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Introduction

The counting function, also called cardinality function or 0 pseudonorm, counts the number of nonzero components of a vector in R d . The 0 pseudonorm measures the sparsity of a vector, and the literature in sparse optimization that mentions it is plethoric. However, because of its combinatorial nature, the problems of minimizing the 0 pseudonorm under constraints or of minimizing a criterion under k-sparsity constraint ( 0 pseudonorm less than a given integer k) are usually not tackled as such. Most of the literature in sparse optimization studies surrogate problems where the 0 pseudonorm either enters a penalization term or is replaced by a regularizing term. We refer the reader to [START_REF] Nikolova | Relationship between the optimal solutions of least squares regularized with l0-norm and constrained by k-sparsity[END_REF] that provides a brief tour of the literature dealing with least squares minimization constrained by k-sparsity, and to [START_REF] Hiriart-Urruty | A variational approach of the rank function[END_REF] for a survey of the rank function of a matrix, that shares many properties with the 0 pseudonorm.

Conjugacies, and more generally dualities, are a powerful tool to tackle classes of optimization problems. The Fenchel conjugacy plays a central role in analyzing solutions of convex problems (and beyond) [START_REF] Rockafellar | Conjugate duality and optimization[END_REF]. However, it fails to provide relevant analysis for optimization problems involving the 0 pseudonorm. Indeed, the Fenchel biconjugate of the characteristic function of the level sets of the 0 pseudonorm is zero, and the Fenchel biconjugate of the 0 pseudonorm is also zero. The field of generalized convexity goes beyond the Fenchel conjugacy and convex functions and displays conjugacies adapted to analyze classes of functions such as increasing positive homogeneous, difference of convex, quasi-convex, increasing and convex-along-rays. For more details on the theory, and more examples, we refer the reader to the books [START_REF] Singer | Abstract convex analysis[END_REF][START_REF] Rubinov | Abstract convexity and global optimization[END_REF] and to the nice introduction paper [START_REF] Je | Handbook of generalized convexity and generalized monotonicity[END_REF].

To our knowledge, none of the conjugacies in the literature is adapted to the 0 pseudonorm (the 0 pseudonorm is convex-along-rays according to the definition in [START_REF] Rubinov | Increasing convex-along-rays functions with applications to global optimization[END_REF] but not in [START_REF] Singer | Abstract convex analysis[END_REF], and calculation shows that the 0 pseudonorm is not convex for the conjugacy in [START_REF] Rubinov | Increasing convex-along-rays functions with applications to global optimization[END_REF]). In this paper, we study the 0 pseudonorm as such and we display a suitable class of conjugacies. We extend results of [START_REF] Chancelier | Hidden convexity in the l 0 pseudonorm[END_REF] beyond the special Euclidian norm setting.

The paper is organized as follows. In Sect. 2, we recall the definition of the 0 pseudonorm, and we introduce the notion of sequence of norms on R d that are (strictly or not) decreasingly graded with respect to the 0 pseudonorm. In Sect. 3, we introduce a sequence of coordinatek norms, all generated from any (source) norm on R d , and their dual norms. In Sect. [START_REF] Singer | Abstract convex analysis[END_REF], we define a so-called Capra coupling between R d and itself, that depends on any (source) norm on R d . Then, we provide formulas for the Capra-conjugate and biconjugate, and for the Capra subdifferentials, of functions of the 0 pseudonorm (hence, in particular, of the 0 pseudonorm itself and of the characteristic functions of its level sets), in terms of the coordinate-k norms. In Sect. 5, as an application, we provide a new family of lower bounds for the 0 pseudonorm, as a fraction between two norms, the denominator being any norm. The Appendix A gathers background on Fenchel-Moreau conjugacies.

2 The 0 pseudonorm and its level sets First, we introduce basic notations regarding the 0 pseudonorm. Second, we recall the definition of a sequence of norms on R d which is (strictly or not) decreasingly graded with respect to the 0 pseudonorm (as introduced in the companion paper [START_REF] Chancelier | Orthant-Strictly Monotonic Norms, Graded Sequences and Generalized Top-k and k-Support Norms for Sparse Optimization[END_REF]). We use the notation r, s = {r, r + 1, . . . , s -1, s} for two integers r ≤ s.

The 0 pseudonorm. For any vector x ∈ R d , supp(x) = j ∈ 1, d x j = 0 ⊂ 1, d is the support of x. The so-called 0 pseudonorm is the function 0 : R d → 0, d defined by

0 (x) = |supp(x)| = number of nonzero components of x , ∀x ∈ R d , (1) 
where |K| denotes the cardinal of a subset K ⊂ 1, d . The 0 pseudonorm shares three out of the four axioms of a norm: nonnegativity, positivity except for x = 0, subadditivity.

The axiom of 1-homogeneity does not hold true; in contrast to norms, the 0 pseudonorm is 0-homogeneous:

0 (ρx) = 0 (x) , ∀ρ ∈ R\{0} , ∀x ∈ R d . (2) 
The level sets of the 0 pseudonorm. The 0 pseudonorm is used in exact sparse optimization problems of the form inf 0 (x)≤k f (x). Thus, we introduce the level sets

≤k 0 = x ∈ R d 0 (x) ≤ k , ∀k ∈ 0, 1, . . . , d , (3a) 
and the level curves

=k 0 = x ∈ R d 0 (x) = k , ∀k ∈ 0, 1, . . . , d . (3b) 
For any subset K ⊂ 1, d , we denote the subspace of R d made of vectors whose components vanish outside of K by1 

R K = R K × {0} -K = x ∈ R d x j = 0 , ∀j ∈ K ⊂ R d , (4) 
where R ∅ = {0}. We denote by π K : R d → R K the orthogonal projection mapping and, for any vector x ∈ R d , by x K = π K (x) ∈ R K the vector which coincides with x, except for the components outside of K that are zero. It is easily seen that the orthogonal projection mapping π K is self-dual, giving

x K , y K = x K , y = π K (x), y = x, π K (y) = x, y K , ∀x ∈ R d , ∀y ∈ R d . (5) 
The level sets of the 0 pseudonorm in (3a) are easily related to the subspaces

R K of R d by 2 ≤k 0 = x ∈ R d 0 (x) ≤ k = |K|≤k R K , ∀k ∈ 0, d . (6) 
Decreasingly graded sequence of norms with respect to the 0 pseudonorm. Now, we introduce the notion of sequences of norms that are, strictly or not, decreasingly graded with respect to the 0 pseudonorm: in a sense, the monotone sequence detects the number of nonzero components of a vector in R d when it becomes stationary. In the following definition, 1. We have the implication (resp. equivalence), for any l ∈ 1, d ,

0 (x) = l =⇒ |||x||| 1 ≥ • • • ≥ |||x||| l-1 ≥ |||x||| l = • • • = |||x||| d , (7a) ( resp. 0 (x) = l ⇐⇒ |||x||| 1 ≥ • • • ≥ |||x||| l-1 > |||x||| l = • • • = |||x||| d . ) (7b)
2. The sequence k ∈ 1, d → |||x||| k is nonincreasing and we have the implication (resp. equivalence), for any l ∈ 1, d ,

0 (x) ≤ l =⇒ |||x||| l = |||x||| d , (7c) 
( resp. 0 (x) ≤ l ⇐⇒ |||x||| l = |||x||| d ⇐⇒ |||x||| l ≤ |||x||| d . ) (7d)
3. The sequence k ∈ 1, d → |||x||| k is nonincreasing and we have the inequality (resp. equality)

0 (x) ≥ min k ∈ 1, d |||x||| k = |||x||| d , (7e) 
( resp. 0 (x) = min k ∈ 1, d |||x||| k = |||x||| d . ) (7f)
3 Coordinate-k norms and dual coordinate-k norms

In § 3.1, we provide background on norms. Then, in § 3.2, we introduce coordinate-k norms and dual coordinate-k norms.

