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Abstract

The so-called ℓ0 pseudonorm on Rd counts the number of nonzero components of
a vector. It is used in sparse optimization, either as criterion or in the constraints, to
obtain solutions with few nonzero entries. However, the mathematical expression of
the ℓ0 pseudonorm, taking integer values, makes it difficult to handle in optimization
problems on Rd. Moreover, the Fenchel conjugacy fails to provide relevant insight.
In this paper, we analyze the ℓ0 pseudonorm by means of a family of so-called Capra
conjugacies. For this purpose, to each (source) norm on Rd, we attach a so-called
Capra coupling between Rd and Rd, and sequences of generalized top-k dual norms
and k-support dual norms. When we suppose that both the source norm and its dual
norm are orthant-strictly monotonic, we obtain three main results. First, we show that
the ℓ0 pseudonorm is Capra biconjugate, that is, a Capra-convex function. Second, we
deduce an unexpected consequence: the ℓ0 pseudonorm coincides, on the unit sphere
of the source norm, with a proper convex convex lower semicontinuous (lsc) function
on Rd. Third, we establish variational formulations for the ℓ0 pseudonorm and, with
these novel expressions, we provide, on the one hand, a new family of lower and upper
bounds for the ℓ0 pseudonorm, as a ratio between two norms, and, on the other hand,
reformulations for exact sparse optimization problems.

Key words: ℓ0 pseudonorm, orthant-strictly monotonic norm, Fenchel-Moreau conju-
gacy, generalized k-support dual norm, sparse optimization.

AMS classification: 46N10, 49N15, 46B99, 52A41, 90C46

1 Introduction

The counting function, also called cardinality function or ℓ0 pseudonorm, counts the num-
ber of nonzero components of a vector in Rd. It is used in sparse optimization, either as
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criterion or in the constraints, to obtain solutions with few nonzero entries. However, the
mathematical expression of the ℓ0 pseudonorm makes it difficult to handle as such in opti-
mization problems on Rd. This is why most of the literature on sparse optimization resorts
to substitute problems, obtained either from estimates (inequalities) for the ℓ0 pseudonorm,
or from alternative sparsity-inducing terms (especially suitable norms).

In this paper, we present variational formulations for the ℓ0 pseudonorm, suitable for
exact sparse optimization. By exact, we mean that we keep the ℓ0 pseudonorm in the
optimization problem, either in the criterion or in the constraints, and that we do not resort
to substitutes.

The paper is organized as follows. In Sect. 2, we provide background on properties of
norms that prove relevant for the ℓ0 pseudonorm: we introduce sequences of generalized
top-k and k-support dual norms, generated from any (source) norm on Rd, the notion of
sequences of norms that are graded with respect to the ℓ0 pseudonorm, and a new class of
orthant-strictly monotonic norms. The material is taken from the companion paper [4].

In Sect. 3, we define a so-called Capra coupling between Rd and Rd, that depends on any
(source) norm on Rd. In our main result, we prove that, when both the source norm and
its dual norm are orthant-strictly monotonic, the ℓ0 pseudonorm is equal to its biconjugate,
under the associated Capra conjugacy. The result relies on identities established in the
companion paper [3]. A surprising consequence is that the ℓ0 pseudonorm coincides, on the
unit sphere, with a proper convex lsc function on Rd.

In Sect. 4, we deduce, from the expressions for the Capra conjugates and biconjugates
of the ℓ0 pseudonorm, a variational formula for the ℓ0 pseudonorm which involves the whole
sequence of generalized k-support dual norms. Finally, with these novel expressions for the
ℓ0 pseudonorm, we provide, on the one hand, a new family of lower and upper bounds for
the ℓ0 pseudonorm, as a ratio between two norms, and, on the other hand, reformulations
for exact sparse optimization problems in Sect. 4.4. The Appendix A gathers background
on Fenchel-Moreau conjugacies.

2 Background on relevant norms for the ℓ0 pseudonorm

We provide background on properties of norms that prove relevant for the ℓ0 pseudonorm
as developed in the companion paper [4]. In §2.1, we define the ℓ0 pseudonorm and its
level sets. In §2.2, we review notions related to dual norms. In §2.3, we recall definitions
of orthant-monotonic and orthant-strictly monotonic norms. In §2.4, we introduce graded
sequences of norms. In §2.5, we introduce generalized top-k and k-support dual norms and
recall some of their properties. In §2.6, we introduce coordinate-k and dual coordinate-k
norms and recall some of their properties, established in the companion paper [3].

2.1 The ℓ0 pseudonorm and its level sets

For any vector x ∈ Rd, we define its support by

supp(x) =
{
j ∈ {1, . . . , d}

∣
∣xj 6= 0

}
⊂ {1, . . . , d} . (1)
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The so-called ℓ0 pseudonorm is the function ℓ0 : R
d → {0, 1, . . . , d} defined by

ℓ0(x) = |supp(x)| = number of nonzero components of x , ∀x ∈ Rd , (2)

where |K| denotes the cardinal of a subset K ⊂ {1, . . . , d}. The ℓ0 pseudonorm shares
three out of the four axioms of a norm: nonnegativity, positivity except for x = 0, subad-
ditivity. The axiom of 1-homogeneity does not hold true; in contrast, the ℓ0 pseudonorm is
0-homogeneous:

ℓ0(ρx) = ℓ0(x) , ∀ρ ∈ R\{0} , ∀x ∈ Rd . (3)

The ℓ0 pseudonorm is used in exact sparse optimization problems of the form infℓ0(x)≤k f(x).
Thus, we introduce the level sets

ℓ≤k
0 = {x ∈ Rd | ℓ0(x) ≤ k} , ∀k = 0, 1, . . . , d . (4)

2.2 Dual norm, |||·|||-duality, normal cone

Dual norm. For any norm |||·||| on Rd, we denote the unit sphere and the unit ball of the
norm |||·||| by

S =
{
x ∈ Rd

∣
∣ |||x||| = 1

}
, (5a)

B =
{
x ∈ Rd

∣
∣ |||x||| ≤ 1

}
. (5b)

Recall that the following expression

|||y|||⋆ = sup
|||x|||≤1

〈x , y〉 , ∀y ∈ Rd (6)

defines a norm on Rd, called the dual norm |||·|||⋆. We denote the unit sphere and the unit
ball of the dual norm |||·|||⋆ by

S⋆ =
{
y ∈ Rd

∣
∣ |||y|||⋆ = 1

}
, (7a)

B⋆ =
{
y ∈ Rd

∣
∣ |||y|||⋆ ≤ 1

}
. (7b)

|||·|||-duality, normal cone. By definition of the dual norm in (6), we have the inequality

〈x , y〉 ≤ |||x||| × |||y|||⋆ , ∀(x, y) ∈ Rd × Rd . (8a)

We are interested in the case where this inequality is an equality. One says that y ∈ Rd is
|||·|||-dual to x ∈ Rd, denoted by y ‖|||·||| x, if equality holds in Inequality (8a), that is,

y ‖|||·||| x ⇐⇒ 〈x , y〉 = |||x||| × |||y|||⋆ . (8b)

It will be convenient to express this notion of |||·|||-duality in terms of geometric objects of
convex analysis. For this purpose, we recall that the normal cone NC(x) to the (nonempty)
closed convex subset C ⊂ Rd at x ∈ C is the closed convex cone defined by [6, p.136]

NC(x) =
{
y ∈ Rd

∣
∣ 〈y , x′ − x〉 ≤ 0 , ∀x′ ∈ C

}
. (9)
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Now, easy computations show that the notion of |||·|||-duality can be rewritten in terms of
normal cones NB and NB⋆

as follows:
(

y ‖|||·||| x ⇐⇒ y ∈ NB

( x

|||x|||

)
⇐⇒ x ∈ NB⋆

( y

|||y|||

))

, ∀(x, y) ∈ Rd\{0} × Rd\{0} . (10)

2.3 Orthant-strictly monotonic norms

We recall definitions of orthant-monotonic and orthant-strictly monotonic norms that will
prove especially relevant for the ℓ0 pseudonorm.

