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Abstract

The so-called `0 pseudonorm on the Euclidean space Rd counts the number of
nonzero components of a vector. In this paper, we analyze the l0 pseudonorm by
means of so-called capra conjugacies, for which the underlying source norm and its
dual norm are both orthant-strictly monotonic (a notion that we formally introduce
and that encompasses the `p norms, but for the extreme ones). We obtain three main
results. First, we show that the `0 pseudonorm is equal to its capra-biconjugate,
that is, is a capra-convex function. Second, we deduce an unexpected consequence,
that we call convex factorization: the `0 pseudonorm coincides, on the unit sphere
of the source norm, with a proper convex lower semicontinuous function. Third, we
establish variational formulations for the `0 pseudonorm by means of generalized top-k
dual norms and k-support dual norms (that we formally introduce).

Key words: `0 pseudonorm, orthant-strictly monotonic norm, Fenchel-Moreau conju-
gacy, generalized k-support dual norm, sparse optimization.

AMS classification: 46N10, 49N15, 46B99, 52A41, 90C46

1 Introduction

The counting function, also called cardinality function or `0 pseudonorm, counts the number
of nonzero components of a vector in Rd. It is used in sparse optimization, either as objective
function or in the constraints, to obtain solutions with few nonzero entries. However, the
mathematical expression of the `0 pseudonorm makes it difficult to be handled as such in
optimization problems. This is why most of the literature on sparse optimization resorts
to substitute problems, obtained either from estimates (inequalities) for the `0 pseudonorm,
or from alternative sparsity-inducing terms (especially suitable norms). The literature on
sparsity-inducing norms is huge, and we just point out a very succint part of it. We refer
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the reader to [16] that provides a brief tour of the literature dealing with least squares
minimization constrained by k-sparsity, and to [9] for a survey of the rank function of a
matrix, that shares many properties with the `0 pseudonorm. We refer the reader to [2] for the
support norm, to [23] (and references therein) for top norms, and to [13] for generalizations.

Our approach to tackle the `0 pseudonorm uses so-called capra conjugacies, introduced
in [4]. More precisely, in [4], we brought out the class of couplings capra (dependending
on an underlying source norm) and we established expressions for capra-conjugates and
biconjugates, and capra-subdifferentials of nondecreasing functions of the `0 pseudonorm.
In [5], we introduced the coupling E-capra related to the Euclidean norm and we showed
that the `0 pseudonorm is E-capra-convex and displays hidden convexity in the following
sense. The `0 pseudonorm satisfies a convex factorization property : it can be written as
the composition of a convex lsc function (on the Euclidean space) with the normalization
mapping that maps any nonzero vector onto the Euclidean unit sphere, hence it coincides
with a convex lsc function on the Euclidean unit sphere.

In this paper, we go beyond the two above papers in several directions. We generalize the
results of [5] by showing that not only the `0 pseudonorm but any nondecreasing function
of the `0 pseudonorm is capra-convex and displays hidden convexity (convex factorization
property), and not only for the Euclidean norm but for a class of norms that encompasses
it (including the `p-norms for p ∈]1,∞[). Moreover, we extend the hidden convexity prop-
erty to subdifferentials. Indeed, we show that the capra-subdifferential of a nondecreasing
function of the `0 pseudonorm coincides, on the unit sphere, with the Rockafellar-Moreau
subdifferential of the associated convex lsc function (in the convex factorization property).
Whereas we obtained capra-convex lower bounds (inequalities) in [4], for nondecreasing
functions of the `0 pseudonorm, we now obtain identities. Whereas we obtained an expres-
sion for the capra-subdifferential of a nondecreasing function of the `0 pseudonorm, we now
prove that it is not empty.

The paper is organized as follows. In Sect. 2, we provide background on the `0 pseudonorm
and capra-conjugacies. We also introduce a new class of orthant-strictly monotonic norms,
as well as sequences of generalized top-k and k-support dual norms. We show that nonde-
creasing functions of the `0 pseudonorm are capra-convex. In Sect. 3, we show that any
nondecreasing function of the `0 pseudonorm coincides, when restricted to the unit sphere,
with a proper convex lsc function. Then, we deduce variational formulations for nonde-
creasing functions of the `0 pseudonorm which involve the sequence of generalized k-support
dual norms. Appendix A gathers background on properties of norms that are relevant for
the `0 pseudonorm, and Appendix B gathers background on the Fenchel conjugacy.

2 Capra-convexity of the `0 pseudonorm with orthant-

strictly monotonic norms

In §2.1, we provide background on the `0 pseudonorm and on the family of capra conjugacies
(introduced in [4]). Then, in §2.2, we introduce norms that are especially relevant for the
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`0 pseudonorm, like orthant-strictly monotonic norms. Finally, in §2.3, we prove that the
`0 pseudonorm is capra-convex when the underlying norm and its dual norm are both
orthant-strictly monotonic.

2.1 Background on the `0 pseudonorm and the Capra conjugacy

We work on the Euclidean space Rd (where d is a nonzero integer), equipped with the
scalar product 〈·, ·〉 (but not necessarily with the Euclidean norm). We use the notation
Jj, kK = {j, j + 1, . . . , k − 1, k} for any pair of integers such that j ≤ k.

Let |||·||| be a norm on Rd, that we will call the source norm. We denote the unit sphere S
and the unit ball B of the source norm |||·||| by

S =
{
x ∈ Rd

∣∣ |||x||| = 1
}
, B =

{
x ∈ Rd

∣∣ |||x||| ≤ 1
}
. (1)

For any vector x ∈ Rd, supp(x) =
{
j ∈ J1, dK

∣∣xj 6= 0
}
⊂ J1, dK is the support of x. The

so-called `0 pseudonorm is the function `0 : Rd → J0, dK defined by

`0(x) = |supp(x)| = number of nonzero components of x , ∀x ∈ Rd , (2)

where |K| denotes the cardinality of a subset K ⊂ J1, dK. The `0 pseudonorm shares three
out of the four axioms of a norm: nonnegativity, positivity except for x = 0, subadditivity.
The axiom of 1-homogeneity does not hold true. By contrast, the `0 pseudonorm is 0-
homogeneous:

`0(ρx) = `0(x) , ∀ρ ∈ R \ {0} , ∀x ∈ Rd . (3)

Following [4], we introduce the coupling capra.

Definition 1 ([4, Definition 8]) The constant along primal rays coupling ¢ : Rd×Rd → R,
or capra, between Rd and itself, is the function

¢ : (x, y) ∈ Rd × Rd 7→

{
〈x, y〉
|||x||| , x 6= 0 ,

0 , else.
(4)

We stress the point that, in (4), the Euclidean scalar product 〈x, y〉 and the norm term |||x|||
need not be related, that is, the norm |||·||| is not necessarily the Euclidean norm.

The coupling capra has the property of being constant along primal rays, hence the
acronym capra (Constant Along Primal RAys). We introduce the primal normalization
mapping n : Rd → S ∪ {0}, from Rd towards the unit sphere S united with {0}, as follows:

n : x ∈ Rd 7→

{
x
|||x||| x 6= 0 ,

0 , else.
(5)

Now, we introduce notions and notation from generalized convexity [22, 21, 12]. As we
manipulate functions with values in R = [−∞,+∞], we adopt the Moreau lower and upper
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additions [15] that extend the usual addition with (+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞
or with (+∞) u (−∞) = (−∞) u (+∞) = +∞. The ¢-Fenchel-Moreau conjugate of a

function f : Rd → R, with respect to the coupling ¢, is the function f¢ : Rd → R defined by

f¢(y) = sup
x∈Rd

(
¢(x, y) ·+

(
−f(x)

))
, ∀y ∈ Rd . (6a)

The ¢-Fenchel-Moreau biconjugate of a function f : Rd → R, with respect to the coupling ¢,

is the function f¢¢
′
: Rd → R defined by

f¢¢
′

(x) = sup
y∈Rd

(
¢(x, y) ·+

(
−f¢(y)

))
, ∀x ∈ Rd . (6b)

The biconjugate of a function f : Rd → R satisfies the inequality

f¢¢
′

(x) ≤ f(x) , ∀x ∈ Rd . (6c)

When the coupling ¢ is replaced by the Euclidean scalar product 〈·, ·〉, we recover well-known
expressions of the Fenchel conjugacy (see Appendix B).