Background on norms

For any norm |||•||| on R d , we denote the unit sphere S and the unit ball B by

S = x ∈ R d |||x||| = 1 , B = x ∈ R d |||x||| ≤ 1 . (8) 
Dual norms. We recall that the expression |||y||| = sup |||x|||≤1 x, y , ∀y ∈ R d , defines a norm on R d , called the dual norm |||•||| . By definition of the dual norm, we have the inequality

x, y ≤ |||x||| × |||y||| , ∀(x, y) ∈ R d × R d . (9) 
We denote the unit sphere S and the unit ball B of the dual norm |||•||| by

S = y ∈ R d |||y||| = 1 , B = y ∈ R d |||y||| ≤ 1 . ( 10 
)
Denoting by σ S the support function of the set S ⊂ R d (σ S (y) = sup x∈S x, y ), we have

|||•||| = σ B = σ S and |||•||| = σ B = σ S , (11) 
where 

B = B = y ∈ R d x, y ≤ 1 , ∀x ∈ B is
|||x||| K = |||x||| , ∀x ∈ R K . ( 12 
)
the (K, )-norm |||•||| K, , on the subspace R K of R d , which is the norm |||•||| K , given by the dual norm (on the subspace R K ) of the restriction norm |||•||| K to the subspace R K (first restriction, then dual).

We have that [START_REF] Chancelier | Orthant-Strictly Monotonic Norms, Graded Sequences and Generalized Top-k and k-Support Norms for Sparse Optimization[END_REF]Equation (13b)]

|||y||| K, = σ R K ∩B (y) = σ R K ∩S (y) , ∀y ∈ R K . ( 13 
)
3. 

|||y K ||| K, , ∀y ∈ R d , (14) 
where the (K, )-norm |||•||| K, is given in Definition 3.1.

It is easily verified that |||•||| R (k), indeed is a norm. We adopt the convention |||•||| R (0), = 0 (although this is not a norm on R d , but a seminorm).

Examples. Table 1 provides examples [START_REF] Chancelier | Orthant-Strictly Monotonic Norms, Graded Sequences and Generalized Top-k and k-Support Norms for Sparse Optimization[END_REF][START_REF] Chancelier | Variational formulations for the l 0 pseudonorm and applications to sparse optimization[END_REF]. With this, we define the top (k, q)-norms in the last right column of Table 1. The (p, k)-support norm, in the middle column of Table 1, is defined as the dual norm of the top (k, q)-norm, with 1/p + 1/q = 1.

To prepare Sect. 4, we provide properties of coordinate-k and dual coordinate-k norms. 

source norm |||•||| |||•||| R (k) |||•||| R (k), • p (p, k)-support norm top (k, q)-norm ||x|| sn p,k ||y|| tn k,q = k j=1 |y ν(j) | q 1/q , 1/p + 1/q = 1 • 1 (1, k)-support norm top (k, ∞)-norm 1 -norm ∞ -norm ||x|| sn 1,k = x 1 ||y|| tn k,∞ = |y ν(1) | = y ∞ • 2 (2, k)-support norm top (k, 2)-norm ||y|| tn k,2 = k j=1 |y ν(j) | 2 • ∞ (∞, k)-support norm top (k, 1)-norm ||y|| tn k,1 = k j=1 |y ν(j) |
| ≥ • • • ≥ |y ν(d) |.
Properties of dual coordinate-k norms. We denote the unit sphere S R (k), and the unit ball

B R (k), of the dual coordinate-k norm |||•||| R (k), in Definition 3.2 by S R (k), = y ∈ R d |||y||| R (k), = 1 , B R (k), = y ∈ R d |||y||| R (k), ≤ 1 , k ∈ 1, d . (15) 
Proposition 3.3

For k ∈ 1, d , the dual coordinate-k norm satisfies |||y||| R (k), = sup |K|≤k σ (R K ∩S) (y) = σ ≤k 0 ∩S (y) = σ =k 0 ∩S (y) , ∀y ∈ R d . ( 16 
)
We have the equality

|||•||| = |||•||| R (d), . (17) 
The sequence

|||•||| R (j), j∈ 1,d
of dual coordinate-k norms in Definition 3.2 is nondecreasing, that is, the following inequalities and equality hold true:

|||y||| R (1), ≤ • • • ≤ |||y||| R (j), ≤ |||y||| R (j+1), ≤ • • • ≤ |||y||| R (d), = |||y||| , ∀y ∈ R d . ( 18 
)
The sequence B R (j), j∈ 1,d of units balls of the dual coordinate-k norms in Definition 3.2 is nonincreasing, that is, the following equality and inclusions hold true:

B = B R (d), ⊂ • • • ⊂ B R (j+1), ⊂ B R (j), ⊂ • • • ⊂ B R (1), . (19) 
Proof.

• For any y ∈ R d , we have |||y||| R (k), = sup |K|≤k |||y K ||| K, (by definition (14) of |||y||| R (k), ) = sup |K|≤k σ (R K ∩S) (y K ) (as |||y K ||| K, = σ (R K ∩S) (y K ) by (13)) = sup |K|≤k sup x∈R K ∩S
x, y K (by definition of the support function

σ (R K ∩S) ) = sup |K|≤k sup x∈R K ∩S
x, y (by [START_REF] Rubinov | Abstract convexity and global optimization[END_REF] 

as x ∈ R K ) = sup |K|≤k σ (R K ∩S) (y) (by definition of the support function σ (R K ∩S) )
= σ |K|≤k (R K ∩S) (y) (as the support function turns a union of sets into a supremum) = σ ≤k 0 ∩S (y) .

(as ≤k 0 ∩ S = |K|≤k (R K ∩ S) by ( 6))

To finish, we will now prove that σ ≤k 0 ∩S = σ =k 0 ∩S . For this purpose, we show in two steps that ≤k 0 ∩ S = =k 0 ∩ S. First, we establish the (known) fact that =k 0 = ≤k 0 . The inclusion =k 0 ⊂ ≤k 0 is easy because, on the one hand, =k 0 ⊂ ≤k 0 and, on the other hand, the level set ≤k 0 in (3a) is closed, as follows from the well-known property that the pseudonorm 0 is lower semicontinuous. There remains to prove the reverse inclusion ≤k 0 ⊂ =k 0 . For this purpose, we consider x ∈ ≤k 0 . If x ∈ =k 0 , obviously x ∈ =k 0 . Therefore, we suppose that 0 (x) = l < k. By definition of 0 (x) in (1), there exists L ⊂ 1, . . . , d such that |L| = l < k and x = x L . For > 0, define x as coinciding with x except for k -l indices outside L for which the components are > 0. By construction 0 (x ) = k and x → x when → 0. This proves that ≤k 0 ⊂ =k 0 . Second, we prove that ≤k 0 ∩ S = =k 0 ∩ S. The inclusion =k 0 ∩ S ⊂ ≤k 0 ∩ S, is easy. Indeed,

=k 0 = ≤k 0 =⇒ =k 0 ∩ S ⊂ =k 0 ∩ S = ≤k 0 ∩ S.
To prove the reverse inclusion ≤k 0 ∩ S ⊂ =k 0 ∩ S, we consider x ∈ ≤k 0 ∩S. As we have just seen that ≤k 0 = =k 0 , we deduce that x ∈ =k 0 . Therefore, there exists a sequence {z n } n∈N in =k 0 such that z n → x when n → +∞. Since x ∈ S, we can always suppose that z n = 0, for all n ∈ N. Therefore z n /|||z n ||| is well defined and, when n → +∞, we have

z n /|||z n ||| → x/|||x||| = x since x ∈ S = x ∈ X |||x||| = 1 . Now, on the one hand, z n /|||z n ||| ∈ =k
0 , for all n ∈ N, and, on the other hand, z n /|||z n ||| ∈ S. As a consequence z n /|||z n ||| ∈ =k 0 ∩ S, and we conclude that x ∈ =k 0 ∩ S. Thus, we have proved that ≤k 0 ∩ S ⊂ =k 0 ∩ S. [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 7.13]. Thus, we have proved all equalities in (16).

From ≤k 0 ∩ S = =k 0 ∩ S, we get that σ ≤k 0 ∩S = σ =k 0 ∩S = σ =k 0 ∩S , by
• By the equality |||y||| R (k), = σ ≤k 0 ∩S (y) in ( 16), we get that, for all

y ∈ R d , |||y||| R (d), = σ ≤d 0 ∩S (y) = σ S (y) = |||y||| since ≤d 0 = R d
and by [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]. • The inequalities in (18) easily derive from the very definition [START_REF] Zȃlinescu | Convex analysis in general vector spaces[END_REF] 

of the dual coordinate-k norms |||•||| R (k), .
The last equality is just the equality (17). • The equality and the inclusions in (19) directly follow from the inequalities and the equality between norms in (18).

