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An optimization technique for positioning multiple
maps for self-driving car’s autonomous navigation

Dominguez S.1, Khomutenko B.!, Garcia G.!, and Martinet P.!

Abstract—Self-driving car’s navigation requires a very precise
localization covering wide areas and long distances. Moreover,
they have to do it at faster speeds than conventional mobile
robots. This paper reports on an efficient technique to optimize
the position of a sequence of maps along a journey. We take
advantage of the short-term precision and reduced space on disk
of the localization using 2D occupancy grid maps, from now on
called sub-maps, as well as, the long-term global consistency of
a Kalman filter that fuses odometry and GPS measurements.
In our approach, horizontal planar LiDARs and odometry
measurements are used to perform 2D-SLAM generating the
sub-maps, and the EKF to generate the trajectory followed by
the car in global coordinates. During the trip, after finishing
each sub-map, a relaxation process is applied to a set of the
last sub-maps to position them globally using both, global and
map’s local path. The importance of this method lies on its
performance, expending low computing resources, so it can work
in real time on a computer with conventional characteristics and
on its robustness which makes it suitable for being used on a self-
driving car as it doesn’t depend excessively on the availability of
GPS signal or the eventual appearance of moving objects around
the car. Extensive testing has been performed in the suburbs and
in the down-town of Nantes (France) covering a distance of 25
kilometers with different traffic conditions obtaining satisfactory
results for autonomous driving.

I. INTRODUCTION

Most daily journeys people do are repetitive, like for
instance, going from home to work and back, wasting everyday
a lot of time and energy. This kind of trips can be pre-recorded
by driving the car once manually and after using the data
recorded to localize itself with high precision and robustness
during autonomous navigation mode.

Our research is focused in self-driving cars covering long
distances mostly along urban environment. In this kind of
environments, the precision obtained with just sensor fusion
of GPS, and odometry, has demonstrated to be insufficient for
autonomous navigation, specially in those places where the
GPS signal is not available or suffers from multi-path effect
due to reflection on the surrounding buildings. The evolution
model of the fusion provides a dead-reckoned estimate, and the
drifting can be corrected using a model of the environment,
like for example a map. Moreover, we expect to deal with
static and moving objects (e.g. cars, people around the vehicle,
etc.). Obstacles can be detected by using sensors like LiDARs,
cameras, ultrasonic sensors, radars, etc., and be classified as
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static or moving. The amount of information to be processed
along the journey can be so huge that, if the data coming from
the sensors are not well managed, it can be a drawback that
slows down the fluidity of the processing. To this end, we have
developed a localization system that takes advantage of the
good short-term precision, quickness and little space on disk
occupied using 2D-SLAM in a local area that we call sub-map,
as well as, the consistency of global positioning that corrects
the error produced by the integration of local positioning along
the time.

The global pose (latitude, longitude and heading) is pro-
duced by an EKF, which fuses odometry, and GPS measure-
ments providing also the covariances of the errors. On the
other hand, we use a chain of occupancy grid sub-maps instead
of a big map covering the working area. The sub-maps are
supposed to be rigid and connected one after another through
the so called connection points.

During the map building phase, for each sub-map i we
register simultaneously at pre-defined intervals of distance
Linreshola the trajectory of the car in the map P;, =
{P; }{j=0..~n,—1}, and the corresponding trajectory and the
position error’s covariance in global coordinates P, =
{P;g,af }UZO'_'N%,l.} being N; the number of points of the
local trajectory. In this way we obtain two separate paths that
we call from now on map path and global path for the SLAM-
2D and EKF positions respectively (See Figure 1).
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Fig. 1. global path and map paths represented with different colors along
a journey composed by chain of sub-maps connected through the connection
points. The green circles represent the uncertainty on the global’s position.

All points in both paths are referenced to the same common
frame called global frame(See Figure 3). Successive sub-
maps’s are connected through the so called (connection points)
to keep continuity between them. We apply an iterative process
of relaxation that tries to match the map path with the global
path, based on the idea that points with more precise global



coordinates must have more influence in the matching process.
The idea is to treat the global path points as static and linked
to their respective map path points through an elastic force
that is proportional to the distance between both points. The
proportional constant is set to the inverse of the covariance of
the error of the global path point. In such situation, the chain
of sub-map paths tries to find a balancing point where the
energy accumulated by the virtual attraction forces is minimal.
After the relaxation process, the result is a sequence of sub-
maps with their map paths positions more consistent with the
global position. Note that areas with low quality GPS signal
(e.g. urban canyon) or non-existent (tunnels) leads to high
covariance and therefore low or null attraction forces allowing
neighbour sub-maps with good GPS position to put them in
place indirectly.

