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We propose a biomechanical model for the extravasation of a tumor cell (TC) through the endothelium of a blood vessel. Based on prior in vitro observations, we assume that the TC extends a protrusion between adjacent endothelial cells (ECs) that adheres to the basement membrane via focal adhesions. As the protrusion grows in size and branches out, the actomyosin

contraction along the stress fibers inside the protrusion pulls the relatively rigid nucleus through the endothelial opening. We model the chemo-mechanics of the stress fibers and the focal adhesions by following the kinetics of the active myosin motors and high-affinity integrins, subject to mechanical feedback. This is incorporated into a finite-element simulation of the extravasation process, with the contractile force pulling the nucleus of the tumor cell against elastic resistance of the ECs. To account for the interaction between the TC nucleus and the endothelium, we consider two scenarios: solid-solid contact and lubrication by cytosol. The former gives a lower bound for the required contractile force to realize transmigration, while the latter provides a more realistic representation of the process. Using physiologically reasonable

Introduction

Extravasation is a key step in metastasis of cancer. Typically, tumor cells (TCs) first exfoliate from the primary tumor, and invade the surrounding extracellular matrix (ECM) until they reach a nearby blood vessel. Through a process known as intravasation, a TC breaches the blood vessel wall to enter the blood circulation, thus becoming a circulating tumor cell (CTC) [1]. After being carried to a target tissue or organ, the CTC extravasates from the blood vessel, i.e. it forces through the endothelium and basal membrane of the blood vessel to invade the tissue outside, and establish a new colony in the target site. Although both intravasation and extravasation entail breaching the endothelial barrier of the blood vessel, the two differ significantly in the signaling pathways and physical process [2][3][4]. We will focus only on extravasation in this paper. As we will only deal with circulating tumor cells, we refer to them simply as TCs hereafter.

TCs may extravasate through three distinct mechanisms: intercalation into the endothelium, paracellular transmigration between endothelial cells (ECs) and transcellular transmigration through an EC [5]. Most cancer cells follow the paracellular route in vitro, although it is unclear what factors determine the preferred route of transmigration in vivo [3]. Henceforth we will focus on the paracellular route. Through decades of focused research, much has been learned about the biochemical signaling that controls extravasation. For example, the adhesion to ECs is known to be controlled by cell-surface proteins such as CD44, MUC1, E-selectin, ICAM-1, VCAM-1 and integrins [5,6]. The adhesion triggers remodeling of the cytoskeleton of the TC and formation of protrusions, through the CDC42/Rac1 pathway, activating it for deformation and transmigration [7]. Finally, the TC also signals to the ECs, causing them to soften and retract from each other and disrupting the [10]. Inside the TC, actomyosin assembles into stress fibers that propel a protrusion between the ECs. Adhesion molecules, including α3β1 and α6β1 integrins, anchor the tips of the protrusion onto laminin of the ECM. The focal-adhesion proteins include tensin, talin and vinculin among others. Actomyosin contraction in the stress fibers then pulls the TC past the constriction between ECs.

EC junctions. This involves, among other pathways, the phosphorylation and disassembly of the VE-cadherin-β-catenin complex [8,9], with the result of opening the EC junction to facilitate TC transmigration. A more detailed description of the signaling pathways can be found in a review by Reymond et al. [3].

In contrast to our knowledge of the biochemical signaling, much less is known about the mechanical forces involved in extravasation. Recent development in microfluidic lab-on-chip devices has allowed in vitro reproduction and observation of the extravasation process. Chen et al. [11,12] developed assays of a highly realistic vascular network on a perfused microfluidic chip, through which cancer cells can be introduced. They are seen to extend invadopodium-like protrusions through the junctions between ECs, which then adhere to the ECM outside. Antagonizing a key integrin β1 in the TCs causes them to remain round and fail to protrude in-between the ECs, and extravasation is abolished [10]. Based on these observations, Chen et al. [10,11] have hypothesized the following scenario for paracellular transmigration of tumor cells (Fig. 1). First, the TC extends a protrusion through the junction between ECs. As the protrusion grows in size, it branches out at the front.

As its tips reach the basement membrane outside the endothelium, activated integrins help form secure focal adhesion sites. As more of the TC body moves out through the EC constriction, the relatively rigid nucleus is left behind inside the spherical-shaped membrane. Finally, contraction of the actomyosin in the stress fibers pulls the nucleus through the constriction to complete the extravasation. More recently, Abidine et al. [13] reported high-resolution images of the cancer cell during transmigration, and identified rapid reorganization of TC actin below the nucleus and close to the EC junction. This seems to support the above hypothesis, especially the idea of stress fibers forming inside the TC protrusion. This picture for extravasation attributes the driving force to contraction of the stress fibers inside the "filopodium-like protrusions" extended from the TC [3,14], termed invadopodia hereafter. But it also raises further questions. Are typical stress fibers capable of generating the force necessary for overcoming the resistance to the passage? How do the size of the EC opening and the rigidity of the ECM affect the balance between the driving force and the resistance? Cao et al. [15] built a mechanical model on the transmigration of a hyperelastic TC nucleus through small constrictions.

By specifying a constant force that pulls on the nucleus, an elastic equilibrium is computed where elastic resistance due to the nuclear and endothelial deformations balances the pulling force. The main result is a critical pulling force for the passage, which for the geometric and mechanical parameters adopted amounts to 38 nN. Because this is essentially a static calculation, it does not give a dynamic picture of the transmigration. In particular, although the actomyosin apparatus is modeled as under biochemical control and responsive to external deformation [16], the static nature of the computation implies that this force is essentially prescribed; the biochemical factors do not participate in the mechanical equilibrium nor influence the final result. Besides, the cell membrane and cytosol of the TC are neglected, and the nucleus is assumed to compress the EC in direct solid-solid contact.

Our model is inspired by Cao et al. [15], and aims to test the invadopodium-based mechanism hypothesized by Chen et al. [10]. Toward this goal, we will simulate the dynamic extravasation of a TC through the junction between ECs. It goes beyond Cao et al.'s model in several aspects. First, we use finite elements to track the transmigration dynamically, with cell and tissue deformation, dynamic remodeling of the stress fibers and the focal adhesions and the displacement of the tumor cell occurring simultaneously in time. Second, the pulling force in the TC invadopodia is modeled by adopting Deshpande et al.'s models [17][18][19] for the stress fibers and the focal adhesions, both controlled by biochemical signaling with a mechanical feedback. Thus, the biochemical factors exert a direct influence on the transmigration. Finally, we include the TC cytosol and membrane in the model, in addition to the nucleus, for a more realistic representation. This allows us to probe the mechanical contact between the TC and EC.

Using realistic geometric, mechanical and biochemical parameters, our model predicts a maximum resistance to transmigration of about 70 nN. More importantly, the stress-fiber and focaladhesion assembly is predicted to be able to provide forces of this magnitude to enable extravasation.

Finally, we also report experimental measurements of the force required to push a human bladder cancer cell through a HUVEC endothelium. The driving force for the transmigration turns out to be in the range of 70-100 nN, in reasonable agreement with the model predictions.

Methods

Problem setup

The geometric setup and the hyperelasticity of the TC and EC are modeled after Cao et al. [15], with the tumor cell being pulled through an axisymmetric opening in hyperelastic endothelium (Fig. 2). For simplicity, the model accounts for a single invadopodium, even though in vitro images suggest the possibility of multiple protrusions or branches [11]. In addition, we have neglected any plasma flow inside the capillary, because the transmigration essays typically do not have ongoing perfusion of the vascular network [11], or because the cancer cells tend to occlude the capillary to prevent flow [20]. The opening that allows the passage appears to be small in comparison to the dimension of the TC nucleus [11,15]. Therefore, it is reasonable to assume tight contact between the TC and EC. Given the multiple cellular components involved in the process, including the TC nucleus, cytosolic fluid and cell membrane, as well as the EC, the mechanics of contact requires a careful treatment.