2.2 Relevant norms for the `0 pseudonorm

In §2.2.1, we recall the notions of restriction norms and of generalized coordinate-k and
dual coordinate-k norms. In §2.2.2, we introduce two new families of norms, the generalized
top-k and k-support dual norms. Finally, in §2.2.3, we define a new class of orthant-strictly
monotonic norms.

2.2.1 Restriction norms and generalized coordinate-k and dual coordinate-k
norms

For any subset K ⊂ J1, dK, we define the subspace

RK =
{
x ∈ Rd

∣∣xj = 0 , ∀j 6∈ K
}
⊂ Rd (7)

with R∅ = {0}, and then three norms on the subspace RK of Rd, as follows.

• The K-restriction norm |||·|||K is defined by |||x|||K = |||x|||, for any x ∈ RK .

• The (?,K)-norm |||·|||?,K is the norm
(
|||·|||?

)
K

, given by the restriction to the sub-
space RK of the dual norm |||·|||? (first dual, as recalled in definition (26) of a dual
norm, then restriction),

• The (K, ?)-norm |||·|||K,? is the norm
(
|||·|||K

)
?
, given by the dual norm (on the sub-

space RK) of the restriction norm |||·|||K to the subspace RK (first restriction, then
dual).
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For any x ∈ Rd and subset K ⊂ J1, dK, we denote by xK ∈ RK ⊂ Rd the vector which
coincides with x, except for the components outside of K that vanish (this definition is valid
for K = ∅, giving x∅ = 0 ∈ R∅ = {0}).

Definition 2 ([4, Definition 3]) For k ∈ J1, dK, we call generalized coordinate-k norm the
norm |||·|||R(k) on Rd whose dual norm is the generalized dual coordinate-k norm, denoted by

|||·|||R(k),?, with expression1

|||y|||R(k),? = sup
|K|≤k
|||yK |||K,? , ∀y ∈ Rd . (8)

We denote the unit sphere SR(k),? and the unit ball BR(k),? by

SR(k),? =
{
y ∈ Rd

∣∣ |||y|||R(k),? = 1
}
, BR(k),? =

{
y ∈ Rd

∣∣ |||y|||R(k),? ≤ 1
}
, ∀k ∈ J1, dK . (9)

We give examples of generalized coordinate-k and dual coordinate-k norms in [4, Table 1].

2.2.2 Generalized top-k and k-support dual norms

We introduce two new families of norms, that we call generalized top-k and k-support
dual norms.

Definition 3 For k ∈ J1, dK, we call generalized top-k dual norm (associated with the source
norm |||·|||) the norm on Rd defined by2

|||y|||tn?,(k) = sup
|K|≤k
|||yK |||? = sup

|K|≤k
|||yK |||?,K , ∀y ∈ Rd . (10)

We call generalized k-support dual norm the dual norm (on Rd) of the generalized top-k
dual norm, denoted by3

|||·|||?sn?,(k) =
(
|||·|||tn?,(k)

)
?
, ∀k ∈ J1, dK , (11)

with unit sphere S?sn?,(k) and unit ball B?sn?,(k) given by

S?sn?,(k) =
{
x ∈ Rd

∣∣ |||x|||?sn?,(k) = 1
}
, B?sn?,(k) =

{
x ∈ Rd

∣∣ |||x|||?sn?,(k) ≤ 1
}
, ∀k ∈ J1, dK . (12)

We now give examples of generalized top-k and k-support dual norms in the case of `p
source norm. We recall that the `p-norms ‖ · ‖p on the space Rd are defined by ‖x‖p =(∑d

i=1 |xi|p
) 1

p for p ∈ [1,∞[, and by ‖x‖∞ = supi∈J1,dK |xi|. It is well-known that the dual

1The notation sup|K|≤k is a shorthand for supK⊂J1,dK,|K|≤k.
2We adopt the convention |||·|||tn?,(0) = 0 (although this is not a norm, but a seminorm).
3We adopt the convention |||·|||?sn?,(0) = 0 (although this is not a norm, but a seminorm). We use the

symbol ? in the superscript to indicate that the generalized k-support dual norm |||·|||?sn?,(k) is a dual norm. To

stress the point, we use the letter x for a primal vector, like in |||x|||?sn?,(k), and the letter y for a dual vector,

like in |||y|||tn?,(k).
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norm of the norm ‖ · ‖p is the `q-norm ‖ · ‖q, where q is such that 1/p + 1/q = 1 (with the
extreme cases q =∞ when p = 1, and q = 1 when p =∞).

We start with a Lemma, whose proof is easy. For any y ∈ Rd, we denote by |y| =
(|y1|, . . . , |yd|) the vector of Rd with components |yi|, i ∈ J1, dK. Letting y ∈ Rd and
ν be a permutation of J1, dK such that |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|, we note y↓ =(
|yν(1)|, |yν(2)|, . . . , |yν(d)|

)
.

Lemma 4 Let |||·||| be a norm on Rd. Then, if the norm |||·||| is permutation invariant and
monotonic (with respect to the partial order on Rd given by the nonnegative orthant cone),
we have that |||y|||tn?,(k) = |||y↓{1,...,k}|||?, where y↓{1,...,k} ∈ Rd is given by (y↓){1,...,k}, for all y ∈ Rd.

We start with generalized top-k dual norms as in (10) (see the second column of Table 1).
When the norm |||·||| is the Euclidean norm ‖ · ‖2 of Rd, the generalized top-k dual norm is
known under different names: the top-(k, 2) norm in [23, p. 8], or the 2-k-symmetric gauge
norm [14] or the Ky Fan vector norm [17]. Indeed, in all these cases, the norm of a vector y is
obtained with a subvector of size k having the k largest components in module, because the
assumptions of Lemma 4 are satisfied. More generally, when the norm |||·||| is the `p-norm ‖·‖p,
for p ∈ [1,∞], the assumptions of Lemma 4 are also satisfied, as `p-norms are permutation
invariant and monotonic. Therefore, we obtain that the corresponding generalized top-k
dual norm

(
‖ · ‖p

)tn

?,(k)
has the expression

(
‖ · ‖p

)tn

?,(k)
(y) = sup|K|≤k ‖yK‖q = ‖y↓{1,...,k}‖q, for

all y ∈ Rd, and where 1/p + 1/q = 1. We call4 top-(q,k) norm — denoted by ||·||tnq,k — the

generalized top-k dual norm |||·|||tn?,(k) in (10) when the source norm |||·||| is the `p-norm ||·||p.
Notice that ||·||tn∞,k = ‖ · ‖∞ for all k ∈ J1, dK.

Now, we turn to generalized k-support dual norms as in (11) (see the third column
of Table 1). When the norm |||·||| is the Euclidean norm ‖ · ‖2 of Rd, the generalized k-
support norm is the so-called k-support norm [2]. More generally, in [13, Definition 21],
the authors define the k-support p-norm or (p,k)-support norm for p ∈ [1,∞]. They show,
in [13, Corollary 22], that the dual norm

(
(‖ · ‖p)tn

(k)

)
?

of the above top-(p,k) norm is the

(q,k)-support norm, where 1/p + 1/q = 1. Therefore, the generalized k-support dual norm
in (11) is the (p,k)-support norm — denoted by ||·||snp,k — when the source norm |||·||| is the
`p-norm ||·||p, for p ∈ [1,∞]. The formula ||x||sn∞,k = max{||x||1/k, ||x||∞} can be found in [3,
Exercise IV.1.18, p. 90].

2.2.3 Orthant-monotonic and orthant-strictly monotonic norms

We recall the definition of orthant-monotonic norms and we introduce the new one of orthant-
strictly monotonic norms, that will prove especially relevant for the `0 pseudonorm.

