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We reveal that the phenomenon of full plane-wave transmission without phase accumulation com-
monly associated with epsilon-near-zero (ENZ) materials does not require vanishing of permittivity.
We theoretically connect the phenomenon with condition of the Brewster effect satisfied at the edges
of stop bands (at so called exceptional points of degeneracy) and show that full transmission without
phase accumulation can be observed in various one-dimensional periodic structures. Particularly,
exploiting the manifold of exceptional points of degeneracy in one-dimensional all-dielectric periodic
lattices, we demonstrate that these structures not only offer a lossless and extremely simple, CMOS
compatible alternative for some applications of ENZ media, but exhibit new properties of all-angle
full transmission with zero phase delay. Main results of the study can be readily transferred to
acoustic and matter waves.

I. INTRODUCTION

Metamaterials promise amazing possibilities in manip-
ulation of electromagnetic fields, which are not available
with natural materials (see, e.g., [1–5]). Extreme prop-
erties and unique effects leading to novel functionalities
require artificial materials with extreme and singular val-
ues of material parameters. Recently, much attention
has been attracted by exotic properties of materials with
permittivity ε near zero. Both natural substances and
metamaterials possessing ε ≈ 0 are called epsilon-near-
zero (ENZ) media. From the physical point of view, this
special value of permittivity corresponds to the topolog-
ical transition between metals and dielectrics, as can be
illustrated by tuning parameters of a hyperbolic meta-
material, whose wave dispersion changes from hyperbolic
to elliptic type [6, 7] at the ENZ point. From the ap-
plications point of view, properties of ENZ media can
be exploited for energy tunneling through subwavelength
channels [8, 9], improvement of antenna directivity [10],
phase matching due to zero phase advance in ENZ me-
dia [11], enhancement of nonlinear effects [12, 13], and
more. [14–16].

Conditions for ε ≈ 0 have been the subject of scrutiny
for more than a decade [15, 17]. Unfortunately, natural
ENZ materials are rather lossy, and this may suppress or
even ruin their useful properties [18]. To circumvent this
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difficulty one may exploit the accidental degeneracy near
the Γ-point in all-dielectric photonic crystals, where the
zero-refractive-index properties are available [19, 20]. On
the other hand, superlattices constructed of positive and
negative index photonic crystals can also be used [21, 22].
However, it is important to keep in mind that all artificial
ENZ materials are complex 2D or 3D lattices that can
be characterized by effective permittivity only under the
homogenization condition (period is much smaller than
the operating wavelength).

In this study, we show that a physical mechanism be-
hind key properties of ENZ media does not require van-
ishing of permittivity. We theoretically connect the effect
of complete wave tunneling without phase accumulation
to the condition of the Brewster effect satisfied when ap-
proaching exceptional points of degeneracy (EPDs). This
theory opens up a possibility to exploit the manifold of
EPDs in all-dielectric periodic lattices in order to emu-
late properties of ENZ media. Particularly, we demon-
strate that one-dimensional (1D) periodic structures can
be designed in order to exhibit ENZ behavior. We val-
idate the theory by demonstrating the complete wave
tunneling without phase advance through simple layered
structures composed of conventional dielectrics. We also
show that there is no phase accumulation throughout the
whole thickness of the structure.

II. MAIN IDEA AND ENZ PROPERTIES OF 1D
PERIODIC STRUCTURES

To explain the analogy between existence of excep-
tional points of degeneracy, the Brewster effect, and the
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FIG. 1. (a) Reflection and transmission through an isotropic
slab and (b) 1D photonic crystal composed of alternating lay-
ers of isotropic dielectrics. (c) Three-layer (having an inver-
sion center) unit cells of a 1D photonic crystal.

properties of ENZ media, let us first consider the well-
known analytical solution for the plane wave transmission
through an isotropic slab of thickness ds, permittivity
εs, and permeability µs, as illustrated in Fig. 1(a). The
transmission coefficient for an obliquely incident plane-
wave of arbitrary polarization can be written as [10]