For any x ∈ Rd, we denote by |x| the vector of Rd with components |xi|, i = 1, . . . , d:

x = (x1, . . . , xd) ⇒ |x| = (|x1|, . . . , |xd|) . (11)

Definition 1 A norm |||·||| on the space Rd is called

• orthant-monotonic [5] if, for all x, x′ in Rd, we have
(
|x| ≤ |x′| and x ◦ x′ ≥ 0 ⇒

|||x||| ≤ |||x′|||
)
, where |x| ≤ |x′| means |xi| ≤ |x

′

i| for all i = 1, . . . , d, and where
x ◦ x′ = (x1x

′
1, . . . , xdx

′
d) is the Hadamard (entrywise) product,

• orthant-strictly monotonic [4, Definition 3] if, for all x, x′ in Rd, we have
(
|x| <

|x′| and x ◦ x′ ≥ 0 ⇒ |||x||| < |||x′|||
)
, where |x| < |x′| means that |xi| ≤ |x

′

i| for all

i = 1, . . . , d, and there exists j ∈ {1, . . . , d}, such that |xj| < |x
′

j |.

We recall properties of orthant-monotonic and orthant-strictly monotonic norms.

Proposition 2 ([4, Proposition 6], [5, Theorem 2.26], [7, Theorem 3.2]) Let |||·||| be a norm
on Rd. The following assertions are equivalent.

1. The norm |||·||| is orthant-monotonic.

2. The dual norm |||·|||⋆ is orthant-monotonic.

3. The norm |||·||| is increasing with the coordinate subspaces, in the sense that, for any
x ∈ Rd and any J ⊂ K ⊂ {1, . . . , d}, we have |||xJ ||| ≤ |||xK |||.

Proposition 3 ([4, Proposition 8]) Let |||·||| be a norm on Rd. The following assertions are
equivalent.

1. The norm |||·||| is orthant-strictly monotonic.

2. The norm |||·||| is strictly increasing with the coordinate subspaces in the sense that1,
for any x ∈ Rd and any J ( K ⊂ {1, . . . , d}, we have xJ 6= xK ⇒ |||xJ ||| < |||xK |||.

3. For any vector u ∈ Rd\{0}, there exists a vector v ∈ Rd\{0} such that supp(v) =
supp(u), that u ◦ v ≥ 0, and that v is |||·|||-dual to u, that is, 〈u , v〉 = |||u||| × |||v|||⋆.

1By J ( K, we mean that J ⊂ K and J 6= K.
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2.4 Strictly increasingly graded sequences of norms

A strictly increasingly graded sequence of norms detects the number of nonzero components
of a vector in Rd when the sequence becomes stationary.

Definition 4 ([4, Definition 19]) We say that a sequence {|||·|||k}k=1,...,d of norms on Rd is

strictly increasingly graded with respect to the ℓ0 pseudonorm if, for any x ∈ Rd, one of the
three following equivalent statements holds true.

1. We have the equivalence, for any l = 1, . . . , d,

ℓ0(x) = l ⇐⇒ |||x|||1 ≤ · · · ≤ |||x|||l−1 < |||x|||l = · · · = |||x|||d . (12a)

2. The sequence k ∈ {1, . . . , d} 7→ |||x|||k is nondecreasing and we have the equivalence, for
any l = 1, . . . , d,

ℓ0(x) ≤ l ⇐⇒ |||x|||l = |||x|||d
(

⇐⇒ |||x|||l ≥ |||x|||d
)

. (12b)

3. The sequence k ∈ {1, . . . , d} 7→ |||x|||k is nondecreasing and we have the equality

ℓ0(x) = min
{

k ∈ {1, . . . , d}
∣
∣
∣ |||x|||k = |||x|||d

}

. (12c)

2.5 Generalized top-k and k-support dual norms

We introduce generalized top-k and k-support dual norms that are constructed from a source
norm, and then we recall some of their properties [4].

Restriction norms. For any x ∈ Rd and subset K ⊂ {1, . . . , d}, we denote by xK ∈ Rd

the vector which coincides with x, except for the components outside of K that vanish: xK

is the orthogonal projection of x onto the subspace2

RK = RK × {0}−K =
{
x ∈ Rd

∣
∣ xj = 0 , ∀j 6∈ K

}
⊂ Rd , (13)

where R∅ = {0}.

Definition 5 For any norm |||·||| on Rd and any subset K ⊂ {1, . . . , d}, we define three
norms on the subspace RK of Rd, as defined in (13), as follows.

• The K-restriction norm |||·|||K is defined by

|||x|||K = |||x||| , ∀x ∈ RK . (14)

• The (⋆,K)-norm |||·|||⋆,K is the norm
(
|||·|||⋆

)

K
, given by the restriction to the sub-

space RK of the dual norm |||·|||⋆ (first dual, then restriction),

• The (K, ⋆)-norm |||·|||K,⋆ is the norm
(
|||·|||K

)

⋆
, given by the dual norm (on the sub-

space RK) of the restriction norm |||·|||K to the subspace RK (first restriction, then
dual).

2Here, following notation from Game Theory, we have denoted by −K the complementary subset of K
in {1, . . . , d}: K ∪ (−K) = {1, . . . , d} and K ∩ (−K) = ∅.
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Definition of generalized top-k and k-support dual norms. Let |||·||| be a norm on Rd,
that we will call the source norm. In [4], we have defined the generalized top-k norms by

|||x|||tn(k) = sup
|K|≤k

|||xK ||| , ∀x ∈ Rd , ∀k = 0, 1, . . . , d . (15)

Now, we do the same but with the dual norm |||·|||⋆ in lieu of the source norm |||·|||.

Definition 6 For k ∈ {1, . . . , d}, we call generalized top-k dual norm (associated with the
source norm |||·|||) the norm defined by

|||y|||tn⋆,(k) = sup
|K|≤k

|||yK|||⋆ = sup
|K|≤k

|||yK|||⋆,K , ∀y ∈ Rd . (16)

We call generalized k-support dual norm the dual norm of the generalized top-k dual norm,
denoted by3 |||·|||⋆sn⋆,(k):

|||·|||⋆sn⋆,(k) =
(
|||·|||tn⋆,(k)

)

⋆
. (17)

We adopt the convention |||·|||tn⋆,(0) = 0 (although this is not a norm, but a seminorm). We

denote the unit sphere and the unit ball of the generalized k-support dual norm |||·|||⋆sn⋆,(k) by

S⋆sn
⋆,(k) =

{
x ∈ Rd

∣
∣ |||x|||⋆sn⋆,(k) = 1

}
, k = 1, . . . , d , (18a)

B⋆sn
⋆,(k) =

{
x ∈ Rd

∣
∣ |||x|||⋆sn⋆,(k) ≤ 1

}
, k = 1, . . . , d . (18b)

Examples of generalized top-k and k-support dual norms in the case of ℓp source
norms. In [4], we have named top-(k, p) norm — denoted by ||·||tnk,p — the generalized
top-k norm in (15) when the source norm |||·||| is the ℓp-norm ||·||p, for p ∈ [1,∞]. Therefore,
the generalized top-k dual norm in (16) is the top-(k, q) norm when the source norm |||·||| is
the ℓp-norm ||·||p, for p ∈ [1,∞] and with 1/p+ 1/q = 1.

In [9, Definition 21], the authors define the (p, k)-support norm for p ∈ [1,∞]. They

show, in [9, Corollary 22], that the dual norm
((

||·||p
)tn

(k)

)

⋆
of the top-(k, p) norm is the

(q, k)-support norm, where 1/p + 1/q = 1. Therefore, the generalized k-support dual norm
in (17) is the (p, k)-support norm — denoted by ||·||snq,k — when the source norm |||·||| is the
ℓp-norm ||·||p, for p ∈ [1,∞].