In a recent model, Cao et al. [15] have ignored the TC cytosol and membrane, and assumed direct solid-solid contact between the TC nucleus and the EC. Conceivably, the lubrication between the nucleus and the membrane [21] and between the membrane and the constriction [22] can play significant roles. In this work, therefore, we will test two cases: the "dry-contact" case of Cao et al. [15] with direct solid contact between the TC nucleus and the EC (Fig. 2a), and the "wet-contact" case that includes the cytosol and TC cell membrane (Fig. 2b). In the dry-contact simulation, the contact force is handled by a penalty method commonly used in solid-contact models [23]. In the wet-contact case, the cytosol flow within the thin gap between the TC and EC provides the lubricating pressure that prevents solid-solid contact. Including the cytosol narrows the opening available for the nucleus, and introduces additional viscous friction. So the wet contact should provide a greater resistance to the passage of the TC, and the dry contact is expected to provide the lower bound for the pulling force needed for passage. In both cases, the extravasation hinges on nuclear deformation, which is known to be a key factor in cell migration [24].

In both the dry-and wet-contact simulations, the tumor cell has an initially round nucleus of radius r n . The endothelium is modeled as a flat elastic layer with a circular hole of radius r g in the middle, which is smaller than the nuclear radius r n . Above the endothelial cells the ECM was treated as an elastic material with a cavity in the middle. The rationale for the cavity is that cancer cells are known to create a space in the ECM either by degrading it [START_REF] Eddy | Tumor cell invadopodia: invasive protrusions that orchestrate metastasis[END_REF] or by exploiting the tissue's plasticity [START_REF] Wisdom | Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments[END_REF]. The contractile apparatus of the invadopodium consists of stress fibers and focal adhesions; the two are connected in series with the nucleus at one end and the ECM at the other. In the wet-contact simulations, we assume that the cavity is filled with the cytosol of the TC, its membrane being in contact with the ECM. We have in general a fluid-structure interaction problem, with partial differential equations to be solved for the cytosol fluid flow and the elastic deformation of various elastic components-the ECM, EC and TC nucleus and membrane. Besides, the SF-FA assembly evolves temporally according to a set of ordinary differential equations. The dry-contact case lacks the fluid flow and fluid-structure interaction, and is therefore simpler.

The governing equations are solved, together with proper boundary conditions, by using COM-SOL Multiphysics, a finite-element package. See online Supplemental Information (SI), Section 1 for the complete set of governing equation and the boundary conditions, as well as a description of the geometric setup and the numerical techniques. All the model parameters are summarized in Section 2 of the SI, along with brief discussions of their evaluation and sources. A few key components of the methodology are described below.

Chemomechanics of the stress fibers and focal adhesions

Connecting the TC nucleus to the ceiling of the cavity is an assembly of stress fibers (SF) and focal adhesions (FA) in series. The SF contraction promotes the stabilization and growth of the FA [START_REF] Burridge | Focal adhesions, stress fibers and mechanical tension[END_REF].

Together, the assembly exerts a force on the top of the nucleus and pulls the nucleus and the whole cell through the narrow constriction against the elastic resistance due to the deformation of the nucleus and the endothelium. To represent the coupled dynamics of the SF and FA, we adapt the models of Deshpande et al. for the SF contractility and FA growth [17,19]. In the original model, the FA is being sheared with force and strain tangential to the substrate. In our setup, FA is being stretched by the SF, with force and strain perpendicular to the substrate. The adapted model can predict stiffness-dependent actomyosin force generation and FA formation due to the normal force on integrins.

The state of the stress fibers is represented by the fraction of activated myosin motors η on the SF, which ranges from 0 to 1. The kinetics of η depends on activation by an external signal (e.g., an influx of Ca 2+ ions [18]) and force-regulated deactivation:

dη dt = (1 -η)k a e -t θ -k d η - τ τ max , (1) 
where k a and k d are the kinetic rates for myosin activation and deactivation, e -t/θ represents an exponentially decaying calcium signal [17,18], and the deactivation is suppressed by the tension τ in a well-documented positive feedback [START_REF] Veigel | Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers[END_REF][START_REF] Kovács | Load-dependent mechanism of nonmuscle myosin 2[END_REF], τ max being the maximum tension when the myosin is fully activated (η = 1). Since the SF is under tension as a result of actomyosin contraction, the terms "tension" and "contractile force" are synonyms in the current context. The kinetic equation above is complemented by a constitutive equation for the SF, relating the tension τ by a Hill-like function to the contraction or extension rate of the stress fibers v f , similar to force generation in muscle cells [17,18]:

τ =                0, v f v 0 < -η kv , ητ max 1 + kv η v f v 0 , -η kv ≤ v f v 0 ≤ 0, ητ max , v f v 0 > 0, (2) 
where v f < 0 signifies contraction, v 0 is the zero-load speed of a myosin motor [START_REF] Besser | Coupling biochemistry and mechanics in cell adhesion: a model for inhomogeneous stress fiber contraction[END_REF] and k v is the fractional contraction rate at which the stress fibers can no longer sustain a tension [18]. The FA dynamics are governed by the conversion from low-affinity integrins to high-affinity integrins that can bond to the ECM. The integrin-ligand tension F b shifts the thermodynamic equilibrium between the two in favor of the high-affinity integrins and FA growth [19,[START_REF] Nicolas | Cell mechanosensitivity controls the anisotropy of focal adhesions[END_REF][START_REF] Shemesh | Focal adhesions as mechanosensors: A physical mechanism[END_REF]:

k B T ln ξ H ξ L = µ L -µ H -Φ + F b d b , (3) 
where k B is the Boltzmann constant, T is temperature, and ξ H and ξ L are the high-and low-affinity integrins per unit area, with the total number of integrins ξ H + ξ L = ξ 0 being conserved. µ L and µ H are the reference chemical potentials for the low-and high-affinity integrins. Φ, the stretch energy stored in each integrin bond, is a piecewise quadratic function of the bond extension d b , and

F b = ∂Φ/∂d b
is the tension in each bond, which adds up to yield the total tension τ in the SF:

τ = ξ H F b A b , (4) 
where A b is the area of the FA. The algebraic expressions for Φ and F b are given in the SI. Finally, the FA and SF are also constrained geometrically by this kinematic relation:

v A + v f + v b = v C , (5) 
where v b = d(d b )/dt is the rate of extension of the FA bonds, and v A and v C are, respectively, the velocity at the upper surface of the nucleus (point A in Fig. 2) and that of the ECM at the base of the FA (C in Fig. 2). We refer the reader to the SI and the literature [17][18][19] for more details of the coupled SF-FA model.

Hyperelasticity

The mechanics of the process involves elastic deformation and fluid flow, and we will formulate it as a fluid-structure interaction problem. The model setup involves 4 different elastic components: the TC cell membrane, the TC nucleus, the EC, and the ECM. Since the upper part of the membrane that has already exited the blood vessel is in direct contact with the ECM, we need not separately model this part of the membrane and will treat it as part of the ECM. Thus, the cytosol is in direct contact with the ECM in this upper "dome" (see Fig. 2b). The lower part of the membrane, inside the blood vessel, is modeled as a hyperelastic material obeying the Neo-Hookean constitutive equation:

σ = G J -3 5 F F T - I 3 tr F F T -K(J -1), (6) 
where F ij = ∂x i /∂X j is the deformation gradient tensor, with X and x being the undeformed and current positions of a material point, and J = det{F }. The coefficients G and K are the shear and bulk modulus, respectively, connected via the Poisson ratio ν:

K = 2G 3 1+ν 1-2ν .
The upper end of the TC membrane is attached onto the endothelium, and geometric details can be found in Section 1 of the SI.