Definition 5 A norm |||·||| on the space Rd is called

4We invert the indices in the naming convention of [23, p. 5, p. 8], where top-(k, 1) and top-(k, 2) were
used.
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source norm |||·||| |||·|||tn?,(k), k ∈ J1, dK |||·|||?sn?,(k), k ∈ J1, dK
||·||p top-(q,k) norm (p,k)-support norm

||y||tnq,k ||x||snp,k
||y||tnq,k =

(∑k
l=1 |yν(l)|q

) 1
q no analytic expression

||·||1 top-(∞,k) norm (1,k)-support norm
`∞-norm `1-norm

||y||tn∞,k = ||y||∞, ∀k ∈ J1, dK ||x||sn1,k = ||x||1, ∀k ∈ J1, dK
||·||2 top-(2,k) norm (2,k)-support norm

||y||tn2,k =
√∑k

l=1 |yν(l)|2 ||x||sn2,k no analytic expression

(computation [2, Prop. 2.1])

||y||tn2,1 = ||y||∞ ||x||sn2,1 = ||x||1
||·||∞ top-(1,k) norm (∞,k)-support norm

||y||tn1,k =
∑k

l=1 |yν(l)| ||x||sn∞,k = max{ ||x||1
k
, ||x||∞}

||y||tn1,1 = ||y||∞ ||x||sn1,1 = ||x||1

Table 1: Examples of generalized top-k and k-support dual norms generated by the `p source
norms |||·||| = ||·||p for p ∈ [1,∞], where 1/p+ 1/q = 1. For y ∈ Rd, ν denotes a permutation
of {1, . . . , d} such that |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|.
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• orthant-monotonic [8, Definition 2.6] if, for all x, x′ in Rd, we have
(
|x| ≤ |x′| and x ◦ x′ ≥

0 ⇒ |||x||| ≤ |||x′|||
)
, where |x| ≤ |x′| means |xi| ≤ |x

′
i| for all i ∈ J1, dK, and where

x ◦ x′ = (x1x
′
1, . . . , xdx

′
d) is the Hadamard (entrywise) product,

• orthant-strictly monotonic if, for all x, x′ in Rd, we have
(
|x| < |x′| and x ◦ x′ ≥

0 ⇒ |||x||| < |||x′|||
)
, where |x| < |x′| means that |xi| ≤ |x

′
i| for all i ∈ J1, dK, and there

exists j ∈ J1, dK, such that |xj| < |x
′
j|.

All the `p-norms ‖ · ‖p on the space Rd, for p ∈ [1,∞[, are strictly monotonic, hence orthant-
strictly monotonic. By contrast, the `∞-norm ‖ · ‖∞ is orthant-monotonic but not orthant-
strictly monotonic.

2.3 Capra-convexity of the `0 pseudonorm

The main result of this Section is Theorem 6 which states that, when both the source
norm |||·||| and its dual norm |||·|||? are orthant-strictly monotonic, then any nondecreasing
function of the `0 pseudonorm is equal to its capra-biconjugate, that is, is a capra-convex
function. This considerably generalizes the result in [5, Theorem 3.5], which was established
for the Euclidean norm and only for the `0 pseudonorm. The proof of Theorem 6 relies
on Proposition 7, stated and proved after, which establishes the nonemptiness of a suitable
capra-subdifferential. In [4, Equation (32)], we define the capra-subdifferential of the
function f : Rd → R at x ∈ Rd by

∂¢f(x) =
{
y ∈ Rd

∣∣ f¢(y) = ¢(x, y) ·+
(
−f(x)

)}
, (13)

where f¢(y) has been defined in (6a).

Theorem 6 Let |||·||| be a norm on Rd with associated sequence
{
|||·|||tn?,(j)

}
j∈J1,dK

of generalized

top-k dual norms, as in Definition 3, and with associated capra coupling ¢ as in (4).
If the norm |||·||| is orthant-monotonic, then, for any function ϕ : J0, dK→ R, we have5

(ϕ ◦ `0)¢ = sup
j∈J0,dK

[
|||·|||tn?,(j) − ϕ(j)

]
. (14)

If both the norm |||·||| and the dual norm |||·|||? are orthant-strictly monotonic, then, for any
nondecreasing function ϕ : J0, dK→ R, we have

(ϕ ◦ `0)¢¢
′

= ϕ ◦ `0 . (15)

5We recall the convention that |||·|||tn?,(0) = 0.

8



Proof. Suppose that the norm |||·||| is orthant-monotonic. Then, by (31) in Proposition 13
(Appendix A), we get that |||·|||R(k) = |||·|||?sn?,(k) and |||·|||R(k),? = |||·|||tn?,(k). Moreover, it is proved in [4,

Equation (33) in Proposition 11] that (ϕ ◦ `0)¢ = supj∈J0,dK

[
|||·|||R(j),? − ϕ(j)

]
. As |||·|||R(j),? = |||·|||tn?,(j),

we obtain (14).

Suppose that both the norm |||·||| and the dual norm |||·|||? are orthant-strictly monotonic. Then,
the forthcoming Proposition 7 applies. Therefore, for any vector x ∈ Rd and any y ∈ ∂¢(ϕ ◦ `0)(x) 6=
∅, we obtain

(ϕ ◦ `0)¢¢
′
(x) ≥ ¢(x, y) ·+

(
−(ϕ ◦ `0)¢(y)

)
(by definition (6b) of the biconjugate)

= ¢(x, y)− (ϕ ◦ `0)¢(y)
(because −∞ < ¢(x, y) < +∞ by (4), so that the usual addition applies)

= ¢(x, y)−
(
¢(x, y)− (ϕ ◦ `0)(x)

)
by definition (13) of the capra-subdifferential ∂¢(ϕ ◦ `0)(x), and where again we can use the usual
addition

= (ϕ ◦ `0)(x) .

On the other hand, we have that (ϕ ◦ `0)¢¢
′
(x) ≤ (ϕ ◦ `0)(x) by (6c). We conclude that (ϕ ◦ `0)¢¢

′
(x) =

(ϕ ◦ `0)(x), which is (15).

This ends the proof. 2

Now, we prove that the capra-subdifferential of any nondecreasing function of the
`0 pseudonorm is not empty.6

Proposition 7 Let |||·||| be a norm on Rd with associated capra coupling ¢ as in (4). If both
the norm |||·||| and the dual norm |||·|||? are orthant-strictly monotonic, and if ϕ : J0, dK→ R
is a nondecreasing function, then

∂¢(ϕ ◦ `0)(x) 6= ∅ , ∀x ∈ Rd .

More precisely, when x = 0, we have that ∂¢(ϕ ◦ `0)(0) =
⋂
j∈J1,dK

[
ϕ(j)− ϕ(0)

]
BR(j),? 6= ∅,

where the unit ball BR(k),? is defined in (9). When x 6= 0, there exists y ∈ Rd satisfying

supp(y) = supp(x) and 〈x, y〉 = |||x||| × |||y|||?, and for all such y ∈ Rd we have that λy ∈
∂¢(ϕ ◦ `0)(x) for λ > 0 large enough.

6In [9, Section 8], it is shown that all the generalized (Fenchel) subdifferentials (proximal, Fréchet, vis-
cosity, limiting, Clarke) of the rank function coincide and define a vector space. By contrast, the capra-
subdifferential of the `0 pseudonorm is not a vector space, but we can show that it is closed convex. Indeed,

it is easily seen that (13) can also be written as ∂¢f(x) =
{
y ∈ Rd

∣∣ f¢(y) ≤ ¢(x, y) ·+
(
−f(x)

)}
, where the

function f¢ is closed convex by [4, Equation (30b) in Proposition 9], hence ∂¢f(x) is a closed convex set.
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Proof. Since the norm |||·||| is orthant-strictly monotonic, it is orthant-monotonic, so that we
have |||·|||R(j) = |||·|||?sn?,(j) and |||·|||R(j),? = |||·|||tn?,(j), for j ∈ J0, dK by (31) in Proposition 13 (with the
convention that these are the null seminorms in the case j = 0). Therefore, we can translate all
the results with generalized top-k and k-support dual norms (Definition 3) instead of coordinate-k
and dual coordinate-k norms (Definition 2).

