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Abstract

The so-called `0 pseudonorm on Rd counts the number of nonzero components of
a vector. For exact sparse optimization problems — with the `0 pseudonorm standing
either as criterion or in the constraints — the Fenchel conjugacy fails to provide relevant
analysis. In this paper, we display a class of conjugacies that are suitable for the
`0 pseudonorm. For this purpose, we suppose given a (source) norm on Rd. With this
norm, we define, on the one hand, a sequence of so-called coordinate-k norms and,
on the other hand, a coupling between Rd and itself, called Capra (constant along
primal rays). Then, we provide formulas for the Capra-conjugate and biconjugate,
and for the Capra subdifferentials, of functions of the `0 pseudonorm, in terms of the
coordinate-k norms. As an application, we provide a new family of lower bounds for
the `0 pseudonorm, as a fraction between two norms, the denominator being any norm.

Key words: `0 pseudonorm, Fenchel-Moreau conjugacy, Capra conjugacy, coordinate-k
norm.

AMS classification: 46N10, 49N15, 46B99, 52A41, 90C46

1 Introduction

The counting function, also called cardinality function or `0 pseudonorm, counts the number
of nonzero components of a vector in Rd. The `0 pseudonorm measures the sparsity of a
vector, and the literature in sparse optimization that mentions it is plethoric. However,
because of its combinatorial nature, the problems of minimizing the `0 pseudonorm under
constraints or of minimizing a criterion under k-sparsity constraint (`0 pseudonorm less than
a given integer k) are usually not tackled as such. Most of the literature in sparse optimization
studies surrogate problems where the `0 pseudonorm either enters a penalization term or is
replaced by a regularizing term. We refer the reader to [1] that provides a brief tour of the
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literature dealing with least squares minimization constrained by k-sparsity, and to [2] for a
survey of the rank function of a matrix, that shares many properties with the `0 pseudonorm.

Conjugacies, and more generally dualities, are a powerful tool to tackle classes of op-
timization problems. The Fenchel conjugacy plays a central role in analyzing solutions of
convex problems (and beyond) [3]. However, it fails to provide relevant analysis for op-
timization problems involving the `0 pseudonorm. Indeed, the Fenchel biconjugate of the
characteristic function of the level sets of the `0 pseudonorm is zero, and the Fenchel bicon-
jugate of the `0 pseudonorm is also zero. The field of generalized convexity goes beyond the
Fenchel conjugacy and convex functions and displays conjugacies adapted to analyze classes
of functions such as increasing positive homogeneous, difference of convex, quasi-convex,
increasing and convex-along-rays. For more details on the theory, and more examples, we
refer the reader to the books [4,5] and to the nice introduction paper [6].

To our knowledge, none of the conjugacies in the literature is adapted to the `0 pseudonorm
(the `0 pseudonorm is convex-along-rays according to the definition in [7] but not in [4], and
calculation shows that the `0 pseudonorm is not convex for the conjugacy in [7]). In this
paper, we study the `0 pseudonorm as such and we display a suitable class of conjugacies.
We extend results of [8] beyond the special Euclidian norm setting.

The paper is organized as follows. In Sect. 2, we recall the definition of the `0 pseudonorm,
and we introduce the notion of sequence of norms on Rd that are (strictly or not) decreasingly
graded with respect to the `0 pseudonorm. In Sect. 3, we introduce a sequence of coordinate-
k norms, all generated from any (source) norm on Rd, and their dual norms. In Sect. 4, we
define a so-called Capra coupling between Rd and itself, that depends on any (source)
norm on Rd. Then, we provide formulas for the Capra-conjugate and biconjugate, and for
the Capra subdifferentials, of functions of the `0 pseudonorm (hence, in particular, of the
`0 pseudonorm itself and of the characteristic functions of its level sets), in terms of the
coordinate-k norms. In Sect. 5, as an application, we provide a new family of lower bounds
for the `0 pseudonorm, as a fraction between two norms, the denominator being any norm.
The Appendix A gathers background on Fenchel-Moreau conjugacies.

2 The `0 pseudonorm and its level sets

First, we introduce basic notations regarding the `0 pseudonorm. Second, we recall the
definition of a sequence of norms on Rd which is (strictly or not) decreasingly graded with
respect to the `0 pseudonorm (as introduced in the companion paper [9]). We use the
notation Jr, sK = {r, r + 1, . . . , s− 1, s} for two integers r ≤ s.

The `0 pseudonorm. For any vector x ∈ Rd, supp(x) =
{
j ∈ J1, dK

∣∣xj 6= 0
}
⊂ J1, dK is

the support of x. The so-called `0 pseudonorm is the function `0 : Rd → J0, dK defined by

`0(x) = |supp(x)| = number of nonzero components of x , ∀x ∈ Rd , (1)

where |K| denotes the cardinal of a subset K ⊂ J1, dK. The `0 pseudonorm shares three
out of the four axioms of a norm: nonnegativity, positivity except for x = 0, subadditivity.
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The axiom of 1-homogeneity does not hold true; in contrast to norms, the `0 pseudonorm is
0-homogeneous:

`0(ρx) = `0(x) , ∀ρ ∈ R\{0} , ∀x ∈ Rd . (2)

The level sets of the `0 pseudonorm. The `0 pseudonorm is used in exact sparse
optimization problems of the form inf`0(x)≤k f(x). Thus, we introduce

the level sets `≤k0 =
{
x ∈ Rd

∣∣ `0(x) ≤ k
}
, ∀k ∈

{
0, 1, . . . , d

}
, (3a)

and the level curves `=k
0 =

{
x ∈ Rd

∣∣ `0(x) = k
}
, ∀k ∈

{
0, 1, . . . , d

}
. (3b)

For any subset K ⊂ J1, dK, we denote the subspace of Rd made of vectors whose components
vanish outside of K by1

RK = RK × {0}−K =
{
x ∈ Rd

∣∣xj = 0 , ∀j 6∈ K
}
⊂ Rd , (4)

where R∅ = {0}. We denote by πK : Rd → RK the orthogonal projection mapping and,
for any vector x ∈ Rd, by xK = πK(x) ∈ RK the vector which coincides with x, except for
the components outside of K that are zero. It is easily seen that the orthogonal projection
mapping πK is self-dual, giving

〈xK , yK〉 = 〈xK , y〉 =
〈
πK(x), y

〉
=
〈
x, πK(y)

〉
= 〈x, yK〉 , ∀x ∈ Rd , ∀y ∈ Rd . (5)

The level sets of the `0 pseudonorm in (3a) are easily related to the subspaces RK of Rd by2

`≤k0 =
{
x ∈ Rd

∣∣ `0(x) ≤ k
}

=
⋃
|K|≤k

RK , ∀k ∈ J0, dK . (6)

Decreasingly graded sequence of norms with respect to the `0 pseudonorm. Now,
we introduce the notion of sequences of norms that are, strictly or not, decreasingly graded
with respect to the `0 pseudonorm: in a sense, the monotone sequence detects the number of
nonzero components of a vector in Rd when it becomes stationary. In the following definition,
{|||·|||k}k∈J1,dK denotes any sequence of norms on Rd.

Definition 2.1 ([9, Definition ??]) We say that a sequence {|||·|||k}k∈J1,dK of norms on Rd is
decreasingly graded (resp. strictly decreasingly graded) w.r.t. (with respect to) the `0 pseudonorm
if, for any x ∈ Rd, one of the three following equivalent statements holds true.

1. We have the implication (resp. equivalence), for any l ∈ J1, dK,

`0(x) = l =⇒ |||x|||1 ≥ · · · ≥ |||x|||l−1 ≥ |||x|||l = · · · = |||x|||d , (7a)

( resp. `0(x) = l ⇐⇒ |||x|||1 ≥ · · · ≥ |||x|||l−1 > |||x|||l = · · · = |||x|||d . ) (7b)

1Here, following notation from Game Theory, we have denoted by −K the complementary subset of K
in J1, dK: K ∪ (−K) = J1, dK and K ∩ (−K) = ∅.

2The notation
⋃
|K|≤k is a shorthand for

⋃
K⊂J1,dK,|K|≤k.
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2. The sequence k ∈ J1, dK 7→ |||x|||k is nonincreasing and we have the implication (resp.
equivalence), for any l ∈ J1, dK,

`0(x) ≤ l =⇒ |||x|||l = |||x|||d , (7c)

( resp. `0(x) ≤ l ⇐⇒ |||x|||l = |||x|||d
(
⇐⇒ |||x|||l ≤ |||x|||d

)
. ) (7d)

3. The sequence k ∈ J1, dK 7→ |||x|||k is nonincreasing and we have the inequality (resp.
equality)

`0(x) ≥ min
{
k ∈ J1, dK

∣∣ |||x|||k = |||x|||d
}
, (7e)

( resp. `0(x) = min
{
k ∈ J1, dK

∣∣ |||x|||k = |||x|||d
}
. ) (7f)

3 Coordinate-k norms and dual coordinate-k norms

In § 3.1, we provide background on norms. Then, in § 3.2, we introduce coordinate-k norms
and dual coordinate-k norms.