The cell nucleus contains a large quantity of water and is a poroelastic material. Following [15], however, we will treat it as a heterogeneous neo-Hookean material with a soft core of radius r c = 2.7 µm and a more rigid shell of thickness δ = 0.3 µm. The permeation of water can be shown to occur at a much shorter time scale than the extravasation, and can thus be ignored [15]. The shear and bulk moduli of the shell are 10 times those of the core. Moreover, the EC and the ECM are both taken to be neo-Hookean solids. The moduli of all the elastic components are given in Section 2 of the SI. Finally, in all the hyperelastic bodies, the governing equation for solving for mechanical deformation is given by:

∇ • σ = 0. ( 7 
)

Cytosolic fluid dynamics

We treat the cytosol as a viscous Newtonian fluid, and model its flow by the Navier-Stokes equations:

∇ • v = 0, (8) 
ρ ∂v ∂t + v • ∇v = -∇p + µ∇ 2 v, (9) 
where p is pressure, v is the velocity vector, ρ is the density of the cytosol and µ is a constant cytosolic viscosity. Aside from the viscous cytosol, the nucleus may experience additional drag due to factors not accounted for in our model, e.g. contact and interference by nearby ECM or basal membrane [10,11], adhesion to nearby substrate [START_REF] Davidson | Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments[END_REF], and interaction with the various cytoskeletal filaments in contact with the nucleus, especially the intermediate filaments that form scaffolds for the nucleus [34,[START_REF] Kim | Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm[END_REF]. To account for this additional drag, we impose a distributed "Darcy-like" drag on the surface of the nucleus, in the form of -κv, proportional and opposite in direction to the local velocity on the nuclear surface. This drag force is distributed among the surface nodes on the TC nucleus in the form of a surface traction. The traction then enters the elastic deformation of the nucleus as a boundary force. The drag coefficient κ is chosen so that the nucleus attains a velocity during extravasation that is comparable to experimental observations. See Section 2 of SI for further discussion.

Thus, the model comprises interconnected chemo-mechanical factors as described in the preceding subsections. They can be graphically represented by the schematic in Fig. 3.

Experimental techniques

The aim of the experiment is to measure the forces involved in the transmigration of a cancer cell in an in vitro extravasation assay. As the invadopodium is surrounded by the endothelium on the side, and sandwiched by the TC and the ECM on both ends, it is difficult to access. Thus we have no easy way of measuring the pulling force on the invadopodium directly. This has led us to a different strategy, by pushing a fixed TC through an EC junction by using the tip of the cantilever of an atomic force microscope (AFM). Assuming zero inertia, the pushing force by the AFM cantilever must balance the elastic resistance exerted by the EC on the TC. Similarly, during extravasation, the tension in the invadopodium must balance the elastic resistance by the EC. Assuming equal elastic resistance in both cases, we can equate the pushing force on the AFM cantilever to the tensile force in the invadopodium during actual extravasation. Then we can determine if the measured force is consistent with those predicted by the dry-contact and wet-contact simulations.

Experiments were performed using a Nanowizard II Atomic Force Microscope (JPK Instruments, Berlin, Germany) mounted on an inverted microscope (Observer D1, Zeiss, AG). We used tipless cantilevers (MLCT, Bruker, Camarillo, CA) with a nominal spring constant k ∼ 0.6 N/m, calibrated using the thermal noise method [START_REF] Butt | Calculation of thermal noise in atomic force microscopy[END_REF]. A T24 invasive bladder carcinoma cancer cell [13] was attached to the tipless cantilever using a pre-established protocol [START_REF] Laurent | Atomic force microscopy reveals a role for endothelial cell ICAM-1 expression in bladder cancer cell adherence[END_REF][START_REF] Rajan | Unraveling the receptor-ligand interactions between bladder cancer cells and the endothelium using AFM[END_REF]. The attached cell was fixed using 4% Paraformaldehyde followed by 96% alcohol, before it had time to spread, then it was rinsed in phosphate buffered saline thrice. Eventually the cell exhibited a round shape with a diameter of roughly 17 µm (see Fig. 4).

Human umbilical vein endothelial cells (HUVECs) were cultured in cell culture medium for endothelial cells (PromoCell, Heidelberg, Germany) supplemented with antibiotics. Endothelial cells at passages P2-P4 were grown on a collagen gel (thickness ∼ 100 µm, 8 mg/mL) in a Petri dish adapted for microscopy, until confluence was reached. The Petri dish was mounted on the AFM, and the cantilever with fixed T24 cell was lowered down until contact was made precisely at a HUVEC junction (Fig. 4). Then gradual indentation was achieved, either manually by 1 µm steps or continuously at a constant velocity of 0.01 µm/s or 0.05 µm/s. To evaluate the collagen deformation and stiffness, a control experiment was carried out with the same fixed T24 cell but without HUVECs to deform the collagen layer.

The forcing on the AFM tip can be measured down to pico-Newton accuracy, and we can generate a force-displacement curve from the indentation experiment. The point of passage is ascertained by two criteria. The first is a leveling-off of the force with increasing displacement of the TC, indicating a maximum resistance. The second is a geometric criterion of the displacement reaching the radius of the TC. Data presented in the next section will show how these two criteria roughly concur.

Results

To test the invadopodium-based hypothesis of cancer cell transmigration, we seek to answer the following question: what conditions determine whether a tumor cell succeeds in extravasation? This depends on whether the active driving force generated in the SF-FA machinery is able to deform the TC and the EC sufficiently to allow the passage of the TC. We will first test the dry-contact scenario and then the wet-contact scenario. The results presented below correspond to the baseline 

Dry contact simulation

Figure 5 shows a time sequence of snapshots illustrating how the nucleus is pulled through the narrow opening in the endothelium by the SF. The endothelial opening has a radius r g = 1.5 µm in the middle, while the TC nucleus has an undeformed radius r n = 3 µm, twice the size of the opening. First, we initiate the calcium signal to trigger the myosin activation. This produces tension in the SF that pulls the TC nucleus toward the gap in the TC. Since the nucleus has an undeformed size that is bigger than the gap size, it stalls and comes into solid-solid contact with the surface of the EC (t = 50 s). In the contact zone, there is a normal contact force but no tangential friction. Under the pulling force by the SF, the nucleus, EC and the ECM continue to deform elastically until t = 90 s, when the nucleus is approaching the narrowest part of the EC constriction. Since the nuclear shell is much more rigid than the EC [15], it deforms much less in this process. Then a breakthrough happens as the nucleus transmigrates successfully (t = 100 s). Note that at this instant, the normal force from the EC propels the TC nucleus forward. The transmigration is completed by t = 130 s. The process is depicted in Movie 1 in the SI. [START_REF] Davidson | Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments[END_REF], with the two symbols indicating two data sets for different gap sizes. Adapted from [START_REF] Davidson | Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments[END_REF] with permission, c Oxford University Press. is owing to the geometric setup that puts an initial clearance between the tumor nucleus and the endothelium, and is not an intrinsic part of the physics. Afterwards, the nuclear velocity exhibits four distinct phases as demarcated in the graph. First, the nucleus movement is impeded after it makes contact with the endothelial surface, and the velocity declines. Second, the nucleus and the EC deform as the SF contracts more, and v n slowly accelerates. Third, the nucleus snaps through the gap, with a sharp rise in v n followed by a sharp decline. The acceleration is partly due to the release of stored elastic energy in the nucleus and the EC after the breakthrough; this is visible in the snapshot for t = 100 s in Fig. 5. The deceleration after breakthrough reflects the decline in the tensile force on a rapidly shortening SF. Finally, the nucleus settles down to a small velocity, as the SF gradually disassembles following the loss of tension.

We can compare the model prediction with experimental observations of Davidson et al. [START_REF] Davidson | Design of a microfluidic device to quantify dynamic intra-nuclear deformation during cell migration through confining environments[END_REF] (Fig. 6b). The simulation has captured the qualitative features of the experiment, including the four phases in the variation of the nuclear velocity. However, the time scale and the peak velocity are quite different. Our model predicts a transit time of roughly 2 min, compared with the experimental value of over 100 min. A possible explanation for the difference is that the experiment is based on the crawling of a fibroblast through narrow constrictions due to the gradient of chemoattractant, which is a slow process determined by the biochemical rates of chemotaxis. In contrast, the breakthrough of nucleus during extravasation is governed by the much faster dynamics of SF contraction.