T =

[
cos(kzsds)− i

Z2
s + Z2

a

2ZsZa
sin(kzsds)

]−1
. (1)

Here, kzs =
√
εsµsk20 − k2t is the normal component of

the wave vector inside the slab, k0 = ω/c is the vacuum
wavenumber (ω is the frequency, c is the speed of light in
vacuum), kt represents the tangential component of the
wave vector, Zs and Za are the wave impedances inside
and outside the slab, respectively. The impedances are
defined as the ratios of the tangential to the slab plane-
wave field components. Assuming absence of losses, the
reflectivity 1 − |T |2 vanishes provided Zs = Za. Except
for the trivial case of the same materials of the slab and
the ambient medium, the equal wave impedances are re-
alized under conditions of Brewster’s law. In this case the
transmission coefficient T = eikzsds describes the phase
shift of the fully transmitted wave. When the full trans-
mission is complemented by zero phase shift kzsds = 0,
a unique phenomenon of complete wave tunneling with-
out phase accumulation is realized. Originally, it was as-
sociated with the ENZ/mu-near-zero(MNZ)/epsilon-mu-
near-zero(EMNZ) materials.

Noteworthy, a Fabry-Perot resonance occurring in any
dielectric slab under the conditions kzsds = 2πm (m =
1, 2, . . .) is also characterized by full transmission and
zero phase shift. However, the Brewster effect is fun-
damentally different from the Fabry-Perot resonance. It
exists at any thickness of the slab ds. Moreover, a

FIG. 2. (a) Transmission coefficient T through a dielectric
slab for TM polarization versus incidence angle. (b) Zoom
of the boxed area in (a). (c) The phase distribution inside
the slab under the critical angle incidence. The green line
describes the phase evolution of a plane-wave propagating
through vacuum within the distance ds. In all figures λ repre-
sents the vacuum wavelength. Parameters: εa = 20, µa = 1,
εs = 1 and εs = 1. The Brewster angle and the critical angle
of TIR equal 12.6◦ and 12.9◦, respectively.

plane wave does not accumulate phase when it prop-
agates across the slab under conditions Zs = Za and
kzs = 0. On the output the phase accumulation is 0, but
not a multiple of 2π.

Condition kzs = 0 defines the critical angle θc of the
total internal reflection (TIR). Here we utilize only the
critical angle condition kzs = 0 while the phenomenon of
TIR itself is not observed for the considered slabs, be-
ing available only for very thick layers. Since we need
the two conditions Zs = Za and kzs = 0 to be satis-
fied simultaneously for full transmission without phase
accumulation, the Brewster angle and the critical an-
gle of total internal reflection should be close. Indeed,
as illustrated by Fig. 2, the TM-polarized wave is fully
transmitted with no phase accumulation for conventional
dielectric materials (εa = 20 and εs = 1). Even though
the Brewster angle (θB = 12.6o) and the critical angle of
TIR (θc = 12.9o) do not coincide exactly, the system is
highly transparent at θ = θc, see Fig. 2 (b). Similarly
to an ENZ case the phase accumulation across the slab
is insignificant unlike the unbounded plane-wave propa-
gation in vacuum as shown in Fig. 2 (c). Interestingly,
the investigated phenomenon does not suffer from fre-
quency dispersion, because the critical angle of TIR and
Brewster’s angle depend only on the practically disper-
sionless material parameters of the dielectrics, but not
on the frequency. It is demonstrated in Fig. 2 (b) with
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FIG. 3. Frequency dependence of Bloch wavenumber q, wave
impedance ZB/Z0 =

√
C/B/Z0 (normalized to the free-space

impedance Z0) and functions B and C corresponding to the
periodic multilayer structure illustrated by Figs. 1(b) and (c).
Parameters: θ = 0 (wave impedance of a normally incident
plane-wave is Z0), ε1 = 2, ε2 = 16 and f = 0.1.

the help of two curves corresponding to different thick-
nesses ds of the slab. Thus, we have obtained surprising
results demonstrating that the permittivity should not
necessarily vanish to achieve high transmission without
phase accumulation. Instead, under specific conditions,
conventional dielectrics can be exploited.