In the other hand, during the localization phase, a proba-
bilistic particle filter is used to localize locally on the sub-map
that corresponds to the position of the car. The wheel odometry
is used for predicting the evolution of the particles, and the
laser scan for selecting the particle that better matches the
current sub-map. A re-sampling of the particles is performed
periodically by distance travelled, angle rotated and also in
time. The surviving particles define the evolution of the car’s
position. Note that, as the sub-maps are globally positioned, it
is straightforward to convert the local pose into global coordi-
nates. A map manager loads the next sub-map whenever the car
reaches the end of the sub-map in use. When that happens, the
particle filter needs to be initialized in the new sub-map with
an initial dispersion. Although, such initialization is in most
cases successful, in some cases can cause uncertainty during
the first meters until the particle filter converges again. In order
to accelerate the convergence we increase the re-sampling rate
during a certain distance after loading the sub-map.

The method has proved to be robust and reliable along
intensive tests in city center and suburbs of the french city
of Nantes. We use a car Renault Zoe ZE in which we have
installed strategically three LiDARs LMS151 covering 360°
around the car (See Figure 2) and the speed is obtained
from the OBD-II interface of the car. Regarding the resources
consumed by the map-building process, the space occupied
on disk of each sub-map is limited to 750Kb, which gives us
an experimental average of about 5 Mb/km travelled using a
map grid cell size of 20x20cm. The CPU consumption in this
phase is less than 50% of a core in an Intel(R) Core(TM) i5-
3610ME CPU @ 2.70GHz travelling at 50Km/h. During the
localization phase the CPU consumption is about 25 % of one
core, and the precision of the localization relative to the local
environment is less than 10cm in average.

LiDARs installed on the
front

LiDARs on the rear side

Fig. 2. The LiDARs Sick LMSI151 are installed in strategical positions to
cover the surrounding area of the vehicle.

II. RELATED WORK

In our approach we define the route to follow as a sequence
of maps built sequentially using 2D-SLAM. In the bibliog-
raphy there exist multiple approaches to handle the SLAM
problem.

a) Visual SLAM: The vSLAM techniques use different
data, extracted out of images. It can be sparse set of key
points or a dense or semi-dense depth map. Multiple successful
results for vSLAM using sparse key point cloud have been
reported [1]. Among the most recent developments, in [2] they
propose a semi-dense VSLAM, which is reported to work in
real time on a consumer PC. Another interesting point for us,
is the map representation method. It is represented, not as a
huge point cloud, but as a pose graph. There is a key frame
attached to each node of the graph, and for each pose on it, the
image itself and the depth map are kept. Another interesting
approach is given in [3], this time using a small base-line stereo
camera and performing multi-map localization by formulating
the SLAM problem as a non-linear batch optimization (tested
only in indoors).

Visual SLAM techniques are quite elaborated for the case,
when the environment is static. They are robust to environment
changes to some extend but don’t treat environmental dynamics
explicitly. There are some approaches to tackle the dynamic
environment using vision. In paper [4] a notion of visual
experiences is introduced. This learning-like technique requires
multiple passes by streets with high environmental dynamics to
attain stable localization. In [5] a technique to integrate features
from different seasons into the map is developed. It makes
the localization more robust with respect to the environmental
changes during the year. While this technique gives good
results, the computations are carried out off-line using brute-
force approach for loop closure.

One of the challenges of VSLAM is its dependence on
lighting conditions to extract reliable features for being iden-
tified in subsequent passes through that area regardless of the
lighting conditions. Probably that is the reason why one of the
most widely used technologies today is the measurement with
LiDARs. LiDARs are convenient tools to perform mapping
because they provide directly metric information. As already
mentioned in the introduction we have installed three LiDARs
to cover a 360° view around the car.

b) LiDARs SLAM: Many works are concentrated on an
indoor environment, what implies a limited space and low
speeds. There are techniques that are able to handle outdoor
dynamic environment. In [6] a technique to represent a map for
a dynamic environment is proposed. The map is represented
as a pose graph in that approach. Sampled measurements for
different time scales are kept. There are works dedicated to
outdoors. In [7] they propose a technique to explicitly track
moving objects and discard them from the localization process.