Table 1 provides a summary [4]. For y ∈ Rd, ν denotes a permutation of {1, . . . , d} such
that |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|.

3We use the symbol ⋆ in the superscript to indicate that the generalized k-support dual norm |||·|||⋆sn⋆,(k) is
a dual norm.

6



source norm |||·||| |||x|||⋆sn⋆,(k) |||y|||tn⋆,(k)
||·||p (p, k)-support norm top (k, q)-norm

||x||snp,k ||y||tnk,q
=

(∑k
l=1 |yν(l)|

q
)1/q

, 1/p+ 1/q = 1
||·||1 (1, k)-support norm top (k,∞)-norm

ℓ1-norm ℓ∞-norm
||x||sn1,k = ||x||1 ||y||tnk,∞ = |yν(1)| = ||y||∞

||·||2 (2, k)-support norm top (k, 2)-norm

||y||tnk,2 =
√

∑k
l=1 |yν(l)|

2

||·||∞ (∞, k)-support norm top (k, 1)-norm

||y||tnk,1 =
∑k

l=1 |yν(l)|

Table 1: Examples of generalized top-k and k-support dual norms generated by the ℓp source
norms |||·||| = ||·||p for p ∈ [1,∞]

2.6 Coordinate-k and dual coordinate-k norms

Definition of coordinate-k and dual coordinate-k norms. Let |||·||| be a norm on Rd,
that we will call the source norm.

Definition 7 ([3, Definition 3]) For k ∈ {1, . . . , d}, we call coordinate-k norm the norm
|||·|||R(k) whose dual norm is the dual coordinate-k norm, denoted by |||·|||R(k),⋆, with expression

|||y|||R(k),⋆ = sup
|K|≤k

|||yK|||K,⋆ , ∀y ∈ Rd , (19)

where the (K, ⋆)-norm |||·|||K,⋆ is given in Definition 5, and where the notation sup|K|≤k is a
shorthand for supK⊂{1,...,d},|K|≤k.

We denote the unit sphere and the unit ball of the coordinate-k norm |||·|||R(k) by

SR
(k) =

{
x ∈ Rd

∣
∣ |||x|||R(k) = 1

}
, (20a)

BR
(k) =

{
x ∈ Rd

∣
∣ |||x|||R(k) ≤ 1

}
. (20b)

Properties of coordinate-k and dual coordinate-k norms.

Proposition 8 Let |||·||| be a source norm on Rd.
Coordinate-k norms are always lower than k-support dual norms, that is,

|||x|||R(k) ≤ |||x|||⋆sn⋆,(k) , ∀x ∈ Rd , ∀k = 1, . . . , d , (21a)
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whereas dual coordinate-k norms are always greater than generalized top-k dual norms, that
is,

|||y|||R(k),⋆ ≥ |||y|||tn⋆,(k) , ∀y ∈ Rd , ∀k = 1, . . . , d . (21b)

If the source norm norm |||·||| is orthant-monotonic, then equalities hold true, that is,

|||·|||is orthant-monotonic ⇒ ∀k = 1, . . . , d

{

|||·|||R(k) = |||·|||⋆sn⋆,(k) ,

|||·|||R(k),⋆ = |||·|||tn⋆,(k) .
(22)

Proof. It is easily established that, for any nonempty subset K ⊂ {1, . . . , d}, we have the in-
equality |||·|||K,⋆ ≤ |||·|||⋆,K [4, Lemma 2]. From the definition (16) of the generalized top-k dual norm,
and the definition (19) of the dual coordinate-k norm, we obtain (21b). By taking the dual norms,
we get (21a).

The norms for which the equality |||·|||K,⋆ = |||·|||⋆,K holds true for all nonempty subsets K ⊂
{1, . . . , d}, are the orthant-monotonic norms ([5, Theorem 2.26],[7, Theorem 3.2]). Therefore, if the
norm |||·||| is orthant-monotonic, we have (22). Indeed, from the definition (16) of the generalized
top-k dual norm, the inequality (21b) becomes an equality and so with the inequality (21a), by
taking the dual norm.

This ends the proof. 2

Here is a property of the coordinate-k norms, proved in [3, Proposition 6], that will be
useful in the sequel. It is a “non strict” version of the notion of graded sequence of norm
(see Definition 4) as introduced in [4, Definition 19]. We have

ℓ0(x) ≤ k ⇒ |||x|||R(k) = |||x||| , ∀x ∈ Rd , ∀k = 1, . . . , d . (23)

We finish by results that will be useful for our main Theorem 15.
We recall that the normed space

(
Rd, |||·|||

)
is said to be strictly convex if the unit ball B

(of the norm |||·|||) is rotund, that is, if all points of the unit sphere S are extreme points of the
unit ball B. The normed space

(
Rd, ||·||p

)
, equipped with the ℓp-norm ||·||p (for p ∈ [1,∞]),

is strictly convex if and only if p ∈]1,∞[.

Proposition 9 The following statements are equivalent.

1. The norm |||·||| is orthant-strictly monotonic and the sequence
{

|||·|||tn⋆,(j)

}

j=1,...,d
of gen-

eralized top-k dual norms in Definition 6 is strictly increasingly graded with respect to
the ℓ0 pseudonorm.

2. The norm |||·||| is orthant-strictly monotonic and the sequence
{

|||·|||R(j),⋆

}

j=0,1,...,d
of dual

coordinate-k norms in Definition 7 is strictly increasingly graded with respect to the
ℓ0 pseudonorm.

3. Both the norm |||·||| and the dual norm |||·|||⋆ are orthant-strictly monotonic.
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If the norm |||·||| is orthant-strictly monotonic and if the normed space
(
Rd, |||·|||⋆

)
is strictly

convex, then Item 1, Item 2 and Item 3 hold true.

Proof.

• (1 ⇔ 2) Suppose that Item 1 is satisfied and let us show that Item 2 holds true. Since the norm |||·|||
is orthant-strictly monotonic, it is orthant-monotonic, hence |||·|||R(k) = |||·|||⋆sn⋆,(k) and |||·|||R(k),⋆ = |||·|||tn⋆,(k)

by Proposition 8. Therefore, the sequence
{

|||·|||tn⋆,(j)

}

j=1,...,d
of generalized top-k dual norms is equal

to the sequence
{

|||·|||R(j),⋆

}

j=0,1,...,d
of dual coordinate-k norms in Definition 7. As a consequence,

Item 2 holds true. In the same way, we prove that Item 2 implies Item 1, so that they are equivalent.

• (1 ⇒ 3) Suppose that Item 1 is satisfied and let us show that Item 3 holds true. To prove that
the dual norm |||·|||⋆ is orthant-strictly monotonic, we will show that Item 2 in Proposition 3 holds
true for |||·|||⋆. For this purpose, we consider y ∈ Rd and J ( K ⊂ {1, . . . , d} such that yJ 6= yK .
By definition of the ℓ0 pseudonorm in (2), we have j = ℓ0(yJ) < k = ℓ0(yK).

On the one hand, as the norm |||·||| is orthant-strictly monotonic, it is orthant-monotonic, so
that the dual norm |||·|||⋆ is also orthant-monotonic, by the equivalence between Item 1 and Item 2

in Proposition 2. As a consequence, the norms in the sequence
{

|||·|||tn⋆,(j)

}

j=1,...,d
are also orthant-

monotonic by [4, Proposition 15], and we get that |||yJ |||
tn
⋆,(k−1) ≤ |||yK |||tn⋆,(k−1), in particular, by the

equivalence between Item 1 and Item 3 in Proposition 2.