Generally speaking, the critical angle of TIR corre-
sponds to an exceptional point of degeneracy (EPD) since
the condition kzs = −kzs = 0 means that the prop-
agation constants of the oppositely directed waves co-
incide (degenerate), while the eigenvectors and, hence,
eigenwaves’ impedances are indistinguishable. Thus, the
phenomenon of full transmission without phase accumu-
lation can be found for many different structures. In-
deed, let us consider a simple (for analytical derivations)
example of a 1D periodic structure which can be de-
scribed by an ABCD matrix [23] (or, in other words,
transfer matrix) and has a symmetric unit cell (in this
case A = D [23]) of geometric size d. The asymmetric
case (A 6= D) is discussed in Appendix A. Bloch waves
characterized by a wavenumber q and wave impedance
ZB propagate through the periodic structure. Keep-
ing in mind the unimodularity of the ABCD matrix
(A2 − BC = 1) for the non-dissipative structure, one
can write the Bloch wavenumber q = ±d−1 cos−1(A) and

wave impedance ZB = ±
√
C/B solving the eigenvalue

and eigenvector problem for the ABCD matrix [23]. Here
signs plus and minus correspond to forward and back-
ward Bloch waves. They cannot be distinguished at the
edges between stop and pass bands (i.e. when q = 0 and
π/d), where the wave impedance diverges or vanishes by
means of B = 0 or C = 0. Thus, the edges of stop bands
can be always treated as EPDs.

Transmission coefficient through a N -cell 1D periodic

structure is given by the following formula

T =

[
cos(qNd)− i

C
B + Z2

a

2Za

√
B

C
sin(qNd)

]−1
(2)

which is basically the same as Eq. (1), but the wave
impedance of the Bloch wave ZB , Bloch wavenumber
q, and Nd substitute respectively Zs, ksz, and ds. At
Brewster-angle incidence Za = ZB and the transmis-
sion coefficient Eq. (2) is reduced to the phase factor
T = exp[iqNd]. On the other hand, when approaching
EPDs, we find (keeping in mind that sin(qd) =

√
−BC)

that the transmission coefficient approaches the following
limits:

T →
{

(1−NC/(2Za))−1, ZB →∞
(1−NBZa/2)−1, ZB → 0.

(3)

Albeit none of these limits equal unity, the transmission
coefficient can approach unity arbitrarily close when the
Brewster condition ZB = Za is satisfied close to a band
gap edge.

As in the case of a homogeneous ENZ slab, the wave
does not accumulate phase when propagating over pe-
riods of the structure. Again, there are two principal
situations corresponding to the incident plane-wave ex-
actly matched with (i) the Brewster condition or (ii) a
stop band edge. In the first case, the incident wave is
impedance matched with the forward Bloch wave and
phases of both magnetic and electric fields vary as qNd.
In the other situation one has to turn to the ABCD ma-
trix which at a stop band edge has A = 1 and either
B = 0 (C 6= 0) or C = 0 (B 6= 0). The spatial evo-
lution is given by the ABCD matrix acting on the field
column (1 + R,Za(1 − R))T at the input of the struc-
ture (R is the reflection coefficient). When B = 0 the
magnetic field does not change throughout the structure
and has the phase Arg(H) = Arg(1 + R). Meanwhile,
the phase profile of the electric field is given by the equa-
tion Arg(E) = Arg(NC[1 +R] +Za[1−R]). If C is zero
and B is not, the electric field is constant with the phase
Arg(E) = Arg(1−R) and the phase of the magnetic field
changes as Arg(H) = Arg(NBZa[1−R] + 1 +R). Both
situations become indistinguishable, when the Brewster
condition occurs at a stop band edge.

To conclude this section, a discrete analogue of the
wave propagation phenomenon in homogeneous ENZ me-
dia can be achieved in periodic structures. To that end
one needs to appropriately design a unit cell to get a
required ABCD matrix, e.g. a design of microwave net-
works is discussed in Ref. [23].

