∈R d x, y • + -f (x) , ∀y ∈ R d , (37a) 
g ⋆ ′ (x) = sup y∈Y x, y • + -g(y) , ∀x ∈ R d , (37b) 
f ⋆⋆ ′ (x) = sup y∈R d x, y • + -f ⋆ (y) , ∀x ∈ R d . (37c) 
In convex analysis, one does not use the notation ⋆ ′ in (37b) and ⋆⋆ ′ in (37c), but simply ⋆ and ⋆⋆ . We use ⋆ ′ and ⋆⋆ ′ to be consistent with the notation (6b) for general conjugacies. It is proved that the Fenchel conjugacy (indifferently f → f ⋆ or g → g ⋆ ′ ) induces a one-to-one correspondence between the closed convex functions on R d and themselves [START_REF] Rockafellar | Conjugate Duality and Optimization[END_REF]Theorem 5].

In [20, p. 214-215] (see also the historical note in [19, p. 343]), the notions of (Moreau) subgradient and of (Rockafellar) subdifferential are defined for a convex function. Following the definition of the subdifferential of a function with respect to a duality in [START_REF] Akian | Invertibility of functional Galois connections[END_REF], we define the (Rockafellar-Moreau) subdifferential ∂f (x) of a function f : R d → R at x ∈ R d by

∂f (x) = y ∈ R d f ⋆ (y) = x, y • + -f (x) . (38a) 
When the function f is proper convex and x ∈ domf , we recover the classic definition that

∂f (x) = y ∈ R d x ′ -x, y + f (x) ≤ f (x ′ ) , ∀x ′ ∈ domf . (38b) 

Proposition 2

 2 Let |||•||| be a norm on R d with associated capra coupling ¢ as in (4). If both the norm |||•||| and the dual norm |||•||| ⋆ are orthant-strictly monotonic, and if ϕ

Theorem 1

 1 Let |||•||| be a norm on R d with associated sequence |||•||| tn ⋆,(j) j∈ 1,d of generalized top-k dual norms, as in Definition 3, and with associated capra coupling ¢ as in (4). If the norm |||•||| is orthant-monotonic, then, for any function ϕ : 0, d → R, we have that (we recall the convention that |||•||| tn ⋆,(0) = 0)

Proposition 3

 3 Let |||•||| be a norm on R d with associated sequence |||•||| tn ⋆,(j) j∈ 1,d of generalized top-k dual norms, and sequence |||•||| ⋆sn ⋆,(j) j∈ 1,d of generalized k-support dual norms, and with associated capra coupling ¢. Suppose that both the norm |||•||| and the dual norm |||•||| ⋆ are orthant-strictly monotonic. Let ϕ 0, d → R + be a nonnegative nondecreasing function, such that ϕ(0) = 0. We define the function L ϕ 0 : R d → R by

(a) The function L ϕ 0 :

 0 R d → R is proper convex lsc. (b) The function ϕ • ℓ 0 coincides, on the unit sphere S

  d) = B have been established for the generalized coordinate-k norms (see Definition 2) in [5, Equation (24)]. Now, since |||•||| R (j) = |||•||| ⋆sn ⋆,(j) , we get that B ⋆sn ⋆,(1) ⊂ • • • ⊂ B ⋆sn ⋆,(j-1) ⊂ B ⋆sn ⋆,(j) ⊂ • • • ⊂ B ⋆sn ⋆,(d) = B. (g ) We use Proposition 9 (Appendix B) and especially Equations (

( h )

 h We use the property that, for any k ∈ 1, d , we have |||•||| R (k) = |||•||| ⋆sn ⋆,(k) and also Proposition 9 (Appendix B) and especially Equations (35g), (35h) and (35i) to obtain (22a), (22b) and (22c).

  l) by [5, Equation (25a)]. Now, for any k ∈ 1, d , we have |||•||| R (k) = |||•||| ⋆sn ⋆,(k) by (32) in Proposition 7 (Appendix A.3), since the norm |||•||| is orthant-strictly monotonic, hence is orthant-monotonic. As a consequence, we have that |||x||| = |||x||| ⋆sn ⋆,(d) = • • • = |||x||| ⋆sn ⋆,(l)

Proposition 4 ( 1 )x ( 1 )