On the other hand, since, by assumption, the sequence
{

|||·|||tn⋆,(j)

}

j=0,1,...,d
of dual coordinate-k

norms is strictly increasingly graded with respect to the ℓ0 pseudonorm, we have by (12a) that,
on the one hand, |||yJ |||

tn
⋆,(1) ≤ · · · ≤ |||yJ |||

tn
⋆,(j−1) < |||yJ |||

tn
⋆,(j) = · · · = |||yJ |||

tn
⋆,(d) = |||yJ |||⋆, because

j = ℓ0(yJ), and, on the other hand, |||yK |||tn⋆,(1) ≤ · · · ≤ |||yK |||tn⋆,(k−1) < |||yK |||tn⋆,(k) = · · · = |||yK |||tn⋆,(d) =
|||yK |||⋆, because k = ℓ0(yK). Since j < k, we deduce that

|||yJ |||⋆ = |||yJ |||
tn
⋆,(j) = |||yJ |||

tn
⋆,(k−1) ≤ |||yK |||tn⋆,(k−1) < |||yK |||tn⋆,(k) = |||yK |||⋆ ,

and therefore that |||yJ |||⋆ < |||yK |||⋆. Thus, Item 2 in Proposition 3 holds true for |||·|||⋆, so that the
dual norm |||·|||⋆ is orthant-strictly monotonic. Hence, we have shown that Item 3 is satisfied.

• (3 ⇒ 1) Suppose that Item 3 is satisfied and let us show that Item 1 holds true. Since the
dual norm |||·|||⋆ is orthant-strictly monotonic it is proved in [4, Proposition 21] that the sequence
{

|||·|||tn⋆,(j)

}

j=0,1,...,d
is strictly increasingly graded with respect to the ℓ0 pseudonorm. Hence, Item 1

holds true.

• Finally, suppose that the norm |||·||| is orthant-strictly monotonic and that the normed space
(
Rd, |||·|||⋆

)
is strictly convex, As the norm |||·||| is orthant-strictly monotonic, it is orthant-monotonic,

so that the dual norm |||·|||⋆ is also orthant-monotonic, by the equivalence between Item 1 and Item 2
in Proposition 2. As the normed space

(
Rd, |||·|||⋆

)
is strictly convex, it is proved in [4, Proposition 10]

that the dual norm |||·|||⋆ is orthant-strictly monotonic. Hence, Item 3 holds true.

This ends the proof. 2
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3 The Capra conjugacy under orthant-strict monotonic-

ity

We introduce the coupling Capra in §3.1. Then, in §3.2 we recall a formula for the Capra-
subdifferential of functions of the ℓ0 pseudonorm in (2). When both the norm |||·||| and the
dual norm |||·|||⋆ are orthant-strictly monotonic, we prove that the Capra-subdifferential of
nondecreasing functions of the ℓ0 pseudonorm is nonempty. Under the same assumptions, we
establish in §3.3, relations between the ℓ0 pseudonorm in (2) and the sequence of generalized
top-k dual norms in Definition 6; we show that the ℓ0 pseudonorm is Capra-convex.

We work on the Euclidian space Rd (with d ∈ N∗), equipped with the scalar product
〈· , ·〉 (but not necessarily with the Euclidian norm).

3.1 Constant along primal rays coupling (Capra)

Following [3, 2], we introduce the coupling Capra. Let |||·||| be a norm on Rd.

Definition 10 ([3, Definition 8]) We define the constant along primal rays coupling ¢, or
Capra, between Rd and Rd by

∀y ∈ Rd ,







¢(x, y) =
〈x , y〉

|||x|||
, ∀x ∈ Rd\{0} ,

¢(0, y) = 0.

(24)

We stress the point that, in (24), the Euclidian scalar product 〈x , y〉 and the norm term
|||x||| need not be related, that is, the norm |||·||| is not necessarily Euclidian.

The coupling Capra has the property of being constant along primal rays, hence the
acronym Capra (Constant Along Primal RAys). We introduce the primal normalization
mapping n, from Rd towards the unit sphere S united with {0}, as follows:

n : Rd → S ∪ {0} , n(x) =

{
x

|||x|||
if x 6= 0 ,

0 if x = 0 .
(25)

We will see below that the Capra-conjugacy, induced by the coupling Capra, shares some
relations with the Fenchel conjugacy (see §A.2).

Capra-conjugates and biconjugates. Here are expressions for the Capra-conjugates
and biconjugates of a function.

In the whole paper, we use R = [−∞,+∞].

Proposition 11 ([3, Proposition 9]) For any function g : Rd → R, the ¢
′-Fenchel-Moreau

conjugate is given by

g¢
′

= g⋆
′

◦ n . (26a)
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For any function f : Rd → R, the ¢-Fenchel-Moreau conjugate is given by

f¢ =
(
inf

[
f | n

])⋆
, (26b)

where the epi-composition inf
[
f | n

]
[11, p. 27] has here the expression

inf
[
f | n

]
(x) = inf

{
f(x′)

∣
∣n(x′) = x

}
=

{

infλ>0 f(λx) if x ∈ S ∪ {0} ,

+∞ if x 6∈ S ∪ {0} ,
(26c)

and the ¢-Fenchel-Moreau biconjugate is given by

f¢¢
′

=
(
f¢)⋆′ ◦ n =

(
inf

[
f | n

])⋆⋆′
◦ n . (26d)

We observe that the ¢-Fenchel-Moreau conjugate f¢ is a closed convex function on Rd (see
§A.2).

Capra-convex functions. We recall that so-called ¢-convex functions are all functions of

the form g¢
′

, for any g : Rd → R, or, equivalently, all functions of the form f¢¢
′

, for any

f : Rd → R, or, equivalently, all functions that are equal to their ¢-biconjugate (f¢¢
′

= f)
[13, 12, 8].

We recall that a function is closed convex on Rd if and only if it is either a proper convex
lower semi continuous (lsc) function or one of the two constant functions −∞ or +∞ (see
§A.2).

Proposition 12 ([3, Proposition 10]) A function is ¢-convex if and only if it is the composi-
tion of a closed convex function on Rd with the normalization mapping (25). More precisely,
for any function h : Rd → R, we have the equivalences

h is ¢-convex

⇐⇒ h = h¢¢
′

⇐⇒ h =
(
h¢)⋆′ ◦ n (where

(
h¢)⋆′ is a closed convex function)

⇐⇒ there exists a closed convex function f : Rd → R such that h = f ◦ n .

3.2 Capra-subdifferentials related to the ℓ0 pseudonorm

We recall formulas for the Capra-subdifferential of the ℓ0 pseudonorm in (2). Then, we
provide conditions under which the Capra-subdifferential of a function of the ℓ0 pseudonorm
is not empty.

Following the definition of the subdifferential of a function with respect to a duality in
[1], we define the Capra-subdifferential of the function f : Rd → R at x ∈ Rd by

∂¢f(x) =
{
y ∈ Rd

∣
∣ ¢(x′, y) ·+

(
− f(x′)

)
≤ ¢(x, y) ·+

(
− f(x)

)
, ∀x′ ∈ Rd

}
(28a)

=
{
y ∈ Rd

∣
∣ f¢(y) = ¢(x, y) ·+

(
− f(x)

)}
. (28b)
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Proposition 13 ([3, Proposition 14]) Let |||·||| be a norm on Rd, with associated sequences
{

|||·|||R(j)

}

j=1,...,d
of coordinate-k norms and

{

|||·|||⋆
R
(j)

}

j=1,...,d
of dual coordinate-k norms, as

in Definition 7, and with associated Capra coupling ¢ in (24).
Let a function ϕ : {0, 1, . . . , d} → R and a vector x ∈ Rd be given.

• The Capra-subdifferential, as in (28), of the function ϕ ◦ ℓ0 at x = 0 is given by

∂¢(ϕ ◦ ℓ0)(0) =
⋂

j=1,...,d

[
ϕ(j)∔

(
− ϕ(0)

)]
BR
(j),⋆ , (29a)

where, by convention λBR
(j),⋆ = ∅, for any λ ∈ [−∞, 0[, and +∞BR

(j),⋆ = Rd.