III. APPLICATION OF 1D PHOTONIC
CRYSTAL

As a concrete example we consider a 1D photonic
crystal represented by a periodic multilayer composed
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FIG. 4. Band-gap structure for (a) TE and (b) TM polarizations of a 1D photonic crystal depicted in Fig. 1 (b). The black
dashed curves correspond to Brewster’s law. (c)–(e) Absolute value and phase of the transmission coefficient through a single
unit cell of the photonic crystal versus the normalized frequency: (c) normal incidence, (d) TE polarization, θ = 60◦, (e) TM
polarization, θ = 60◦. In all figures shaded regions represent propagation bands and red and blue curves and lines represent
the edges of stop bands where q = π/d and q = 0, respectively. (f) Spatial evolution of the electric field phase over periods of
the 4-cell 1D photonic crystal (circles and cubes) compared to the phase accumulation of a plane wave propagating through a
vacuum region of equivalent thickness (solid lines). Used parameters are ε1 = 2, ε2 = 16 and f = 0.1.

of three-layer unit cells with an inversion center [24],
as shown in Figs. 1(b) and (c). The components of
the ABCD matrix corresponding to this structure can
be found analytically being presented in Appendix B.
EPDs are well studied in 1D photonic crystals (see, e.g.,
Refs. [25–27]) and correspond to edges of stop bands
(A = ±1) where wave impedance diverges or vanishes
(at zeros of functions B and C, respectively). Owing to
the axial symmetry stop band edges can be treated as
surfaces of degeneracy. Figure 3 illustrates an example
of the frequency dependence of wavenumber and wave
impendace of a Bloch wave propagating in a periodic
multilayer.

A. Wide-angle full transmission without phase
accumulation

Complete wave tunneling without phase accumulation
in 1D photonic crystals is available for any incidence an-
gle θ and any polarization, if the boundaries of the stop
bands are almost flat. The required band structure can
be achieved for alternating low- and high-permittivity di-
electric layers with a small filling fraction f = d1/d of the
low-permittivity dielectric. Then the stop bands become
narrower, while their edges are almost flat for both TE
[Fig. 4 (a)] and TM polarizations [Fig. 4 (b)]. The full
transmission |T | = 1 independent of the total thickness
Nd (Brewster’s resonance) is realized at ZB = Za. The
values of the incidence angles and frequencies at which
Brewster’s law in periodic multilayers is satisfied are de-
picted as dashed lines in Figs. 4 (a) and (b). It should be
noticed that Bloch impedance ZB is frequency dependent

which gives rise to frequency dispersion. For small filling
fractions f , the curves ZB = Za shift to the top edges
of the stop bands, thus, providing both full transmission
and zero phase accumulation.

Transmission coefficient through a single unit cell (N =
1) as a function of the normalized frequency k0d = ωd/c
is demonstrated in Figs. 4 (c)–(e). All maxima in Figs. 4
(c) – (e) correspond to Brewster’s resonances which are
independent of the total thickness Nd. There are no
Fabry-Perot resonances at the band gap edges q = 0 and
q = π/d in Figs. 4(c)–(e), since ZB goes either to zero
or infinity, while the term (Z2

B + Z2
a)/(2ZBZa) sin(qNd)

takes a non-zero value and, therefore, |T | < 1 according
to Eq. (3). On the contrary, when the Brewster condition
ZB = Za is satisfied next to stop band edges, transmis-
sion coefficient can approach unity arbitrarily close when
sufficiently small f is chosen (of course, f cannot be ex-
actly zero as there would be no band gap). Except for
the case of normal incidence θ = 0, the multilayer struc-
ture is polarization-sensitive. When the incidence angle
of the TE(TM) wave increases, the stop bands get wider
(narrower) [see Figs. 4(a) and (b)], while the widths of
the transmission resonances shown in Figs. 4(c)-(e) de-
crease (increase). Transmission coefficients for the waves
at the top edges of stop bands q = π/d and q = 0 possess
the phases respectively π or 0 as it is shown by dashed
curves in Figs. 4(c)–(e).