3.1 Background on norms

For any norm |||·||| on Rd, we denote the unit sphere S and the unit ball B by

S =
{
x ∈ Rd

∣∣ |||x||| = 1
}
, B =

{
x ∈ Rd

∣∣ |||x||| ≤ 1
}
. (8)

Dual norms. We recall that the expression |||y|||? = sup|||x|||≤1 〈x, y〉, ∀y ∈ Rd, defines

a norm on Rd, called the dual norm |||·|||?. By definition of the dual norm, we have the
inequality

〈x, y〉 ≤ |||x||| × |||y|||? , ∀(x, y) ∈ Rd × Rd . (9)

We denote the unit sphere S? and the unit ball B? of the dual norm |||·|||? by

S? =
{
y ∈ Rd

∣∣ |||y|||? = 1
}
, B? =

{
y ∈ Rd

∣∣ |||y|||? ≤ 1
}
. (10)

Denoting by σS the support function of the set S ⊂ Rd (σS(y) = supx∈S 〈x, y〉), we have

|||·||| = σB? = σS? and |||·|||? = σB = σS , (11)

where B? = B� =
{
y ∈ Rd

∣∣ 〈x, y〉 ≤ 1 , ∀x ∈ B
}

is the polar set B� of the unit ball B.
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Restriction norms.

Definition 3.1 For any norm |||·||| on Rd and any subset K ⊂ J1, dK, we define

� the K-restriction norm |||·|||K on the subspace RK of Rd, as defined in (4), by

|||x|||K = |||x||| , ∀x ∈ RK . (12)

� the (K, ?)-norm |||·|||K,?, on the subspace RK of Rd, which is the norm
(
|||·|||K

)
?
, given by

the dual norm (on the subspace RK) of the restriction norm |||·|||K to the subspace RK

(first restriction, then dual).

We have that [9, Equation (13b)]

|||y|||K,? = σRK∩B(y) = σRK∩S(y) , ∀y ∈ RK . (13)

3.2 Coordinate-k and dual coordinate-k norms

Source norm. Let |||·||| be a norm on Rd, that we will call the source norm.

Definition of coordinate-k and dual coordinate-k norms.

Definition 3.2 For k ∈ J1, dK, we call coordinate-k norm the norm |||·|||R(k) whose dual norm

is the dual coordinate-k norm, denoted by |||·|||R(k),?, with expression3

|||y|||R(k),? = sup
|K|≤k
|||yK |||K,? , ∀y ∈ Rd , (14)

where the (K, ?)-norm |||·|||K,? is given in Definition 3.1.

It is easily verified that |||·|||R(k),? indeed is a norm. We adopt the convention |||·|||R(0),? = 0

(although this is not a norm on Rd, but a seminorm).

Examples. Table 1 provides examples [9,10]. With this, we define the top (k, q)-norms in
the last right column of Table 1. The (p, k)-support norm, in the middle column of Table 1,
is defined as the dual norm of the top (k, q)-norm, with 1/p+ 1/q = 1.

To prepare Sect. 4, we provide properties of coordinate-k and dual coordinate-k norms.

3The notation sup|K|≤k is a shorthand for supK⊂J1,dK,|K|≤k.
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source norm |||·||| |||·|||R(k) |||·|||R(k),?

‖ · ‖p (p, k)-support norm top (k, q)-norm
||x||snp,k ||y||tnk,q

=
(∑k

j=1 |yν(j)|q
)1/q

, 1/p+ 1/q = 1

‖ · ‖1 (1, k)-support norm top (k,∞)-norm
`1-norm `∞-norm

||x||sn1,k = ‖x‖1 ||y||tnk,∞ = |yν(1)| = ‖y‖∞
‖ · ‖2 (2, k)-support norm top (k, 2)-norm

||y||tnk,2 =
√∑k

j=1 |yν(j)|2

‖ · ‖∞ (∞, k)-support norm top (k, 1)-norm

||y||tnk,1 =
∑k

j=1 |yν(j)|

Table 1: Examples of coordinate-k and dual coordinate-k norms generated by the `p source
norms |||·||| = ‖ · ‖p for p ∈ [1,∞]. For y ∈ Rd, ν denotes a permutation of {1, . . . , d} such
that |yν(1)| ≥ |yν(2)| ≥ · · · ≥ |yν(d)|.

Properties of dual coordinate-k norms. We denote the unit sphere SR(k),? and the unit

ball BR(k),? of the dual coordinate-k norm |||·|||R(k),? in Definition 3.2 by

SR(k),? =
{
y ∈ Rd

∣∣ |||y|||R(k),? = 1
}
, BR(k),? =

{
y ∈ Rd

∣∣ |||y|||R(k),? ≤ 1
}
, k ∈ J1, dK . (15)

Proposition 3.3

� For k ∈ J1, dK, the dual coordinate-k norm satisfies

|||y|||R(k),? = sup
|K|≤k

σ(RK∩S)(y) = σ
`≤k
0 ∩S

(y) = σ`=k
0 ∩S(y) , ∀y ∈ Rd . (16)

� We have the equality
|||·|||? = |||·|||R(d),? . (17)

� The sequence
{
|||·|||R(j),?

}
j∈J1,dK

of dual coordinate-k norms in Definition 3.2 is nonde-

creasing, that is, the following inequalities and equality hold true:

|||y|||R(1),? ≤ · · · ≤ |||y|||
R
(j),? ≤ |||y|||

R
(j+1),? ≤ · · · ≤ |||y|||

R
(d),? = |||y|||? , ∀y ∈ Rd . (18)

� The sequence
{
BR(j),?

}
j∈J1,dK

of units balls of the dual coordinate-k norms in Defini-

tion 3.2 is nonincreasing, that is, the following equality and inclusions hold true:

B? = BR(d),? ⊂ · · · ⊂ BR(j+1),? ⊂ BR(j),? ⊂ · · · ⊂ BR(1),? . (19)
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Proof.
• For any y ∈ Rd, we have

|||y|||R(k),? = sup
|K|≤k

|||yK |||K,? (by definition (14) of |||y|||R(k),?)

= sup
|K|≤k

σ(RK∩S)(yK) (as |||yK |||K,? = σ(RK∩S)(yK) by (13))

= sup
|K|≤k

sup
x∈RK∩S

〈x, yK〉 (by definition of the support function σ(RK∩S))

= sup
|K|≤k

sup
x∈RK∩S

〈x, y〉 (by (5) as x ∈ RK)

= sup
|K|≤k

σ(RK∩S)(y) (by definition of the support function σ(RK∩S))

= σ⋃
|K|≤k(RK∩S)(y) (as the support function turns a union of sets into a supremum)

= σ
`≤k
0 ∩S

(y) . (as `≤k0 ∩ S =
⋃
|K|≤k(RK ∩ S) by (6))

To finish, we will now prove that σ
`≤k
0 ∩S

= σ`=k
0 ∩S

. For this purpose, we show in two steps that

`≤k0 ∩ S = `=k0 ∩ S.

First, we establish the (known) fact that `=k0 = `≤k0 . The inclusion `=k0 ⊂ `≤k0 is easy because,

on the one hand, `=k0 ⊂ `≤k0 and, on the other hand, the level set `≤k0 in (3a) is closed, as follows
from the well-known property that the pseudonorm `0 is lower semicontinuous. There remains to

prove the reverse inclusion `≤k0 ⊂ `=k0 . For this purpose, we consider x ∈ `≤k0 . If x ∈ `=k0 , obviously

x ∈ `=k0 . Therefore, we suppose that `0(x) = l < k. By definition of `0(x) in (1), there exists
L ⊂

{
1, . . . , d

}
such that |L| = l < k and x = xL. For ε > 0, define xε as coinciding with x except

for k − l indices outside L for which the components are ε > 0. By construction `0(xε) = k and

xε → x when ε→ 0. This proves that `≤k0 ⊂ `=k0 .

Second, we prove that `≤k0 ∩ S = `=k0 ∩ S. The inclusion `=k0 ∩ S ⊂ `≤k0 ∩ S, is easy. Indeed,

`=k0 = `≤k0 =⇒ `=k0 ∩ S ⊂ `=k0 ∩ S = `≤k0 ∩ S. To prove the reverse inclusion `≤k0 ∩ S ⊂ `=k0 ∩ S, we

consider x ∈ `≤k0 ∩S. As we have just seen that `≤k0 = `=k0 , we deduce that x ∈ `=k0 . Therefore, there
exists a sequence {zn}n∈N in `=k0 such that zn → x when n → +∞. Since x ∈ S, we can always
suppose that zn 6= 0, for all n ∈ N. Therefore zn/|||zn||| is well defined and, when n→ +∞, we have
zn/|||zn||| → x/|||x||| = x since x ∈ S =

{
x ∈ X

∣∣ |||x||| = 1
}

. Now, on the one hand, zn/|||zn||| ∈ `=k0 ,
for all n ∈ N, and, on the other hand, zn/|||zn||| ∈ S. As a consequence zn/|||zn||| ∈ `=k0 ∩ S, and we

conclude that x ∈ `=k0 ∩ S. Thus, we have proved that `≤k0 ∩ S ⊂ `=k0 ∩ S.

From `≤k0 ∩S = `=k0 ∩ S, we get that σ
`≤k
0 ∩S

= σ
`=k
0 ∩S

= σ`=k
0 ∩S

, by [11, Proposition 7.13]. Thus,

we have proved all equalities in (16).