• The Capra-subdifferential, as in (28), of the function ϕ ◦ ℓ0 at x 6= 0 is given by the
following cases

– if l = ℓ0(x) ≥ 1 and either ϕ(l) = −∞ or ϕ ≡ +∞, then ∂¢(ϕ ◦ ℓ0)(x) = Rd,

– if l = ℓ0(x) ≥ 1 and ϕ(l) = +∞ and there exists j ∈ {0, 1, . . . , d} such that
ϕ(j) 6= +∞, then ∂¢(ϕ ◦ ℓ0)(x) = ∅,

– if l = ℓ0(x) ≥ 1 and −∞ < ϕ(l) < +∞, then

y ∈ ∂¢(ϕ ◦ ℓ0)(x) ⇐⇒







y ∈ NBR
(l)
( x

|||x|||R(l)
)

and

l ∈ argmaxj=0,1,...,d

[
|||y|||R(j),⋆ − ϕ(j)

]
.

(29b)

Proposition 14 Let |||·||| be a norm on Rd, such that both the norm |||·||| and the dual norm
|||·|||⋆ are orthant-strictly monotonic. Let ϕ : {0, 1, . . . , d} → R be a nondecreasing function.
Then, we have

∂¢(ϕ ◦ ℓ0)(x) 6= ∅ , ∀x ∈ Rd .

More precisely, ∂¢(ϕ ◦ ℓ0)(0) =
⋂

j=1,...,d

[
ϕ(j) − ϕ(0)

]
BR
(j),⋆ 6= ∅ and, when x 6= 0, for

any y ∈ Rd such that supp(y) = supp(x), and that 〈x , y〉 = |||x||| × |||y|||⋆, we have that
λy ∈ ∂¢(ϕ ◦ ℓ0)(x) for λ > 0 large enough.

Proof. Since the norm |||·||| is orthant-strictly monotonic, it is orthant-monotonic, so that we
have |||·|||R(j) = |||·|||⋆sn⋆,(j) and |||·|||R(j),⋆ = |||·|||tn⋆,(j), for j = 0, 1, . . . , d by Proposition 8 (with the proper
conventions for the case j = 0). Therefore, we can translate all the results with generalized top-k
and k-support dual norms instead of coordinate-k and dual coordinate-k norms.

When x = 0, we have, by (29a), that ∂¢(ϕ◦ℓ0)(0) =
⋂

j=1,...,d

[
ϕ(j)−ϕ(0)

]
BR
(j),⋆ because ϕ(j)∔

(
−ϕ(0)

)
= ϕ(j)−ϕ(0) since the function ϕ takes finite values. The set

⋂

j=1,...,d

[
ϕ(j)−ϕ(0)

]
BR
(j),⋆

is nonempty (it contains 0), because ϕ(j) − ϕ(0) ≥ 0 for j = 1, . . . , d since ϕ : {0, 1, . . . , d} → R is
a nondecreasing function.
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From now on, we consider x ∈ Rd\{0} such that ℓ0(x) = l ∈ {1, . . . , d}, and we will use the
characterization (29b) of the subdifferential ∂¢(ϕ ◦ ℓ0)(x).

Since the norm |||·||| is orthant-strictly monotonic, by Proposition 3 (equivalence between Item 1
and Item 3), there exists a vector y ∈ Rd such that

L = supp(x) = supp(y) hence ℓ0(y) = ℓ0(x) = l > 1 , (30a)

〈x , y〉 = |||x||| × |||y|||⋆ . (30b)

Since both the norm |||·||| and the dual norm |||·|||⋆ are orthant-strictly monotonic, the sequence
{

|||·|||R(j),⋆

}

j=0,1,...,d
is strictly increasingly graded with respect to the ℓ0 pseudonorm, by Proposi-

tion 9. Therefore, we have (see Definition 4):

|||y|||R(1),⋆ ≤ · · · ≤ |||y|||R(l−1),⋆ < |||y|||R(l),⋆ = · · · = |||y|||R(d),⋆ = |||y|||⋆ . (31)

• First, we are going to establish that we have y ∈ NBR
(l)
( x
|||x|||R(l)

), that is, the first of the two

conditions in the characterization (29b) of the subdifferential ∂¢(ϕ ◦ ℓ0)(x).

On the one hand, because ℓ0(y) = l and by (31), we have that |||y|||⋆ = |||y|||R(l),⋆. On the other

hand, we have |||x||| = |||x|||R(l) by (23). Hence, from (30b), we get 〈x , y〉 = |||x|||R(l) × |||y|||R(l),⋆, from
which we obtain y ∈ NBR

(l)
( x
|||x|||R(l)

) by (10) as x 6= 0. To close this part, notice that, for all λ > 0, we

have that λy ∈ NBR
(l)
( x
|||x|||R(l)

), because this last set is a cone.

• Second, we prove the other of the two conditions in the characterization (29b) of the subdifferen-
tial ∂¢(ϕ ◦ ℓ0)(x). More precisely, we are going to show that, for λ large enough, |||λy|||R(l),⋆ −ϕ(l) =

supj=0,1,...,d

[
|||λy|||R(j),⋆ − ϕ(j)

]
. For this purpose, we consider the mapping ψ :]0,+∞[→ R defined

by
ψ(λ) = |||λy|||R(l),⋆ − ϕ(l)− sup

j=0,1,...,d

[
|||λy|||R(j),⋆ − ϕ(j)

]
, ∀λ > 0 ,

and we will show that ψ(λ) = 0 for λ large enough. We have

ψ(λ) = inf
j=0,1,...,d

(

λ
(
|||y|||R(l),⋆ − |||y|||R(j),⋆

)
+ ϕ(j) − ϕ(l)

)

= inf

{

λ|||y|||R(l),⋆ + ϕ(0) − ϕ(l), inf
j=1,...,l−1

(

λ
(
|||y|||R(l),⋆ − |||y|||R(j),⋆

)
+ ϕ(j) − ϕ(l)

)

,

(as |||y|||R(0),⋆ = 0 by convention)

inf
j=l,...,d

(

λ
(
|||y|||R(l),⋆ − |||y|||R(j),⋆

)
+ ϕ(j) − ϕ(l)

)}

= inf

{

λ|||y|||R(l),⋆ + ϕ(0) − ϕ(l), inf
j=1,...,l−1

(

λ
(
|||y|||R(l),⋆ − |||y|||R(j),⋆

)
+ ϕ(j) − ϕ(l)

)

,

inf
j=l,...,d

(
ϕ(j) − ϕ(l)

)
}

(as |||y|||R(j),⋆ = |||y|||R(l),⋆ for j ≥ l by (31))

= inf
{

λ|||y|||R(l),⋆ + ϕ(0) − ϕ(l), inf
j=1,...,l−1

(

λ
(
|||y|||R(l),⋆ − |||y|||R(j),⋆

)
+ ϕ(j) − ϕ(l)

)

, 0
}

,
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as infj=l,...,d

(
ϕ(j) − ϕ(l)

)
= 0 because ϕ : {0, 1, . . . , d} → R is a nondecreasing function.

Let us show that the two first terms in the infimum go to +∞ when λ → +∞. The first
term λ|||y|||R(l),⋆ + ϕ(0) − ϕ(l) goes to +∞ because, by (31), we have |||y|||R(l),⋆ = |||y|||⋆ > 0 as

y ∈ Rd\{0}. The second term infj=1,...,l−1

(

λ
(
|||y|||R(l),⋆ − |||y|||R(j),⋆

)
+ ϕ(j) − ϕ(l)

)

also goes to +∞

because ℓ0(y) = l, so that |||y|||⋆ = |||y|||R(l),⋆ > |||y|||R(j),⋆ for j = 1, . . . , l − 1 by (31). Therefore,

limλ→+∞ ψ(λ) = inf
{

+∞,+∞, 0
}

= 0, hence ψ(λ) = 0 for λ large enough, and thus |||λy|||R(l),⋆ −

ϕ(l) = supj=0,1,...,d

[
|||λy|||R(j),⋆ − ϕ(j)

]
, that is, l ∈ argmaxj=0,1,...,d

[
|||λy|||R(j),⋆ − ϕ(j)

]
.