Figure 4(f) demonstrates the phase of the electric field
at the points multiple to the period of the 4-cell multi-
layer. At the top edge of the first stop band q = π/d the
phases are close for even and odd periods, and there is
no phase accumulation at discrete points zm = 2md and
zm = (2m + 1)d (m is an integer number). At the top
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FIG. 5. (a) Distribution of the magnetic field when a magnetic
line source illuminates a 1D photonic crystal. (b) Distribution
of the electric field when an electric line source illuminates
the photonic crystal. Normalized frequency is k0d = 0.86, the
distance to the photonic crystal is λ, the 1D photonic crystal
has N = 4 three-layer unit cells and the length of 20λ. The
eye represents an observer who sees an illusion (top star) of
the source (bottom star).

edge of the second stop band q = 0 the phases are nearly
equal after every period of the multilayer, i.e. there is
no phase accumulation at discrete points zm = md. To
compare, plane waves propagating in unbounded vacuum
of the same thickness experiences significant phase accu-
mulation as shown by the solid lines in Fig. 4 (f). We
should stress that the phase within each unit cell changes
significantly, albeit the phase accumulation between the
periodically arranged points is almost absent.

The polarization insensitive illusion effect represents
an impressive demonstration of the discussed phe-
nomenon. An ideal device making an illusion is invisi-
ble; therefore, its realization using a 1D photonic crystal,
which completely tunnels the wave without a phase ad-
vance in a vast range of incident angles, is natural. In
Fig. 5, a source is placed below the photonic crystal and
radiates at the frequencies specified by the top edge of
the stop band. Then an observer sees the source at a
shorter distance, the displacement towards the observer
being equal to the thickness of the photonic crystal slab.
Such an illusion is demonstrated in Fig. 5 for magnetic
and electric line sources, i.e. for TE and TM polariza-
tions. It is worth noticing that an illusion phenomenon
was reported in Refs. [28–31] on the base of transforma-
tion optics.

B. ENZ-like spatial frequency filtering

A thick epsilon-near-zero slab acts as an effective fil-
ter of spatial frequencies transmitting only normally in-
cident waves. Although in case of 1D photonic crystals
it is difficult to get such a functionality for the normally
incident wave, sharp transmission resonances are well ac-
cessible for grazing incident waves, when the wavevector

of the incident wave is almost parallel to the photonic
crystal interfaces. To that end, we study a multilayer
composed by alternating low- and high-permittivity di-
electric layers keeping the filling fraction f = d1/d of
the low-permittivity dielectric high. Figures 6(a) and (c)
depict the band gap structure for TM and TE polariza-
tions. The Brewster condition is met at the black dashed
curves. Blue and red curves correspond to the edges of
stop bands q = 0 and q = π/d, respectively. By magnify-
ing the green boxed areas we clearly see from Figs. 6(b)
and (d) that the Brewster effect occurs at a stop band
edge for both polarizations (but at different frequencies),
when the incidence angle θ approaches 90 degrees. In
Figs. 6(e) and (f) we plot the angular dependence of the
transmission coefficient at the corresponding frequencies
for photonic crystals composed of 10 (solid curve) and
30 (dashed curve) unit cells. Since the whole range of
the incidence angles apart from a vicinity of 90 degrees
corresponds to a stop band, highly selective transmission
is observed. The transmission resonances do not depend
on the total thickness Nd of the multilayer that is they
are Brewster’s resonances. When the Brewster condition
is satisfied at a stop band edge, the phase of the trans-
mission coefficient vanishes. It can be seen from the fre-
quency dependence of the transmission coefficient around
the stop band edge frequency (the incidence angle is 89.9
degrees), shown in Figs. 6(g) and (h), where one can ac-
tually recognize both the Brewster and the Fabry-Perot
resonances. The Brewster resonances appear right at the
stop band edge.

