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Abstract—Mobility on Demand (MoD) services, like Uber and
Lyft, are revolutionizing the way people move in cities around
the world and are often considered a convenient alternative to
public transit, since they offer higher Quality of Service (QoS
- less waiting time, door-to-door service) at a cheap price. In
the next decades, these advantages are expected to be further
amplified by Automated MoD (AMoD), in which drivers will be
replaced by automated vehicles, with a big gain in terms of cost-
efficiency. MoD is usually intended as a door-to-door service.
However, there has been recent interest toward consolidating,
e.g., aggregating, the travel demand by limiting the number of
admitted stop locations. This implies users have to walk from/to
their intended origin/destination.

The contribution of this paper is a systematic study the impact
of consolidation on the operator cost and on user QoS. We
introduce a MoD system where pick-ups and drop-offs can only
occur in a limited subset of admitted stop locations. The density
of such locations is a system parameter: the less the density,
the more the user demand is consolidated. We show that, by
decreasing stop density, we can increase system capacity (number
of passengers we are able to serve). On the contrary, increasing it,
we can improve QoS. The system is tested in AMoDSim, an open-
source simulator. The code to reproduce the results presented
here is available on-line.

This work is a first step toward flexible mobility services
that are able to autonomously re-configure themselves, favoring
capacity or QoS, depending on the amount of travel demand
coming from users. In other words, the services we envisage in
this work shift their operational mode to any intermediate point
in the range from a taxi-like door-to-door service to a bus-like
service, with few served stops and more passengers on-board.

Index Terms—Intelligent Transportation Systems; Ride-
Sharing; Mobility on Demand

I. INTRODUCTION

The landscape of transportation services (Fig. 1) has become
in recent years much richer than some decades ago. We
identify in it two poles: on the one side Mobility on Demand
(MoD) and on the opposite side fixed transportation. These
two poles differ in the way they adapt to the demand. In MoD
vehicles do not have pre-determined fixed routes, which are
instead constructed based on the trip request. The opposite
holds for fixed transportation (bus, subway, trains). Histori-
cally, MoD has been represented by taxis, serving mostly one
passenger at a time, which implies (i) high cost of operation
and thus (ii) high price for the user and (iii) low capacity,
i.e., number of passengers that can be served per unit of time.

On the other extreme, fixed transportation aims to consolidate
demand in time and space: users need to walk to/from a limited
set of stops (spacial consolidation) that vehicles serve in a
limited set of time instants (time consolidation). Consolidation
generally achieves high capacity, low cost of operation and
thus reasonable levels of price, compatible with the missions
of a public service. However, this is achieved in exchange for
a reduction in QoS.

Fig. 1: The landscape of transportation.

The distance between taxis and fixed transportation has been
recently filled by ride sharing services, like Uber and Lyft,
which can afford to propose cheaper prices, thanks to the
ability of consolidating trips: by merging several user trips
in the same optimized route, the cost of operating one vehicle
is split among different users. This effect is expected to be
further amplified if the number of stops is limited, since the
consolidation of demand around them allows to construct more
efficient routes. This motivated the launch of the experimental
Uber Express Pool in November 2017 [1], which “offers the
cheapest fares yet in exchange for a little walking” ( [2]).
However, the capacity of ride sharing systems is still far
from transit. This motivates a rich research on responsive
buses [3]–[6], aiming to combine the flexibility of MoD with
high capacity. A question has been raised in many research
studies of whether to deploy flexible or fixed route buses
depending on the amount of demand. Articles as [3] compare
the performance of the two extreme bus services, i.e., fixed
vs. on-demand, and found that after a certain request rate
threshold the former is superior. We interpret this result under
the lenses of consolidation: when high capacity is needed,
fixed bus consolidates the demand better than flexible routes.
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What commented so far shows that consolidation is be-
coming a fundamental aspect in future flexible transportation
systems. The contribution of this paper is a systematic study of
the role of consolidation in MoD. To this aim, we introduce a
MoD system that changes behavior depending on the value of
admitted stop density: instead of admitting pick-ups and drop-
offs everywhere, we limit them to occur only at certain pre-
defined locations. Their density is the parameter determining
consolidation (the more the stop density the more the amount
of consolidation). We use this parameter as a knob to explore
the trade-off between QoS (travel times suffered by users) and
high capacity. We show that by just leveraging this knob, with
no change in the vehicle dispatch logic, the system effectively
changes behavior to shift its configuration toward the left or
the right poles of the transportation landscape.