• By the equality |||y|||R(k),? = σ
`≤k
0 ∩S

(y) in (16), we get that, for all y ∈ Rd, |||y|||R(d),? = σ
`≤d
0 ∩S

(y) =

σS(y) = |||y|||? since `≤d0 = Rd and by (11).

• The inequalities in (18) easily derive from the very definition (14) of the dual coordinate-k
norms |||·|||R(k),?. The last equality is just the equality (17).

• The equality and the inclusions in (19) directly follow from the inequalities and the equality
between norms in (18).
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This ends the proof. 2

Properties of coordinate-k norms. We denote the unit sphere SR(k) and the unit ball BR(k)

of the coordinate-k norm |||·|||R(k) by

SR(k) =
{
x ∈ Rd

∣∣ |||x|||R(k) = 1
}
, BR(k) =

{
x ∈ Rd

∣∣ |||x|||R(k) ≤ 1
}
. (20)

We adopt the convention BR(0) = {0} (although this is not the unit ball of a norm on Rd).

Proposition 3.4

� For k ∈ J1, dK, the coordinate-k norm |||·|||R(k) has unit ball

BR(k) = co
( ⋃
|K|≤k

(RK ∩ S)
)
, (21)

where co(S) denotes the closed convex hull of a subset S ⊂ Rd.

� We have the equality
|||·|||R(d) = |||·||| . (22)

� The sequence
{
|||·|||R(j)

}
j∈J1,dK

of coordinate-k norms in Definition 3.2 is nonincreasing,

that is, the following equality and inequalities hold true:

|||x||| = |||x|||R(d) ≤ · · · ≤ |||x|||
R
(j+1) ≤ |||x|||

R
(j) ≤ · · · ≤ |||x|||

R
(1) , ∀x ∈ Rd . (23)

� The sequence
{
BR(j)

}
j∈J1,dK

of units balls of the coordinate-k norms in (21) is nonde-

creasing, that is, the following inclusions and equality hold true:

BR(1) ⊂ · · · ⊂ BR(j) ⊂ BR(j+1) ⊂ · · · ⊂ BR(d) = B . (24)

Proof.
• For any y ∈ Rd, we have

|||y|||R(k),? = sup
|K|≤k

σ(RK∩S)(y) (by (16))

= σ⋃
|K|≤k(RK∩S)(y) (as the support function turns a union of sets into a supremum)

= σ
co
(⋃
|K|≤k(RK∩S)

)(y) (by [11, Proposition 7.13])

and we conclude that BR(k) = co
(⋃
|K|≤k(RK ∩ S)

)
by (11). Thus, we have proved (21).
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• From the equality (17), we deduce the equality (22) between the dual norms by definition of the
dual norm.

• The equality and inequalities between norms in (23) easily derive from the inclusions and equality
between unit balls in (24).

• The inclusions and equality between unit balls in (24) directly follow from the inclusions and

equality between unit balls in (19) and from BR(j) =
(
BR(j),?

)�
, the polar set of BR(j),?.

This ends the proof. 2

We recall that the normed space
(
Rd, |||·|||

)
is said to be strictly convex if the unit ball B

(of the norm |||·|||) is rotund, that is, if all points of the unit sphere S are extreme points of the
unit ball B. The normed space

(
Rd, ‖ · ‖p

)
, equipped with the `p-norm ‖ · ‖p (for p ∈ [1,∞]),

is strictly convex if and only if p ∈]1,∞[.

We now show that the sequences
{
|||·|||R(j)

}
j∈J1,dK

of coordinate-k norms (in Definition 3.2)

are naturally decreasingly graded with respect to the `0 pseudonorm (as in Definition 2.1).
Part of the proof relies upon the forthcoming Lemma 3.6.

Proposition 3.5

1. The nonincreasing sequence
{
|||·|||R(j)

}
j∈J1,dK

of coordinate-k norms is decreasingly graded

with respect to the `0 pseudonorm, that is, for any l ∈ J1, dK,

`0(x) ≤ l =⇒ |||x||| = |||x|||R(l) , ∀x ∈ Rd . (25a)

2. If the normed space
(
Rd, |||·|||

)
is strictly convex, then the nonincreasing sequence

{
|||·|||R(j)

}
j∈J1,dK

of coordinate-k norms is strictly decreasingly graded with respect to the `0 pseudonorm,
that is, for any l ∈ J1, dK,

`0(x) ≤ l ⇐⇒ |||x||| = |||x|||R(l) , ∀x ∈ Rd . (25b)

Proof.
•We prove Item 1. As the sequence

{
|||·|||R(j)

}
j∈J1,dK

of coordinate-k norms is nonincreasing by (18),

it suffices to show that (7c) holds true — that is, that (25a) holds true — to prove that the sequence
is decreasingly graded with respect to the `0 pseudonorm (see Definition 2.1).

Now, for any x ∈ Rd and for any k ∈ J1, dK, we have4

4In what follows, by “or” we mean the so-called exclusive or (exclusive disjunction). Thus, every “or”
should be understood as “or x 6= 0 and”

9



x ∈ `≤k0 ⇐⇒ x = 0 or
x

|||x|||
∈ `≤k0

(by 0-homogeneity (2) of the `0 pseudonorm, and by definition (3a) of `≤k0 )

⇐⇒ x = 0 or
x

|||x|||
∈ `≤k0 ∩ S (as x

|||x||| ∈ S by definition (8) of the unit sphere S)

⇐⇒ x = 0 or
x

|||x|||
∈
⋃
|K|≤k

(RK ∩ S) (as `≤k0 =
⋃
|K|≤kRK by (6))

=⇒ x = 0 or
x

|||x|||
∈ BR(k) (as BR(k) = co

(⋃
|K|≤k(RK ∩ S)

)
by (21))

=⇒ x = 0 or ||| x
|||x|||
|||
R

(k)

≤ 1 (since BR(k) is the unit ball of the norm |||·|||R(k) by (20))

=⇒ |||x|||R(k) ≤ |||x|||

=⇒ |||x|||R(k) ≤ |||x||| = |||x|||
R
(d) (where the last equality comes from (23))

=⇒ |||x|||R(k) = |||x|||R(d) . (as |||x|||R(k) ≥ |||x|||
R
(d) by (23))

Therefore, we have obtained (25a).

•We prove Item 2. As the sequence
{
|||·|||R(j)

}
j∈J1,dK

of coordinate-k norms is nonincreasing by (18),

it suffices to show that (7d) holds true — that is, that (25b) holds true — to prove that the sequence
is strictly decreasingly graded with respect to the `0 pseudonorm (see Definition 2.1).

We suppose that the normed space
(
Rd, |||·|||

)
is strictly convex. Then, for any x ∈ Rd and for

any k ∈ J1, dK, we have 5

x ∈ `≤k0 ⇐⇒ x = 0 or
x

|||x|||
∈ `≤k0

by 0-homogeneity (2) of the `0 pseudonorm, and by definition (3a) of `≤k0

⇐⇒ x = 0 or
x

|||x|||
∈ `≤k0 ∩ S (as x

|||x||| ∈ S by definition (8) of the unit sphere S)

⇐⇒ x = 0 or
x

|||x|||
∈ BR(k) ∩ S

as `≤k0 ∩ S = BR(k) ∩ S by (27) since the assumption of Lemma 3.6 is satisfied, that is, the normed

space
(
Rd, |||·|||

)
is strictly convex

⇐⇒ x = 0 or ||| x
|||x|||
|||
R

(k)

≤ 1 (since BR(k) is the unit ball of the norm |||·|||R(k) by (20))

⇐⇒ |||x|||R(k) ≤ |||x|||

⇐⇒ |||x|||R(k) ≤ |||x||| = |||x|||
R
(d) (where the last equality comes from (23))

⇐⇒ |||x|||R(k) = |||x|||R(d) . (as |||x|||R(k) ≥ |||x|||
R
(d) by (23))

5See Footnote 4.
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Therefore, we have obtained (25b).

This ends the proof. 2

{
|||·|||R(j)

}
j∈J1,dK

graded strictly graded

|||·||| is any norm X
(Rd, |||·|||) is strictly convex X

Table 2: Table of results. It reads as follows: to obtain that the sequence
{
|||·|||R(j)

}
j∈J1,dK

be graded (second column), it suffices that |||·||| be any norm; to obtain that the sequence{
|||·|||R(j)

}
j∈J1,dK

be strictly graded (third column), it suffices that (Rd, |||·|||) be strictly convex.

Table 2 summarizes the results of Proposition 3.5. As an application with any `p-norm ‖·
‖p for source norm (for p ∈ [1,∞]), we obtain that the nonincreasing sequence

{
||·||snp,j

}
j∈J1,dK

of (p, k)-support norms (see Table 1) is strictly decreasingly graded w.r.t. the `0 pseudonorm
for p ∈]1,∞[. This gives, by (7f):

`0(x) = min
{
k ∈ J1, dK

∣∣∣ ||x||snp,k = ||x||p
}
, ∀x ∈ Rd , ∀p ∈]1,∞[ . (26a)

We also have that the sequence
{
||·||snp,j

}
j∈J1,dK

is decreasingly graded with respect to the

`0 pseudonorm for p ∈ [1,∞]. Looking at Table 1, the only interesting case is for p = ∞,
giving, by (7e):

`0(x) ≥ min
{
k ∈ J1, dK

∣∣∣ ||x||sn∞,k = ||x||∞
}
, ∀x ∈ Rd . (26b)

Lemma 3.6 Let |||·||| be a norm on Rd. If the normed space
(
Rd, |||·|||

)
is strictly convex, we

have the equality
`≤k0 ∩ S = BR(k) ∩ S , ∀k ∈ J0, dK , (27)

where `≤k0 is the level set in (3a) of the `0 pseudonorm in (1), where S is the unit sphere
in (8), and where BR(k) in (20) is the unit ball of the norm |||·|||R(k).