In most of Bayesian probabilistic techniques, even though
moving objects modify temporally the view of the environ-
ment, as they do not stay in the same place for long time,
statistically they are not considered to form part of the map.
In our approach, we have performed several test of localization
in the center of the city of Nantes, using maps built months
ago using LiDARSs and still getting good localization in such



conditions without removing the moving objects from the laser
scans.

¢) Multi-map SLAM: In [8] they propose building a
sequence of consecutive uncorrelated local maps and joining
them together in a a priori known map using combined con-
straint data association (CCDA) in an EFK SLAM approach.
More recent works like in [9] focus their study on computer
resources optimization techniques based on hierarchical de-
composition in small sub-maps with limited size, so that it
can be run in real time without using too much memory. In
this paper we propose a different approach but basically with
the same idea in mind. The algorithm must be able to be
executed in real time on a PC with conventional characteristics
producing a set of local maps globally positioned ready to be
used for vehicle localization.

III. METODOLOGY

In this section we describe the process of estimating the
sub-maps positions by relaxation of forces between map path
and global path.

A. Building paths and forces

The positioning obtained when performing 2D-SLAM is
local to the respective sub-map’s origin, but we need it to be
converted into global coordinates. The origin of the first sub-
map is initially set to its corresponding global pose and the
origin of the rest sub-maps are connected to the last pose of the
previous sub-map through the respective connection point to
keep continuity between map paths (See Figure 3). For each
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Fig. 3. global and local submap frames used in the optimization process.

sub-map, we record at regular intervals of distance Lipresh
the position in submap’s local coordinates, the global position
provided by the EKF and its estimated error covariance. Thus
we generate for each sub-map two paths: local map path and
global path (position and covariance). The global path is used
as reference in the relaxation process. As explained in the
introduction, we consider virtual elastic forces between the
map path points and the corresponding global path points (See
Figure 5). We have chosen this model because we can define
on it the weight of the force for each pair of points through the
elasticity constant, which in our case will be a function of the

global position’s error. A spring network always tries to reach
the minimum global energy that in our case correspond to the
balancing state where the global positioning error of the whole
path is minimal. The global path’s points that are more accurate
attract stronger the corresponding map path’s points than those
with lower precision. That behaviour is modelled through the
spring coefficient K for each pair of points 13jg7 P! for
global path and map path respectively.

B. Sub-map paths relaxation

When the sub-map size under construction reaches to a
maximum threshold, a relaxation process begins. The com-
bined action of all forces along the whole trajectory will
put all sub-maps in the position that minimizes the sum of
the individual positioning errors, in other words, the position
that minimizes the total energy of the elastic interconnections
between global and map paths. The process of relaxation
computes iteratively the increment of angle that every sub-
map must rotate in order to get closer to the balance position,
taking into account that the sub-map are chain-joined through
the corresponding connection points.

Figure 4 shows the position of a generic sub-map path point
P; The absolute orientation of each sub-map is represented
by #* and the angular position of the j*" point of sub-map i
by 6%. The values of those angles before the relaxation process
are known but we are interested in the values that minimize
the total energy. To simplify we can represent the balanced
position of any map path’s point ij as:
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Fig. 4. Trigonometric representation of the position of a generic point j in
sub-map i P*

Figure 5 shows the variables involved in balancing a
generic sub-map i. Each map path point P; is attracted by a
global path point P}g with a force

F; =K * (l;‘-g —-1%) 2)

Im



simulating a virtual spring between them, where KJ‘ =1 is

. cm)}
the elasticity coefficient and l"j’»g is the vector position of the
global path point. Both, covj. and f}q are provided by the EKF

and according to the expression (1) f;-m only depends on the
angles {00, . ,Qi}, so we can consider that the forces in (2)
only depend on such angles.