When x = 0, we have by [4, Equation (39) in Proposition 14] that

∂¢(ϕ ◦ `0)(0) =
⋂

j∈J1,dK

[
ϕ(j) u

(
−ϕ(0)

)]
BR(j),? =

⋂
j∈J1,dK

[
ϕ(j)− ϕ(0)

]
BR(j),? 3 0 ,

because ϕ(j) u
(
−ϕ(0)

)
= ϕ(j)− ϕ(0) ≥ 0 since ϕ : J0, dK→ R is a nondecreasing function.

From now on, we consider x ∈ Rd\{0} such that `0(x) = l ∈ J1, dK, and we will use the following
equivalence, established in [4, Equation (40) in Proposition 14]

y ∈ ∂¢(ϕ ◦ `0)(x) ⇐⇒

y ∈ NBR
(l)

( x
|||x|||R(l)

)

and l ∈ arg maxj∈J0,dK
[
|||y|||R(j),? − ϕ(j)

]
,

(16)

where the normal cone NBR
(l)

( x
|||x|||R(l)

) is defined in (28).

Since the norm |||·||| is orthant-strictly monotonic, we know by Item (b) in Proposition 12 that
there exists a (nonzero) vector y ∈ Rd such that

L = supp(x) = supp(y) hence `0(y) = `0(x) = l > 1 , (17a)

〈x, y〉 = |||x||| × |||y|||? . (17b)

Since the dual norm |||·|||? is orthant-strictly monotonic, we know by (32) in Proposition 14 that

|||y|||R(1),? < · · · < |||y|||
R
(l−1),? < |||y|||

R
(l),? = · · · = |||y|||R(d),? = |||y|||? . (18)

We now show that y ∈ ∂¢(ϕ ◦ `0)(x).

First, we are going to establish that we have y ∈ NBR
(l)

( x
|||x|||R(l)

), that is, the first of the two

conditions in the characterization (16) of the subdifferential ∂¢(ϕ ◦ `0)(x).

On the one hand, because `0(y) = l and by (18), we have that |||y|||? = |||y|||R(l),?. On the other

hand, because `0(x) = l we have that |||x||| = |||x|||R(l) by [4, Equation (25a)]. Hence, from (17b),

we get 〈x, y〉 = |||x|||R(l) × |||y|||
R
(l),?, from which we obtain y ∈ NBR

(l)
( x
|||x|||R(l)

) by property (29) of the

normal cone as x 6= 0. To close this part, notice that, for all λ > 0, we have that λy ∈ NBR
(l)

( x
|||x|||R(l)

),

because this last set is a cone.

Second, we prove the other of the two conditions in the characterization (16) of the subdifferen-
tial ∂¢(ϕ ◦ `0)(x). More precisely, we are going to show that, for λ large enough, |||λy|||R(l),?−ϕ(l) =

supj∈J0,dK
[
|||λy|||R(j),? − ϕ(j)

]
. For this purpose, we consider the mapping ψ : ]0,+∞[→ R defined

by
ψ(λ) = |||λy|||R(l),? − ϕ(l)− sup

j∈J0,dK

[
|||λy|||R(j),? − ϕ(j)

]
, ∀λ > 0 ,

10



and we will show that ψ(λ) = 0 for λ large enough. We have

ψ(λ) = inf
j∈J0,dK

(
λ
(
|||y|||R(l),? − |||y|||

R
(j),?

)
+ ϕ(j)− ϕ(l)

)
= inf

{
λ|||y|||R(l),? + ϕ(0)− ϕ(l), inf

j∈J1,l−1K

(
λ
(
|||y|||R(l),? − |||y|||

R
(j),?

)
+ ϕ(j)− ϕ(l)

)
,

(as |||y|||R(0),? = 0 by convention)

inf
j∈Jl,dK

(
λ
(
|||y|||R(l),? − |||y|||

R
(j),?

)
+ ϕ(j)− ϕ(l)

)}
= inf

{
λ|||y|||R(l),? + ϕ(0)− ϕ(l), inf

j∈J1,l−1K

(
λ
(
|||y|||R(l),? − |||y|||

R
(j),?

)
+ ϕ(j)− ϕ(l)

)
,

inf
j∈Jl,dK

(
ϕ(j)− ϕ(l)

)}
(as |||y|||R(j),? = |||y|||R(l),? for j ≥ l by (18))

= inf
{
λ|||y|||R(l),? + ϕ(0)− ϕ(l), inf

j∈J1,l−1K

(
λ
(
|||y|||R(l),? − |||y|||

R
(j),?

)
+ ϕ(j)− ϕ(l)

)
, 0
}
,

as infj∈Jl,dK
(
ϕ(j)− ϕ(l)

)
= 0 because ϕ : J0, dK → R is a nondecreasing function. Let us show

that the two first terms in the infimum go to +∞ when λ → +∞. The first term λ|||y|||R(l),? +

ϕ(0) − ϕ(l) goes to +∞ because, by (18), we have |||y|||R(l),? = |||y|||? > 0 as y ∈ Rd \ {0}. The

second term infj∈J1,l−1K

(
λ
(
|||y|||R(l),? − |||y|||

R
(j),?

)
+ ϕ(j)− ϕ(l)

)
also goes to +∞ because `0(y) = l,

so that |||y|||? = |||y|||R(l),? > |||y|||
R
(j),? for j ∈ J1, l − 1K again by (18). Therefore, we deduce that

ψ(λ) = 0 for λ large enough, and thus |||λy|||R(l),? − ϕ(l) = supj∈J0,dK
[
|||λy|||R(j),? − ϕ(j)

]
, that is,

l ∈ arg maxj∈J0,dK
[
|||λy|||R(j),? − ϕ(j)

]
.

Wrapping up the above results, we have shown that, for any vector y ∈ Rd such that supp(y) =
supp(x), and that 〈x, y〉 = |||x||| × |||y|||?, then, for λ > 0 large enough, λy satisfies the two
conditions in the characterization (16) of the subdifferential ∂¢(ϕ ◦ `0)(x). Hence, we get that

λy ∈ ∂¢(ϕ ◦ `0)(x).

This ends the proof. 2

Our proof of Proposition 7, hence of Theorem 6, uses the property that the nondecreasing
function ϕ : J0, dK → R takes finite values. What happens for ϕ : J0, dK → R? Regarding
capra-convexity of a nondecreasing function of the `0 pseudonorm taking infinite values,
we suspect that a proof would rely on different assumptions than those of Proposition 7 and
Theorem 6. As an indication, the comment after the proof of [4, Corollary 13] points out
that, when the normed space

(
Rd, |||·|||

)
is strictly convex (that is, when the unit ball B is

rotund), then δJ0,kK ◦ `0 is ¢-convex for k ∈ J0, dK. As the normed space
(
Rd, ‖ · ‖p

)
, equipped

with the `p-norm ‖ · ‖p (for p ∈ [1,∞]), is strictly convex if and only if p ∈]1,∞[, we get
that the characteristic functions of the level sets of the `0 pseudonorm are ¢-convex when
the source norm |||·||| = ‖ · ‖p for p ∈]1,∞[.
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3 Convex factorization and variational formulation for

the `0 pseudonorm

In this Section, we suppose that both the norm |||·||| and the dual norm |||·|||? are orthant-
strictly monotonic. In §3.1, we show that any nonnegative nondecreasing function of the
pseudonorm `0 coincides, on the unit sphere, with a proper convex lsc function on Rd, and
we provide various expressions for this latter function. In §3.2, we deduce a variational
formula for nonnegative nondecreasing functions of the `0 pseudonorm.

3.1 Convex factorization and hidden convexity in the `0 pseudo-
norm

We now present a (rather unexpected) consequence of the just established property that
any nondecreasing function of the pseudonorm `0 is capra-convex (Theorem 6). Indeed, we
prove that any nonnegative nondecreasing function of the pseudonorm `0 coincides, on the
unit sphere S =

{
x ∈ Rd

∣∣ |||x||| = 1
}

, with a proper convex lsc function on Rd, and that this
property extends to subdifferentials. We also provide various expressions for the underlying
proper convex lsc function.