Wrapping up the above results, we have shown that, for any vector y ∈ Rd such that supp(y) =
supp(x), and that 〈x , y〉 = |||x|||×|||y|||⋆, then, for λ > 0 large enough, λy satisfies the two conditions
in the characterization (29b) of the subdifferential ∂¢(ϕ ◦ ℓ0)(x).

This ends the proof. 2

3.3 Capra-conjugates and biconjugates related to the ℓ0 pseudonorm

Our first main result are identities for the Capra conjugates and biconjugates of suitable
nondecreasing functions of the ℓ0 pseudonorm. We will show that, when both the norm
|||·||| and the dual norm |||·|||⋆ are orthant-strictly monotonic, then any suitable nondecreasing
function of the ℓ0 pseudonorm is Capra biconjugate, that is, a Capra-convex function.

Theorem 15 Let |||·||| be a norm on Rd with associated sequence
{

|||·|||tn⋆,(j)

}

j=1,...,d
of gener-

alized top-k dual norms, as in Definition 7, and with associated Capra coupling ¢ in (24).

If the norm |||·||| is orthant-monotonic, then, for any function ϕ : {0, 1, . . . , d} → R, we have

(ϕ ◦ ℓ0)
¢ = sup

j=0,1,...,d

[

|||·|||tn⋆,(j) − ϕ(j)
]

, (32a)

with the convention that |||·|||tn⋆,(0) = 0.

If both the norm |||·||| and the dual norm |||·|||⋆ are orthant-strictly monotonic, then, for any
nondecreasing function ϕ : {0, 1, . . . , d} → R, we have

(ϕ ◦ ℓ0)
¢¢

′

= ϕ ◦ ℓ0 . (32b)

Proof. In both cases, the norm |||·||| is orthant-monotonic, hence |||·|||R(k) = |||·|||⋆sn⋆,(k) and |||·|||R(k),⋆ =

|||·|||tn⋆,(k) by Proposition 8.

It is proved in [3, Proposition 11] that (ϕ ◦ ℓ0)
¢ = supj=0,1,...,d

[

|||·|||R(j),⋆ − ϕ(j)
]

. As |||·|||R(j),⋆ =

|||·|||tn⋆,(j), we obtain (32a).
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As, by assumption, both the norm |||·||| and the dual norm |||·|||⋆ are orthant-strictly monotonic,
Proposition 14 applies. Therefore, for any vector x ∈ Rd and any y ∈ ∂¢(ϕ ◦ ℓ0)(x) 6= ∅, we obtain

(ϕ ◦ ℓ0)
¢¢

′

(x) ≥ ¢(x, y) ·+
(
− (ϕ ◦ ℓ0)

¢(y)
)

(by definition (50) of the biconjugate)

= ¢(x, y)− (ϕ ◦ ℓ0)
¢(y) (because −∞ < ¢(x, y) < +∞ by (24))

= ¢(x, y)−
(
¢(x, y)− (ϕ ◦ ℓ0)(x)

)

(by definition (28b) of the Capra-subdifferential ∂¢(ϕ ◦ ℓ0)(x))

= (ϕ ◦ ℓ0)(x) .

On the other hand, we have that (ϕ ◦ ℓ0)
¢¢

′

(x) ≤ (ϕ ◦ ℓ0)(x) by (51). We conclude that (ϕ ◦

ℓ0)
¢¢

′

(x) = (ϕ ◦ ℓ0)(x), which is (32b).

This ends the proof. 2

4 Hidden convexity and variational formulation for the

ℓ0 pseudonorm

From our main result obtained in §3.3 — namely, Theorem 15 which provides conditions
under which a suitable nondecreasing function of the ℓ0 pseudonorm is a Capra-convex
function — we will derive two results. We suppose that both the norm |||·||| and the dual
norm |||·|||⋆ are orthant-strictly monotonic. In §4.1, we show that any suitable nondecreasing
function of the pseudonorm ℓ0 coincides, on the unit sphere S =

{
x ∈ Rd

∣
∣ |||x||| = 1

}
,

with a proper convex lsc function on Rd. In §4.2, we deduce a variational formula for
suitable nondecreasing functions of the ℓ0 pseudonorm, which involves the whole sequence
of generalized k-support dual norms.

4.1 Hidden convexity in the ℓ0 pseudonorm

We will now present a (rather unexpected) consequence of the just established property

(Theorem 15) that, under proper assumptions, (ϕ ◦ ℓ0)
¢¢

′

= ϕ ◦ ℓ0.

Proposition 16 Let |||·||| be a norm on Rd. Suppose that both the norm |||·||| and the dual
norm |||·|||⋆ are orthant-strictly monotonic. Let ϕ : {0, 1, . . . , d} → R+ be a nondecreasing
function, such that ϕ(0) = 0. Then, the following statements hold true.

• There exists a proper convex lsc function Lϕ
0 : Rd → R such that the function ϕ ◦ ℓ0

coincides, on the unit sphere S =
{
x ∈ Rd

∣
∣ |||x||| = 1

}
, with Lϕ

0 :

(ϕ ◦ ℓ0)(x) = Lϕ
0 (x) , ∀x ∈ S where Lϕ

0 =
(
(ϕ ◦ ℓ0)

¢)⋆′ . (33a)
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• The function ϕ ◦ ℓ0 can be expressed as the composition of the proper convex lsc func-
tion Lϕ

0 in (33a) with the normalization mapping n in (25):

(ϕ ◦ ℓ0)(x) = Lϕ
0 (

x

|||x|||
) , ∀x ∈ Rd\{0} . (33b)

• The proper convex lsc function Lϕ
0 is given by

Lϕ
0 =

(

sup
j=0,1,...,d

[

|||·|||tn⋆,(j) − ϕ(j)
])⋆′

. (34a)

• The function Lϕ
0 is the largest convex lsc function below the integer valued function

inf
j=0,1,...,d

[

δB⋆sn
⋆,(j)

+ ϕ(j)
]

, (34b)

that is, below the function x ∈ B⋆sn
⋆,(j)\B

⋆sn
⋆,(j−1) 7→ ϕ(j) for j = 1, . . . , d and x ∈ B⋆sn

⋆,(0) =

{0} 7→ 0, the function being infinite outside B⋆sn
⋆,(d) = B (the above construction makes

sense as B⋆sn
⋆,(1) ⊂ · · · ⊂ B⋆sn

⋆,(j−1) ⊂ B⋆sn
⋆,(j) ⊂ · · · ⊂ B⋆sn

⋆,(d) = B by (18b)).

• The function Lϕ
0 is the largest convex lsc function below the integer valued function

inf
j=0,1,...,d

[

δS⋆sn
⋆,(j)

+ ϕ(j)
]

, (34c)

that is, below the function x ∈ Rd 7→ inf ϕ
{
j ∈ {0, . . . , d}

∣
∣x ∈ S⋆sn

⋆,(j)

}
, with the

convention that S⋆sn
⋆,(0) = {0} and that inf ∅ = +∞.

• The proper convex lsc function Lϕ
0 also has three variational expressions as follows,

where ∆d+1 is the simplex of Rd+1,

Lϕ
0 (x) = min

(λ0,λ1,...,λd)∈∆d+1

x∈
∑d

l=1 λjB
⋆sn
⋆,(l)

d∑

l=1

λjϕ(j) , ∀x ∈ Rd (35a)

= min
(λ0,λ1,...,λd)∈∆d+1

x∈
∑d

l=1 λjS
⋆sn
⋆,(l)

d∑

l=1

λjϕ(j) , ∀x ∈ Rd (35b)

= min
x(1)∈Rd,...,x(d)∈Rd

∑d
j=1 |||x

(j)|||
⋆sn
⋆,(j)≤1

∑d
j=1 x

(j)=x

d∑

j=1

ϕ(j)|||x(j)|||
⋆sn

⋆,(j) , ∀x ∈ Rd . (35c)
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Proof. As in the beginning of the proof of Theorem 15, we can observe that, since the norm
|||·||| is orthant-strictly monotonic, it is orthant-monotonic, so that we have |||·|||R(j) = |||·|||⋆sn⋆,(j) and

|||·|||R(j),⋆ = |||·|||tn⋆,(j), for j = 0, 1, . . . , d by Proposition 8 (with the proper conventions for the case
j = 0).