Proof. It is proved in [9, Proposition 14] that, if the unit ball B is rotund — that is, if the
normed space

(
Rd, |||·|||

)
is strictly convex — and if A is a closed subset of S, then A = co(A) ∩ S.

Now, we turn to the proof. First, we observe that the level set `≤k0 is closed because the
pseudonorm `0 is lower semi continuous. Second, we have

`≤k0 ∩ S = co
(
`≤k0 ∩ S

)
∩ S

11



because `≤k0 ∩ S ⊂ S and is closed, and because the unit ball B is rotund

= co
( ⋃
|K|≤k

(RK ∩ S)
)
∩ S (by (6))

= BR(k) ∩ S . (by (21))

This ends the proof. 2

4 The Capra-conjugacy and the `0 pseudonorm

We introduce the coupling Capra in §4.1. Then, we provide formulas for Capra-conjugates
of functions of the `0 pseudonorm in §4.2, for Capra-biconjugates of functions of the
`0 pseudonorm in §4.3, and for Capra-subdifferentials of functions of the `0 pseudonorm
in §4.4.

We work on the Euclidian space Rd (with d ∈ N∗), equipped with the scalar product
〈·, ·〉 (but not necessarily with the Euclidian norm). As we manipulate functions with values
in R = [−∞,+∞], we adopt the Moreau lower ( ·+) and upper (u) additions [12], which
extend the usual addition (+) with (+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞ and (+∞) u
(−∞) = (−∞) u (+∞) = +∞. For any subset W ⊂ W of a set W, δW : W → R denotes
the characteristic function of the set W : δW (w) = 0 if w ∈ W , and δW (w) = +∞ if w 6∈ W .

4.1 Constant along primal rays coupling (Capra)

We introduce the coupling Capra, which is a special case of one-sided linear coupling, as
introduced in [8]. Fenchel-Moreau conjugacies are recalled in Appendix A.

Definition 4.1 Let |||·||| be a norm on Rd. We define the constant along primal rays cou-
pling ¢, or Capra, between Rd and itself by

∀y ∈ Rd , ¢(x, y) =
〈x, y〉
|||x|||

, ∀x ∈ Rd\{0} and ¢(0, y) = 0 . (28)

We stress the point that, in (28), the Euclidian scalar product 〈x, y〉 and the norm term
|||x||| need not be related, that is, the norm |||·||| is not necessarily Euclidian.

The coupling Capra has the property of being constant along primal rays, hence the
acronym Capra (Constant Along Primal RAys). We introduce the primal normalization
mapping n, from Rd towards the unit sphere S united with {0}, as follows:

n : Rd → S ∪ {0} , n(x) =
x

|||x|||
if x 6= 0 and n(0) = 0 . (29)

With these notations, the coupling Capra in (28) is a special case of one-sided linear
coupling, the Fenchel coupling after primal normalization: ¢(x, y) = 〈n(x), y〉, ∀x ∈ Rd,
∀y ∈ Rd. We will see below that the Capra-conjugacy, induced by the coupling Capra,
shares some relations with the Fenchel conjugacy (see Appendix A).

12



Capra-conjugates and biconjugates. Here are expressions for the Capra-conjugates
and biconjugates of a function. The following Proposition simply is [8, Proposition 2.5] with
the normalization mapping n in (29).

Proposition 4.2 For any function g : Rd → R, the ¢′-Fenchel-Moreau conjugate is given
by

g¢
′

= g?
′ ◦ n . (30a)

For any function f : Rd → R, the ¢-Fenchel-Moreau conjugate is given by

f¢ =
(
inf
[
f | n

])?
, (30b)

where the conditional infimum inf
[
f | n

]
, defined in [8, Definition 2.4], has the expression

inf
[
f | n

]
(x) = inf

{
f(x′)

∣∣n(x′) = x
}

=

{
infλ>0 f(λx) if x ∈ S ∪ {0} ,
+∞ if x 6∈ S ∪ {0} ,

(30c)

and the ¢-Fenchel-Moreau biconjugate is given by

f¢¢
′

=
(
f¢
)?′ ◦ n =

(
inf
[
f | n

])??′ ◦ n . (30d)

The ¢-Fenchel-Moreau conjugate f¢ is a closed convex function (see Appendix A).

Capra-convex functions. We recall that so-called ¢-convex functions are all functions of

the form g¢
′
, for any g : Rd → R, or, equivalently, all functions of the form f¢¢

′
, for any

f : Rd → R, or, equivalently, all functions that are equal to their ¢-biconjugate (f¢¢
′

= f)
[4–6]. We recall that a function is closed convex on Rd if and only if it is either a proper
convex lower semi continuous (lsc) function or one of the two constant functions −∞ or
+∞ (see Appendix A). The following Proposition simply is [8, Proposition 2.6] with the
normalization mapping n in (29).

Proposition 4.3 A function is ¢-convex if and only if it is the composition of a closed
convex function on Rd with the normalization mapping (29). More precisely, for any function
h : Rd → R, we have the equivalences

h is ¢-convex ⇔ h = h¢¢
′

⇔ h =
(
h¢
)?′ ◦ n (where

(
h¢
)?′

is a closed convex function)

⇔ there exists a closed convex function f : Rd → R such that h = f ◦ n .

For instance, letting ||·|| be any norm on Rd (not necessarily the Euclidian norm), the function
||·||/|||·||| (with the value 0 at 0) is ¢-convex.
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Capra-subdifferential. Following the definition of the subdifferential of a function with
respect to a duality in [13], the Capra-subdifferential of the function f : Rd → R at x ∈ Rd

has the following expressions

∂¢f(x) =
{
y ∈ Rd

∣∣ f¢(y) = ¢(x, y) ·+
(
−f(x)

)}
(32a)

=
{
y ∈ Rd

∣∣ (inf
[
f | n

])?
(y) = 〈n(x), y〉 ·+

(
−f(x)

)}
, (32b)

so that, thanks to the definition (29) of the normalization mapping n, we deduce that

∂¢f(0) =
{
y ∈ Rd

∣∣ (inf
[
f | n

])?
(y) = −f(0)

}
(32c)

∂¢f(x) =
{
y ∈ Rd

∣∣ (inf
[
f | n

])?
(y) =

〈x, y〉
|||x||| ·

+
(
−f(x)

)}
, ∀x ∈ Rd\{0} . (32d)

Now, we turn to analyze the `0 pseudonorm by means of the Capra conjugacy.

4.2 Capra-conjugates related to the `0 pseudonorm

With the Fenchel conjugacy, we calculate that δ?
`≤k
0

= δ{0} for all k ∈ J1, dK — where δ
`≤k
0

is

the characteristic function of the level sets (3a) — and that `?0 = δ{0}. Hence, the Fenchel
conjugacy is not suitable to handle the `0 pseudonorm.

By contrast, we will now show that functions of the `0 pseudonorm in (1) — including the
`0 pseudonorm itself and the characteristic functions δ

`≤k
0

of its level sets (3a) — are related to

the sequence of dual coordinate-k norms in Definition 3.2 by the following Capra-conjugacy
formulas.

Proposition 4.4 Let |||·||| be a norm on Rd, with associated sequence
{
|||·|||R(j),?

}
j∈J1,dK

of dual

coordinate-k norms in Definition 3.2, and associated Capra-coupling ¢ in (28).
For any function ϕ : J0, dK→ R, we have (with the convention |||·|||R(0),? = 0)

(ϕ ◦ `0)¢ = sup
j∈J0,dK

[
|||·|||R(j),? − ϕ(j)

]
. (33)

Proof. We prove (33):

(ϕ ◦ `0)¢ =
(

inf
j∈J0,dK

[
δ
`=j
0

u ϕ(j)
])¢

because ϕ ◦ `0 = infj∈J0,dK
[
δ
`=j
0

u ϕ(j)
]

since ϕ ◦ `0 takes the values ϕ(j) on the level curves `=j0

of `0 in (3b)

= sup
j∈J0,dK

[
δ
`=j
0

u ϕ(j)
]¢

14



as conjugacies, being dualities, turn infima into suprema

= sup
j∈J0,dK

[
δ
¢
`=j
0
·+ (−ϕ(j))

]
(by property of conjugacies)

= sup
j∈J0,dK

[
σ
n(`=j

0 ) ·+ (−ϕ(j))
]

(as δ
¢
`=j
0

= σ
n(`=j

0 )
by [8, Proposition 2.5])

= sup
j∈J0,dK

{
sup

{
0, σ

`=j
0 ∩S

}
·+ (−ϕ(j))

}
as n(`=j0 ) = {0} ∪

(
`=j0 ∩ S

)
by (29), and as the support function turns a union of sets into a

supremum

= sup
j∈J0,dK

{
σ
`=j
0 ∩S ·+ (−ϕ(j))

}
(as σ

`=j
0 ∩S

≥ 0 since `=j0 ∩ S = −
(
`=j0 ∩ S

)
)

= sup
{
−ϕ(0), sup

j∈J1,dK

[
|||y|||R(j),? − ϕ(j)

]}
(as σ

`=j
0 ∩S

= |||·|||R(j),? by (16))

= sup
j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
. (using the convention that |||·|||R(0),? = 0)

This ends the proof. 2

With ϕ the identity function on J0, dK, we find the Capra-conjugate of the `0 pseudonorm.
With the functions ϕ = δJ0,kK (for any k ∈ J0, dK), we find the Capra-conjugates of the char-
acteristic functions δ

`≤k
0

of its level sets (3a). The corresponding expressions are given in

Table 3.