 411 Let C ⊂ R d be such that 0 ∈ C (if we had 0 ∈ C, the minimization problem below would obviously be achieved at x = 0). Let |||•||| be a norm on R d , such that both the norm |||•||| and the dual norm |||•||| ⋆ are orthant-strictly monotonic. Let ϕ : 0, d → R + be a nondecreasing function, such that ϕ(0) = 0. Then, we have that min x∈C ϕ ℓ 0 (x) = min x∈C,x (1) ∈R d ,...,x (d) ∈R d d j=1 |||x (j) ||| ⋆sn ⋆,(j) ≤1 d j=1 x (j) = x ∈R d ,...,x (d) ∈R d d j=1 |||x (j) ∈R d ,...,x (d)

Proposition 6

 6 Let |||•||| be an orthant-strictly monotonic norm on R d . Then (a) the norm |||•||| is strictly increasing with the coordinate subspaces in the sense that, for any x ∈ R d and any J K ⊂ 1, d , we have x J = x K ⇒ |||x J ||| < |||x K |||.

  |||y||| tn ⋆,(k) = sup |K|≤k |||y K ||| ⋆ (by definition (10) of the generalized top-k dual norm) = sup |K|≤k |||y K∩L ||| ⋆ (because y L = y by definition of the set L = supp(y))

Proposition 9 ([ 5 ,

 95 Proposition 4.5]) Let |||•||| be a norm on R d , with associated sequence |||•||| R (j) j∈ 1,d of coordinate-k norms and sequence |||•||| R (j),⋆ j∈ 1,d of dual coordinate-k norms, as in Definition 2, and with associated Capra coupling ¢ in (4).

. (35f) 2 .

 2 where the closed convex function (ϕ • ℓ 0 ) ¢ ⋆ ′ has the following expression as a Fenchel conjugate(ϕ • ℓ 0 ) ¢ ⋆ ′ = sup j∈ 0,d |||•||| R (j),⋆ϕ(j) hence the function (ϕ • ℓ 0 ) ¢ ⋆ ′ is the largest closed convex function below the integer valued function inf j∈ 0,d δ B R (j) ∔ ϕ(j) , such that x ∈ B R (j) \B R (j-1) → ϕ(j) for l ∈ 1, d , and x ∈ B R (0) = {0} → ϕ(0), the function being infinite outside B R (d) = B, that is, with the convention that B R (0) = {0} and that inf ∅ = +∞ = x → inf ϕ(j) x ∈ B R (j) , j ∈ 0, d hence the function (ϕ • ℓ 0 ) ¢ ⋆ ′is the largest closed convex function below the integer valued function inf j∈ 0,d δ S R (j) ∔ ϕ(j) , that is, with the convention that S R (0) = {0} and that inf ∅ = +∞ = x → inf ϕ(j) x ∈ S R (j) , j ∈ 0, d ⋆⋆ ′ For any function ϕ : 0, d → R, that is, with finite values, the function (ϕ • ℓ 0 ) ¢ ⋆ ′ is proper convex lsc and has the following variational expression (where ∆ d+1 denotes the simplex of R d+1 )(ϕ • ℓ 0 ) ¢ ⋆ ′ (x) = min(λ 0 ,λ 1 ,...,λ d )∈∆ d+1 x∈ d j=1 λ j B R (j) d j=0 λ j ϕ(j) , ∀x ∈ R d . (35g)

(λ 0 z ( 1 )

 01 ,λ 1 ,...,λ d )∈∆ d+1 x∈ d j=1 λ j S R (j) d j=1 λ j ϕ(j) , ∀x ∈ R d , ∈R d ,...,z (d) |||z (j) ||| R (j) , ∀x ∈ R d ,(35i)and the function (ϕ • ℓ 0 ) ¢¢ ′ has the following variational expression(ϕ • ℓ 0 ) ¢¢ ′ (x) = 1 |||x||| min z (1) ∈R d ,...,z (d) ∈R d d j=1 |||z (j) ||| R (j) ≤|||x||| d j=1 z (j) =x d j=1 |||z (j) ||| R (j) ϕ(j) , ∀x ∈ R d \{0} .(36)

  d , we denote by |y| = (|y 1 |, . . . , |y d |) the vector of R d with components |y i |, i ∈ 1, d . Letting y ∈ R d and ν be a permutation of 1, d such that |y ν(1) | ≥ |y ν(2) | ≥ • • • ≥ |y ν(d) |, we denote y ↓ = |y ν(1) |, |y ν(2) |, . . . , |y ν(d) | . Let |||•||| be a norm on R d . Then, if the norm |||•||| is permutation invariant and monotonic -that is, for any x, x ′ in R d , we have |x| ≤ |x ′ | ⇒ |||x||| ≤ |||x ′ |||, where |x| ≤ |x ′ | means |x i | ≤ |x ′ i | for all i ∈ 1, d -we have that |||y||| tn ⋆,(k)

	Lemma 1

Table 1 :