Full power transmission occurs also at Fabry-Perot res-
onances, where qNd = πm (m is an integer number), in
this case the transmission coefficient given by Eq. (2) is
T = 1/ cos(πm). The Fabry-Perot resonances are seen
in Figs. 6(g) and (h) at frequencies below the Brewster
peak at the stop band edge. Interestingly, for even m we
have T = 1 but the phase accumulation is 2πm. As it is
noted above, the Brewster effect is independent on Nd,
and there is no phase accumulation in the full transmis-
sion regime, which makes it fundamentally different from
the Fabry-Perot resonances.

Absence of the phase accumulation over the full length
of the photonic crystal with 30 unit cells is demonstrated
by Fig. 7. Field phases at the interfaces of unit cells are
shown at the incidence angle of 89.9 degrees. In case
of the TM polarization the stop band edge of interest
corresponds to q = π/d (k0d ≈ 1.96), and there is no
phase accumulation between discrete points zm = 2md or
zm = (2m+1)d (m is an integer number). For the TE po-
larization the Brewster condition is satisfied at the stop
band edge q = 0, when the frequency is approximately
k0d = 4.05, and zero phase accumulation is observed af-
ter every period.

In order to conclude this subsection let us note that
the results represented by Figs. 6 and 7 look nicer than
those demonstrated in the Section III A. It is due to the
fact that the wave impedances of incident plane-waves
diverge for TE polarization and vanish in case of TM
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FIG. 6. (a), (c) Band gap structures of a photonic crystal illustrated in Fig. 1 (b): (a) TM polarization and (c) TE polarization.
(b), (d) Zooming of the boxed areas in Figures (a) and (c), respectively. The Brewster condition is satisfied at the black dashed
curves. Shaded regions represent propagation bands, red and blue curves represent the edges of stop bands where q = π/d and
q = 0, respectively. (e), (f) Angular dependence of the transmission coefficient through slabs of photonic crystals having 10
and 30 unit cells. (g), (h) Frequency dependence of the transmission coefficient through the 30 unit cells photonic crystal. In
all figures the material parameters are ε1 = 2, ε2 = 16, and the volume fraction of the low-index material is f = 0.9.

one at ninety-degrees incidence. Meanwhile, the wave
impedances of Bloch waves behave the same at stop band
edges. Thus, the Brewster condition is satisfied exactly
at the considered stop band edges.

IV. DISCUSSION AND CONCLUSION

Realistic losses and random fluctuations of geometri-
cal parameters of the dielectric structures may not af-
fect much the overall performance in bright contrast to
the ENZ media [18]. Additionally, it is worth noting
that we have considered only propagation of monochro-
matic plane waves, however, an information carrying sig-
nal would consists of a spectrum of such waves. From
Figs. 4 and 6 one can get information about the fre-
quency response and, particularly, see that the group
delay ∂Arg(T )/∂ω (an important characteristic in signal
processing [32]) increases when approaching the frequen-
cies of the top edges of stop bands (in coherence with the
well-known slow light phenomenon [33]). This observa-
tion brings us to conclusion that only spectrally narrow
signals can propagate without distortion through the con-
sidered photonic crystal when showing ENZ properties.
More details for the structure presented in Section III A
can be found in Appendix C.

To summarize, we have identified the physical mech-
anism behind the properties of ENZ media, namely, the
Brewster effect occurring next to exceptional points of

degeneracy of an electromagnetic structure. This has al-
lowed us to demonstrate that vanishing of permittivity is
not required for achieving full transmission without phase
accumulation and can be realized with many different 1D
periodic structures. Particularly, we demonstrated the
phenomenon using simple layered structures composed
of conventional dielectrics. These structures not only of-
fer a lossless and extremely simple, CMOS compatible
alternative for some applications of ENZ media, but ex-
hibit new properties of all-angle polarization insensitive
full transmission with zero phase accumulation. Weak
sensitivity of the wave tunneling property to variations of
electromagnetic and geometrical parameters of the struc-
ture makes this system attractive for realization of such
extreme effects as source-displacement illusion. Since ex-
ceptional points of degeneracy are ubiquitous, we expect
that one can also realize ENZ-like properties with more
complex 2D and 3D non-homogenizable structures. Fi-
nally, we would like to notice that the main results of the
study can be readily transferred to acoustic and matter
waves pushing forward the development of novel acoustic
and electronic devices.