Properties of coordinate-k norms. We denote the unit sphere S R (k) and the unit ball B R (k)

of the coordinate-k norm |||•||| R (k) by S R (k) = x ∈ R d |||x||| R (k) = 1 , B R (k) = x ∈ R d |||x||| R (k) ≤ 1 . (20) 
We adopt the convention B R (0) = {0} (although this is not the unit ball of a norm on R d ).

Proposition 3.4

For k ∈ 1, d , the coordinate-k norm |||•||| R (k) has unit ball B R (k) = co |K|≤k (R K ∩ S) , (21) 
where co(S) denotes the closed convex hull of a subset S ⊂ R d .

We have the equality

|||•||| R (d) = |||•||| . (22) 
The sequence

|||•||| R (j) j∈ 1,d of coordinate-k norms in Definition 3.2 is nonincreasing,
that is, the following equality and inequalities hold true:

|||x||| = |||x||| R (d) ≤ • • • ≤ |||x||| R (j+1) ≤ |||x||| R (j) ≤ • • • ≤ |||x||| R (1) , ∀x ∈ R d . ( 23 
)
The sequence B R (j) j∈ 1,d of units balls of the coordinate-k norms in (21) is nondecreasing, that is, the following inclusions and equality hold true:

B R (1) ⊂ • • • ⊂ B R (j) ⊂ B R (j+1) ⊂ • • • ⊂ B R (d) = B . (24) 
Proof.

• For any y ∈ R d , we have |||y||| R (k), = sup |K|≤k σ (R K ∩S) (y) (by (16)) = σ |K|≤k (R K ∩S) (y) (as the support function turns a union of sets into a supremum) = σ co |K|≤k (R K ∩S) (y) 
(by [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]Proposition 7.13])

and we conclude that B R (k) = co |K|≤k (R K ∩ S) by [START_REF] Bauschke | Convex analysis and monotone operator theory in Hilbert spaces[END_REF]. Thus, we have proved (21).

• From the equality (17), we deduce the equality (22) between the dual norms by definition of the dual norm.

• The equality and inequalities between norms in (23) easily derive from the inclusions and equality between unit balls in (24).

• The inclusions and equality between unit balls in (24) directly follow from the inclusions and equality between unit balls in (19) and from B R

(j) = B R (j),
, the polar set of B R (j), . This ends the proof.

We recall that the normed space R d , |||•||| is said to be strictly convex if the unit ball B (of the norm |||•|||) is rotund, that is, if all points of the unit sphere S are extreme points of the unit ball B. The normed space R d , • p , equipped with the p -norm

• p (for p ∈ [1, ∞]), is strictly convex if and only if p ∈]1, ∞[. We now show that the sequences |||•||| R (j) j∈ 1,d of coordinate-k norms (in Definition 3.2)
are naturally decreasingly graded with respect to the 0 pseudonorm (as in Definition 2.1). Part of the proof relies upon the forthcoming Lemma 3.6.

Proposition 3.5 1. The nonincreasing sequence |||•||| R (j) j∈ 1,d
of coordinate-k norms is decreasingly graded with respect to the 0 pseudonorm, that is, for any l ∈ 1, d ,

0 (x) ≤ l =⇒ |||x||| = |||x||| R (l) , ∀x ∈ R d . (25a) 2. If the normed space R d , |||•||| is strictly convex, then the nonincreasing sequence |||•||| R (j) j∈ 1,d
of coordinate-k norms is strictly decreasingly graded with respect to the 0 pseudonorm, that is, for any l ∈ 1, d ,

0 (x) ≤ l ⇐⇒ |||x||| = |||x||| R (l) , ∀x ∈ R d . (25b) 
Proof.

• We prove Item 1. As the sequence |||•||| R (j) j∈ 1,d
of coordinate-k norms is nonincreasing by (18), it suffices to show that (7c) holds true -that is, that (25a) holds true -to prove that the sequence is decreasingly graded with respect to the 0 pseudonorm (see Definition 

⇐⇒ x = 0 or x |||x||| ∈ |K|≤k (R K ∩ S) (as ≤k 0 = |K|≤k R K by (6)) =⇒ x = 0 or x |||x||| ∈ B R (k) (as B R (k) = co |K|≤k (R K ∩ S) by (21)) =⇒ x = 0 or ||| x |||x||| ||| R (k) ≤ 1 (since B R (k) is the unit ball of the norm |||•||| R (k) by (20)) =⇒ |||x||| R (k) ≤ |||x||| =⇒ |||x||| R (k) ≤ |||x||| = |||x||| R (d)
(where the last equality comes from ( 23)) 23)) Therefore, we have obtained (25a).

=⇒ |||x||| R (k) = |||x||| R (d) . (as |||x||| R (k) ≥ |||x||| R (d) by (
• We prove Item 2. As the sequence |||•||| R (j) j∈ 1,d
of coordinate-k norms is nonincreasing by (18), it suffices to show that (7d) holds true -that is, that (25b) holds true -to prove that the sequence is strictly decreasingly graded with respect to the 0 pseudonorm (see Definition 2.1).

We suppose that the normed space R d , |||•||| is strictly convex. Then, for any x ∈ R d and for any k ∈ 1, d , we have5 

⇐⇒ x = 0 or x |||x||| ∈ B R (k) ∩ S as ≤k 0 ∩ S = B R (k) ∩ S by (27) since the assumption of Lemma 3.6 is satisfied, that is, the normed space R d , |||•||| is strictly convex ⇐⇒ x = 0 or ||| x |||x||| ||| R (k) ≤ 1 (since B R (k) is the unit ball of the norm |||•||| R (k) by (20)) ⇐⇒ |||x||| R (k) ≤ |||x||| ⇐⇒ |||x||| R (k) ≤ |||x||| = |||x||| R (d)
(where the last equality comes from (23))

⇐⇒ |||x||| R (k) = |||x||| R (d) . (as |||x||| R (k) ≥ |||x||| R (d) by (23))
Therefore, we have obtained (25b).

This ends the proof. 

|||•||| R (j) j∈ 1,d graded strictly graded |||•||| is any norm (R d , |||•|||) is strictly convex
0 (x) = min k ∈ 1, d ||x|| sn p,k = ||x|| p , ∀x ∈ R d , ∀p ∈]1, ∞[ . (26a) 
We also have that the sequence ||•|| sn p,j j∈ 1,d is decreasingly graded with respect to the 0 pseudonorm for p ∈ [1, ∞]. Looking at Table 1, the only interesting case is for p = ∞, giving, by (7e):

0 (x) ≥ min k ∈ 1, d ||x|| sn ∞,k = ||x|| ∞ , ∀x ∈ R d . (26b) Lemma 3.6 Let |||•||| be a norm on R d . If the normed space R d , |||•||| is strictly convex, we have the equality ≤k 0 ∩ S = B R (k) ∩ S , ∀k ∈ 0, d , (27) 
where ≤k 0 is the level set in (3a) of the 0 pseudonorm in (1), where S is the unit sphere in [START_REF] Chancelier | Hidden convexity in the l 0 pseudonorm[END_REF], and where

B R (k) in (20) is the unit ball of the norm |||•||| R (k) . Proof. It is proved in [9, Proposition 14] that, if the unit ball B is rotund -that is, if the normed space R d , |||•||| is strictly convex -and if A is a closed subset of S, then A = co(A) ∩ S.
Now, we turn to the proof. First, we observe that the level set ≤k 0 is closed because the pseudonorm 0 is lower semi continuous. Second, we have

≤k 0 ∩ S = co ≤k 0 ∩ S ∩ S
because ≤k 0 ∩ S ⊂ S and is closed, and because the unit ball B is rotund

= co |K|≤k (R K ∩ S) ∩ S (by (6)) = B R (k) ∩ S .
(by ( 21))

This ends the proof.

4 The Capra-conjugacy and the 0 pseudonorm

We introduce the coupling Capra in §4.1. Then, we provide formulas for Capra-conjugates of functions of the 0 pseudonorm in §4.2, for Capra-biconjugates of functions of the 0 pseudonorm in §4.3, and for Capra-subdifferentials of functions of the 0 pseudonorm in §4. [START_REF] Singer | Abstract convex analysis[END_REF].