• The assumptions make it possible to conclude that (ϕ ◦ ℓ0)
¢¢

′

= ϕ ◦ ℓ0, thanks to Theorem 15.
We deduce from Proposition 12 that, being ¢-convex, the function ϕ◦ ℓ0 coincides, on the sphere S,

with the closed convex function Lϕ
0 : Rd → R given by (26d), namely Lϕ

0 =
(
(ϕ ◦ ℓ0)

¢
)⋆′

. Thus, we
have proved (33a).

We now show that the closed convex function
(
(ϕ◦ℓ0)

¢
)⋆′

is proper. Indeed, on the one hand, it

is easily seen that the function (ϕ◦ ℓ0)
¢ takes finite values, from which we deduce that the function

(
(ϕ◦ℓ0)

¢
)⋆′

never takes the value −∞. On the other hand, from (ϕ◦ℓ0)
¢¢

′

= ϕ◦ℓ0 we deduce that

the function
(
(ϕ ◦ ℓ0)

¢
)⋆′

never takes the value +∞ on the unit sphere. Therefore, the
(
(ϕ ◦ ℓ0)

¢
)⋆′

is proper.

• The equality (33b) is an easy consequence of the property (3), implying that the function ϕ ◦ ℓ0
is invariant along any open ray of Rd.

• As Lϕ
0 =

(
(ϕ ◦ ℓ0)

¢
)⋆′

by (33a), and as
(
(ϕ ◦ ℓ0)

¢
)⋆′

=
(

supj=0,1,...,d

[

|||·|||tn⋆,(j)−ϕ(j)
])⋆′

by (32a),

we get (34a).

• We use [3, Proposition 12], and especially Equations (39c) and (39d), to obtain (34b).

• We use [3, Proposition 12], and especially Equations (39e) and (39f), to obtain (34c).

• We use [3, Proposition 12], and especially Equations (39h), (39i) and (39j) to obtain (35a), (35b)
and (35c).

This ends the proof. 2

4.2 Variational formulation for the ℓ0 pseudonorm

As a straightforward application of Proposition 16, we obtain our second main result, namely
a variational formulation for the ℓ0 pseudonorm.

Theorem 17 Let |||·||| be a norm on Rd, such that both the norm |||·||| and the dual norm
|||·|||⋆ are orthant-strictly monotonic. Let ϕ : {0, 1, . . . , d} → R+ be a nondecreasing function,
such that ϕ(0) = 0. Then, we have the equality

ϕ
(
ℓ0(x)

)
=

1

|||x|||
min

z(1)∈Rd,...,z(d)∈Rd

∑d
j=1 |||z

(j)|||
⋆sn
⋆,(j)≤|||x|||

∑d
j=1 z

(j)=x

d∑

j=1

ϕ(j)|||z(j)|||
⋆sn

⋆,(j) , ∀x ∈ Rd\{0} , (36)

where the sequence of generalized k-support dual norms
{

|||·|||⋆sn⋆,(j)

}

j=1,...,d
has been introduced

in Definition 6.
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When ℓ0(x) = l ≥ 1, the minimum in (36) is achieved at (z(1), . . . , z(d)) ∈ (Rd)d such
that z(j) = 0 for j 6= l and z(l) = x.

Proof. Equation (36) derives from (33b) and (35c).
When ℓ0(x) = l ≥ 1, by (23), we have |||x||| = |||x|||R(d) = . . . = |||x|||R(l). Now, for any k ∈ {1, . . . , d},

we have |||·|||R(k) = |||·|||⋆sn⋆,(k) by Proposition 8, since the norm |||·||| is orthant-strictly monotonic, hence

is orthant-monotonic. As a consequence, we have that |||x||| = |||x|||⋆sn⋆,(d) = . . . = |||x|||⋆sn⋆,(l). Therefore,

(z(1), . . . , z(d)) ∈ (Rd)d such that z(j) = 0 for j 6= l and z(l) = x is admissible for the minimization
problem (36). We deduce that ϕ(l) = ϕ

(
ℓ0(x)

)
≤ 1

|||x|||ϕ(l)|||x|||
⋆sn
⋆,(l) = ϕ(l).

This ends the proof. 2

As an illustration, Theorem 17 applies when the norm |||·||| is any of the ℓp-norms ||·||p
on the space Rd, for p ∈]1,∞[, giving (see the notations in Table 1)

(ϕ ◦ ℓ0)(x) =
1

||x||p
min

z(1)∈Rd,...,z(d)∈Rd

∑d
j=1||z

(j)||snp,j≤||x||p
∑d

j=1 z
(j)=x

d∑

j=1

ϕ(j)||z(j)||snp,j , ∀x ∈ Rd\{0} , ∀p ∈]1,∞[ . (37)

Indeed, when p ∈]1,∞[, the ℓp-norm |||·||| = ||·||p is orthant-strictly monotonic, and so is its
dual norm |||·|||⋆ = ||·||q where 1/p + 1/q = 1 as easily seen. When p = ∞, the ℓ∞-norm
|||·||| = ||·||∞ is not orthant-strictly monotonic. When p = 1, the ℓ1-norm |||·||| = ||·||1 is
orthant-strictly monotonic, but the dual norm |||·||| = ||·||∞ is not.

4.3 Upper and lower bounds for the ℓ0 pseudonorm as norm ratios

The variational formulation obtained in §4.2 yields a family of lower and upper bounds for
the ℓ0 pseudonorm, as a ratio between two norms, the denominator norm being any.

Proposition 18 Let |||·||| be a norm on Rd, such that both the norm |||·||| and the dual norm
|||·|||⋆ are orthant-strictly monotonic. Let ϕ : {0, 1, . . . , d} → R+ be a nondecreasing function,
such that ϕ(1) > ϕ(0) = 0. Then, we have the inequalities

|||x|||⋆sn⋆,(ϕ)

|||x|||
≤ ϕ

(
ℓ0(x)

)
≤ min

j=1,...,d

ϕ(j)|||x|||⋆sn⋆,(j)

|||x|||
, ∀x ∈ Rd\{0} , (38)

where the norm |||·|||⋆sn⋆,(ϕ) is characterized

• either by its dual norm which has unit ball
⋂

j=1,...,d ϕ(j)B
tn
⋆,(j), that is,

Btn
⋆,(ϕ) =

⋂

j=1,...,d

ϕ(j)Btn
⋆,(j) and |||·|||⋆sn⋆,(ϕ) = σBtn

⋆,(ϕ)
, (39)

or, equivalently,

|||x|||⋆sn⋆,(ϕ) = sup
j=1,...,d

|||x|||⋆sn⋆,(j)

ϕ(j)
, ∀x ∈ Rd , (40)
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• or by the inf-convolution

|||·|||⋆sn⋆,(ϕ) =
m

j=1,...,d

(

ϕ(j)|||·|||⋆sn⋆,(j)

)

, (41)

that is,

|||x|||⋆sn⋆,(ϕ) = inf
z(1)∈Rd,...,z(d)∈Rd

∑d
j=1 z

(j)=x

d∑

j=1

ϕ(j)|||z(j)|||
⋆sn

⋆,(j) , ∀x ∈ Rd . (42)

Proof. The proof is a straightforward application of Theorem 17 for the right hand side (upper
bound) inequality.

Regarding the left hand side (lower bound) inequality, it follows directly from [3, Proposition 16].
Indeed, the function ϕ : {0, 1, . . . , d} → [0,+∞[ is such that ϕ(j) > ϕ(0) = 0 for all j = 1, . . . , d,
because it is a nondecreasing function such that ϕ(1) > ϕ(0) = 0.