“global path” EKF fusion (GPS+IMU+Odo) s

B

F' Global frame

Fig. 5. Each map path point P]?p is attracted to its corresponding global
path point P]?g with a force ﬁ; proportional to the inverse of the covariance

of the error coin- and the relative position between them l_z Note that in the
connection point P}'\,m the force between the connected sub-maps have same
value but contrary direction by the principle of action and reaction

For each sub-map i we apply balancing of forces and
momentums:

N;—1
S F+F —F*t =0 3)

=0

N;—1
NoOFIxD +Fxly —Fxily =0 o

Tm

=0

where F' and Fi+1 are the unknown reaction forces of sub-
map i with sub-maps i-/ and i+ respectively.

‘Thus, we obtain for the reference frame’s origin of sub-map
i (X") the vector of unknowns

X' =0 F  F, 0 F' i, FiH, 3)
If we consider that the total number of sub-maps to balance
is n (n > ), the full set of unknowns in the system is:
X={F),F).6°, .. . F  Fpl o) (6)
Taking (1) and (2) into account, we can express (3) and
(4) as three scalar equations:
e force balancing x axis: g}w (X)=0
e force balancing y axis: gjcy()_() =0

e momentum balancing: g¢,(X) = 0

that we can express in form of array as:

95 (X)

g ={95,(X)| i €{0...(n-1)} )
93 (X)

we can linearise (7) by building the 3 x (3n) partial Jacobian
for sub-map i:

99t 997 09%s 995 994, 995
9FY  9FY 900 ' gEr'  gFp'  00n1
Ji — 69}11 89}11 89}11 89;’1; 69}1/ ag}y
OF9 OF0 069 o eEpTt Ryt o0mTt
99y 99u 99 99 99 09
OF? OF0 069 oFr~t oFy~! 99n1
)

The total Jacobian is a composition of the n partial J* (i €
{0...(n—=1)}):
JO

J= e {(83xn) x (3xn)} )
Jn-

The balancing status can be obtained by approximation
applying the method of Newton-Raphson. At iteration k + 1
we get closer to the solution solving the system

J* (X1 — Xp) = T AX = —g(Xy) (10)

as J is a regular matrix {(3 *n) x (3 *n)} can be inverted
obtaining directly the solution

AX = —J P xg(Xy) (1)
and finally
Xipp1 = Xp +AX (12)

the iteration process stops when the number of iteration reaches
to a maximum or |[AX]| < e

The final pose of the sub-maps can be obtained by applying
the expression (1) that corresponds to Figure 4.

IV. EXPERIMENTAL RESULTS

To test the quality of the map positioning we have per-
formed an experiment that covers about 25.13 Km in the
suburbs and down-town Nantes (France). We present the ex-
periment’s set-up and the path obtained after the optimization
compared with the ground truth in the points where it is
available, meaning that the precision is enough to perform the
comparison. We generate the ground truth using the position
provided by the RTK GPS.

The raw sensor data has been captured using the software
“Effibox” which ensures a right time-stamping. The dataset
includes:

e  Ground truth global position using a PROFLEX 800
RTK-GPS receiver. With a precision of up to +1lcm
when it is in ”fix mode”.

e Global position using a ’low-cost” UBLOX6 GPS
receiver. Used as input in the EKF solution.



e Linear speed of each of the four wheels and angle of
the steering wheel read from the OBD-II port of the
car.

e  Three-axis angular speeds and accelerations provided
by an IMU Sparkfun Razor 9DOF.

e  Laser scans from the three LIDARs LMS151 installed
in the car. Used in 2D-SLAM for map building and
in the particle filter for localization on sub-map.

Both the car’s speed obtained from the OBD-II port and
IMU measurements are used to generate the odometry of the
car. A previous process for the calibration of the odometry has
been performed to ensure good precision all way through each
sub-map. During the SLAM-2D map-building, a procedure of
sub-map relaxation is done after a new sub-map is built using
a buffer of the last four sub-maps. We save the maps and paths
on disk for further analysis of the error. To obtain the errors
we compare those map paths with respect to the ground truth.