Proposition 8 Let |||·||| be a norm on Rd with associated sequence
{
|||·|||tn?,(j)

}
j∈J1,dK

of general-

ized top-k dual norms, and sequence
{
|||·|||?sn?,(j)

}
j∈J1,dK

of generalized k-support dual norms, as

in Definition 3, and with associated capra coupling ¢ as in (4). Suppose that both the norm
|||·||| and the dual norm |||·|||? are orthant-strictly monotonic. Let ϕ : J0, dK → R+ be a non-
negative nondecreasing function, such that ϕ(0) = 0. We define the function Lϕ0 : Rd → R
by

Lϕ0 =
(
(ϕ ◦ `0)¢

)?′
. (19)

Then, the following statements hold true.

(a) The function Lϕ0 : Rd → R is proper convex lsc.

(b) The function ϕ ◦ `0 coincides, on the unit sphere S =
{
x ∈ Rd

∣∣ |||x||| = 1
}

, with the
function Lϕ0 , that is,

(ϕ ◦ `0)(s) = Lϕ0 (s) , ∀s ∈ S . (20a)

(c) The capra-subdifferential, as in (13), of the function ϕ ◦ `0 coincides, on the unit
sphere S, with the (Rockafellar-Moreau) subdifferential7, as in (35a), of the func-
tion Lϕ0 , that is,

∂¢(ϕ ◦ `0)(s) = ∂Lϕ0 (s) , ∀s ∈ S . (20b)

7We can also use the definition (35b) of the (Rockafellar-Moreau) subdifferential as the function Lϕ
0 is

proper convex and as S ⊂ domLϕ
0 by (20a) since ϕ : J0, dK→ R+ takes finite values.
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(d) Convex factorization property. The function ϕ ◦ `0 can be expressed as the composition
of the proper convex lsc function Lϕ0 with the normalization mapping n in (5), that is,

ϕ ◦ `0 = Lϕ0 ◦ n (20c)

or, equivalently,

(ϕ ◦ `0)(x) = Lϕ0
( x

|||x|||

)
, ∀x ∈ Rd \ {0} . (20d)

(e) The function Lϕ0 is given by

Lϕ0 =
(

sup
j∈J0,dK

[
|||·|||tn?,(j) − ϕ(j)

])?′
. (21a)

(f ) The function Lϕ0 is the largest convex lsc function below the integer valued function

Rd 3 x 7→ inf
j∈J0,dK

[
δB?sn

?,(j)
(x) + ϕ(j)

]
, (21b)

that is, below the function x ∈ B?sn?,(j) \ B?sn?,(j−1) 7→ ϕ(j) for j ∈ J1, dK and x ∈ B?sn?,(0) =

{0} 7→ 0, the function being infinite outside B?sn?,(d) = B (the above construction makes

sense as B?sn?,(1) ⊂ · · · ⊂ B?sn?,(j−1) ⊂ B?sn?,(j) ⊂ · · · ⊂ B?sn?,(d) = B).

(g) The function Lϕ0 is the largest convex lsc function below the integer valued function

Rd 3 x 7→ inf
j∈J0,dK

[
δS?sn

?,(j)
(x) + ϕ(j)

]
, (21c)

that is, below the function x ∈ Rd 7→ inf ϕ
{
j ∈ {0, . . . , d}

∣∣x ∈ S?sn?,(j)

}
, with the conven-

tion that S?sn?,(0) = {0} and that inf ∅ = +∞.

(h) The proper convex lsc function Lϕ0 also has three variational expressions as follows,
where ∆d+1 is the simplex of Rd+1,

Lϕ0 (x) = min
(λ0,λ1,...,λd)∈∆d+1

x∈
∑d

l=1 λjB?sn
?,(l)

d∑
l=1

λjϕ(j) , ∀x ∈ Rd (22a)

= min
(λ0,λ1,...,λd)∈∆d+1

x∈
∑d

l=1 λjS?sn?,(l)

d∑
l=1

λjϕ(j) , ∀x ∈ Rd (22b)

= min
x(1)∈Rd,...,x(d)∈Rd∑d

j=1 |||x(j)|||
?sn
?,(j)≤1∑d

j=1 x
(j)=x

d∑
j=1

ϕ(j)|||x(j)|||?sn?,(j) , ∀x ∈ Rd . (22c)
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Proof. As in the beginning of the proof of Proposition 7, we make the observation that, since
the norm |||·||| is orthant-strictly monotonic, it is orthant-monotonic, so that we have |||·|||R(j) = |||·|||?sn?,(j)

and |||·|||R(j),? = |||·|||tn?,(j), for j ∈ J0, dK by (31) in Proposition 13 (with the convention that these are
the null seminorms in the case j = 0).

(a) As the Fenchel conjugacy induces a one-to-one correspondence between the closed convex

functions on Rd and themselves [18, Theorem 5], the function Lϕ0 =
(
(ϕ ◦ `0)¢

)?′
in (19) is closed

convex. We now show that it is proper. Indeed, on the one hand, it is easily seen by the very

definition (6a) that the function (ϕ ◦ `0)¢ takes finite values, from which we deduce that the function(
(ϕ ◦ `0)¢

)?′
never takes the value −∞, by (34b). On the other hand, we have (ϕ ◦ `0)¢¢

′
=(

(ϕ ◦ `0)¢
)?′ ◦n by [4, Equation (30d)], and (ϕ ◦ `0)¢¢

′
≤ ϕ◦`0 by (6c), from which we deduce that,

for any x ∈ S, we have
(
(ϕ ◦ `0)¢

)?′
(x) = (ϕ ◦ `0)¢¢

′
(x) ≤ (ϕ ◦ `0)(x) < +∞ since ϕ : J0, dK→ R+.

As a consequence, the function
(
(ϕ ◦ `0)¢

)?′
is proper.

(b) The assumptions make it possible to conclude that (ϕ ◦ `0)¢¢
′

= ϕ ◦ `0, thanks to Theorem 6.
We deduce from [4, Proposition 10] that, being ¢-convex, the function ϕ ◦ `0 coincides, on the
unit sphere S, with the closed convex function Lϕ0 : Rd → R given by [4, Equation (30d)] namely

Lϕ0 =
(
(ϕ ◦ `0)¢

)?′
. Thus, we have proved (20a).

(c) Let s ∈ S. We prove (20b) as follows:

y ∈ ∂Lϕ0 (s) ⇐⇒ (Lϕ0 )?(y) = 〈s, y〉 ·+
(
−Lϕ0 (s)

)
by definition (35a) of the (Rockafellar-Moreau) subdifferential of a function

⇐⇒
((

(ϕ ◦ `0)¢
)?′)?

(y) = 〈s, y〉 ·+
(
−
((

(ϕ ◦ `0)¢
)?′)

(s)

)
(by definition (19) of Lϕ0 =

(
(ϕ ◦ `0)¢

)?′
)

⇐⇒ (ϕ ◦ `0)¢(y) = 〈s, y〉 ·+
(
−
((

(ϕ ◦ `0)¢
)?′)

(s)

)
because the function (ϕ ◦ `0)¢ is a Fenchel conjugate by [4, Equation (30b)], hence is closed convex,

hence is equal to its Fenchel biconjugate
((

(ϕ ◦ `0)¢
)?′)?

⇐⇒ (ϕ ◦ `0)¢(y) = ¢(s, y) ·+
(
−
((

(ϕ ◦ `0)¢
)?′)

(s)

)
(by definition (4) of ¢(s, y) as s ∈ S)

⇐⇒ (ϕ ◦ `0)¢(y) = ¢(s, y) ·+
(
−
(
(ϕ ◦ `0)¢¢

′)
(s)
)

because (ϕ ◦ `0)¢¢
′

=
(
(ϕ ◦ `0)¢

)?′ ◦ n by [4, Equation (30d)], and using that n(s) = s since s ∈ S
by definition (5) of the normalization mapping n

⇐⇒ (ϕ ◦ `0)¢(y) = ¢(s, y) ·+
(
−(ϕ ◦ `0)(s)

)
(as (ϕ ◦ `0)¢¢

′
= ϕ ◦ `0 by Theorem 6)

⇐⇒ y ∈ ∂¢(ϕ ◦ `0)(s) . (by definition (13) of the capra-subdifferential)

14



(d) The equality (20c) is a consequence of the formula ϕ ◦ `0 = (ϕ ◦ `0)¢¢
′

=
(
(ϕ ◦ `0)¢

)?′ ◦n given
by [4, Equation (30d)]. The equality (20d) is an easy consequence of (20c) and of the definition (5)
of the normalization mapping n.