 1 

Examples of generalized top-k and k-support dual norms generated by the ℓ p source norms

  2, and of coordinate-k and dual coordinate-k norms in §A.3. A.1 Dual norm, |||•|||-duality, normal cone For any norm |||•||| on R d , we recall that the following expression We are interested in the case where this inequality is an equality. One says that y ∈ R d is |||•|||-dual to x ∈ R d , denoted by y |||•||| x, if equality holds in inequality (28a), that is,

	|||y||| ⋆ = sup	x, y , ∀y ∈ R d	(27)
	|||x|||≤1		
	defines a norm on R d , called the dual norm |||•||| ⋆ (in [20, Section 15], this operation is widened
	to a polarity operation between closed gauges).	
	By definition of the dual norm in (27), we have the inequality	
	x, y ≤ |||x||| × |||y||| ⋆ , ∀(x, y) ∈ R d × R d .	(28a)

  Proposition 5 Let |||•||| be an orthant-monotonic norm on R d . Then, the dual norm |||•||| ⋆ is orthant-monotonic, and the norm |||•||| is increasing with the coordinate subspaces, in the sense that, for any x ∈ R d and any J ⊂ K ⊂ 1, d , we have |||x J ||| ≤ |||x K |||. Let |||•||| be an orthant-monotonic norm on R d . Then, by [7, Theorem 2.23], the dual norm |||•||| ⋆ is also orthant-monotonic and, by [11, Proposition 2.4], we have that |||u||| ≤ |||u + v|||, for any subset J ⊂ 1, d and for any vectors u ∈ R J and v ∈ R -J (following notation from game theory, we have denoted by -J the complementary subset

Proof.

  [START_REF] Akian | Invertibility of functional Galois connections[END_REF], and because, since the norm |||•||| ⋆ is orthant-strictly monotonic, using Item (a ) in Proposition 6, we obtain that |||y K ||| ⋆ < |||y K∪{j} ||| ⋆ as y K = y K∪{j} for at least one j ∈ L \ K since L = supp(y)

	≤	sup	|||y J ||| ⋆
		|J|≤k+1,J⊂L

From |u + v| > |u| and (u + v) • u ≥ 0, we deduce that |||u + v||| > |||u||| by Definition 4 as the norm |||•||| is orthant-strictly monotonic. Since u = x J and v = x Kx J , we conclude that |||x K ||| > |||x J |||.

(b) Let u ∈ R d \ {0} be given and let us put K = supp(u) = ∅. As the norm |||•||| is orthantstrictly monotonic, it is orthant-monotonic; hence, by [START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF]Proposition 2.4], there exists a vector

We will now show that J K is impossible, hence that J = K, thus proving that Item (b) holds true with the above vector v.

Writing that u, v = |||u||| × |||v||| ⋆ (using that u = u K and v = v K = v J ), we obtain 

This ends the proof.

A.3 Properties of coordinate-k and dual coordinate-k norms, and of generalized top-k and k-support dual norms

We establish useful properties of coordinate-k and dual coordinate-k norms (Definition 2), and of generalized top-k and k-support dual norms (Definition 3).

whereas dual coordinate-k norms are lower than generalized top-k dual norms, that is,

If the source norm norm |||•||| is orthant-monotonic, then equalities hold true, that is, [START_REF] Marques De Sà | Characterizations of *orthant-monotonic norms[END_REF]Theorem 3.2]). Therefore, if the norm |||•||| is orthant-monotonic, from the definition (10) of the generalized top-k dual norm, we get that the inequality (31b) becomes an equality. Then, the inequality (31a) also becomes an equality by taking the dual norm as in (27). Thus, we have obtained (32).

This ends the proof. 

Proof. We consider y ∈ R d . We put L = supp(y) and we suppose that ℓ 0 (y) = |L| = l.

Since the norm |||•||| ⋆ is orthant-strictly monotonic, it is orthant-monotonic and so is |||•||| by Proposition 5. By (32) in Proposition 7, we get that

, for j ∈ 0, d (with the convention that these are the null seminorms in the case j = 0). Therefore, we can translate all the results, obtained in [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF], with coordinate-k and dual coordinate-k norms, into results regarding generalized top-k and k-support dual norms. As an application, by [START_REF] Chancelier | Constant along primal rays conjugacies and the l 0 pseudonorm[END_REF]Equation (18)], we get, from ℓ 0 (y) = l, that

We now prove (33) in two steps.

We Second, we show that |||y||| tn ⋆,(1) < • • • < |||y||| tn ⋆,(l-1) < |||y||| tn ⋆,(l) (the left hand side of (33)). There