4.3 Capra-biconjugates related to the `0 pseudonorm

With the Fenchel conjugacy, we calculate that δ??
′

`≤k
0

= 0, for all k ∈ J1, dK, and that `??
′

0 = 0.

Hence, the Fenchel conjugacy is not suitable to handle the `0 pseudonorm.
By contrast, we will now show that functions of the `0 pseudonorm in (1) — including the

`0 pseudonorm itself and the characteristic functions δ
`≤k
0

of its level sets (3a) — are related

to the sequences of coordinate-k norms and dual coordinate-k norms in Definition 3.2 by the
following Capra-biconjugacy formulas.

Proposition 4.5 Let |||·||| be a norm on Rd, with associated sequence
{
|||·|||R(j)

}
j∈J1,dK

of

coordinate-k norms and sequence
{
|||·|||?R(j)

}
j∈J1,dK

of dual coordinate-k norms, as in Defi-

nition 3.2, and with associated Capra coupling ¢ in (28).

1. For any function ϕ : J0, dK→ R, we have

(ϕ ◦ `0)¢¢
′

(x) =
(
(ϕ ◦ `0)¢

)?′
(
x

|||x|||
) , ∀x ∈ Rd\{0} , (34a)
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where the closed convex function
(
(ϕ ◦ `0)¢

)?′
has the following expression as a Fenchel

conjugate

(
(ϕ ◦ `0)¢

)?′
=
(

sup
j∈J0,dK

[
|||·|||R(j),? − ϕ(j)

])?′
, (34b)

and also has the following four expressions as a Fenchel biconjugate

=
(

inf
j∈J0,dK

[
δBR

(j)
u ϕ(j)

])??′
, (34c)

hence the function
(
(ϕ ◦ `0)¢

)?′
is the largest closed convex function below the integer

valued function infj∈J0,dK
[
δBR

(j)
u ϕ(j)

]
, such that x ∈ BR(j)\BR(j−1) 7→ ϕ(j) for l ∈ J1, dK,

and x ∈ BR(0) = {0} 7→ ϕ(0), the function being infinite outside BR(d) = B, that is, with

the convention that BR(0) = {0} and that inf ∅ = +∞

=
(
x 7→ inf

{
ϕ(j)

∣∣x ∈ BR(j) , j ∈ J0, dK
})??′

, (34d)

=
(

inf
j∈J0,dK

[
δSR

(j)
u ϕ(j)

])??′
, (34e)

hence the function
(
(ϕ ◦ `0)¢

)?′
is the largest closed convex function below the integer

valued function infj∈J0,dK
[
δSR

(j)
u ϕ(j)

]
, that is, with the convention that SR(0) = {0} and

that inf ∅ = +∞

=
(
x 7→ inf

{
ϕ(j)

∣∣x ∈ SR(j) , j ∈ J0, dK
})??′

. (34f)

2. For any function ϕ : J0, dK → R, that is, with finite values, the function
(
(ϕ ◦ `0)¢

)?′
is proper convex lsc and has the following variational expression (where ∆d+1 denotes
the simplex of Rd+1)

(
(ϕ ◦ `0)¢

)?′
(x) = min

(λ0,λ1,...,λd)∈∆d+1

x∈
∑d

j=1 λjBR(j)

d∑
j=0

λjϕ(j) , ∀x ∈ Rd . (34g)

3. For any function ϕ : J0, dK → R+, that is, with nonnegative finite values, and such

that ϕ(0) = 0, the function
(
(ϕ ◦ `0)¢

)?′
is proper convex lsc and has the following two
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variational expressions6

(
(ϕ ◦ `0)¢

)?′
(x) = min

(λ0,λ1,...,λd)∈∆d+1

x∈
∑d

j=1 λjSR(j)

d∑
j=1

λjϕ(j) , ∀x ∈ Rd , (34h)

= min
z(1)∈Rd,...,z(d)∈Rd∑d

j=1 |||z(j)|||
R
(j)≤1∑d

j=1 z
(j)=x

d∑
j=1

ϕ(j)|||z(j)|||R(j) , ∀x ∈ Rd , (34i)

and the function (ϕ ◦ `0)¢¢
′

has the following variational expression

(ϕ ◦ `0)¢¢
′

(x) =
1

|||x|||
min

z(1)∈Rd,...,z(d)∈Rd∑d
j=1 |||z(j)|||

R
(j)≤|||x|||∑d

j=1 z
(j)=x

d∑
j=1

|||z(j)|||R(j)ϕ(j) , ∀x ∈ Rd\{0} . (35)

Proof. We first note that (ϕ ◦ `0)¢¢
′

=
(
(ϕ ◦ `0)¢

)?′ ◦n, by (30d), and we study
(
(ϕ ◦ `0)¢

)?′
.

1. Let ϕ : J0, dK → R be a function. The equality (34a) is a straightforward consequence of
the expression (30d) for a Capra-biconjugate, and of the fact that n(x) = x

|||x||| when x 6= 0

by (29). We have(
(ϕ ◦ `0)¢

)?′
=
(

sup
j∈J0,dK

[
|||·|||R(j),? − ϕ(j)

])?′
(by (33))

=
(

sup
j∈J0,dK

[
σBR

(j)
− ϕ(j)

])?′
by (11) as BR(j) is the unit ball of the norm |||·|||R(j) by (20) and with the convention BR(0) = {0}

=
(

sup
j∈J0,dK

[
δ?BR

(j)
− ϕ(j)

])?′
(because δ?BR

(j)

= σBR
(j)

)

=
(

sup
j∈J0,dK

(
δBR

(j)
+ ϕ(j)

)?)?′
(by property of conjugacies)

=

((
inf

j∈J0,dK

[
δBR

(j)
+ ϕ(j)

])?)?′
as conjugacies, being dualities, turn infima into suprema

=
(

inf
j∈J0,dK

[
δBR

(j)
+ ϕ(j)

])??′
. (by (46c))

6In (34g), the sum starts from j = 0, whereas in (34h) and in (34i), the sum starts from j = 1
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Thus, we have obtained (34c) and (34d). Now, if we follow again the above sequence of
equalities, we see that, everywhere, we can replace the balls BR(j) by the spheres SR(j), since

|||·|||R(j),? = σSR
(j)

= δ?SR
(j)

. Thus, we obtain (34e) and (34f).

2. Let ϕ : J0, dK → R be a function. Then the closed convex function
(
(ϕ ◦ `0)¢

)?′
is proper.

Indeed, on the one hand, it is easily seen that the function (ϕ ◦ `0)¢ takes finite values, from

which we deduce that the function
(
(ϕ ◦ `0)¢

)?′
never takes the value −∞. On the other

hand, by (34a) and by the inequality (ϕ ◦ `0)¢¢
′
≤ ϕ ◦ `0 obtained from (45e), we deduce

that the function
(
(ϕ ◦ `0)¢

)?′
never takes the value +∞ on the unit sphere. Therefore,

the
(
(ϕ ◦ `0)¢

)?′
is proper.

For the remaining expressions for
(
(ϕ ◦ `0)¢

)?′
, we use a formula [14, Corollary 2.8.11] for

the Fenchel conjugate of the supremum of proper convex functions fj : Rd → R, j ∈ J0, nK:

⋂
j=0,1,...,n

domfj 6= ∅ =⇒
(

sup
j=0,1,...,n

fj
)?

= min
(λ0,λ1,...,λn)∈∆n+1

( n∑
j=0

λjfj

)?
, (36)

where domf =
{
x ∈ Rd

∣∣ f(x) < +∞
}

is the effective domain (see Appendix A), and where
∆n+1 is the simplex of Rn+1. We obtain(

(ϕ ◦ `0)¢
)?′

=
(

sup
j∈J0,dK

[
|||·|||R(j),? − ϕ(j)

])?′
(by (33))

=
(

sup
j∈J0,dK

[
σBR

(j)
− ϕ(j)

])?′
by (11) as BR(j) is the unit ball of the norm |||·|||R(j) by (20) and with BR(0) = {0}

= min
(λ0,λ1,...,λd)∈∆d+1

( d∑
j=0

λj

[
σBR

(j)
− ϕ(j)

])?′
(by (36))

by [14, Corollary 2.8.11], as the functions fj = σBR
(j)
−ϕ(j) are proper convex (they even take

finite values), for j ∈ J0, dK

= min
(λ0,λ1,...,λd)∈∆d+1

(
σ∑d

j=0 λjBR(j)
−

d∑
j=0

λjϕ(j)
)?′
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as, for all j ∈ J1, dK, λjσBR
(j)

= σλjBR(j)
since λj ≥ 0, and then using the well-known property

that the support function of a Minkowski sum of subsets is the sum of the support functions
of the individual subsets [15, p. 226]

= min
(λ0,λ1,...,λd)∈∆d+1

(
σ∑d

j=1 λjBR(j)
−

d∑
j=0

λjϕ(j)
)?′

(thanks to the convention BR(0) = {0})

= min
(λ0,λ1,...,λd)∈∆d+1

((
σ∑d

j=1 λjBR(j)

)?′
+

d∑
j=0

λjϕ(j)
)

(by property of conjugacies)

= min
(λ0,λ1,...,λd)∈∆d+1

(
δ∑d

j=1 λjBR(j)
+

d∑
j=0

λjϕ(j)
)

(because
∑d

j=1 λjBR(j) is a closed convex set.)