During the transmigration, the active myosin level η, the fraction of high-affinity integrins ξ H /ξ 0 in the FA and the contractile force τ in the SF follow similar trajectories of temporal evolution (Fig. 7). According to Eq. ( 1), the calcium signal prompts the rapid assembly of the actomyosin stress fibers. In the meantime, the myosin deactivation also rises with η, the balance between the two resulting in a plateauing of η around t = 50 s. After η plateaus, the SF tension τ continues to grow because of the "viscous" v f /v 0 term in the constitutive equation (Eq. 2). The nucleus coming into contact with the EC, its motion slows down as does the rate of SF contraction v f , thus raising τ . The rising tension also drives the continual rise of the high-affinity integrins ξ H (Eq. 3), which amounts to a growth of the FA in a well-documented positive feedback [START_REF] Nicolas | Cell mechanosensitivity controls the anisotropy of focal adhesions[END_REF]. As the nucleus snaps through the passage (90 < t < 100 s in Fig. 5), its sudden acceleration leads to a large negative v f , and consequently a sudden drop in the contractile force τ from a peak of about 20 nN toward zero according to the SF constitutive equation (Eq. 2). As a consequence, the actomyosin SF disassembles quickly and η declines, and the FA weakens with declining high-affinity integrins ξ H . Later, as the nucleus decelerates quickly, the SF contraction speed v f declines and the tension τ recovers somewhat (cf. Eq. 2) before decaying slowly over a long time. The same pattern is mirrored by ξ H .

In Section 3 of the SI, we have included a parametric study that shows how the success of the extravasation depends on model parameters such as the size of the EC opening, ECM modulus, and duration of the decaying signal that stimulates myosin activation.

Wet-contact simulation

The wet-contact simulations include the effects of the cytosol and the TC cell membrane. The cytosol affects the translocation of the nucleus both geometrically and hydrodynamically. Geomet-rically, a film of cytosol that cushions the nucleus from the endothelium effectively narrows the space available for the nucleus, and thus hinders extravasation. Hydrodynamically, the cytosol film acts like a lubricating layer, producing a viscous friction and a lubricating pressure between the nucleus and the endothelium, in place of the solid contact force in the dry-contact situation. Since the dry-contact model is frictionless, the viscous friction probably also increases the resistance to extravasation for the wet-contact model. Finally, having the cytosol inside the membrane also allows the model to account for the "back pressure", i.e. the pressure difference between the fluid ahead of the nucleus and behind it, a potentially important effect [15]. Should the contractile force fail to pull the nucleus through the gap, it will slowly pull the nucleus against the membrane toward a static state where the nucleus, TC membrane and the EC outside are in solid contact. In this sense, the dry-contact force computed in the previous subsection should provide a lower bound for the contractile force that is required for extravasation.

Figure 8 shows snapshots during passage of the nucleus through the opening in the endothelium.

The color scale in the solid indicates the strain component in the vertical direction, while that in the cytosol marks the magnitude of the velocity. As the stress fibers pull the nucleus into the narrow gap (t = 60 s), not only does the nucleus deform and stretch in the vertical direction, so do the EC and the ECM. The deformation in the ECM directly above the nucleus is caused by the pulling force in the SF and the FA. Meanwhile the cytosol is squeezed in the upper chamber, where the pressure rises and pumps the cytosol downward through the gap (Figs. S6, S7 in the SI). Later (t = 72.5 s), the upward movement of the nucleus has generated such a low pressure underneath that the cell membrane caves in at the bottom. This concave shape may be partly due to the model's neglecting the cortical tension. It is unclear whether such change of shape occurs during extravasation in vitro or in vivo. The greatest amount of nuclear deformation occurs at t = 180 s. Once the centroid of the nucleus is past the narrowest point of the gap (t = 183 s), the elastic resistance on the nucleus drops suddenly. In fact, the relaxation of the deformed EC now provides an upward pushing force on the nucleus. As a result, the tension on the stress fibers drops quickly, while the ceiling of the ECM relaxes as well. The passage is complete by t = 196.5

s. An animation of the extravasation can be viewed in Movie 2 of the SI. The transient cytosolic flow turns out to be highly intricate during the nuclear passage, and is analyzed in Section 4 of the SI. Ultimately, the back pressure and viscous friction due to the cytosolic flow are negligibly small. Similar to the dry-contact case, the wet-contact transmigration can be analyzed more quantitatively through the temporal evolution of the nuclear velocity v n , the myosin activation η and tension τ in the SF, and the high-affinity integrins ξ H in the FA. The nuclear velocity v n , depicted in Fig. 9, exhibits the same 4 phases as in Fig. 6. But the wet-contact case takes much longer in phase I; there is a long period (roughly from t = 20 s to 120 s) in which the nucleus decelerates The force for the dry-contact case is also shown for comparison. In later times (t > 200 s), τ and ξ H recover somewhat as in the dry-contact case, but this portion of the evolution is omitted for a better view.

slowly. This is evidently due to the lubricating flow in the thin film between nucleus and the EC.

Subsequently, the acceleration phase II and breakthrough phase III take roughly the same time as in the dry-contact case. During the breakthrough, the nucleus attains a much higher velocity (maximum of 45 µm/min, almost 4 times that for the dry-contact case).

The evolution of η, τ and ξ H in Fig. 10 resembles that of the dry-contact case in Fig. 7, with some interesting quantitative differences. Although the myosin activation η saturates at more or less the same level, the tension τ rises to much larger magnitude in the wet-contact simulation.

The presence of the cytosol narrows the space available for the nucleus to pass, and also adds a viscous friction against the passage. Thus the nucleus encounters stronger initial resistance and moves up more slowly as the nucleus deforms gradually. This explains the long deceleration phase II of Fig. 9. Through the constitutive equation of the stress fiber (Eq. 2), the decelerating SF contraction rate allows τ to continue to rise after η has saturated. This is also the cause of the upturn in τ at t = 20 s when the nucleus initially encounters resistance in the gap and decelerates sharply. Through the stress-feedback mechanism in the FA, the rising τ raises ξ H . In fact, the tension is so strong that the fraction ξ H /ξ 0 reaches 1 at t ≈ 50 s, signifying complete conversion to high-affinity integrins, and stays at 1 until the extravasation completes. The breakthrough around t = 180 s is accompanied by a sharp peak in the nuclear velocity and a precipitous decline in the SF tension and high-affinity integrin level. The actomyosin stress fibers also start to disassemble.

Afterwards, the nuclear velocity is largely determined by the "Darcy-like" drag coefficient. The maximum tension in the SF over the entire process is about 70 nN.

In comparing the wet-contact and dry-contact simulations, one notes similar temporal dynamics in the SF-FA assembly, based on two positive feedbacks between the tension τ and actomyosin activation η on the one hand, and between τ and the FA strength ξ H on the other. As anticipated in Section 2.1, the wet-contact mode incurs more intense dynamics. The resistance to nuclear passage is greater, and the SF develops a stronger tension τ , accompanied by a higher level of myosin activation η and FA development ξ H . The wet-contact model predicts a transit time of roughly 4 min, on the same order as in vitro observations of TC extravasation (10-15 min) [11,13].

Our model has predicted successful extravasation in both the dry-contact and the wet-contact setup using a set of realistic parameters. The contractile device in the SF-FA assembly is able to generate the force required to deform the tumor cell and the endothelium sufficiently to allow transmigration. This supports the hypothesis of Chen et al. [10,11] that the tumor cell uses contractile forces inside an invadopodium to pull the nucleus through the narrow gap between neighboring endothelial cells. Most interestingly, the required tension for the nuclear transmigration is approximately 70 nN for wet contact and 20 nN for dry contact. These two values straddle that of 38 nN predicted by the earlier model of Cao et al. [15]. Which more closely approximates reality will be tested by experimental measurements. 