2

4.4 Applications to sparse optimization

Finally, with the novel expressions for the ℓ0 pseudonorm obtained in §4.2, we deduce re-
formulations for exact sparse optimization problems. The following two Propositions are
straightforward applications of Theorem 17.

Proposition 19 (Minimization of the pseudonorm ℓ0 under constraints) Let C ⊂
Rd be such that 0 6∈ C. Let |||·||| be a norm on Rd, such that both the norm |||·||| and the dual
norm |||·|||⋆ are orthant-strictly monotonic. Let ϕ : {0, 1, . . . , d} → R+ be a nondecreasing
function, such that ϕ(0) = 0. Then, we have:

min
x∈C

ϕ
(
ℓ0(x)

)
= min

x∈C,x(1)∈Rd,...,x(d)∈Rd

∑d
j=1 |||x

(j)|||
⋆sn
⋆,(j)≤1

∑d
j=1 x

(j)= x
|||x|||

d∑

j=1

ϕ(j)|||x(j)|||
⋆sn

⋆,(j) , (43a)

= min
x∈C,z(1)∈Rd,...,z(d)∈Rd

∑d
j=1 |||z

(j)|||
⋆sn
⋆,(j)≤|||x|||

∑d
j=1 z

(j)=x

1

|||x|||

d∑

j=1

ϕ(j)|||z(j)|||
⋆sn

⋆,(j) , (43b)

= min
x∈C

1

|||x|||
min

z(1)∈Rd,...,z(d)∈Rd

∑d
j=1 |||z

(j)|||
⋆sn
⋆,(j)≤|||x|||

∑d
j=1 z

(j)=x

d∑

j=1

ϕ(j)|||z(j)|||
⋆sn

⋆,(j)

︸ ︷︷ ︸

convex optimization problem

. (43c)
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Proposition 20 (Minimization over level sets of the pseudonorm ℓ0) Let |||·||| be a
norm on Rd, such that both the norm |||·||| and the dual norm |||·|||⋆ are orthant-strictly mono-
tonic. Then, we have, for any k ∈ {1, . . . , d}:

min
ℓ0(x)≤k

f(x) = min
x∈Rd,z(1)∈Rd,...,z(d)∈Rd

∑d
j=1 |||z

(j)|||
⋆sn
⋆,(j)≤|||x|||

∑d
j=1 z

(j)=x
∑d

j=1 j|||z
(j)|||

⋆sn
⋆,(j)≤k|||x|||

f(x) , (44a)

= min
z(1)∈Rd,...,z(d)∈Rd

∑d
j=1 |||z

(j)|||
⋆sn
⋆,(j)≤|||

∑d
j=1 z

(j)|||
∑d

j=1 ϕ(j)|||z
(j)|||

⋆sn
⋆,(j)≤k|||

∑d
j=1 z

(j)|||

f
( d∑

j=1

z(j)
)

. (44b)

5 Conclusion

The mathematical expression of the ℓ0 pseudonorm makes it difficult to handle as such in
optimization problems on Rd. In this paper, we have obtained exact variational formulations
for the ℓ0 pseudonorm, suitable for exact sparse optimization. For this purpose, we have
introduced notions about norms that were developed in the companion paper [4]: sequences
of generalized top-k and k-support dual norms, generated from any (source) norm on Rd;
orthant-strictly monotonic norms on Rd, especially relevant for the ℓ0 pseudonorm, in relation
with the concept of strictly increasingly graded sequence of norms.

Our main result is that the ℓ0 pseudonorm is equal to its biconjugate under the associated
conjugacy, when both the source norm and its dual norm are orthant-strictly monotonic.
In that case, one says that the ℓ0 pseudonorm is a Capra-convex function. A surprising
consequence is that the ℓ0 pseudonorm coincides, on the unit sphere of the source norm,
with a proper convex lsc function. More generally, this holds true for any function of the
ℓ0 pseudonorm that is nondecreasing, with finite values and which is null at zero.

The reformulations for exact sparse optimization problems that we have obtained make
use of new (latent) vectors, in same number than the underlying dimension d. Thus, the
algorithmic implementation may be delicate. However, the variational formulation obtained
may suggest approximations of the ℓ0 pseudonorm, or algorithms making use of the partial
convexity that our analysis has put to light. Moreover, we have provided expressions for the
Capra-subdifferential of suitable functions of the ℓ0 pseudonorm, which can inspire “gradient-
like” algorithms. In all cases, the variational formulation obtained yields a new family of
lower and upper bounds for the ℓ0 pseudonorm, as a ratio between two norms; this may lead
to new smooth sparsity inducing terms, proxies for the ℓ0 pseudonorm.

Acknowledgements. We want to thank Guillaume Obozinski for discussions on first
versions of this work.
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A Background on Fenchel-Moreau conjugacies

When we manipulate functions with values in R = [−∞,+∞], we adopt the following Moreau
lower addition, that extends the usual addition with

(+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞ . (45)

We review general concepts and notations, then we focus on the special case of the Fenchel
conjugacy. We denote R = [−∞,+∞].

A.1 The general case

Let be given two sets X (“primal”), Y (“dual”), together with a coupling function

c : X× Y → R . (46)

With any coupling, we associate conjugacies from R
X
to R

Y
and from R

Y
to R

X
as follows.

Definition 21 The c-Fenchel-Moreau conjugate of a function f : X → R, with respect to
the coupling c, is the function f c : Y → R defined by

f c(y) = sup
x∈X

(

c(x, y) ·+
(
− f(x)

))

, ∀y ∈ Y . (47)

With the coupling c, we associate the reverse coupling c′ defined by

c′ : Y× X → R , c′(y, x) = c(x, y) , ∀(y, x) ∈ Y× X . (48)

The c′-Fenchel-Moreau conjugate of a function g : Y → R, with respect to the coupling c′, is
the function gc

′
: X → R defined by

gc
′

(x) = sup
y∈Y

(

c(x, y) ·+
(
− g(y)

))

, ∀x ∈ X . (49)

The c-Fenchel-Moreau biconjugate of a function f : X → R, with respect to the coupling c,
is the function f cc′ : X → R defined by

f cc′(x) =
(
f c
)c′

(x) = sup
y∈Y

(

c(x, y) ·+
(
− f c(y)

))

, ∀x ∈ X . (50)

The biconjugate of a function f : X → R satisfies

f cc′(x) ≤ f(x) , ∀x ∈ X . (51)
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A.2 The Fenchel conjugacy

When the sets X and Y are vector spaces equipped with a bilinear form 〈 , 〉, the corresponding
conjugacy is the classical Fenchel conjugacy. For any functions f : X → R and g : Y → R,
we denote4

f ⋆(y) = sup
x∈X

(

〈x , y〉 ·+
(
− f(x)

))

, ∀y ∈ Y , (52a)

g⋆
′

(x) = sup
y∈Y

(

〈x , y〉 ·+
(
− g(y)

))

, ∀x ∈ X , (52b)

f ⋆⋆′(x) = sup
y∈Y

(

〈x , y〉 ·+
(
− f ⋆(y)

))

, ∀x ∈ X . (52c)

For any function h : W → R, its epigraph is epih =
{
(w, t) ∈ W × R

∣
∣h(w) ≤ t

}
, its

effective domain is domh =
{
w ∈ W

∣
∣h(w) < +∞

}
. A function h : W → R is said to be

proper if it never takes the value −∞ and that domh 6= ∅. When W is equipped with a
topology, the function h : W → R is said to be lower semi continuous (lsc) if its epigraph is
closed, and is said to be closed if h is either lower semi continuous (lsc) and nowhere having
the value −∞, or is the constant function −∞ [10, p. 15].

It is proved that, when the two vector spaces X and Y are paired in the sense of convex
analysis5, the Fenchel conjugacy induces a one-to-one correspondence between the closed
convex functions on X and the closed convex functions on Y [10, Theorem 5]. Here, a
function is said to be convex if its epigraph is convex. Notice that the set of closed convex
functions is the set of proper convex functions united with the two constant functions −∞
and +∞.
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