Therefore, we deduce that, for all x ∈ Rd,

(
(ϕ ◦ `0)¢

)?′
(x) = min

(λ0,λ1,...,λd)∈∆d+1

x∈
∑d

j=1 λjBR(j)

d∑
j=0

λjϕ(j) , which is (34g).

3. Let ϕ : J0, dK → R+ be a function such that ϕ(0) = 0. Then the closed convex function(
(ϕ ◦ `0)¢

)?′
is proper, as seen above. We go on with

(
(ϕ ◦ `0)¢

)?′
(x) = min

(λ0,λ1,...,λd)∈∆d+1

x∈
∑d

j=1 λjBR(j)

d∑
j=1

λjϕ(j) (because ϕ(0) = 0)

= min
z(1)∈BR

(1)
,...,z(d)∈BR

(d)

λ1≥0,...,λd≥0∑d
j=1 λj≤1∑d

j=1 λjz
(j)=x

d∑
j=1

λjϕ(j)

because (λ0, λ1, . . . , λd) ∈ ∆d+1 if and only if λ1 ≥ 0, . . . , λd ≥ 0 and
∑d

j=1 λj ≤ 1 and

λ0 = 1−
∑d

j=1 λj

= min
s(1)∈SR

(1)
,...,s(d)∈SR

(d)

µ1≥0,...,µd≥0∑d
j=1 µj≤1∑d

j=1 µjs
(j)=x

d∑
j=1

µjϕ(j)
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because, on the one hand, the inequality ≤ is obvious as the unit sphere SR(j) in (15) is included

in the unit ball BR(j) for all j ∈ J1, dK; and, on the other hand, the inequality ≥ comes from

putting, for j ∈ J1, dK, µj = λj |||z(j)|||R(j) and observing that i)
∑d

i=1 µj =
∑d

i=1 λj |||z(j)|||R(j) ≤∑d
i=1 λj ≤ 1 because |||z(j)|||R(j) ≤ 1 as z(j) ∈ BR(j) ii) for all j ∈ J1, dK, there exists s(j) ∈ SR(j)

such that λjz
(j) = µjs

(j) (take any s(j) when z(j) = 0 because µj = 0, and take s(j) = z(j)

|||z(j)|||R(j)

when z(j) 6= 0) iii)
∑d

j=1 λjϕ(j) ≥
∑d

j=1 λj |||z(j)|||R(j)ϕ(j) =
∑d

j=1 µjϕ(j) because 1 ≥ |||z(j)|||R(j)
and ϕ(j) ≥ 0

= min
z(1)∈Rd,...,z(d)∈Rd∑d

j=1 |||z(j)|||
R
(j)≤1∑d

j=1 z
(j)=x

d∑
j=1

ϕ(j)|||z(j)|||R(j) ,

by putting z(j) = µjs
(j), for all j ∈ J1, dK. Thus, we have obtained (34h).

Finally, from (ϕ ◦ `0)¢¢
′

=
(
(ϕ ◦ `0)¢

)?′ ◦ n, by (30d), we get that

(ϕ ◦ `0)¢¢
′
(x) =

1

|||x|||
min

z(1)∈Rd,...,z(d)∈Rd∑d
j=1 |||z(j)|||

R
(j)≤|||x|||∑d

j=1 z
(j)=x

d∑
j=1

ϕ(j)|||z(j)|||R(j) , ∀x ∈ Rd\{0} ,

where we have used that n(x) = x
|||x||| when x 6= 0 by (29). Therefore, we have proved (35).

This ends the proof. 2

Before finishing that part on Capra-biconjugates, we provide the following characteri-
zation of when the characteristic functions δ

`≤k
0

are ¢-convex.

Corollary 4.6 Let |||·||| be a norm on Rd, with associated sequence
{
|||·|||R(j)

}
j∈J1,dK

of coordinate-

k norms in Definition 3.2 and associated Capra coupling ¢ in (28).
The following statements are equivalent.

1. The sequence
{
|||·|||R(j)

}
j∈J1,dK

of coordinate-k norms is strictly decreasingly graded with

respect to the `0 pseudonorm, as in Definition 2.1.

2. For all k ∈ J0, dK, the characteristic functions δ
`≤k
0

are ¢-convex, that is,

δ
¢¢′

`≤k
0

= δ
`≤k
0
, k ∈ J0, dK . (37)

20



Proof. We start by providing an expression for δ
¢¢′

`≤k
0

. For any k ∈ J0, dK, we have

δ
¢¢′

`≤k
0

=
(

inf
j∈J0,dK

[
δBR

(j)
u δJ0,kK(j)

])??′
◦ n (by (34c) with the functions ϕ = δJ0,kK)

=
(

inf
j=0,1,...,k

δBR
(j)

)??′
◦ n

=
(
δBR

(k)

)??′ ◦ n
by the inclusions BR(1) ⊂ · · · ⊂ BR(k) in (24) and by the convention BR(0) = {0}

= δBR
(k)
◦ n (because the unit ball BR(k) is closed and convex)

= δn−1(BR
(k)

)

where, by (29), n−1(BR(k)) = {0} ∪ {x ∈ Rd\{0} | ||| x|||x||| |||
R
(k)
≤ 1}, so that we go on with

= δ{x∈Rd | |||x|||R(k)≤|||x|||}

= δ{x∈Rd | |||x|||R(k)=|||x|||}
(using the equality and inequalities between norms in (23))

Therefore, we have

∀k ∈J0, dK , δ¢¢
′

`≤k
0

= δ
`≤k
0

⇔ ∀k ∈ J0, dK ,
(
x ∈ `≤k0 ⇐⇒ |||x|||R(k) = |||x||| , ∀x ∈ Rd

)
⇔ (7d) holds true for the sequence

{
|||·|||R(j)

}
j∈J1,dK

(because x ∈ `≤k0 ⇐⇒ `0(x) ≤ k by definition of the level sets in (3a))

⇔
{
|||·|||R(j)

}
j∈J1,dK

is strictly decreasingly graded w.r.t. the `0 pseudonorm

because this sequence is nonincreasing by (18) (see Definition 2.1).

This ends the proof. 2

Notice that, by Item 2 in Proposition 3.5, it suffices that the normed space
(
Rd, |||·|||

)
be

strictly convex to obtain that the characteristic functions δ
`≤k
0

are ¢-convex, for all k ∈ J0, dK.
This is the case when the source norm is the `p-norm ‖ · ‖p for p ∈]1,∞[.

Determinining sufficient conditions under which the `0 pseudonorm is ¢-convex requires
additional notions. This question is treated in the companion paper [10].
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4.4 Capra-subdifferentials related to the `0 pseudonorm

With the Fenchel conjugacy, we calculate that ∂δ
`≤k
0

(x) = {0} for x ∈ `≤k0 and k ∈ J1, dK
(when x 6∈ `≤k0 , ∂δ

`≤k
0

(x) = ∅). We also calculate that ∂`0(0) = {0} and ∂`0(x) = ∅, for all

x ∈ Rd\{0} (indeed, this is a consequence of `??
′

0 (x) = 0 6= `0(x) when x ∈ Rd\{0}). Hence,
the Fenchel conjugacy is not suitable to handle the `0 pseudonorm.

By contrast, we will now show that functions of the `0 pseudonorm in (1) — including
the `0 pseudonorm itself and the characteristic functions δ

`≤k
0

of its level sets (3a) — display

Capra-subdifferentials, as in (32a), that are related to the sequence of dual coordinate-k
norms in Definition 3.2 as follows. For this purpose, we recall that the normal cone NC(x)
to the (nonempty) closed convex subset C ⊂ Rd at x ∈ C is the closed convex cone defined
by [15, p.136]

NC(x) =
{
y ∈ Rd

∣∣ 〈x′ − x, y〉 ≤ 0 , ∀x′ ∈ C
}
. (38)

Proposition 4.7 Let |||·||| be a norm on Rd, with associated sequence
{
|||·|||?R(j)

}
j∈J1,dK

of dual

coordinate-k norms, as in Definition 3.2, and associated Capra-coupling ¢ in (28).
Let ϕ : J0, dK→ R be a function and x ∈ Rd be a vector.

� The Capra-subdifferential, as in (32c), of the function ϕ ◦ `0 at x = 0 is given by

∂¢(ϕ ◦ `0)(0) =
⋂

j∈J1,dK

[
ϕ(j) u

(
−ϕ(0)

)]
BR(j),? , (39)

where, by convention λBR(j),? = ∅, for any λ ∈ [−∞, 0[, and +∞BR(j),? = Rd.