Experimental results

As an additional test for the transmigration mechanism discussed in the above, we measure the force needed to push a fixed and passive tumor cell through an EC junction. As explained in Section 2.5, this is achieved by positioning a fixed TC on top of a HUVEC junction (Fig. 4) and then using the AFM cantilever to press the TC into the junction. The experiment has been done in two modes. In the manual mode, we press the TC down by a 1 µm indentation and wait for 20 to 35 s for the force signal to relax. Then this is repeated until a plateau in the force is found. In the continuous mode, a long-range piezo displacement unit is used to move the cantilever downward at a prescribed constant velocity in the range of 0.01-0.05 µm/s, to a maximum vertical displacement of 40 µm. In either mode, the pressing force obtained from the cantilever deflection is recorded as a function of the vertical displacement. The high-speed (0.05 µm/s) run in the continuous mode shows a distinct behavior, with the force increasing apparently without bound until the maximum strain tested (z = 36 µm). Our interpretation of this behavior is that when the TC moves at a high speed, it does not give the HUVEC cells enough time for remodeling and relaxing, which is an integral part for cancer cell extravasation [3]. As a result, transmigration never happened in this high-speed indentation experiment.

This interpretation is supported by the two data sets obtained in the manual mode. First, note that at each fixed displacement, there is a series of force values forming a vertical cluster in the graph. This corresponds to the force relaxing as the EC remodels and softens while the TC is held at a fixed z. Second, if we divide the final displacement by the total duration of the experiment, we arrive at an average speed of 0.049 µm/s for the manual data set A and 0.030 µm/s for set B. These two speeds fall between the high-speed and low-speed continuous runs, as do the forces of the two manual runs. This suggests that the waiting time after each manual displacement was not long enough to allow full EC remodeling, and as a result we ended up with greater forces than the slower-speed continuous tests. This is consistent with the interpretation of the high-speed (0.05 µm/s) run in the continuous mode. Finally, the two manual data sets each show an apparent plateau at the end of the runs, at a maximum displacement of z = 34-37 µm. This may correspond to the onset of transmigration, albeit at an elevated force for the lack of sufficient EC remodeling and relaxation.

To summarize the experimental results, we take the quasi-static measurements, at the smaller constant velocity of 0.01 µm/s in the continuous mode, to correspond properly to the extravasation process where the EC cells have time to remodel sufficiently. Furthermore, we identify the plateau in the force-displacement curve with the onset of TC transmigration, and the plateau force F = 70-100 nN to be the required driving force. This range is consistent with our model prediction of a required tension of F = 70 nN in Fig. 10(b), and the experimental results seem compatible with the model predictions.

Discussion and conclusion

In this work, we have built a biomechanical model for the trans-endothelial migration of a tumor cell (TC) during extravasation, with the aim of testing a hypothesis proposed by Chen et al. [10,11] that the transmigration is driven by the contractile force in the invadopodium protruding from the cancer cell to the ECM outside the endothelium. The model integrates several components into a coherent framework: the elastic deformation of the tumor and endothelial cells and the ECM, the fluid flow inside the TC cytosol, and the coupled dynamics of the stress fibers (SF) inside the invadopodium and the focal adhesions (FA). Using a set of parameters chosen to approximate a realistic extravasation, the model predicts successful transmigration of the TC. Besides, we have also measured experimentally the resistance force experienced by a TC as it is pushed through an endothelial junction in vitro. The main results of the work can be summarized as follows:

• Triggered by an external signal such as an influx of calcium ions, the SF assembles and grows simultaneously with the FA, thanks to a positive feedback between the tension and actomyosin activation, and another between the tension and growth of the focal adhesions through growing high-affinity integrins.

• Driven by the tension in the SF-FA assembly, the TC nucleus deforms as it enters a prescribed gap representing an endothelial junction. In the mean time, the endothelial cells (ECs) and the ECM also deform until a critical point when the TC passes through the gap to extravasate.

• The measured resistance force, in the range of 70-100 nN, is consistent with model predictions of a required driving force of 70 nN. A simpler "dry-contact" model, which ignores the TC cytosol and membrane and assumes solid-solid contact between the TC nucleus and the endothelium, under-predicts this force grossly.

These results support the invadopodium-based mechanism for the extravasation hypothesized by Chen et al. [10,11]. Quantitatively, the invadopodium is able to generate the force required to pull the TC through a narrow opening in the endothelial layer. Besides, the comparison between the model predictions, using both the dry-contact and the wet-contact setups, with the experimental data demonstrates the need to account for the cytosol and membrane of the tumor cells. Otherwise, a dry-contact model would incorrectly predict transmigration at driving forces that are too low by a factor of about 3.5.

We must emphasize the limitations of this work as well. Extravasation of tumor cells is a highly complex process, with multiple biochemical and mechanical factors at work. Of necessity some of these are neglected in the modeling. Perhaps the most important of these is the remodeling of the endothelium, which can be through mechanical [START_REF] Russo | Mechanical stretch implications for vascular endothelial cells: Altered extracellular matrix synthesis and remodeling in pathological conditions[END_REF] and biochemical pathways [3]. Mechanically, ECs have long been known to exhibit viscoelasticity [START_REF] Sato | Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress[END_REF], and our own experiment reported here suggests relaxation under compression. Stretching and fluid-induced shear stresses not only remodel the cytoskeleton of ECs [START_REF] Russo | Mechanical stretch implications for vascular endothelial cells: Altered extracellular matrix synthesis and remodeling in pathological conditions[END_REF][START_REF] Osborn | Endothelial actin cytoskeleton remodeling during mechanostimulation with fluid shear stress[END_REF] but also the cell-cell junctions [START_REF] Dorland | Cell-cell junctional mechanotransduction in endothelial remodeling[END_REF]. Biochemically, cancer cells promote stress fiber assembly and actomyosin contraction inside ECs through the Rho pathway, causing retraction of the ECs and opening of their junctions, both facilitating the passage of the tumor cell [8,[START_REF] Li | Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells[END_REF][START_REF] Cain | The PI3K p110α isoform regulates endothelial adherens junctions via Pyk2 and Rac1[END_REF]. They can also directly attack the EC junctions by disrupting the VE-cadherin complex [3,9,[START_REF] Tremblay | Regulation of transendothelial migration of colon cancer cells by E-selectin-mediated activation of p38 and ERK MAP kinases[END_REF]. To a limited degree, our experiment has probed such EC remodeling under purely mechanical cues from the TC. Although the fixed TC sends no biochemical signals to the EC, its indentation into the EC elicits an immediate jump in the reactive force, which partially relaxes over a time scale of 20 to 30 seconds (see Fig. 11). Following this argument, one may argue that the model's capturing the required driving force (∼ 70 nN) is fortuitous in the sense that the dynamically changing mechanical properties of the endothelium must have been represented, in an averaged sense, by an EC modulus that is soft. Other factors that have been neglected from the model include the poroelasticity of the tumor-cell nucleus, the effect of the plasma flow inside the blood vessel, and the dynamic process of the proteolysis of the ECM.

Another potentially important omission is the biochemical pathways for actomyosin activation.

This has been lumped into a simple "activation signal" that decays exponentially in time. In reality, there exist multiple pathways for such activation, e.g. for actin polymerization through the Rac1 pathway and for myosin assembly by the RhoA pathway [18], which may add nuances to the development of the tensile force in the invadopodium.