For each ground truth position we interpolate the map path,
using a B-spline that fits a neighbour set of points of the
sub-map positions computing the orthogonal projection @,
of the ground truth position onto the spline. That point is
the closest point of the spline to the GT position in which
the dot product of the vector #; and the spline’s tangent v
is null. This smooths the path, making it more continuous
instead of using a chained list of rectilinear segments. The
error de,ror 18 the distance between the ground truth position
and @), and the angular error is the difference between the
orientation of the ground truth’s position ©"** and the angle
of the spline’s tangent in @5, ©™P (See Figure 6). Figure 7

A
Y B-spline 5(t)
Ground truth
position g
Map path points
1
:Brrkiermp
Ortogonal
projection
X
Fig. 6. Obtention of the path errors. ©7*% and ©"P are the heading of

ground truth and computed solution respectively. Ps is a generic point on the
spline interpolated path and Qs is the point of the spline in which the spline’s
tangent is orthogonal to the vector between the spline and the corresponding
ground truth position.

represents the route of about 25 kilometers held in the city of
Nantes (France).

The analysis of the error have been made with the points
where the GPS-RTK is within an error of less than 3 cm. The
number of points compared in this dataset is 2007 along 25.13
Km. Figures 8 and 9 show the lateral distance and orientation
errors respectively in form of accumulated and differential
histogram. As we can see, about 95% of the measurements
lie under 15 centimeters and 5.0 degrees. Figure 10 shows
the lateral error and linear speed vs. distance travelled. As

Trajectory

Fig. 7. Trajectory of the experiment 25Km long. Starting and finish points
are the same position. The route was performed in counter-clockwise
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Fig. 8. Accumulated and differential histograms of the lateral error

we can see, there are several outliers with lateral errors of 3,
1.3, 3.6 and 3.1 meters respectively. Those errors are normally
located in parts of the trajectory with sinuous geometry and/or
low quality of the GPS signal. Those are parts that produce
high stress in the connection points between sub-maps due
to a combination effect of odometry error and weak global
position attraction forces. Figure 11 shows the orientation error
and angular speed vs. distance travelled. The orientation of the
ground truth is estimated by increments of the position, that
could introduce some error. We also can observe that the parts
of the trip with higher angular speeds produce more orientation
errors, after some analysis we have observed that those errors
in orientation are specially located near the connection points,
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Fig. 9. Accumulated and differential histograms of the orientation error



reinforcing the idea that the stress in between the sub-maps
should be relaxed.
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Fig. 11. Orientation error and angular speed during map-building along the
trip

Regardless of the outliers, the average of the lateral error
along the full path is 4.3 cm. and the average of the error
in orientation 1.74 degrees in 2007 measurements distributed
non-uniformly in 238 sub-maps. As mentioned above we only
compare points in the maps that have good RTK-GPS position
measurement.

V. CONCLUSIONS

In this paper we have presented a multi-map positioning
optimization based on a relaxation technique that uses virtual
forces between a global positions generated by a Kalman filter
(EKF) fusioning low-cost GPS and odometry data, and a path
of points generated by 2D-SLAM while building the maps. The
force strength coefficient is modelled through the covariance
of the EKF solution.

With this approach we obtain several advantages:

e Efficiency. The method for building the maps is fast,
as it uses 2D occupancy grid local maps which does
not contain too much information.

e  Scalability. The data processed at any of both phases,
map building and localization, is limited indepen-
dently of the length of the trip as only one sub-map
is loaded at a time.

e  Precision. As explained in the experimental results,
the optimization performed on the sub-maps positions
minimizes the error obtained between the map path
and the global path, providing a set of maps ready to
be used for localization of the vehicle at centimetric

level, resting to solve the problem of the outliers on
the connection points.

The method has been put under test along a trip of about
25.13 km without interruption in the town of Nantes (France)
providing enough information to evaluate the quality of the
map positioning with satisfactory results.

VI. FUTURE WORK

As explained in paragraph A, Section III, forces between
maps appear due to inexactitude of the map building process. A
future improvement of this technique will be trying to remove
the stress between consecutive sub-maps absorbing those errors
by re-computing the local position of the connexion points.
This could improve the positioning of the maps, as well as,
making the map switching smoother during the localization
phase. Another improvement of the method could be to update
the global path and map path each time we re-visit a particular
area and the precision on the global EKF position is better
than the previous update. This improvement may be due to
a more appropriate satellites constellation positioning. In that
case, a relaxation process to re-position the sub-maps would
be applied improving the precision of the localization in that
area.
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