We work on the Euclidian space R d (with d ∈ N * ), equipped with the scalar product •, • (but not necessarily with the Euclidian norm). As we manipulate functions with values in R = [-∞, +∞], we adopt the Moreau lower ( • +) and upper ( ) additions [START_REF] Moreau | Inf-convolution, sous-additivité, convexité des fonctions numériques[END_REF], which extend the usual addition (+) with (+∞

) • + (-∞) = (-∞) • + (+∞) = -∞ and (+∞) (-∞) = (-∞) (+∞) = +∞. For any subset W ⊂ W of a set W, δ W : W → R denotes the characteristic function of the set W : δ W (w) = 0 if w ∈ W , and δ W (w) = +∞ if w ∈ W .

Constant along primal rays coupling (Capra)

We introduce the coupling Capra, which is a special case of one-sided linear coupling, as introduced in [START_REF] Chancelier | Hidden convexity in the l 0 pseudonorm[END_REF]. Fenchel-Moreau conjugacies are recalled in Appendix A. 

We stress the point that, in (28), the Euclidian scalar product x, y and the norm term |||x||| need not be related, that is, the norm |||•||| is not necessarily Euclidian.

The coupling Capra has the property of being constant along primal rays, hence the acronym Capra (Constant Along Primal RAys). We introduce the primal normalization mapping n, from R d towards the unit sphere S united with {0}, as follows:

n : R d → S ∪ {0} , n(x) = x |||x||| if x = 0 and n(0) = 0 . ( 29 
)
With these notations, the coupling Capra in (28) is a special case of one-sided linear coupling, the Fenchel coupling after primal normalization: ¢(x, y) = n(x), y , ∀x ∈ R d , ∀y ∈ R d . We will see below that the Capra-conjugacy, induced by the coupling Capra, shares some relations with the Fenchel conjugacy (see Appendix A).

Capra-conjugates and biconjugates. Here are expressions for the Capra-conjugates and biconjugates of a function. The following Proposition simply is [8, Proposition 2.5] with the normalization mapping n in (29).

Proposition 4.2 For any function g : R d → R, the ¢ -Fenchel-Moreau conjugate is given by g ¢ = g • n .

(30a)

For any function f : R d → R, the ¢-Fenchel-Moreau conjugate is given by

f ¢ = inf f | n , ( 30b 
)
where the conditional infimum inf f | n , defined in [8, Definition 2.4], has the expression

inf f | n (x) = inf f (x ) n(x ) = x = inf λ>0 f (λx) if x ∈ S ∪ {0} , +∞ if x ∈ S ∪ {0} , (30c) 
and the ¢-Fenchel-Moreau biconjugate is given by

f ¢¢ = f ¢ • n = inf f | n • n . (30d) 
The ¢-Fenchel-Moreau conjugate f ¢ is a closed convex function (see Appendix A).

Capra-convex functions. We recall that so-called ¢-convex functions are all functions of the form g ¢ , for any g : R d → R, or, equivalently, all functions of the form f ¢¢ , for any f : R d → R, or, equivalently, all functions that are equal to their ¢-biconjugate 

(f ¢¢ = f ) [4-
h is ¢-convex ⇔ h = h ¢¢ ⇔ h = h ¢ • n (where h ¢ is a closed convex function)
⇔ there exists a closed convex function f : Capra-subdifferential. Following the definition of the subdifferential of a function with respect to a duality in [START_REF] Akian | Invertibility of functional Galois connections[END_REF], the Capra-subdifferential of the function f : R d → R at x ∈ R d has the following expressions

R d → R such that h = f • n .
∂ ¢ f (x) = y ∈ R d f ¢ (y) = ¢(x, y) • + -f (x) (32a) = y ∈ R d inf f | n (y) = n(x), y • + -f (x) , (32b) 
so that, thanks to the definition (29) of the normalization mapping n, we deduce that

∂ ¢ f (0) = y ∈ R d inf f | n (y) = -f (0) (32c) ∂ ¢ f (x) = y ∈ R d inf f | n (y) = x, y |||x||| • + -f (x) , ∀x ∈ R d \{0} . (32d) 
Now, we turn to analyze the 0 pseudonorm by means of the Capra conjugacy.

Capra-conjugates related to the 0 pseudonorm

With the Fenchel conjugacy, we calculate that δ ≤k 0 = δ {0} for all k ∈ 1, d -where δ ≤k 0 is the characteristic function of the level sets (3a) -and that 0 = δ {0} . Hence, the Fenchel conjugacy is not suitable to handle the 0 pseudonorm. By contrast, we will now show that functions of the 0 pseudonorm in (1) -including the 0 pseudonorm itself and the characteristic functions δ ≤k 0 of its level sets (3a) -are related to the sequence of dual coordinate-k norms in Definition 3.2 by the following Capra-conjugacy formulas. 

(ϕ • 0 ) ¢ = sup j∈ 0,d |||•||| R (j), -ϕ(j) . (33) 
Proof. We prove (33): 

(ϕ • 0 ) ¢ = inf j∈ 0,d δ =j 0 ϕ(j) ¢ because ϕ • 0 = inf j∈ 0,d δ =j 0 ϕ ( 
σ =j 0 ∩S • + (-ϕ(j)) (as σ =j 0 ∩S ≥ 0 since =j 0 ∩ S = -=j 0 ∩ S ) = sup -ϕ(0), sup j∈ 1,d |||y||| R (j), -ϕ(j) (as σ =j 0 ∩S = |||•||| R (j), by (16)) = sup j∈ 0,d |||y||| R (j), -ϕ(j) . (using the convention that |||•||| R (0), = 0)
This ends the proof.

With ϕ the identity function on 0, d , we find the Capra-conjugate of the 0 pseudonorm. With the functions ϕ = δ 0,k (for any k ∈ 0, d ), we find the Capra-conjugates of the characteristic functions δ ≤k 0 of its level sets (3a). The corresponding expressions are given in Table 3.

Capra-biconjugates related to the 0 pseudonorm

With the Fenchel conjugacy, we calculate that δ ≤k 0 = 0, for all k ∈ 1, d , and that 0 = 0. Hence, the Fenchel conjugacy is not suitable to handle the 0 pseudonorm.

By contrast, we will now show that functions of the 0 pseudonorm in (1) -including the 0 pseudonorm itself and the characteristic functions δ ≤k 0 of its level sets (3a) -are related to the sequences of coordinate-k norms and dual coordinate-k norms in Definition 3.2 by the following Capra-biconjugacy formulas. 

(ϕ • 0 ) ¢¢ (x) = (ϕ • 0 ) ¢ ( x |||x||| ) , ∀x ∈ R d \{0} , (34a) 
where the closed convex function (ϕ • 0 ) ¢ has the following expression as a Fenchel conjugate

(ϕ • 0 ) ¢ = sup j∈ 0,d |||•||| R (j), -ϕ(j) , (34b) 
and also has the following four expressions as a Fenchel biconjugate

= inf j∈ 0,d δ B R (j) ϕ(j) , ( 34c 
)
hence the function (ϕ • 0 ) ¢ is the largest closed convex function below the integer valued function inf j∈ 0,d δ B R (j) ϕ(j) , such that x ∈ B R (j) \B R (j-1) → ϕ(j) for l ∈ 1, d , and x ∈ B R (0) = {0} → ϕ(0), the function being infinite outside B R (d) = B, that is, with the convention that B R (0) = {0} and that inf ∅ = +∞ = x → inf ϕ(j) x ∈ B R (j) , j ∈ 0, d , (34d) 
= inf j∈ 0,d δ S R (j) ϕ(j) , (34e) 
hence the function (ϕ • 0 ) ¢ is the largest closed convex function below the integer valued function inf j∈ 0,d δ S R (j) ϕ(j) , that is, with the convention that S R (0) = {0} and that inf

∅ = +∞ = x → inf ϕ(j) x ∈ S R (j) , j ∈ 0, d . ( 34f 
)
2. For any function ϕ : 0, d → R, that is, with finite values, the function (ϕ • 0 ) ¢ is proper convex lsc and has the following variational expression (where ∆ d+1 denotes the simplex of R d+1 )