Finally and more technically, evaluation of the model parameters has been a difficult task. For one, certain model parameters, such as the magnitudes of the activation and deactivation rates and the duration of the external signal, are not explicitly available from prior measurements, and we have adopted values from prior modeling. To partially address this uncertainty, we have reported in the SI a parametric study to map out the model predictions over a reasonable range of several key parameters. This has given us a guideline as to the applicability of the model predictions vis-à-vis a specific in vivo or in vitro extravasation process. In view of the above limitations, one should consider the model predictions in this paper a tentative validation of the hypothesis that we have set out to test, subject to refinement of the various model assumptions and more accurate evaluation of the parameters.

actomyosin activation and a Hill-like constitutive equation for the SF:

dη dt = (1 -η)k a e -t θ -k d η - τ τ max , (S1) τ =          0, v f v 0 < -η kv , ητ max 1 + kv η v f v 0 , -η kv ≤ v f v 0 ≤ 0, ητ max , v f v 0 > 0. (S2)
Our FA model is based on the thermodynamic equilibrium between two conformational states of low-and high-affinity integrins, subject to the conservation of the total number of integrins: ξ H + ξ L = ξ 0 . Only the high-affinity integrins contribute to the formation and growth of the FA; the tensile force τ in the SF is sustained by the FA and shared by all the high-affinity integrins in the FA:

k B T ln ξ H ξ L = ∆µ -Φ + F b d b , (S3) 
τ = ξ H F b A b , (S4) 
where k B is the Boltzmann constant, T is temperature, and ∆µ = µ L -µ H is the free energy difference between the low-and high-affinity integrins. The stretch energy Φ is expressed as a piecewise quadratic potential in the integrin bond length d b , and the force F b = ∂Φ/∂d b on each high-affinity integrin is piecewise linear:

Φ =          1 2 λd 2 b , d b ≤ d m , -λd 2 m + 2λd m d b -1 2 λd 2 b , d m < d b ≤ 2d m , λd 2 m , d b > 2d m , (S5) 
F b =          λd b , d b ≤ d m , 2λd m -λd b , d m < d b ≤ 2d m , 0, d b > 2d m . ( S6 
)
where λ is the stiffness of the bond and d m is the maximum bond length.

The elastic components of the model, including the TC membrane, TC nucleus, the EC and the ECM, all obey the neo-Hookean constitutive equation, and the local force balance is expressed simply as the stress tensor having zero divergence:

σ = G J -3 5 F F T - I 3 tr F F T -K(J -1), (S7) 
∇ • σ = 0. (S8)
The elastic moduli differ among the various components and are listed in Section 2 below.

EC and 13 µm below the center of the ECM cavity. The upper part of the TC membrane is not treated separately since it is in contact with the ECM. The lower part is a spherical shell that is initially concentric with the nucleus, with an inner radius of R = 4.5 µm and a thickness of = 10 nm. The upper end of the TC membrane is attached onto the endothelium at the intersection of the round membrane and endothelial layer.

(iii) Boundary conditions. Around the outline of the computational domain, three types of boundary conditions are imposed. Along the axis of symmetry (r = 0), of course, all radial derivatives vanish. The outer boundaries of ECM and the endothelial layer, marked by the green lines in Fig. S1(b), are fixed in space with zero displacement. Finally, on the outside of the TC membrane we impose a constant ambient pressure p = 0.

On all the fluid-solid interfaces, including that between the cytosol and the ECM, the EC, the TC nucleus and the TC membrane, we impose continuity in the velocity v and traction:

v solid = v f luid , (S12) n • σ solid = n • σ f luid , (S13) 
n being the local unit normal vector. The tension inside the SF-FA assembly requires some special treatment. To avoid local singularities, we distribute the force τ in the stress fibers over a small area marked in red on top of the nucleus in Fig. S1(b), of area A n . A uniform traction of magnitude τ /A n is applied in the vertical direction over this area. Similarly, on the roof of the cavity where the FA meets the ECM, we distribute τ over the FA area A b . The dry-contact setup is similar and simpler, in that the TC cell membrane and cytosol are neglected. On solid surfaces exposed to the cytosol in the wet-contact setup, i.e. the inner surfaces of the ECM and the EC, as well as the TC nucleus, we now impose the zero-stress condition: n • σ solid = 0.

(iv) Numerical techniques. The numerical problem formulated in the above is solved by COM-SOL Multiphysics, a finite-element package. The dry-contact simulation consists in solving for the elastic deformation of the various components under the driving force that develops inside the SF-FA complex. A prominent feature is the contact force between the nucleus and the EC. This is handled by the penalty method, a common technique in solving solid-contact problems [1].

The wet-contact simulations consist essentially in fluid-structure interactions, with coupled solutions of the cytosolic flow and the elastic deformation of the elastic components (ECM, EC and TC components). The cytosol in the thin gap between the TC nucleus and EC provides a lubricating pressure. In addition, we have found it necessary to introduce a repulsive pressure to prevent very close approach between the TC nucleus and the EC surface, which could cause numerical blowup. Such a repulsion is commonly used in the literature for preventing solid-solid contact across a narrow fluid gap [2]. This repulsive pressure is imposed on the nuclear and endothelial boundary nodes, and is defined using the shortest distance d from a node to the opposite surface:

P rep = P 0 tanh d -1 -d -1 0 + 1 2 , ( S14 
)
Figure S2: The effect of different mesh resolution on the contractile force in the stress fibers. The solutions using the coarse, normal and fine resolutions are sufficiently close, and we have used the normal resolution in all results reported later.

where P 0 = 100 kPa, d 0 = 0.588 µm and d is measured in micrometers. The value of d 0 determines how steeply P rep decays with the separation d, and the minimum separation is about 0.25 µm during the transmigration under the standard set of parameters (see Section 2 below). We have tested P 0 values down to 50 and 10 kPa; the minimum gap size decreases to 0.24 µm and 0.15 µm, and the maximum tension in the stress fibers decreases from 70 nN to 65 nN and 57 nN, respectively. Therefore, in this range P 0 does not strongly affect the threshold for transmigration.

In our simulations, COMSOL does implicit time stepping, and adaptively refines or remeshes an unstructured triangular grid. We have done numerical experimentation to ensure adequate temporal and spatial resolutions. As an example, Fig. S2 shows the effect of mesh refinement on the contractile force in the stress fibers in the dry-contact simulation. All the results reported have used the so-called "normal resolution" with roughly 10,000 elements for the dry-contact setup, and 27,000 elements for the wet-contact setup, with the smallest and largest grid sizes being 0.007 µm and 1.98 µm, respectively. The maximum time step is ∆t = 0.05 s, which is adequate for resolving the transients in the simulations.

Model parameters

The model parameters fall into 3 categories: geometric, physical and biochemical, and they are tabulated in Tables 1-3 in that order together with the sources for their values. Where possible, the parameters are evaluated by using experimental measurements from the literature or our own laboratory. Otherwise the values are chosen based on similar modeling and computational studies in the literature. In the following, we highlight several notable parameters. For the geometric dimensions listed in Table 1, we have largely modeled after the prior simulation of Cao et al. [3]. In particular, the EC thickness is taken to be h = 6 µm. Experimental literature reports smaller values of 3-4 µm [7]. Our larger value is an effective thickness for the endothelium that also includes the basement membrane outside the EC [8]. The initial TC membrane radius is chosen based on the typical size of a tumor cell. The physical parameters consist of the properties of the various elastic components and the cytosolic fluid (Table 2). To allow strain hardening in the elastic components at large strain, we adopt the neo-Hookean hyperelastic constitutive relationship for all the elastic components, i.e. the ECM, EC, TC nuclear shell and core and the TC membrane. The same Poisson ratio ν = 0.3 is assumed for all these components, but their shear moduli differ, as given in Table 2. Note that the TC membrane is much more rigid than the ECM and EC; this is chosen based on reported elastic modulus for lipid bilayers [16]. The TC nucleus is the limiting factor in extravasation, and deserves a few more words here. Following Cao et al. [3], we consider the nucleus as made of a hyperelastic shell that encases a softer core of chromatin and other structures, both layers being governed by neo-Hookean constitutive relationships. The shell consists mainly of a matrix of Lamin A/C, which affords it an higher stiffness than the inside of the nucleus. We have adopted a shear modulus of G s = 10G c following Cao et al. [3]. Experiments showed that the viscosity and density of the cytosol are not significantly different from those of water [6,17], and so we have chosen µ = 10 -3 Pa•s and ρ = 1000 kg/m 3 .