(e) As Lϕ0 =
(
(ϕ ◦ `0)¢

)?′
by definition (19), and as we have that

(
(ϕ ◦ `0)¢

)?′
=
(

supj∈J0,dK

[
|||·|||tn?,(j) − ϕ(j)

])?′
by (14), we get (21a).

(f ) We use [4, Proposition 12], and especially Equations (34c) and (34d), to obtain (21b). The
inclusions and equality BR(1) ⊂ · · · ⊂ BR(j) ⊂ BR(j+1) ⊂ · · · ⊂ BR(d) = B have been established for the

generalized coordinate-k norms (see Definition 2) in [4, Equation (24)]. Now, since |||·|||R(j) = |||·|||?sn?,(j),
as noticed at the beginning of the proof, we get that B?sn?,(1) ⊂ · · · ⊂ B?sn?,(j−1) ⊂ B?sn?,(j) ⊂ · · · ⊂ B?sn?,(d) =
B.

(g) We use [4, Proposition 12], and especially Equations (34e) and (34f), to obtain (21c).

(h) We use [4, Proposition 12], and especially Equations (34g), (34h) and (34i) to obtain (22a),
(22b) and (22c).

This ends the proof. 2

3.2 Variational formulation for the `0 pseudonorm

As an application of Proposition 8, we obtain the second main result of this paper, namely
a variational formulation for (nonnegative nondecreasing functions of) the `0 pseudonorm.

Theorem 9 Let |||·||| be a norm on Rd with associated sequence
{
|||·|||tn?,(j)

}
j∈J1,dK

of generalized

k-support dual norms as in Definition 3, and with associated capra coupling ¢ as in (4).
Suppose that both the norm |||·||| and the dual norm |||·|||? are orthant-strictly monotonic. Let
ϕ : J0, dK→ R+ be a nonnegative nondecreasing function such that ϕ(0) = 0. Then, we have
the equality

ϕ
(
`0(x)

)
=

1

|||x|||
min

x(1)∈Rd,...,x(d)∈Rd∑d
j=1 |||x(j)|||

?sn
?,(j)≤|||x|||∑d

j=1 x
(j)=x

d∑
j=1

ϕ(j)|||x(j)|||?sn?,(j) , ∀x ∈ Rd \ {0} , (23)

where the sequence of generalized k-support dual norms
{
|||·|||?sn?,(j)

}
j∈J1,dK

has been introduced

in Definition 3.
When `0(x) = l ≥ 1, the minimum in (23) is achieved at (x(1), . . . , x(d)) ∈ (Rd)d such

that x(j) = 0 for j 6= l and x(l) = x.

Proof. Equation (23) derives from (20c) where we use the expression (22c) for the function Lϕ0
in (19).
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Now for the argmin. When `0(x) = l ≥ 1, we have that |||x||| = |||x|||R(d) = . . . = |||x|||R(l) by [4,

Equation (25a)]. Now, for any k ∈ J1, dK, we have |||·|||R(k) = |||·|||?sn?,(k) by (31) in Proposition 13,
since the norm |||·||| is orthant-strictly monotonic, hence is orthant-monotonic. As a consequence,
we have that |||x||| = |||x|||?sn?,(d) = . . . = |||x|||?sn?,(l). Therefore, the vectors x(1) ∈ Rd, . . . , x(d) ∈ Rd

defined by x(j) = 0 for j 6= l and x(l) = x are admissible for the minimization problem (23). We
deduce from (23) that ϕ(l) = ϕ

(
`0(x)

)
≤ 1
|||x|||ϕ(l)|||x|||?sn?,(l) = ϕ(l).

This ends the proof. 2

As an illustration, Theorem 9 applies when the norm |||·||| is any of the `p-norms ||·||p on
the space Rd, for p ∈]1,∞[, and Equation (23) then gives (see the notations in the second
column of Table 1)

(ϕ ◦ `0)(x) =
1

||x||p
min

x(1)∈Rd,...,x(d)∈Rd∑d
j=1||x(j)||snp,j≤||x||p∑d

j=1 x
(j)=x

d∑
j=1

ϕ(j)||x(j)||snp,j ,

∀x ∈ Rd \ {0} , ∀p ∈]1,∞[ .

(24)

Indeed, when p ∈]1,∞[, the `p-norm |||·||| = ||·||p is orthant-strictly monotonic, and so is
its dual norm |||·|||? = ||·||q where 1/p + 1/q = 1. When p = 1, the `1-norm |||·||| = ||·||1 is
orthant-strictly monotonic, but the dual norm |||·||| = ||·||∞ is not; when p =∞, the `∞-norm
|||·||| = ||·||∞ is not orthant-strictly monotonic; hence, in those two extreme cases, we cannot
conclude (but we obtain inequalities like in [4, Equation (25a)]).

Finally, with the novel expression (23) for the `0 pseudonorm, we deduce a possible
reformulation of exact sparse optimization problems as follows (the proof is a straightforward
application of Theorem 9).

Proposition 10 Let C ⊂ Rd be such that8 0 6∈ C. Let |||·||| be a norm on Rd, such that both
the norm |||·||| and the dual norm |||·|||? are orthant-strictly monotonic. Let ϕ : J0, dK → R+

8If we had 0 ∈ C, the minimization problem below would be obviously achieved at x = 0.
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be a nondecreasing function, such that ϕ(0) = 0. Then, we have:

min
x∈C

ϕ
(
`0(x)

)
= min

x∈C,x(1)∈Rd,...,x(d)∈Rd∑d
j=1 |||x(j)|||

?sn
?,(j)≤1∑d

j=1 x
(j)= x

|||x|||

d∑
j=1

ϕ(j)|||x(j)|||?sn?,(j) , (25a)

= min
x∈C,x(1)∈Rd,...,x(d)∈Rd∑d

j=1 |||x(j)|||
?sn
?,(j)≤|||x|||∑d

j=1 x
(j)=x

1

|||x|||

d∑
j=1

ϕ(j)|||x(j)|||?sn?,(j) , (25b)

= min
x∈C

1

|||x|||
min

x(1)∈Rd,...,x(d)∈Rd∑d
j=1 |||x(j)|||

?sn
?,(j)≤|||x|||∑d

j=1 x
(j)=x

d∑
j=1

ϕ(j)|||x(j)|||?sn?,(j)

︸ ︷︷ ︸
convex optimization problem

. (25c)

4 Conclusion

In this paper, we have proven that the `0 pseudonorm is equal to its capra-biconjugate
when both the source norm and its dual norm are orthant-strictly monotonic. In that case,
one says that the `0 pseudonorm is a capra-convex function. A surprising consequence is
the convex factorization property, a way to express hidden convexity: the `0 pseudonorm
coincides, on the unit sphere of the source norm, with a proper convex lsc function. More
generally, this holds true for any function of the `0 pseudonorm that is nondecreasing, with
finite values. Then, we have obtained exact variational formulations for the `0 pseudonorm,
suitable for exact sparse optimization. For this purpose, we have introduced sequences of
generalized top-k and k-support dual norms. We now briefly perspectives for exact sparse
optimization.