(ϕ • 0 ) ¢ (x) = min (λ 0 ,λ 1 ,...,λ d )∈∆ d+1 x∈ d j=1 λ j B R (j) d j=0 λ j ϕ(j) , ∀x ∈ R d . ( 34g 
)
3. For any function ϕ : 0, d → R + , that is, with nonnegative finite values, and such that ϕ(0) = 0, the function (ϕ • 0 ) ¢ is proper convex lsc and has the following two variational expressions6 

(ϕ • 0 ) ¢ (x) = min (λ 0 ,λ 1 ,...,λ d )∈∆ d+1 x∈ d j=1 λ j S R (j) d j=1 λ j ϕ(j) , ∀x ∈ R d , (34h) 
= min

z (1) ∈R d ,...,z (d) ∈R d d j=1 |||z (j) ||| R (j) ≤1 d j=1 z (j) =x d j=1 ϕ(j)|||z (j) ||| R (j) , ∀x ∈ R d , ( 34i 
)
and the function (ϕ • 0 ) ¢¢ has the following variational expression

(ϕ • 0 ) ¢¢ (x) = 1 |||x||| min z (1) ∈R d ,...,z (d) ∈R d d j=1 |||z (j) ||| R (j) ≤|||x||| d j=1 z (j) =x d j=1 |||z (j) ||| R (j) ϕ(j) , ∀x ∈ R d \{0} . ( 35 
)
Proof. We first note that (ϕ

• 0 ) ¢¢ = (ϕ • 0 ) ¢ • n, by (30d) 
, and we study (ϕ • 0 ) ¢ .

1. Let ϕ : 0, d → R be a function. The equality (34a) is a straightforward consequence of the expression (30d) for a Capra-biconjugate, and of the fact that n(x) = x |||x||| when x = 0 by (29). We have

(ϕ • 0 ) ¢ = sup j∈ 0,d |||•||| R (j), -ϕ(j) (by (33)) = sup j∈ 0,d σ B R (j) 
-ϕ(j) by ( 11) as B R (j) is the unit ball of the norm |||•||| R (j) by ( 20) and with the convention

B R (0) = {0} = sup j∈ 0,d δ B R (j) -ϕ(j) (because δ B R (j) = σ B R (j) ) = sup j∈ 0,d δ B R (j) + ϕ(j) (by property of conjugacies) = inf j∈ 0,d δ B R (j) + ϕ(j)
as conjugacies, being dualities, turn infima into suprema

= inf j∈ 0,d δ B R (j)
+ ϕ(j) .

(by (46c))

Thus, we have obtained (34c) and (34d). Now, if we follow again the above sequence of equalities, we see that, everywhere, we can replace the balls B R (j) by the spheres S R (j) , since

|||•||| R (j), = σ S R (j) = δ S R (j)
. Thus, we obtain (34e) and (34f).

2. Let ϕ : 0, d → R be a function. Then the closed convex function (ϕ • 0 ) ¢ is proper. Indeed, on the one hand, it is easily seen that the function (ϕ • 0 ) ¢ takes finite values, from which we deduce that the function (ϕ • 0 ) ¢ never takes the value -∞. On the other hand, by (34a) and by the inequality (ϕ • 0 ) ¢¢ ≤ ϕ • 0 obtained from (45e), we deduce that the function (ϕ • 0 ) ¢ never takes the value +∞ on the unit sphere. Therefore, the (ϕ • 0 ) ¢ is proper.

For the remaining expressions for (ϕ • 0 ) ¢ , we use a formula [START_REF] Zȃlinescu | Convex analysis in general vector spaces[END_REF]Corollary 2.8.11] for the Fenchel conjugate of the supremum of proper convex functions f j : R d → R, j ∈ 0, n : j=0,1,...,n

domf j = ∅ =⇒ sup j=0,1,...,n f j = min (λ 0 ,λ 1 ,...,λn)∈∆ n+1 n j=0 λ j f j , (36) 
where domf = x ∈ R d f (x) < +∞ is the effective domain (see Appendix A), and where ∆ n+1 is the simplex of R n+1 . We obtain

(ϕ • 0 ) ¢ = sup j∈ 0,d |||•||| R (j), -ϕ(j) (by (33)) = sup j∈ 0,d σ B R (j)
-ϕ(j) by ( 11) as B R (j) is the unit ball of the norm |||•||| R (j) by ( 20) and with B R (0) = {0}

= min

(λ 0 ,λ 1 ,...,λ d )∈∆ d+1 d j=0 λ j σ B R (j) 
-ϕ(j) (by (36))

by [START_REF] Zȃlinescu | Convex analysis in general vector spaces[END_REF]Corollary 2.8.11], as the functions

f j = σ B R (j) 
-ϕ(j) are proper convex (they even take finite values), for j ∈ 0, d = min

(λ 0 ,λ 1 ,...,λ d )∈∆ d+1 σ d j=0 λ j B R (j) - d j=0 λ j ϕ(j)
as, for all j ∈ 1, d ,

λ j σ B R (j) = σ λ j B R (j)
since λ j ≥ 0, and then using the well-known property that the support function of a Minkowski sum of subsets is the sum of the support functions of the individual subsets [15, p. 226] = min

(λ 0 ,λ 1 ,...,λ d )∈∆ d+1 σ d j=1 λ j B R (j) - d j=0 λ j ϕ(j) (thanks to the convention B R (0) = {0}) = min (λ 0 ,λ 1 ,...,λ d )∈∆ d+1 σ d j=1 λ j B R (j) + d j=0 λ j ϕ(j)
(by property of conjugacies)

= min

(λ 0 ,λ 1 ,...,λ d )∈∆ d+1 δ d j=1 λ j B R (j) + d j=0 λ j ϕ(j) (because d j=1 λ j B R (j) is a closed convex set.)
Therefore, we deduce that, for all

x ∈ R d , (ϕ • 0 ) ¢ (x) = min (λ 0 ,λ 1 ,...,λ d )∈∆ d+1 x∈ d j=1 λ j B R (j) d j=0 
λ j ϕ(j) , which is (34g).

3. Let ϕ : 0, d → R + be a function such that ϕ(0) = 0. Then the closed convex function (ϕ • 0 ) ¢ is proper, as seen above. We go on with

(ϕ • 0 ) ¢ (x) = min (λ 0 ,λ 1 ,...,λ d )∈∆ d+1 x∈ d j=1 λ j B R (j) d j=1 λ j ϕ(j) (because ϕ(0) = 0) = min z (1) ∈B R (1) ,...,z (d) ∈B R (d) λ 1 ≥0,...,λ d ≥0 d j=1 λ j ≤1 d j=1 λ j z (j) =x d j=1 λ j ϕ(j) because (λ 0 , λ 1 , . . . , λ d ) ∈ ∆ d+1 if and only if λ 1 ≥ 0, . . . , λ d ≥ 0 and d j=1 λ j ≤ 1 and λ 0 = 1 -d j=1 λ j = min s (1) ∈S R (1) ,...,s (d) ∈S R (d) µ 1 ≥0,...,µ d ≥0 d j=1 µ j ≤1 d j=1 µ j s (j) =x d j=1 µ j ϕ(j)
because, on the one hand, the inequality ≤ is obvious as the unit sphere S R (j) in ( 15) is included in the unit ball B R (j) for all j ∈ 1, d ; and, on the other hand, the inequality ≥ comes from putting, for j ∈ 1, d , µ j = λ j |||z (j) ||| R (j) and observing that i)

d i=1 µ j = d i=1 λ j |||z (j) ||| R (j) ≤ d i=1 λ j ≤ 1 because |||z (j) ||| R (j) ≤ 1 as z (j) ∈ B R (j) ii) for all j ∈ 1, d , there exists s (j) ∈ S R (j)
such that λ j z (j) = µ j s (j) (take any s (j) when z (j) = 0 because µ j = 0, and take s (j) = z (j)

|||z (j) ||| R (j) when z (j) = 0) iii) d j=1 λ j ϕ(j) ≥ d j=1 λ j |||z (j) ||| R (j) ϕ(j) = d j=1 µ j ϕ(j) because 1 ≥ |||z (j) ||| R (j)
and ϕ(j) ≥ 0 = min

z (1) ∈R d ,...,z (d) ∈R d d j=1 |||z (j) ||| R (j) ≤1 d j=1 z (j) =x d j=1 ϕ(j)|||z (j) ||| R (j) ,
by putting z (j) = µ j s (j) , for all j ∈ 1, d . Thus, we have obtained (34h).