Symbol

Symbol

As explained in the main text, a "Darcy-like" drag -κv is applied onto the TC nucleus. The coefficient κ is determined such that when the nucleus snaps through the constriction, it attains a realistic velocity. In an experiment on a fibroblast crawling through a constriction on a substrate, Davidson et al. [18] reported nuclear velocity of up to 2 µm/min. From the in vitro extravasation experimental of Chen et al. [9], we estimate an average velocity of 0.8 µm/min. The κ value used here gives an average velocity of 3.8 µm/min, on the same order of magnitude as the observations. Finally, the biochemical parameters of the model are tabulated in Table 3. Most of these are adopted from Deshpande et al. [19,24]. The total number of high and low affinity integrins (ξ 0 ) in an isolated cell is taken to be 5000 µm -2 [19,23].

Symbol

Parametric studies

The "baseline" set of parameters tabulated in the previous section is used in all the simulation results presented in the main paper. Besides, we have also done some limited exploration of the parametric space, in particular to determine how the outcome of TC transmigration depends on key parameters, including the size of the gap (r g ) in the endothelium, the ECM rigidity and the time scale of the chemical signal that stimulates myosin activation. These explorations have been done in the dry-contact setup for its lower computational cost.

Figure S3: Effect of the EC gap radius r g on extravasation of the TC nucleus in the dry-contact simulations. The outcome is depicted by the tension in the SF-FA assembly, and extravasation fails for too small a gap (r g ≤ 0.9 µm).

(i) Effect of the gap size. Figure S3 represents the impact of gap size on the driving force. As discussed in the main paper, a successful extravasation is characterized by a tension force τ that rises in time as the nucleus deforms and squeezes slowly through the gap, and falls precipitously upon breakthrough. Such is the case for the larger gaps (r g ≥ 1.2 µm). Note that as the gap shrinks in size, the force rises to larger values as the nucleus deforms more severely before transmigration occurs. It also takes longer time. For a gap that is too narrow (r g = 0.9 µm), the nucleus becomes stuck and fails to extravasate, suggesting a critical ratio r g /r n = 0.3 ∼ 0.33 for passage. Incidentally, the previous model of Cao et al. [3] predicts a critical ratio of r g /r n = 0.3 for the dry-contact setup, close to our predictions. This is also consistent with experimental observations that arrest happens at pores whose cross-sectional area is 10% of that of the nucleus [4].

(ii) Effect of ECM rigidity. Figure S4(a) shows the effect of shear modulus G ECM of the ECM on the driving force τ due to SF contractility. The key observation is that a stiffer ECM facilitates transmigration. For G ECM ≥ 500 Pa, the ECM is sufficiently stiff to provide secure anchoring for the SF-FA machinery such that the latter produces a sharply rising τ to pull the nucleus through. Increasing ECM modulus makes the passage faster. On the other hand, softening the ECM below 500 Pa has a more qualitative effect and transmigration eventually fails for G ECM ≤ 100 Pa. As illustrated by the snapshot in Fig. S4(b), the soft ECM deforms greatly in response to the tension in the stress fibers, and the nucleus remains stuck at the endothelial gap. This again illustrates the importance of having a secure anchoring pad for the contractile machinery.

The effect the ECM rigidity can be compared with the effect of the cantilever speed in measuring the extravasation force (Fig. 11 of the main text). A higher cantilever speed leaves the ECs less time to relax and adapt to the deformation brought on by the TC, and thus the ECs will appear more rigid. As a result, the force rises more rapidly in Fig. 11, similar to the trend in Fig. S4(a). Conversely, a slower cantilever speed leads to effectively softer ECs and a slower increase in the force. The two situations differ, however, in that softer ECs favor extravasation in the experiment while a softer ECM impedes extravasation here. 

Effect of cytosolic flow

As the tumor-cell nucleus transmigrates in the cytosol, one expects its movement to raise the pressure upstream of the nucleus and reduce the pressure downstream. This in turn may incur a downward cytosolic flow in the lubricating film separating the nucleus from the membrane. Both effects should hinder the nucleus motion. Besides, Cao et al. [3] discussed how the static Laplacian pressure may produce a net force for or against transmigration by assuming a uniform and constant membrane tension. In our model, we assume no preexisting cortical tension in the TC membrane; it is initially in an undeformed state with zero tension. Besides, the initial pressure in the cytosol is zero. The ambient pressure in the "blood vessel", i.e. below the endothelium, is maintained at zero for all times. Thus, we ignore the Laplacian pressure and focus on the hydrodynamic effects of the cytosolic flow. Our dynamic simulation shows interesting temporal changes in the pressure and flow field in the cytosol during the transmigration. Figures S6 andS7 show snapshots of the pressure distribution and velocity vectors during the passage of the nucleus. When the nucleus approaches the constriction (t = 60 s), it behaves like a piston and raises the pressure in the upper chamber relative to the lower chamber. This pressure field pumps the cytosol downward through the thin gap between the nucleus and the EC. At t = 72.5 s, the pressure at the lower chamber becomes so low that the membrane caves in. The same overall pattern of pressure distribution and downward cytosolic flow prevails for the entire process of extravasation except for a short interval around t = 180 in which the pressure gradient becomes inverted, with lower pressure upstream of the nucleus and the upward flow in the thin gap.

The cause of the anomalous pressure gradient at t = 180 s is not entirely clear, but appears to be related to the rapid acceleration of the nucleus once it breaks through the point of greatest constriction (cf. Fig. 8 in the main text). We speculate that it may have arisen from the compress-ibility of the elastic components coupled with the large difference in rigidity between the ECM and the TC membrane. Since the ECM is much softer than the TC membrane (Table 2), it deforms more readily as the nucleus pushes into the upper cavity and causes it to expand. For a short period, the expansion of the upper chamber may be such that the pressure becomes lower. The inertia of the cytosolic flow may also become appreciable during the nuclear acceleration, but it is unclear whether it plays a role in the pressure inversion. Because of the short duration of the inverted pressure, it has little impact on the nuclear transmigration.

Overall, the hydrodynamic pressure and the cytosolic flow both act to resist the transmigration. But their magnitudes are much smaller than the dominant forces of the process-the contractile force in the stress fibers and the elastic resistance of the endothelium. For example, the maximum pressure force on the nucleus, achieved at t ≈ 183 s, is about 55 pN, while the maximum viscous shear force is only 6 pN. Therefore, the cytosol affects the nuclear transmigration mostly through the lubricating layer. The direct contribution of the back pressure and viscous friction is negligible.

Supplemental Movies

Two supplemental movies can be downloaded from the article's home page. Below are their captions. 

Figure 1 :

 1 Figure 1: An invadopodium-based mechanism for extravasation proposed by Chen et al. [10]. Inside the TC, actomyosin assembles into stress fibers that propel a protrusion between the ECs. Adhesion molecules, including α3β1 and α6β1 integrins, anchor the tips of the protrusion onto laminin of the ECM. The focal-adhesion proteins include tensin, talin and vinculin among others. Actomyosin contraction in the stress fibers then pulls the TC past the constriction between ECs.

Figure 2 :

 2 Figure 2: (a) Schematic showing the geometric setup for the "dry-contact" simulation. Stress fibers AB and focal adhesions BC link the nucleus to the roof of the ECM cavity. The TC membrane and cytosol are ignored, and the critical condition of the breakthrough of the TC nucleus is determined from the direct but frictionless contact between the nucleus and the endothelium. (b) Schematic illustrating the geometric setup for the "wet-contact" simulation, with the TC membrane and cytosol explicitly accounted for.

Figure 3 :

 3 Figure 3: Schematic showing the various components of the model. A pointed arrowhead means "activate" or "promote" whereas a flat arrowhead means "impede" or "inhibit".

Figure 4 :

 4 Figure 4: Phase contrast image shows a T24 cancer cell attached onto a V-shaped cantilever in contact with the HUVEC monolayer. The T24 cell contour is shown in red and the outlines of several neighboring endothelial cell are drawn in white. As a length scale, the diameter of the cancer cell is roughly 17 µm. The image is taken from below the endothelium, which is transparent.

Figure 5 :

 5 Figure 5: Snapshots showing the progression of transmigration in the dry-contact setup of the simulation. The color contours show the local strain in the vertical direction.