� The Capra-subdifferential, as in (32d), of the function ϕ ◦ `0 at x 6= 0 is given by the
following cases

– if l = `0(x) ≥ 1 and either ϕ(l) = −∞ or ϕ ≡ +∞, then ∂¢(ϕ ◦ `0)(x) = Rd,

– if l = `0(x) ≥ 1 and ϕ(l) = +∞ and there exists j ∈ J0, dK such that ϕ(j) 6= +∞,
then ∂¢(ϕ ◦ `0)(x) = ∅,

– if l = `0(x) ≥ 1 and −∞ < ϕ(l) < +∞, then

y ∈ ∂¢(ϕ ◦ `0)(x) ⇐⇒

{
y ∈ NBR

(l)
( x

|||x|||R(l)
) and

l ∈ arg maxj∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
.

(40)

Proof. We have

y ∈ ∂¢(ϕ ◦ `0)(x) ⇐⇒ (ϕ ◦ `0)¢(y) = ¢(x, y) ·+
(
−(ϕ ◦ `0)(x)

)

22



by definition (32a) of the Capra-subdifferential

⇐⇒ sup
j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
= ¢(x, y) ·+

(
−(ϕ ◦ `0)(x)

)
(as (ϕ ◦ `0)¢(y) = supj∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
by (33))

⇐⇒
(
x = 0 and sup

j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
= −ϕ(0)

)
or
(
x 6= 0 and sup

j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
=
〈x, y〉
|||x|||

− ϕ
(
`0(x)

))
(by definition (28) of ¢(x, y))

Therefore, on the one hand, we obtain that

y ∈ ∂¢(ϕ ◦ `0)(0) ⇐⇒ |||y|||R(j),? − ϕ(j) ≤ −ϕ(0) , ∀j ∈ J1, dK (as |||y|||R(0),? = 0 by convention)

⇐⇒ |||y|||R(j),? ≤ ϕ(j) u
(
−ϕ(0)

)
, ∀j ∈ J1, dK

by property of the Moreau upper addition [12]

⇐⇒ y ∈
⋂

j∈J1,dK

[
ϕ(j) u

(
−ϕ(0)

)]
BR(j),? ,

where, by convention λBR(j),? = ∅, for any λ ∈ [−∞, 0[, and +∞BR(j),? = Rd.
On the other hand, when x 6= 0, we get

y ∈ ∂¢(ϕ ◦ `0)(x) ⇐⇒ sup
j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
=
〈x, y〉
|||x|||

− ϕ
(
`0(x)

)
. (41a)

We now establish necessary and sufficient conditions for y to belong to ∂¢(ϕ ◦ `0)(x) when x 6= 0.

We consider x ∈ Rd\{0}, and we denote L = supp(x) and l = |L| = `0(x). We have

y ∈ ∂¢(ϕ ◦ `0)(x)

⇐⇒ sup
j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
=
〈x, y〉
|||x|||

− ϕ(l) (by (41a) with `0(x) = l)

⇐⇒ |||y|||R(l),? − ϕ(l) ≤ sup
j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
=
〈x, y〉
|||x|||

− ϕ(l)

⇐⇒ |||yL|||L,? − ϕ(l) ≤ |||y|||R(l),? − ϕ(l) ≤ sup
j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
=
〈x, y〉
|||x|||

− ϕ(l)

as |||yL|||L,? ≤ |||y|||R(l),? by expression (16) of the dual coordinate-k norm |||y|||R(l),?, and because l = |L|

⇐⇒ |||yL|||L,? − ϕ(l) ≤ |||y|||R(l),? − ϕ(l) ≤ sup
j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
=
〈x, y〉
|||x|||

− ϕ(l) ≤ |||yL|||L,? − ϕ(l)

(as we have 〈x, y〉|||x||| = 〈xL, yL〉
|||xL||| ≤ |||yL|||L,? since x = xL and by (9))

⇐⇒ |||yL|||L,? − ϕ(l) = |||y|||R(l),? − ϕ(l) = sup
j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
=
〈x, y〉
|||x|||

− ϕ(l)
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as all terms in the inequalities are necessarily equal

⇐⇒



either ϕ(l) = −∞
or
(
ϕ(l) = +∞ and ϕ(j) = +∞ , ∀j ∈ J0, dK

)
or
(
−∞ < ϕ(l) < +∞ and

|||yL|||L,? = |||y|||R(l),? = 〈x, y〉
|||x||| and |||y|||R(l),? − ϕ(l) = supj∈J0,dK

[
|||y|||R(j),? − ϕ(j)

])
.

Let us make a brief insert and notice that

x = xL , `0(x) = l = |L| > 1 , 〈x, y〉 = |||x||| × |||y|||R(l),?
=⇒ `0(x) = l = |L| > 1 , 〈xL, yL〉 = |||xL||| × |||y|||R(l),?
=⇒ `0(x) = l = |L| > 1 , |||xL||| × |||y|||R(l),? ≤ |||xL||| × |||yL|||L,? (by (9))

=⇒ l = |L| , |||y|||R(l),? ≤ |||yL|||L,?
=⇒ |||y|||R(l),? = |||yL|||L,?

as |||yL|||L,? ≤ |||y|||R(l),? by expression (16) of the dual coordinate-k norm |||y|||R(l),?, and because l = |L|.
Now, let us go back to the equivalences regarding y ∈ ∂¢(ϕ ◦ `0)(x). Focusing on the case where

−∞ < ϕ(l) < +∞, we have

y ∈ ∂¢(ϕ ◦ `0)(x)⇔ |||yL|||L,? = |||y|||R(l),? =
〈x, y〉
|||x|||

and l ∈ arg max
j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
⇔ |||yL|||L,? = |||y|||R(l),? and 〈x, y〉 = |||x||| × |||y|||R(l),? and l ∈ arg max

j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
⇔ 〈x, y〉 = |||x||| × |||y|||R(l),? and l ∈ arg max

j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
as just established in the insert

⇔ 〈x, y〉 = |||x|||R(l) × |||y|||
R
(l),? and l ∈ arg max

j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
(as `0(x) = l =⇒ |||x||| = |||x|||R(l) by (25a))

⇔ y ∈ NBR
(l)

(
x

|||x|||R(l)
) and l ∈ arg max

j∈J0,dK

[
|||y|||R(j),? − ϕ(j)

]
by the equivalence 〈x, y〉 = |||x|||R(l) × |||y|||

R
(l),? ⇐⇒ y ∈ NBR

(l)
( x
|||x|||R(l)

).

This ends the proof. 2

With ϕ the identity function on J0, dK, we find the Capra-subdifferential of the `0 pseudonorm.
With the functions ϕ = δJ0,kK (for any k ∈ J0, dK), we find the Capra-subdifferentials of the
characteristic functions δ

`≤k
0

of its level sets (3a). The corresponding expressions are given

in Table 3.
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5 Norm ratio lower bounds for the l0 pseudonorm

As an application, we provide a new family of lower bounds for the `0 pseudonorm, as a
fraction between two norms, the denominator being any norm.

Proposition 5.1 Let |||·||| be a norm on Rd, with associated sequence of dual coordinate-k
norms, as in Definition 3.2. For any function ϕ : J0, dK→ [0,+∞[, such that ϕ(j) > ϕ(0) =
0 for all j ∈ J1, dK, there exists a norm |||·|||R(ϕ) characterized

� either by its dual norm |||·|||R(ϕ),?, which has unit ball
⋂
j∈J1,dK ϕ(j)BR(j),?, that is,

BR(ϕ),? =
⋂

j∈J1,dK

ϕ(j)BR(j),? and |||·|||R(ϕ) = σBR
(ϕ),?

, (42a)

or, equivalently, |||y|||R(ϕ),? = sup
j∈J1,dK

|||y|||R(j),?
ϕ(j)

, ∀y ∈ Rd , (42b)

� or by the inf-convolution

|||·|||R(ϕ) =
m

j∈J1,dK

(
ϕ(j)|||·|||R(j)

)
, (42c)

that is, |||x|||R(ϕ) = inf
z(1)∈Rd,...,z(d)∈Rd∑d

j=1 z
(j)=x

d∑
j=1

ϕ(j)|||z(j)|||R(j) , ∀x ∈ Rd . (42d)

Then, we have the inequalities

|||x|||R(ϕ)

|||x|||
≤ 1

|||x|||
min

z(1)∈Rd,...,z(d)∈Rd∑d
j=1 |||z(j)|||

R
(j)≤|||x|||∑d

j=1 z
(j)=x

d∑
j=1

ϕ(j)|||z(j)|||R(j) ≤ ϕ
(
`0(x)

)
, ∀x ∈ Rd\{0} . (43)

Proof.
• It is easily seen that σBR

(ϕ),?
in (42a) defines a norm, and that, for all y ∈ Rd,

|||y|||R(ϕ),? = inf
{
λ ≥ 0

∣∣ y ∈ λ d⋂
j=1

ϕ(j)BR(j),?
}

= inf
{
λ ≥ 0

∣∣ |||y|||R(j),?
ϕ(j)

≤ λ
}

= sup
j∈J1,dK

|||y|||R(j),?
ϕ(j)

.

• We have

|||·|||R(ϕ) = σBR
(ϕ),?

(by (42a))

= δ?BR
(ϕ),?

(because BR(ϕ),? is closed and convex)

=
( ∑
j∈J1,dK

δϕ(j)BR
(j),?