We simulate the system in AMoDSim [7] and made all the
scripts to reproduce the scenarios available in the repository.
We find that, under the assumptions considered here, MoD
can effectively offer higher capacity if more consolidation is
adopted in change of a reasonable loss in QoS. This holds true
with high levels of demand, while consolidation is detrimental
otherwise.

II. RELATED WORK

In this section we will first clarify the terminology around
MoD and then discuss the work in which the important of
consolidation emerges.

The transportation systems we study are given different
names in the literature: Mobility on Demand [8], Dial-a-
Ride (see [9] and §1.3.1 of [10] ), Demand-Responsive [11],
Ride Sharing [12], Taxi-Sharing [13], Ride-Hailing [14]. The
common figure is that vehicles do not have pre-determined
routes, which are instead constructed on the fly based on
requests received from users, either via a smartphone app or,
in early days experiments, via telephone calls [15].

The research community has not yet aligned on the the same
terminology. Moreover, different nuances exist between the
different terms. Dial-a-ride and Demand-responsive transporta-
tion historically denote buses with dynamically determined
routes, whose experiments started in the 70s, but which are
rarely adopted in reality. The terms Ride-Sharing or Taxi-
Sharing are now employed to denote systems like Uber and
Lyft operated with taxi-like vehicles with low capacity. The
system we studied here spans the range between ride-sharing
taxis and demand-responsive buses: by limiting the number of
stops we move from the former to the latter, increasing system
capacity.

MoD systems need a driver for each vehicle, who works
directly or indirectly for the operator and drives only to
satisfy the mobility needs of the passengers. There exist other
systems, known as carpooling, in which the driver owns the
car, drives toward her intended destination and can make
detours to pick-up and drop-off other passengers. Differently
from MoD, in carpooling drivers do not work for the service
operator and they primarily satisfy their own mobility needs.
Carpooling systems are out of the scope of our paper. We warn

the reader that some authors [16] call them “ride-sharing”,
which may generate confusion.

From the Operations Research viewpoint, the problem that
MoD systems need to solve is a Dynamic Pickup and Delivery
Problem [17], which is a class of Dynamic Vehicle Routing
problems. The term “dynamic” means that the requests are not
known in advance but enter the system while it is working
and already serving other requests. These kind of problems
require thus to continuously modify vehicle routes. It is usually
assumed that users are picked-up and dropped-off at their
origin and destination, respectively. In this paper we are
instead interested in dealing with another decision variable for
the operator: the amount of admissible stop locations in which
we restrict pick-ups and drop-offs. The impact of consolidating
the demand by restricting stop locations lacks a systematic
study in the literature. This work is a contribution toward
filling this gap. We will now briefly survey some work in
which the importance of consolidation emerges, although not
explicitly mentioned and not systematically studied.

Quadrifoglio et Al. [3] shows the existence of a critical
demand density, in terms of requests per hour per Km2, over
which a demand-responsive service becomes inefficient and
it is better to deploy a fixed-route bus. We read in this main
finding of the paper the emergence of the benefit of consolidat-
ing demand around the few stops when high demand density
(aka high capacity) has to be served. Their work is based on
an idealized scenario based on the continuous approximation
approach, where the studied area is a continuous space (in
lieu of a road network) and demand is a continuous density
function over that space. Differently from their work (i) we
can vary the degree of consolidation by varying the admitted
stop location density, (ii) we preserve the flexibility of vehicle
routes across those stops, even when their density is low,
(iii) the area under study is a network and the requests are
generated from a discrete stochastic process, which is more
realistic, (iv) many vehicles are coordinated to serve the same
area, while in [3] only one vehicle is assumed.

Stiglic et Al. [16] study a carpooling system and tackle the
problem of fixing convenient meeting points to make drivers
and passengers meet. We interpret meeting points as a way
to consolidate demand. Differently from [16], (i) we study
a MoD system, so we do not have the constraints of a pre-
defined pair of origin-destination of the driver; (ii) in [16] only
one pick-up and one drop-off point can be added to the pre-
defined route of the driver, while the routes in our systems can
have an arbitrary number of stop-points; (iii) we assume we
do not know future requests, while in [16] trips are announced
in advance and the matching is performed off-line.

The benefits of consolidation also emerge in fixed-route
transportation systems [18], [19]. The former found that the
consolidation program implemented in Portland, Oregon, con-
sisting in increasing stop spacing, improved bus running times
by 6% and at the same time had no relevant impact on user
activity. The latter constructs fixed routes based on hubs that
aggregate demand.



None of the previously mentioned research studies the inter-
dependence between the system performance, the demand
density and the density of stop-locations, which is the focus
of our paper.