Appendix A: ENZ behavior in 1D periodic
structures with asymmetric unit cell

Electromagnetic wave propagation through one-
dimensional periodic structures can be described by
means of the ABCD matrix approach [23]. In the main
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FIG. 7. Distribution of the field phase throughout the pho-
tonic crystal having 30 unit cells, cases of TM (k0d = 1.9595)
and TE (k0d = 4.0528) polarizations. The points represent
the field phase at the interfaces of unit cells. The structure
parameters are ε1 = 2, ε2 = 16, and f = 0.9.

text, we discuss conditions of full transmission without
phase accumulation for waves penetrating periodic struc-
tures with a symmetric unit cell. Here we focus on
the distinct case of an asymmetric unit cell resulting in
A 6= D. Then, a Bloch wavenumber q is found to be [23]

q = ±1

d
cos−1

[
A+D

2

]
. (A1)

Meanwhile, wave impedances of the eigenwaves are given
by the equation

Z±B =
C

A−D
2 ∓ i sin(qd)

. (A2)

The top and bottom sings correspond to the waves prop-
agating along and against z-axis, respectively. From the
formula (A2) it follows that Z+

B 6= −Z
−
B in this general

case. Furthermore, even in the lossless scenario the wave
impedance Z±B is complex-valued contrary to the case of
symmetric unit cells when the impedance is either real
(passband band) or imaginary (stop band). Then, the
formula (1) for the transmission coefficient takes the fol-
lowing, more general, form

T =

[
cos(qNd)− i

Z2
a − Z+

BZ
−
B

Za(Z+
B − Z

−
B )

sin(qNd)

]−1
. (A3)

Let us consider the behavior of the transmission coeffi-
cient at a stop band edge. It may seem that the transmis-
sion coefficient equals 1 when, e.g., q = 0. However, when
approaching a boundary of a stop band, sin(qd)→ 0 and
accordingly Z+

B → Z−B . That is, wave impedances at a
stop band boundary are not independent while the ex-
pression for the difference (Z+

B − Z
−
B ) can be reduced as

follows:

Z+
B − Z

−
B =

C
A−D

2 − i sin(qd)
− C

A−D
2 + i sin(qd)

=
2Ci sin(qd)(

A−D
2

)2
+ sin(qd)2

. (A4)

As a result, the denominator of the fraction (Z2
a −

Z+
BZ
−
B )/[Za(Z+

B − Z−B )] goes to zero while the numer-

ator has a nonzero limit. Since the difference (Z+
B −Z

−
B )

is proportional to sin(qd) [when sin(qd) is close to zero,
of course], sin(qNd)/(Z+

B −Z
−
B ) also has a nonzero limit

proportional to N . Eventually, the transmission coeffi-
cient does not go to 1 at a stop band boundary. However,

if
√
Z+
BZ
−
B goes to Za when approaching a stop band

boundary one would observe full transmission without
phase accumulation.

Appendix B: ABCD matrix of 1D photonic crystal
with the symmetric unit cell

Spatial evolution of the fields over a period of the 1D
photonic crystal considered in Section III is described for
each polarization by 2 × 2 ABCD matrix acting on the
field column (H,E)T [where H and E are the tangential
components of the magnetic and electric fields, respec-
tively]. The components of the ABCD matrix are given
be the following formulas [24]

A = D = cos(kz1fd) cos(kz2[1− f ]d)

−1

2

(
Z1

Z2
+
Z2

Z1

)
sin(kz1fd) sin(kz2[1− f ]d),

B =
i

Z1
(sin (kz1fd) cos (kz2[1− f ]d)

+
1

2

[(
Z1

Z2
− Z2

Z1

)
+

(
Z1

Z2
+
Z2

Z1

)
cos (kz1fd)