Finally, from (ϕ

• 0 ) ¢¢ = (ϕ • 0 ) ¢ • n, by (30d), we get that (ϕ • 0 ) ¢¢ (x) = 1 |||x||| min z (1) ∈R d ,...,z (d) ∈R d d j=1 |||z (j) ||| R (j) ≤|||x||| d j=1 z (j) =x d j=1 ϕ(j)|||z (j) ||| R (j) , ∀x ∈ R d \{0} ,
where we have used that n(x) = x |||x||| when x = 0 by (29). Therefore, we have proved (35).

This ends the proof.

Before finishing that part on Capra-biconjugates, we provide the following characterization of when the characteristic functions δ ≤k 0 are ¢-convex. The following statements are equivalent.

1. The sequence |||•||| R (j) j∈ 1,d
of coordinate-k norms is strictly decreasingly graded with respect to the 0 pseudonorm, as in Definition 2.1.

2. For all k ∈ 0, d , the characteristic functions δ ≤k

0 are ¢-convex, that is, δ ¢¢ ≤k 0 = δ ≤k 0 , k ∈ 0, d . (37) 
Proof. We start by providing an expression for δ ¢¢ ≤k 0

. For any k ∈ 0, d , we have

δ ¢¢ ≤k 0 = inf j∈ 0,d δ B R (j) δ 0,k (j) • n (by (34c) with the functions ϕ = δ 0,k ) = inf j=0,1,...,k δ B R (j) 
• n 24) and by the convention

= δ B R (k) • n by the inclusions B R (1) ⊂ • • • ⊂ B R (k) in (
B R (0) = {0} = δ B R (k) • n (because the unit ball B R (k) is closed and convex) = δ n -1 (B R (k) )
where, by (29

), n -1 (B R (k) ) = {0} ∪ {x ∈ R d \{0} | ||| x |||x||| ||| R (k)
≤ 1}, so that we go on with This ends the proof.

= δ {x∈R d | |||x||| R (k) ≤|||x|||} = δ {x∈R d | |||x||| R (k) =|||x|||}
Notice that, by Item 2 in Proposition 3.5, it suffices that the normed space R d , |||•||| be strictly convex to obtain that the characteristic functions δ ≤k 0 are ¢-convex, for all k ∈ 0, d . This is the case when the source norm is the p -norm • p for p ∈]1, ∞[. Determinining sufficient conditions under which the 0 pseudonorm is ¢-convex requires additional notions. This question is treated in the companion paper [START_REF] Chancelier | Variational formulations for the l 0 pseudonorm and applications to sparse optimization[END_REF]. Therefore, on the one hand, we obtain that

y ∈ ∂ ¢ (ϕ • 0 )(0) ⇐⇒ |||y||| R (j), -ϕ(j) ≤ -ϕ(0) , ∀j ∈ 1, d (as |||y||| R (0), = 0 by convention) ⇐⇒ |||y||| R (j), ≤ ϕ(j) -ϕ(0) , ∀j ∈ 1, d
by property of the Moreau upper addition [START_REF] Moreau | Inf-convolution, sous-additivité, convexité des fonctions numériques[END_REF] ⇐⇒ y

∈ j∈ 1,d ϕ(j) -ϕ(0) B R (j), ,
where, by convention λB R (j), = ∅, for any λ ∈ [-∞, 0[, and +∞B R (j), = R d . On the other hand, when x = 0, we get

y ∈ ∂ ¢ (ϕ • 0 )(x) ⇐⇒ sup j∈ 0,d |||y||| R (j), -ϕ(j) = x, y |||x||| -ϕ 0 (x) . (41a) 
We now establish necessary and sufficient conditions for y to belong to ∂ ¢ (ϕ • 0 )(x) when x = 0. We consider x ∈ R d \{0}, and we denote L = supp(x) and l = |L| = 0 (x). We have Let us make a brief insert and notice that

y ∈ ∂ ¢ (ϕ • 0 )(x) ⇐⇒ sup j∈ 0,d |||y||| R (j), -ϕ(j) = x, y |||x||| -ϕ(l) (by (41a) with 0 (x) = l) ⇐⇒ |||y||| R (l), -ϕ(l) ≤ sup j∈ 0,d |||y||| R (j), -ϕ(j) = x, y |||x||| -ϕ(l) ⇐⇒ |||y L ||| L, -ϕ(l) ≤ |||y||| R (l), -ϕ(l) ≤ sup j∈ 0,d |||y||| R (j), -ϕ(j) = x, y |||x||| -ϕ(l) as |||y L ||| L, ≤ |||y||| R ( 
x = x L , 0 (x) = l = |L| > 1 , x, y = |||x||| × |||y||| R (l), =⇒ 0 (x) = l = |L| > 1 , x L , y L = |||x L ||| × |||y||| R (l), =⇒ 0 (x) = l = |L| > 1 , |||x L ||| × |||y||| R (l), ≤ |||x L ||| × |||y L ||| L, (by (9) 
)

=⇒ l = |L| , |||y||| R (l), ≤ |||y L ||| L, =⇒ |||y||| R (l), = |||y L ||| L,
as |||y L ||| L, ≤ |||y||| R (l), by expression (16) of the dual coordinate-k norm |||y||| R (l), , and because l = |L|. Now, let us go back to the equivalences regarding y ∈ ∂ ¢ (ϕ • 0 )(x). Focusing on the case where -∞ < ϕ(l) < +∞, we have 

y ∈ ∂ ¢ (ϕ • 0 )(x) ⇔ |||y L ||| L, = |||y||| R (l), = x 
(as 0 (x) = l =⇒ |||x||| = |||x||| R (l) by (25a)) ⇔ y ∈ N B R (l) ( x |||x||| R (l) 
) and l ∈ arg max

j∈ 0,d |||y||| R (j), -ϕ(j) by the equivalence x, y = |||x||| R (l) × |||y||| R (l), ⇐⇒ y ∈ N B R (l) ( x |||x||| R (l) 
).

This ends the proof.

With ϕ the identity function on 0, d , we find the Capra-subdifferential of the 0 pseudonorm. With the functions ϕ = δ 0,k (for any k ∈ 0, d ), we find the Capra-subdifferentials of the characteristic functions δ ≤k 0 of its level sets (3a). The corresponding expressions are given in Table 3.

Norm ratio lower bounds for the l 0 pseudonorm

As an application, we provide a new family of lower bounds for the 0 pseudonorm, as a fraction between two norms, the denominator being any norm. 

(j)B R (j), , that is, B R (ϕ), = j∈ 1,d ϕ(j)B R (j), and |||•||| R (ϕ) = σ B R (ϕ), , (42a) 
or, equivalently, |||y||| R (ϕ), = sup

j∈ 1,d |||y||| R (j), ϕ(j) , ∀y ∈ R d , (42b) 
or by the inf-convolution

|||•||| R (ϕ) = j∈ 1,d ϕ(j)|||•||| R (j) , (42c) 
that is, |||x||| R (ϕ) = inf z (1) ∈R d ,...,z (d) ∈R d d j=1 z (j) =x d j=1 ϕ(j)|||z (j) ||| R (j) , ∀x ∈ R d . (42d) 
Then, we have the inequalities

|||x||| R (ϕ) |||x||| ≤ 1 |||x||| min z (1) ∈R d ,...,z (d) ∈R d d j=1 |||z (j) ||| R (j) ≤|||x||| d j=1 z (j) =x d j=1 ϕ(j)|||z (j) ||| R (j) ≤ ϕ 0 (x) , ∀x ∈ R d \{0} . ( 43 
) Proof. • It is easily seen that σ B R (ϕ),
in (42a) defines a norm, and that, for all y

∈ R d , |||y||| R (ϕ), = inf λ ≥ 0 y ∈ λ d j=1 ϕ(j)B R (j), = inf λ ≥ 0 |||y||| R (j), ϕ(j) ≤ λ = sup j∈ 1,d |||y||| R (j), ϕ (j) 
.