The reformulations for exact sparse optimization problems, obtained in Proposition 10,
have the nice feature to display partial convexity but make use of new (latent) vectors, in
same number than the underlying dimension d. Thus, the algorithmic implementation may
be delicate. However, the variational formulation obtained may suggest approximations of
the `0 pseudonorm, involving generalized k-support dual norms, which, themselves, may lead
to new smooth sparsity inducing terms. Finally, we have identified elements of the capra-
subdifferential of nondecreasing functions of the `0 pseudonorm, and we have related this
capra-subdifferential with the Rockafellar-Moreau subdifferential of the associated convex
lsc function (in the convex factorization property). The identification of such subgradients
could inspire “gradient-like” algorithms.
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A Properties of relevant norms for the `0 pseudonorm

We provide background on properties of norms that prove relevant for the `0 pseudonorm.
In §A.1, we review notions related to dual norms. We establish properties of orthant-
monotonic and orthant-strictly monotonic norms in §A.2, and of coordinate-k and dual
coordinate-k norms in §A.3.

A.1 Dual norm, |||·|||-duality, normal cone

For any norm |||·||| on Rd, we recall that the following expression

|||y|||? = sup
|||x|||≤1

〈x, y〉 , ∀y ∈ Rd (26)

defines a norm on Rd, called the dual norm |||·|||? (in [20, Section 15], this operation is widened
to a polarity operation between closed gauges).

By definition of the dual norm in (26), we have the inequality

〈x, y〉 ≤ |||x||| × |||y|||? , ∀(x, y) ∈ Rd × Rd . (27a)

We are interested in the case where this inequality is an equality. One says that y ∈ Rd is
|||·|||-dual to x ∈ Rd, denoted by y ‖|||·||| x, if equality holds in inequality (27a), that is,

y ‖|||·||| x ⇐⇒ 〈x, y〉 = |||x||| × |||y|||? . (27b)

The terminology |||·|||-dual comes from [11, page 2] (see also the vocable of dual vector pair in
[7, Equation (1.11)] and of dual vectors in [8, p. 283], whereas it is refered as polar alignment
in [6]). It will be convenient to express this notion of |||·|||-duality in terms of geometric
objects of convex analysis. For this purpose, we recall that the normal cone NC(x) to the
(nonempty) closed convex subset C ⊂ Rd at x ∈ C is the closed convex cone defined by [10,
p.136]

NC(x) =
{
y ∈ Rd

∣∣ 〈y, x′ − x〉 ≤ 0 , ∀x′ ∈ C
}
. (28)

Now, an easy computation shows that the notion of |||·|||-duality can be rewritten in terms
of normal cone NB as follows:

y ‖|||·||| x ⇐⇒ y ∈ NB

(
x

|||x|||

)
, ∀(x, y) ∈ Rd \ {0} × Rd . (29)
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A.2 Properties of orthant-strictly monotonic norms

We provide useful properties of orthant-monotonic and orthant-strictly monotonic norms
(see Definition 5). We recall that xK ∈ RK denotes the vector which coincides with x,
except for the components outside of K that vanish, and that the subspace RK of Rd has
been defined in (7).

Proposition 11 Let |||·||| be an orthant-monotonic norm on Rd. Then, the dual norm |||·|||?
is orthant-monotonic, and the norm |||·||| is increasing with the coordinate subspaces, in the
sense that, for any x ∈ Rd and any J ⊂ K ⊂ J1, dK, we have |||xJ ||| ≤ |||xK |||.

Proof. Let |||·||| be an orthant-monotonic norm on Rd. Then, by [7, Theorem 2.23], the dual

norm |||·|||? is also orthant-monotonic and, by [11, Proposition 2.4], we have that |||u||| ≤ |||u+ v|||,
for any vectors u ∈ RJ and9 v ∈ R−J , and for any subset J ⊂ J1, dK. We consider x ∈ Rd and

J ⊂ K ⊂ J1, dK. By setting u = xJ ∈ RJ and v = xK − xJ , we get that v ∈ R−J , hence that

|||xJ ||| ≤ |||xK |||. 2

Proposition 12 Let |||·||| be an orthant-strictly monotonic norm on Rd. Then

(a) the norm |||·||| is strictly increasing with the coordinate subspaces in the sense that, for
any x ∈ Rd and any J ( K ⊂ J1, dK, we have xJ 6= xK ⇒ |||xJ ||| < |||xK |||.

(b) for any vector u ∈ Rd \ {0}, there exists a vector v ∈ Rd \ {0} such that supp(v) =
supp(u), that u ◦ v ≥ 0, and that v is |||·|||-dual to u, that is, 〈u, v〉 = |||u||| × |||v|||?.

Proof.
(a) Let x ∈ Rd and J ( K ⊂ J1, dK be such that xJ 6= xK . We will show that |||xK ||| > |||xJ |||.
For this purpose, we set u = xJ and v = xK−xJ . Thus, we get that u ∈ RK and v ∈ R−K \{0}

(since J ( K and xJ 6= xK), that is, u = uK and v = v−K 6= 0. We are going to show that
|||u+ v||| > |||u|||.

On the one hand, by definition of the module of a vector, we easily see that |w| = |wK |+ |w−K |,
for any vector w ∈ Rd. Thus, we have |u+v| = |(u+ v)K |+|(u+ v)−K | = |uK+vK |+|u−K+v−K | =
|uK +0|+ |0+v−K | = |uK |+ |v−K | > |uK | = |u| since |v−K | > 0 as v = v−K 6= 0, and since u = uK .
On the other hand, we easily get that (u+ v) ◦ u =

(
(u+ v)K ◦ uK

)
+
(
(u+ v)−K ◦ u−K

)
=(

uK ◦ uK
)
+
(
v−K ◦ u−K

)
=
(
uK ◦ uK

)
, because u−K = 0. Therefore, we get that (u+ v) ◦ u =(

uK ◦ uK
)
≥ 0.

From |u + v| > |u| and (u+ v) ◦ u ≥ 0, we deduce that |||u+ v||| > |||u||| by Definition 5 as
the norm |||·||| is orthant-strictly monotonic. Since u = xJ and v = xK − xJ , we conclude that
|||xK ||| > |||xJ |||.

(b) Let u ∈ Rd \ {0} be given and let us put K = supp(u) 6= ∅. As the norm |||·||| is orthant-
strictly monotonic, it is orthant-monotonic; hence, by [11, Proposition 2.4], there exists a vector

9Here, following notation from game theory, we have denoted by −J the complementary subset of J in
J1, dK: J ∪ (−J) = J1, dK and J ∩ (−J) = ∅.
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v ∈ Rd \ {0} such that supp(v) ⊂ supp(u), that u ◦ v ≥ 0 and that v is |||·|||-dual to u, as in (27b),
that is, 〈u, v〉 = |||u||| × |||v|||?. Thus J = supp(v) ⊂ K = supp(u). We will now show that J ( K is
impossible, hence that J = K, thus proving that Item (b) holds true with the above vector v.

Writing that 〈u, v〉 = |||u||| × |||v|||? (using that u = uK and v = vK = vJ), we obtain

|||u||| × |||v|||? = 〈u, v〉 = 〈uK , v〉 = 〈uK , vK〉 = 〈uK , vJ〉 = 〈uJ , vJ〉 = 〈uJ , v〉 ,

by obvious properties of the scalar product 〈·, ·〉. As a consequence, we get that {uK , uJ} ⊂
arg max|||x|||≤|||u|||〈x, v〉, by definition (26) of |||v|||?, because |||u||| = |||uK ||| ≥ |||uJ |||, by Proposition 11
since J ⊂ K and the norm |||·||| is orthant-monotonic. But any solution in arg max|||x|||≤|||u|||〈x, v〉
belongs to the frontier of the ball of radius |||u|||, hence has exactly norm |||u|||. Thus, we deduce
that |||u||| = |||uK ||| = |||uJ |||. If we had J = supp(v) ( K = supp(u), we would have uJ 6= uK ,
hence |||uK ||| > |||uJ ||| by Item (a); this would be in contradiction with |||uK ||| = |||uJ |||. Therefore,
J = supp(v) = K = supp(u).

This ends the proof. 2

A.3 Properties of coordinate-k and dual coordinate-k norms, and
of generalized top-k and k-support dual norms

We establish useful properties of coordinate-k and dual coordinate-k norms (Definition 2),
and of generalized top-k and k-support dual norms (Definition 3).