]
× sin (kz2[1− f ]d)) ,

C = iZ1 (sin (kz1fd) cos (kz2[1− f ]d)

−1

2

[(
Z1

Z2
− Z2

Z1

)
−
(
Z1

Z2
+
Z2

Z1

)
cos (kz1fd)

]
× sin (kz2[1− f ]d)) . (B1)

Z1 and Z2 are the wave impedances of either TE- or TM-
polarized plane-waves in dielectric slabs of permittivities
ε1 and ε2, respectively, f is the fill fraction of ε1, d is
the thickness of the unit cell, kz1,2 =

√
ε1,2k20 − k2t , kt =

k0 sin θ, and θ is the angle of incidence.

Appendix C: Analysis of tolerances and group delay

We start with tolerances with respect to small changes
in the frequency and structure’s geometry related to the
1D photonic crystal considered in Section III A. Require-
ments to the design of the unit cells are quite flexible as
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FIG. 8. Frequency dependence of (a) the absolute value and
(b) phase of the transmission coefficient through a 1D pho-
tonic crystal having N unit cells. (c) Dependence of the field
phase on discrete period’s number n of the 1D photonic crys-
tal having N = 4 unit cells compared to the phase accumula-
tion of a plane wave propagating through a vacuum region of
equivalent thickness. Parameters: normal incidence, εa = 1,
ε1 = 2(1+i0.01), ε2 = 16(1+i0.01) and f = 0.1. Calculations
were conducted in the assumption of 5% random errors in the
thicknesses of each dielectric layer.

one does not have to satisfy exact mathematical condi-
tions. However, there is a general rule that a photonic
crystal should be formed of alternating high- and low-
permittivity dielectric layers, with the fill fraction of the
low-permittivity material being small. Influence of the
dielectric losses and moderate (5%) random errors of the
layers thicknesses is demonstrated in Fig. 8. The losses
do not destroy the effect of zero phase delay, but obvi-
ously reduce the transmission amplitude at the resonance
frequencies as clearly seen from comparison of Figs. 4(c)–
(e) with Figs. 8(a), (b). The widths and positions of

FIG. 9. Frequency dependence of normalized group delay.
(a), (b) Through a single unit cell for different incidence angles
in case of (a) TE and (b) TM polarizations. (c) Through 1D
photonic crystal having different number of unit cells N ver-
sus normalized frequency in case of normal incidence. Other
parameters: εa = 1, ε1 = 2, ε2 = 16 and f = 0.1.

the peaks only slightly change compared with the lossless
multilayer. The random errors in addition to the losses
affect mainly the phase accumulation, but the latter is
still quite small, as shown in Fig. 8(c).

In the main text we deal only with monochromatic
plane waves. Generally, a spectral composition of such
waves (signal) may propagate with significant distortions
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due to a complex frequency response of the propaga-
tion medium. From Figs. 4(c)–(e) one can see that the
transfer function of the considered 1D photonic crystal
(namely, the transmission coefficient T ) significantly de-
pends on the frequency. In order to estimate possible
signal distortion due to the nonlinear (with respect to
the frequency) phase response we consider group delay
τg defined as ∂Arg[T ]/∂ω. Group delay at the frequency
ω can be understood as the time it takes for a signal with
a narrow spectrum (centered around ω) to traverse the
structure [32]. Figure 9 shows the normalized group delay
through the 1D photonic crystal considered in the main
text as a function of frequency. Results for different po-
larizations and incidence angles are presented by Figs. 9

(a) and (b) for a single unit cell. The maxima of the
group delay (except the one at ω = 0) correspond to the
top edges of band gaps (in coherence with the well-known
slow light phenomenon [33]), where we expect to observe
full transmission without phase delay. Notably, in case
of TE polarization the magnitude of maxima increases
with the incidence angle, while it decreases for TM po-
larization. Group delay increases and additional maxima
appear, when one adds unit cells to the photonic crystal
slab, see Fig. 9 (c). Overall, we can conclude that only
signals of small bandwidth can be used for transferring
information through such a photonic crystal possessing
ENZ properties.
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