Figure 6 (Figure 6 :

 66 Figure 6(a) shows the evolution of the velocity v n of the centroid of the nucleus during its transmigration. Upon start of the simulation, the velocity rises till t ≈ 20 s. This acceleration

Figure 7 :

 7 Figure 7: Dynamics of transmigration illustrated by the evolution of (a) the active myosin level in the SF η and the fraction of high-affinity integrins ξ H /ξ 0 in the FA; (b) the tension τ in the SF.

Figure 8 :

 8 Figure 8: Snapshots illustrating the extravasation of a tumor-cell nucleus in a wet-contact simulation. The left color bar shows the level of the vertical strain component in the solids while the right color bar shows the velocity magnitude (m/s) in the cytosol.

Figure 9 :Figure 10 :

 910 Figure 9: Dynamics of transmigration illustrated by the temporal evolution of the velocity of the centroid of the nucleus in time. The dry-contact result is also shown for comparison.

Figure 11 :

 11 Figure 11: Experimentally measured indentation force as a function of the displacement of the fixed tumor cell. The 3 relatively smooth curves with symbols are recorded in the continuous mode at two different cantilever speeds, while the 2 data sets with vertical spikes are measured in the manual mode.

Figure 11 plots

 11 Figure 11 plots five data sets, three in the continuous mode and two in the manual mode. Of the three continuous-mode curves, two are at the slow speed of 0.01 µm/s and the other is at the much higher speed of 0.05 µm/s. The two low-speed runs yield similar data; the force initially increased with displacement, and then attains a plateau at a displacement of z ∼ 30 µm. The plateau is taken to be an indication that the tumor cell has entered the narrowest part of the junction and transmigration is occurring. This criterion is based on the assumption of a monotonic relationship

Figure S4 :

 S4 Figure S4: Effect of the ECM modulus G ECM on extravasation of the TC nucleus in the dry-contact simulations. (a) Temporal evolution of the tension τ for 4 values of the ECM modulus. Extravasation fails if the ECM is too soft (G ECM ≤ 100 Pa). (b) A snapshot of the ECM deformation at t = 210 s for G ECM = 100 Pa shows great deformation of the soft ECM that accompanies failure of extravasation. The color contours indicate the vertical component of the stretching.

Figure S5 :

 S5 Figure S5: Effect of time scale θ of the activation signal (see Eq. S1). Transmigration requires a minimum θ, which is between 10 and 50 s.

(

  iii) Effects of duration of the activating signal. In our biochemical model, the actomyosin activation is driven by a chemical signal, e.g. an ionic influx of Ca 2+ . In Eq. (S1), this signal decays exponentially in time with a time constant θ.

  Figure S5 plots the time evolution of the contractile force τ for four values of θ. If we lengthen θ from the baseline value of θ = 100 s, the contractile force τ grows more slowly initially, but in time reaches a similar maximum before declining. The passage takes a longer time to complete. As we shorten θ, however, the decay of the stimulating signal is faster, and τ achieves a relatively low maximum force. For θ ≤ 10 s, this maximum falls below what is needed to deform the nucleus sufficiently and transmigration fails.

Figure S6 :

 S6 Figure S6: Evolution of the pressure field in the cytosol during various stages of the extravasation.

Figure S7 :

 S7 Figure S7: Velocity field in the cytosol during various stages of the extravasation.

Movie 1 :

 1 Animation of the dry-contact simulation of transmigration of a tumor-cell nucleus. The color contours indicate the vertical component of the elastic strain. Movie 2: Animation of the wet-contact simulation of transmigration of a tumor cell. The color contours inside the solids (corresponding to the left color bar) indicate the vertical component of the elastic strain, while those in the cytosol (right color bar) indicate the magnitude of the velocity in m/s.

  

Table 1 :

 1 Geometric parameters used in our model. Additional lengths are marked and given in Fig.S1.

		Description	Value Sources
	r n	TC nuclear radius	3 µm	[3, 4]
	δ	TC nuclear shell thickness 0.3 µm	[3]
		TC membrane thickness	10 nm	[5, 6]
	r m	initial TC membrane radius 4.5 µm this work
	R	initial ECM radius	7.5 µm	[3]
	h	endothelial thickness	6 µm	[3, 7, 8]
	r g	endothelial gap radius	1.5 µm	[3, 4, 9]
	A b	focal adhesion area	4 µm 2	[10, 11]

Table 2 :

 2 Physical parameters used in our model.

		Description	Value	Sources
	G EC	EC shear modulus	1 kPa	[3, 12, 13]
	G ECM	ECM shear modulus	5 kPa	[14]
	G c	TC nuclear core shear modulus	5 kPa	[3, 15]
	G s	TC nuclear shell shear modulus	50 kPa	[3]
	G m	TC membrane shear modulus	2 MPa	[16]
	ν	Poisson's ratio for all elastic components	0.3	[3]
	µ	TC cytosol viscosity	10 -3 Pa•s	[17]
	ρ	TC cytosol density	1000 kg m -2	[6]
	κ	TC nuclear drag coefficient	0.1 kg/s	this work

Table 3 :

 3 Biochemical parameters used in our model. In evaluating ∆µ, we have taken k B = 1.381 × 10 -23 m 2 kg/(s 2 K) and T = 310 K.

		Description	Value	Sources
	θ	decay time for calcium signal	100 s	[19, 20]
	k a	myosin activation rate	0.1 s -1	[19]
	k d	myosin deactivation rate	0.01 s -1	[19]
	τ max	maximum tension in SF	100 nN	[10, 11, 21]
	k v	coefficient in SF constitutive equation	10	[19, 20]
	v 0	reference shortening rate of SF	1 µm/s	[10, 22]
	ξ 0	total number of integrins per unit area	5000 µm -2	[19, 23]
	∆µ	free-energy difference between low/high-affinity integrins	5k B T	[24]
	λ	stiffness of integrin bond	0.15 nN/µm	[19]
	d m	maximum strain of integrin bond	130 nm	[19]
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Supporting Information for "A biomechanical model for the extravasation of cancer cells" S. M. Amin Arefi 1 , Daria Tsvirkun 2,3 , Claude Verdier 2 and James J. Feng For the extravasation of a tumor cell (TC) through the gap between endothelial cells (ECs), we set up a fluid-structure interaction problem, with partial differential equations describing the cytosol fluid flow and the elastic deformation of various elastic components-the TC membrane, the TC nucleus, the ECs and the extracellular matrix (ECM). Besides, the stress fiber (SF) and focal adhesion (FA) assembly evolves in time according to a set of differential and algebraic equations that describe the activation of actomyosin in the SF coupled with the growth of the FA. The main paper contains the equations governing SF and FA dynamics, cytosolic flow and elastic deformation of various components. In the following, we first list the complete set of governing equations, with additional supporting details regarding the FA mechanics. Then we describe the geometric setup and the boundary conditions for the wet-contact simulation. The dry-contact simulation is set up in a similar way, with the cytosolic flow and TC membrane omitted. We will end this section with a brief discussion of the numerical techniques used in the simulations. The cytosolic flow is governed by the Navier-Stokes equations in the laminar flow regime:

Finally, the displacement of the TC nucleus, the SF and FA stretching and the movement of the ECM at the FA are coupled by a kinematic condition, which completes the set of governing equations:

(ii) Geometric setup of the wet-contact simulation. The axisymmetric computational domain of the simulation is shown in Figure S1(a). The nucleus of the cancer cell is initially a sphere of radius r n = 3 µm. It is made of a soft core of radius r c = 2.7 µm and a stiffer shell of thickness δ = 0.3 µm. The endothelium is represented by an elastic layer of thickness h = 6 µm. At the center of the endothelium is a circular hole of radius r g = 1.5 µm; the rim of the hole is a circular arc of radius h/2. The ECM is treated as an elastic material with a cavity in the middle of initial radius of R cavity = 7.5 µm. At the start, the TC nucleus is centered 5 µm below the centerline of the