Proposition 13 Let |||·||| be a source norm on Rd.
Coordinate-k norms are greater than k-support dual norms, that is,

|||x|||R(k) ≥ |||x|||
?sn
?,(k) , ∀x ∈ Rd , ∀k ∈ J1, dK , (30a)

whereas dual coordinate-k norms are lower than generalized top-k dual norms, that is,

|||y|||R(k),? ≤ |||y|||
tn
?,(k) , ∀y ∈ Rd , ∀k ∈ J1, dK . (30b)

If the source norm norm |||·||| is orthant-monotonic, then equalities hold true, that is,

|||·|||is orthant-monotonic⇒ ∀k ∈ J1, dK

{
|||·|||R(k) = |||·|||?sn?,(k) ,

|||·|||R(k),? = |||·|||tn?,(k) .
(31)

Proof. It is known that, for any nonempty subset K ⊂ J1, dK, we have the inequality |||·|||K,? ≤
|||·|||?,K [11, Proposition 2.2]. From the definition (10) of the generalized top-k dual norm, and
the definition (8) of the dual coordinate-k norm, we obtain (30b). By taking the dual norms, we
get (30a).

The norms for which the equality |||·|||K,? = |||·|||?,K holds true for all nonempty subsets K ⊂
J1, dK, are the orthant-monotonic norms ([7, Characterization 2.26], [11, Theorem 3.2]). Therefore,
if the norm |||·||| is orthant-monotonic, from the definition (10) of the generalized top-k dual norm,
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we get that the inequality (30b) becomes an equality. Then, the inequality (30a) also becomes an
equality by taking the dual norm as in (26). Thus, we have obtained (31).

This ends the proof. 2

Proposition 14 If the dual norm |||·|||? is orthant-strictly monotonic, we have that

`0(y) = l =⇒

{
|||y|||R(1),? < · · · < |||y|||

R
(l−1),? < |||y|||

R
(l),? = · · · = |||y|||R(d),? = |||y|||? ,

|||y|||tn?,(1) < · · · < |||y|||
tn
?,(l−1) < |||y|||

tn
?,(l) = · · · = |||y|||tn?,(d) = |||y|||? .

(32)

Proof. We consider y ∈ Rd. We put L = supp(y) and we suppose that `0(y) = |L| = l.
Since the norm |||·|||? is orthant-strictly monotonic, it is orthant-monotonic and so is |||·||| by

Proposition 11. By (31) in Proposition 13, we get that |||·|||R(j) = |||·|||?sn?,(j) and |||·|||R(j),? = |||·|||tn?,(j), for
j ∈ J0, dK (with the convention that these are the null seminorms in the case j = 0). Therefore,
we can translate all the results, obtained in [4], with coordinate-k and dual coordinate-k norms,
into results regarding generalized top-k and k-support dual norms. As an application, by [4,
Equation (18)], we get, from `0(y) = l, that

|||y|||tn?,(1) ≤ · · · ≤ |||y|||
tn
?,(j) ≤ |||y|||

tn
?,(j+1) ≤ · · · ≤ |||y|||

tn
?,(d) = |||y|||? , ∀y ∈ Rd . (33)

We now prove (32) in two points.

We first show that |||y|||tn?,(l) = · · · = |||y|||tn?,(d) = |||y|||? (the right hand side of (32)). Since y = yL,

by definition of the set L = supp(y), we have that |||y|||? = |||yL|||? ≤ sup|K|≤l|||yK |||? = |||y|||tn?,(l)
by the very definition (10) of the generalized top-l dual norm |||·|||tn?,(l). By (33), we conclude that

|||y|||tn?,(l) = · · · = |||y|||tn?,(d) = |||y|||?.

Second, we show that |||y|||tn?,(1) < · · · < |||y|||
tn
?,(l−1) < |||y|||

tn
?,(l) (the left hand side of (32)). There

is nothing to show for l = 0. Now, for l ≥ 1 and for any k ∈ J0, l − 1K, we have

|||y|||tn?,(k) = sup
|K|≤k

|||yK |||? (by definition (10) of the generalized top-k dual norm)

= sup
|K|≤k

|||yK∩L|||? (because yL = y by definition of the set L = supp(y))

= sup
|K′|≤k,K′⊂L

|||yK′ |||? (by setting K ′ = K ∩ L)

= sup
|K|≤k,K⊂L

|||yK |||? (the same but with K instead of K ′)

= sup
|K|≤k,K(L

|||yK |||? (because |K| ≤ k ≤ l − 1 < l = |L| implies that K 6= L)

< sup
|K|≤k,j∈L\K

K(L

|||yK∪{j}|||?
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because the set L \K is nonempty (having cardinality |L| − |K| = l− |K| ≥ k + 1− |K| ≥ 1), and
because, since the norm |||·|||? is orthant-strictly monotonic, using Item (a) in Proposition 12, we
obtain that |||yK |||? < |||yK∪{j}|||? as yK 6= yK∪{j} for at least one j ∈ L \K since L = supp(y)

≤ sup
|J |≤k+1,J⊂L

|||yJ |||?

(as all the subsets K ′ = K ∪ {j} are such that K ′ ⊂ L and |K ′| = k + 1)

≤ |||y|||tn?,(k+1)

by definition (10) of the generalized top-(k + 1) dual norm (in fact the last inequality is easily
shown to be an equality as yL = y). Thus, for any k ∈ J0, l − 1K, we have established that
|||y|||tn?,(k) < |||y|||

tn
?,(k+1).

This ends the proof. 2

B Background on the Fenchel conjugacy on Rd

We review concepts and notations related to the Fenchel conjugacy (we refer the reader to
[18]). For any function h : Rd → R, its epigraph is epih =

{
(w, t) ∈ Rd × R

∣∣h(w) ≤ t
}

,

its effective domain is domh =
{
w ∈ Rd

∣∣h(w) < +∞
}

. A function h : Rd → R is said to
be convex if its epigraph is a convex set, proper if it never takes the value −∞ and that
domh 6= ∅, lower semi continuous (lsc) if its epigraph is closed, closed if it either lsc and
nowhere having the value −∞, or is the constant function −∞ [18, p. 15]. Closed convex
functions are the two constant functions −∞ and +∞ united with all proper convex lsc
functions.10

For any functions f : Rd → R and g : Rd → R, we denote11

f ?(y) = sup
x∈Rd

(
〈x, y〉 ·+

(
−f(x)

))
, ∀y ∈ Rd , (34a)

g?
′
(x) = sup

y∈Y

(
〈x, y〉 ·+

(
−g(y)

))
, ∀x ∈ Rd , (34b)

f ??
′
(x) = sup

y∈Rd

(
〈x, y〉 ·+

(
−f ?(y)

))
, ∀x ∈ Rd . (34c)

It is proved that the Fenchel conjugacy (indifferently f 7→ f ? or g 7→ g?
′
) induces a one-to-one

correspondence between the closed convex functions on Rd and themselves [18, Theorem 5].
In [20, p. 214-215], the notions12 of (Moreau) subgradient and of (Rockafellar) subdiffer-

ential are defined for a convex function. Following the definition of the subdifferential of a

10In particular, any closed convex function that takes at least one finite value is necessarily proper con-
vex lsc.

11In convex analysis, one does not use the notation ?′
in (34b) and ??′

in (34c), but simply ? and ??. We
use ?′

and ??′
to be consistent with the notation (6b) for general conjugacies.

12See the historical note in [19, p. 343].
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function with respect to a duality in [1], we define the (Rockafellar-Moreau) subdifferential
∂f(x) of a function f : Rd → R at x ∈ Rd by

∂f(x) =
{
y ∈ Rd

∣∣ f ?(y) = 〈x, y〉 ·+
(
−f(x)

)}
. (35a)

When the function f is proper convex and x ∈ domf , we recover the classic definition that

∂f(x) =
{
y ∈ Rd

∣∣ 〈x′ − x, y〉+ f(x) ≤ f(x′) , ∀x′ ∈ domf
}
. (35b)
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