• We have of all the domains of the functions δ ϕ(j)B R (j), contain a neighborhood of 0 since ϕ(j) > 0 for all

|||•||| R (ϕ) = σ B R (ϕ), (by (42a)) = δ B R (ϕ), (because B R (ϕ), is closed and convex) = j∈ 1,d δ ϕ(j)B R ( 
j ∈ 1, d = j∈ 1,d σ ϕ(j)B R (j), (as δ ϕ(j)B R (j), = σ ϕ(j)B R (j), , for all j ∈ 1, d ) = j∈ 1,d ϕ(j)|||•||| R (j) 
(by ( 11))

• We consider the coupling ¢ in (28). By (35) -because the function ϕ : 0, d → [0, +∞[ satisfies the assumption in Item 3 of Proposition 4.5 -and by the inequality (ϕ • 0 ) ¢¢ ≤ ϕ • 0 obtained from (45e), we get that

1 |||x||| min z (1) ∈R d ,...,z (d) ∈R d d j=1 |||z (j) ||| R (j) ≤|||x||| d j=1 z (j) =x d j=1 j|||z (j) ||| R (j) ≤ ϕ 0 (x) , ∀x ∈ R d \{0} . (44) 
Thus, we have obtained the right hand side inequality in (43). By relaxing one constraint in (44), we immediately get that inf

z (1) ∈R d ,...,z (d) ∈R d d j=1 z (j) =x d j=1 ϕ(j)|||z (j) ||| R (j) ≤ min z (1) ∈R d ,...,z (d) ∈R d d j=1 |||z (j) ||| R (j) ≤|||x||| d j=1 z (j) =x d j=1 ϕ(j)|||z (j) ||| R (j) ≤ ϕ 0 (x) , ∀x ∈ R d .
Thus, we have obtained the left hand side inequality in (43), thanks to (42d).

For any function ϕ : 0, d → [0, +∞[, such that ϕ(j) > ϕ(0) = 0 for all j ∈ 1, d , using 

p ∈]1, ∞], we also have ||•|| sn p,ϕ = ||•|| 1 , whatever p ∈ [1, ∞],
if we suppose that ϕ(j) q ≥ j, for all j ∈ 1, d . As a consequence, when p = 1, the inequality (43) is trivial. When p ∈]1, ∞], if we take the function ϕ(j) = j 1/q for all j ∈ 1, d , the inequality (43) yields that ||x|| 1 ||x||p ≤ 0 (x) 1/q , which is easily obtained directly from the Hölder inequality. 

Conclusion

In this paper, we have presented a new family of conjugacies, which depend on a given general source norm, and we have shown that they are suitable for the 0 pseudonorm. More precisely, given a (source) norm on R d , we have defined, on the one hand, a sequence of so-called coordinate-k norms and, on the other hand, a coupling between R d and itself, called Capra (constant along primal rays). With this, we have provided formulas for the Capra-conjugate and biconjugate, and for the Capra subdifferentials, of functions of the 0 pseudonorm, in terms of the coordinate-k norms. Table 3 provides the results of Proposition 4.4, Proposition 4.5, and Proposition 4.7, in the case of the 0 pseudonorm and of the characteristic functions δ ≤k 0 of its level sets (3a). It compares them with the Fenchel conjugates and biconjugates. As an application, we have provided a new family of lower bounds for the 0 pseudonorm, as a fraction between two norms, the denominator being any norm.

In the companion paper [START_REF] Chancelier | Variational formulations for the l 0 pseudonorm and applications to sparse optimization[END_REF], we provide sufficient conditions under which the 0 pseudonorm is ¢-convex. We are currently investigating how the Capra conjugacies could provide algorithms for exact sparse optimization The c-Fenchel-Moreau biconjugate of a function f : X → R, with respect to the coupling c, is the function f cc : X → R defined by

f cc (x) = f c c (x) = sup y∈Y c(x, y) • + -f c (y) , ∀x ∈ X . (45d) 
The biconjugate of a function f : X → R satisfies

f cc (x) ≤ f (x) , ∀x ∈ X . (45e) 
The Fenchel conjugacy. When the sets X and Y are two vector spaces that are paired with a bilinear form , , in the sense of convex analysis [3, p. 13], the corresponding conjugacy is the classical Fenchel conjugacy. For any functions f : X → R and g : Y → R, we denote7 

f (y) = sup 

For any function h : W → R, its epigraph is epih = (w, t) ∈ W × R h(w) ≤ t , its effective domain is domh = w ∈ W h(w) < +∞ . A function h : W → R is said to be proper if it never takes the value -∞ and that domh = ∅. When W is equipped with a topology, the function h : W → R is said to be lower semi continuous (lsc) if its epigraph is closed, and is said to be closed if h is either lower semi continuous (lsc) and nowhere having the value -∞, or is the constant function -∞ [3, p. 15].

It is proved that the Fenchel conjugacy induces a one-to-one correspondence between the closed convex functions on X and the closed convex functions on Y [3, Theorem 5]. Here, a function is said to be convex if its epigraph is convex. The set of closed convex functions is the set of proper convex functions united with the two constant functions -∞ and +∞.

Definition 3 . 1

 31 the polar set B of the unit ball B. Restriction norms. For any norm |||•||| on R d and any subset K ⊂ 1, d , we define the K-restriction norm |||•||| K on the subspace R K of R d , as defined in (4), by

  homogeneity (2) of the 0 pseudonorm, and by definition (3a) of ≤k 0 ⇐⇒ x = 0 or x |||x||| ∈ ≤k 0 ∩ S (as x |||x||| ∈ S by definition (8) of the unit sphere S)

Definition 4 . 1

 41 Let |||•||| be a norm on R d . We define the constant along primal rays coupling ¢, or Capra, between R d and itself by ∀y ∈ R d , ¢(x, y) = x, y |||x||| , ∀x ∈ R d \{0} and ¢(0, y) = 0 .

For

  instance, letting ||•|| be any norm on R d (not necessarily the Euclidian norm), the function ||•||/|||•||| (with the value 0 at 0) is ¢-convex.

Proposition 4 . 4

 44 Let |||•||| be a norm on R d , with associated sequence |||•||| R (j), j∈ 1,d of dual coordinate-k norms in Definition 3.2, and associated Capra-coupling ¢ in (28). For any function ϕ : 0, d → R, we have (with the convention |||•||| R (0), = 0)

  j) since ϕ • 0 takes the values ϕ(j) on the level curves =j 0 {0} ∪ =j 0 ∩ S by (29), and as the support function turns a union of sets into a supremum = sup j∈ 0,d

Proposition 4 . 5

 45 Let |||•||| be a norm on R d , with associated sequence |||•||| R (j) j∈ 1,d of coordinate-k norms and sequence |||•||| R (j) j∈ 1,d of dual coordinate-k norms, as in Definition 3.2, and with associated Capra coupling ¢ in (28).

1 .

 1 For any function ϕ : 0, d → R, we have

Corollary 4 . 6

 46 Let |||•||| be a norm on R d , with associated sequence |||•||| R (j) j∈ 1,d of coordinatek norms in Definition 3.2 and associated Capra coupling ¢ in (28).

( 0 = δ ≤k 0 ⇔

 00 using the equality and inequalities between norms in (23)) Therefore, we have ∀k ∈ 0, d , δ ¢¢ ≤k ∀k ∈ 0, d , x ∈ ≤k 0 ⇐⇒ |||x||| R (k) = |||x||| , ∀x ∈ R d ⇔ (7d) holds true for the sequence |||•||| R (j) j∈ 1,d (because x ∈ ≤k 0 ⇐⇒ 0 (x) ≤ k by definition of the level sets in (3a))⇔ |||•||| R (j) j∈ 1,dis strictly decreasingly graded w.r.t. the 0 pseudonorm because this sequence is nonincreasing by (18) (see Definition 2.1).

  by definition (32a) of the Capra-subdifferential⇐⇒ sup j∈ 0,d |||y||| R (j), -ϕ(j) = ¢(x, y) • + -(ϕ • 0 )(x) (as (ϕ • 0 ) ¢ (y) = sup j∈ 0,d |||y||| R(j), -ϕ(j) by (33)) ⇐⇒ x = 0 and sup j∈ 0,d |||y||| R (j), -ϕ(j) = -ϕ(0) or x = 0 and sup j∈ 0,d |||y||| R (j), -ϕ(j) = x, y |||x||| -ϕ 0 (x) (by definition (28) of ¢(x, y))

  l), by expression (16) of the dual coordinate-k norm |||y||| R (l), , and becausel = |L| ⇐⇒ |||y L ||| L, -ϕ(l) ≤ |||y||| R (l), -ϕ(l) ≤ sup j∈ 0,d |||y||| R (j), -ϕ(j) = x, y |||x||| -ϕ(l) ≤ |||y L ||| L, -ϕ(l) (as we have x, y |||x||| = x L , y L |||x L ||| ≤ |||y L ||| L, since x = x L and by (9)) ⇐⇒ |||y L ||| L, -ϕ(l) = |||y||| R (l), -ϕ(l) = sup j∈ 0,d |||y||| R (j), -ϕ(j) = x, y |||x||| -ϕ(l)as all terms in the inequalities are necessarily equal l) = -∞ or ϕ(l) = +∞ and ϕ(j) = +∞ , ∀j ∈ 0, d or -∞ < ϕ(l) < +∞ and|||y L ||| L, = |||y||| R (l), = x, y|||x||| and |||y||| R (l), -ϕ(l) = sup j∈ 0,d |||y||| R (j), -ϕ(j) .