)?
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by (42a) and by expressing the characteristic function of an intersection of sets as a sum

=
m

j∈J1,dK

δ?
ϕ(j)BR

(j),?

using [11, Proposition 15.3 and (v) in Proposition-15.5] because the intersection BR(ϕ),? =
⋂d
j=1 ϕ(j)BR(j),?

of all the domains of the functions δϕ(j)BR
(j),?

contain a neighborhood of 0 since ϕ(j) > 0 for all

j ∈ J1, dK

=
m

j∈J1,dK

σϕ(j)BR
(j),?

(as δ?
ϕ(j)BR

(j),?

= σϕ(j)BR
(j),?

, for all j ∈ J1, dK)

=
m

j∈J1,dK

ϕ(j)|||·|||R(j) (by (11))

• We consider the coupling ¢ in (28).
By (35) — because the function ϕ : J0, dK → [0,+∞[ satisfies the assumption in Item 3 of

Proposition 4.5 — and by the inequality (ϕ ◦ `0)¢¢
′
≤ ϕ ◦ `0 obtained from (45e), we get that

1

|||x|||
min

z(1)∈Rd,...,z(d)∈Rd∑d
j=1 |||z(j)|||

R
(j)≤|||x|||∑d

j=1 z
(j)=x

d∑
j=1

j|||z(j)|||R(j) ≤ ϕ
(
`0(x)

)
, ∀x ∈ Rd\{0} . (44)

Thus, we have obtained the right hand side inequality in (43).
By relaxing one constraint in (44), we immediately get that

inf
z(1)∈Rd,...,z(d)∈Rd∑d

j=1 z
(j)=x

d∑
j=1

ϕ(j)|||z(j)|||R(j) ≤ min
z(1)∈Rd,...,z(d)∈Rd∑d

j=1 |||z(j)|||
R
(j)≤|||x|||∑d

j=1 z
(j)=x

d∑
j=1

ϕ(j)|||z(j)|||R(j) ≤ ϕ
(
`0(x)

)
, ∀x ∈ Rd .

Thus, we have obtained the left hand side inequality in (43), thanks to (42d). 2

For any function ϕ : J0, dK→ [0,+∞[, such that ϕ(j) > ϕ(0) = 0 for all j ∈ J1, dK, using
Table 1 when the source norm |||·||| is the `p-norm ||·||p, for p ∈ [1,∞] and 1/p + 1/q = 1,

we denote |||·|||R(ϕ) by ||·||snp,ϕ. The calculations show that ||·||sn1,ϕ = ||·||1, and that, when

p ∈]1,∞], we also have ||·||snp,ϕ = ||·||1, whatever p ∈ [1,∞], if we suppose that
(
ϕ(j)

)q ≥ j,
for all j ∈ J1, dK. As a consequence, when p = 1, the inequality (43) is trivial. When
p ∈]1,∞], if we take the function ϕ(j) = j1/q for all j ∈ J1, dK, the inequality (43) yields

that ||x||1||x||p ≤
(
`0(x)

)1/q
, which is easily obtained directly from the Hölder inequality.
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Fenchel conjugacy Capra conjugacy

δ
(−?)
`≤k
0

= δ?
`≤k
0

= δ{0} δ
−¢
`≤k
0

= δ
¢
`≤k
0

= |||·|||R(k),?

δ??
′

`≤k
0

= 0 δ
¢¢′

`≤k
0

= δ{x∈Rd | |||x|||R(k)=|||x|||}

∂δ
`≤k
0

(x) = ∅ ∂¢δ`≤k
0

(x) =


∅ if `0(x) = k + 1, . . . , d ,

NBR
(k)

( x

|||x|||R(k)
) if `0(x) = 1, . . . , k ,

{0} if `0(x) = 0

∀x ∈ Rd ∀x ∈ Rd

`?0 = δ{0} `
¢
0 = supj∈J0,dK

[
|||·|||R(j),? − j

]
`??
′

0 = 0 `
¢¢′
0 (x) = 1

|||x||| min z(1)∈Rd,...,z(d)∈Rd∑d
j=1 |||z(j)|||

R
(j)≤|||x|||∑d

j=1 z
(j)=x

∑d
j=1 j|||z(j)|||R(j) , ∀x ∈ Rd\{0}

`
¢¢′
0 (0) = 0

∂`0(0) = {0} ∂¢`0(0) =
⋂
j∈J1,dK jBR(j),? = BR(Id),?

∂`0(x) = ∅ y ∈ ∂¢`0(x) ⇐⇒

{
y ∈ NBR

(l)
( x

|||x|||R(l)
)

and l ∈ arg maxj∈J0,dK

[
|||y|||R(j),? − j

]
∀x ∈ Rd\{0} ∀x ∈ Rd\{0}, where l = `0(x) ≥ 1

Table 3: Comparison of Fenchel and Capra-conjugates, biconjugates and subdifferentials
of the `0 pseudonorm in (1), and of the characteristic functions δ

`≤k
0

of its level sets (3a), for

k ∈ J0, dK
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6 Conclusion

In this paper, we have presented a new family of conjugacies, which depend on a given gen-
eral source norm, and we have shown that they are suitable for the `0 pseudonorm. More
precisely, given a (source) norm on Rd, we have defined, on the one hand, a sequence of
so-called coordinate-k norms and, on the other hand, a coupling between Rd and itself,
called Capra (constant along primal rays). With this, we have provided formulas for the
Capra-conjugate and biconjugate, and for the Capra subdifferentials, of functions of the
`0 pseudonorm, in terms of the coordinate-k norms. Table 3 provides the results of Propo-
sition 4.4, Proposition 4.5, and Proposition 4.7, in the case of the `0 pseudonorm and of
the characteristic functions δ

`≤k
0

of its level sets (3a). It compares them with the Fenchel

conjugates and biconjugates. As an application, we have provided a new family of lower
bounds for the `0 pseudonorm, as a fraction between two norms, the denominator being any
norm.

In the companion paper [10], we provide sufficient conditions under which the `0 pseudonorm
is ¢-convex. We are currently investigating how the Capra conjugacies could provide algo-
rithms for exact sparse optimization

Acknowledgements. We want to thank Guillaume Obozinski for discussions on first
versions of this work, as well as the anonymous Referee and Associate Editor whose comments
helped us improve the manuscript.

A Background on Fenchel-Moreau conjugacies

We review general concepts and notations on Fenchel-Moreau conjugacies, then focus on the
special case of the Fenchel conjugacy.

The general case. Let X (“primal”), Y (“dual”) be two sets and c : X × Y → R be a

so-called coupling function. With any coupling, we associate conjugacies from RX
to RY

and

from RY
to RX

as follows.
The c-Fenchel-Moreau conjugate of a function f : X→ R, with respect to the coupling c,

is the function f c : Y→ R defined by

f c(y) = sup
x∈X

(
c(x, y) ·+

(
−f(x)

))
, ∀y ∈ Y . (45a)

With the coupling c, we associate the reverse coupling c′ defined by

c′ : Y× X→ R , c′(y, x) = c(x, y) , ∀(y, x) ∈ Y× X . (45b)

The c′-Fenchel-Moreau conjugate of a function g : Y → R, with respect to the coupling c′,
is the function gc

′
: X→ R defined by

gc
′
(x) = sup

y∈Y

(
c(x, y) ·+

(
−g(y)

))
, ∀x ∈ X . (45c)
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The c-Fenchel-Moreau biconjugate of a function f : X → R, with respect to the coupling c,
is the function f cc

′
: X→ R defined by

f cc
′
(x) =

(
f c
)c′

(x) = sup
y∈Y

(
c(x, y) ·+

(
−f c(y)

))
, ∀x ∈ X . (45d)

The biconjugate of a function f : X→ R satisfies

f cc
′
(x) ≤ f(x) , ∀x ∈ X . (45e)

The Fenchel conjugacy. When the sets X and Y are two vector spaces that are paired
with a bilinear form 〈, 〉, in the sense of convex analysis [3, p. 13], the corresponding con-
jugacy is the classical Fenchel conjugacy. For any functions f : X → R and g : Y → R, we
denote7

f ?(y) = sup
x∈X

(
〈x, y〉 ·+

(
−f(x)

))
, ∀y ∈ Y , (46a)

g?
′
(x) = sup

y∈Y

(
〈x, y〉 ·+

(
−g(y)

))
, ∀x ∈ X , (46b)

f ??
′
(x) = sup

y∈Y

(
〈x, y〉 ·+

(
−f ?(y)

))
, ∀x ∈ X . (46c)

For any function h : W → R, its epigraph is epih =
{

(w, t) ∈W× R
∣∣h(w) ≤ t

}
, its

effective domain is domh =
{
w ∈W

∣∣h(w) < +∞
}

. A function h : W → R is said to be
proper if it never takes the value −∞ and that domh 6= ∅. When W is equipped with a
topology, the function h : W→ R is said to be lower semi continuous (lsc) if its epigraph is
closed, and is said to be closed if h is either lower semi continuous (lsc) and nowhere having
the value −∞, or is the constant function −∞ [3, p. 15].

It is proved that the Fenchel conjugacy induces a one-to-one correspondence between the
closed convex functions on X and the closed convex functions on Y [3, Theorem 5]. Here, a
function is said to be convex if its epigraph is convex. The set of closed convex functions is
the set of proper convex functions united with the two constant functions −∞ and +∞.
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