  , y |||x||| and l ∈ arg max j∈ 0,d |||y||| R (j), -ϕ(j) ⇔ |||y L ||| L, = |||y||| R (l), and x, y = |||x||| × |||y||| R (l), and l ∈ arg max j∈ 0,d |||y||| R (j), -ϕ(j) ⇔ x, y = |||x||| × |||y||| R (l), and l ∈ arg max j∈ 0,d |||y||| R (j), -ϕ(j) as just established in the insert ⇔ x, y = |||x||| R (l) × |||y||| R (l), and l ∈ arg max j∈ 0,d |||y||| R (j), -ϕ(j)

Proposition 5 . 1

 51 Let |||•||| be a norm on R d , with associated sequence of dual coordinate-k norms, as in Definition 3.2. For any function ϕ : 0, d → [0, +∞[, such that ϕ(j) > ϕ(0) = 0 for all j ∈ 1, d , there exists a norm |||•||| R (ϕ) characterized either by its dual norm |||•||| R (ϕ), , which has unit ball j∈ 1,d ϕ

  j), by (42a) and by expressing the characteristic function of an intersection of sets as a sum = j∈ 1,d δ ϕ(j)B R (j), using [11, Proposition 15.3 and (v) in Proposition-15.5] because the intersection B R (ϕ), = d j=1 ϕ(j)B R (j),

Fenchel∅ 1 Table 3 :

 13 if 0 (x) = k + 1, . . . , d , N B R (k) ( x |||x||| R (k) ) if 0 (x) = 1, . . . , k , {0} if 0 (x) = 0 ∀x ∈ R d ∀x ∈ R d 0 = δ {0} ¢ 0 = sup j∈ 0,d |||•||| R (j), -j 0 = 0 ¢¢ 0 (x) = 1 |||x||| min z (1) ∈R d ,...,z (d) ∈R d d j=1 |||z (j) ||| R (j) ≤|||x||| d j=1 z (j) =x d j=1 j|||z (j) ||| R (j) , ∀x ∈ R d \{0} ¢¢ 0 (0) = 0 ∂ 0 (0) = {0} ∂ ¢ 0 (0) = j∈ 1,d jB R (j), = B R (Id), ∂ 0 (x) = ∅ y ∈ ∂ ¢ 0 (x) ⇐⇒ y ∈ N B R (l) ( x |||x||| R (l) ) and l ∈ arg max j∈ 0,d |||y||| R (j), -j ∀x ∈ R d \{0} ∀x ∈ R d \{0}, where l = 0 (x) ≥ Comparison of Fenchel and Capra-conjugates, biconjugates and subdifferentials of the 0 pseudonorm in (1), and of the characteristic functions δ ≤k 0 of its level sets (3a), for k ∈ 0, d

  x∈X x, y • + -f (x) , ∀y ∈ Y ,(46a)g (x) = sup y∈Y x, y • + -g(y) , ∀x ∈ X ,(46b)f (x) = sup y∈Y x, y • + -f (y) , ∀x ∈ X .

Table 1 :

 1 Examples of coordinate-k and dual coordinate-k norms generated by the p source norms |||•||| = • p for p ∈ [1, ∞]. For y ∈ R d , ν denotes a permutation of {1, . . . , d} such that |y ν(1) | ≥ |y ν(2)

  2.1). Now, for any x ∈ R d and for any k ∈ 1, d , we have4 

	x ∈ ≤k 0	⇐⇒ x = 0 or	x |||x|||	∈ ≤k 0
		(by 0-homogeneity (2) of the 0 pseudonorm, and by definition (3a) of ≤k 0 )
		⇐⇒ x = 0 or	x |||x|||	∈ ≤k 0 ∩ S	(as x |||x||| ∈ S by definition (8) of the unit sphere S)

Table 2 :

 2 Table of results. It reads as follows: to obtain that the sequence |||•||| R (j) j∈ 1,d be graded (second column), it suffices that |||•||| be any norm; to obtain that the sequence |||•||| R (j) j∈ 1,d be strictly graded (third column), it suffices that (R d , |||•|||) be strictly convex. Table 2 summarizes the results of Proposition 3.5. As an application with any p -norm •

p for source norm (for p ∈ [1, ∞]), we obtain that the nonincreasing sequence ||•|| sn p,j j∈ 1,d of (p, k)-support norms (see Table

1

) is strictly decreasingly graded w.r.t. the 0 pseudonorm for p ∈]1, ∞[. This gives, by (7f):

Table 1

 1 when the source norm |||•||| is the p -norm ||•|| p , for p ∈ [1, ∞] and 1/p + 1/q = 1, we denote |||•||| R (ϕ) by ||•|| sn p,ϕ . The calculations show that ||•|| sn 1,ϕ = ||•|| 1 , and that, when

Here, following notation from Game Theory, we have denoted by -K the complementary subset of K in 1, d : K ∪ (-K) = 1, d and K ∩ (-K) = ∅.

The notation |K|≤k is a shorthand for K⊂ 1,d ,|K|≤k .

The notation sup |K|≤k is a shorthand for sup K⊂ 1,d ,|K|≤k .

This ends the proof.

In what follows, by "or" we mean the so-called exclusive or (exclusive disjunction). Thus, every "or" should be understood as "or x = 0 and"

See Footnote 4.

In (34g), the sum starts from j = 0, whereas in (34h) and in (34i), the sum starts from j = 1

In convex analysis, one does not use the notation , but simply the notation , as it is often the case that X = Y in the Euclidian and Hilbertian cases.
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Capra-subdifferentials related to the 0 pseudonorm

With the Fenchel conjugacy, we calculate that ∂δ ≤k 0 (x) = {0} for x ∈ ≤k 0 and k ∈ 1, d (when x ∈ ≤k 0 , ∂δ ≤k 0 (x) = ∅). We also calculate that ∂ 0 (0) = {0} and ∂ 0 (x) = ∅, for all

x ∈ R d \{0} (indeed, this is a consequence of 0 (x) = 0 = 0 (x) when x ∈ R d \{0}). Hence, the Fenchel conjugacy is not suitable to handle the 0 pseudonorm. By contrast, we will now show that functions of the 0 pseudonorm in (1) -including the 0 pseudonorm itself and the characteristic functions δ ≤k 0 of its level sets (3a) -display Capra-subdifferentials, as in (32a), that are related to the sequence of dual coordinate-k norms in Definition 3.2 as follows. For this purpose, we recall that the normal cone Let ϕ : 0, d → R be a function and x ∈ R d be a vector.

The Capra-subdifferential, as in (32c), of the function ϕ • 0 at x = 0 is given by

where, by convention λB R (j), = ∅, for any λ ∈ [-∞, 0[, and +∞B R (j), = R d .

The Capra-subdifferential, as in (32d), of the function ϕ • 0 at x = 0 is given by the following cases

if l = 0 (x) ≥ 1 and ϕ(l) = +∞ and there exists j ∈ 0, d such that ϕ(j) = +∞,

) and

Proof. We have

A Background on Fenchel-Moreau conjugacies

We review general concepts and notations on Fenchel-Moreau conjugacies, then focus on the special case of the Fenchel conjugacy.

The general case. Let X ("primal"), Y ("dual") be two sets and c : X × Y → R be a so-called coupling function. With any coupling, we associate conjugacies from R X to R Y and from R Y to R X as follows. The c-Fenchel-Moreau conjugate of a function f : X → R, with respect to the coupling c, is the function f