III. SYSTEM MODEL

The system model considered in this paper is an extension
of the one presented in our previous work [7]. The system is
composed by a fleet of vehicles and a coordinator managing
them. Users send trip requests (§ III-A) to the coordinator
which matches them to the available vehicles and modifies
the routes (§ III-B), based on a dispatching algorithm (§ IV).
Note that, however, the results of this paper would still be
valid under a different computation model, e.g., also if the
user-to-vehicle matching were not performed by a centralized
coordinator but were instead computed in a fully distributed
manner, which is outside the scope of this paper. The system is
configured to serve a set of admitted stop locations Q. For any
given location z, we denote with φ(z) ∈ Q the closest of the
admitted locations. Given two location q, q′, we denote with
τw(q, q′) and τv(q, q′) the time needed to travel the shortest
path between q and q′ by walking and by car, respectively.
For simplicity, we assume the speed of walking and of that of
cars is fixed and constant.

A. Stop points and Trip requests

The elementary unit of information handled by the dispatch-
ing algorithm is the stop point. It is a tuple sp1 = (q, t,∆t, a),
where q ∈ Q is a location amongst the admitted, t is a
preferred time, ∆t is the maximum extra time and a is a
binary variable specifying if the stop point is a pick-up or
a drop-off. A stop point denotes that a user wishes to be
picked-up or dropped-off at location q in the inteval [t, t+∆t[.
The dispatching algorithm that we will discuss later constructs
vehicle routes as a sequence of stops, each stop corresponding
to some stop points, and ensures the time constraints are not
violated.

A trip is described by an origin location o, a destination
location d, a time t denoting the time at which the request has
been generated and a time constraint ∆t. A user must go to the
admitted stop location φ(o) closest to the origin, send a request
and wait for a vehicle. She then takes a ride to the admitted
location φ(d) closest to the intended destination, toward which
she walks. Therefore, a trip corresponds to a pair of stop
points: a pick-up stop point spa = (φ(o), t1,∆t, pickup) and
a drop-off stop point spb = (φ(d), t2,∆t, dropoff). Here, t1 is
the time instant in which the user arrives at the stop location
φ(o). Let us denote with t the time at which the user “appears”,
i.e., she starts to walk from her origin, and with τw (o, φ(o))
the walking time from o to φ(o). We have t1 = t+τw(o, φ(o)).
Denote with τv (φ(d), d) the minimum time to go from φ(d) to
d by car, we have t2 = t1 + τv (φ(d), d). We call τv (o, φ(o))
and τv (φ(d), d) ingress and egress time, respectively.

To clarify the meaning of the time constraint ∆t, it must
be observed that the dispatching algorithm will try to place
spa and spb into the vehicle routes (we will explain this

in § IV). The specification of stop-point spa will force the
system to pick-up the passenger from φ(o) in the interval
[t1, t1 + ∆t[. Similarly, the specification of stop-point spb

forces the dispatching algorithm to drop-off the user at φ(d)
in the interval [t2, t2 + ∆t[. If it is impossible to satisfy any
of the two conditions, the request is discarded.

B. Vehicle schedules

At any time instant, each vehicle v is associated with a
schedule Sv = [sp1, sp2, . . . ], which is the sequence of stop
points the vehicle plans to serve. This sequence is associated
with a time sequence Tv = [t̂1, t̂2, . . . ] denoting that stop point
spi = (qi, ti,∆i, ai) will be served at time t̂i. In order to
satisfy the time constraints, the following condition must be
satisfied

ti ≤ t̂i < ti + ∆ti. (1)

Note that, if a vehicle is at a certain location q0 at a time
t0, the time at which spi will be served is deterministically
computed as

t̂i = t0 +

i∑
j=1

[τv(qj−1, qj) + bj + tl,j ]

where bj is the time needed for a passenger to board/alight
to/from a vehicle, depending of whether spj is a pick-up or
drop-off. The value tl,j is the time lost for accelerating after
stop point spj−1 and decelerating before spj . Observe that it
can happen that two consecutive stop points are in the same
location, i.e., qj−1 = qj . In this case, τv(qj−1, qj) = 0 and
tl,i = 0, meaning that the pick-up and drop-off operations are
performed one after the other, without any vehicle movements
in between. For a more detailed explanation of the vehicle
movement model and the computation of the time lost in accel-
erating and decelerating, refer to § 3.3 of [7]. Each vehicle has
a capacity C. When constructing schedules, we must ensure
that the number of passengers does not exceed C. Suppose a
vehicle has at a certain point in time n0 passengers on board
and a certain schedule Sv = [sp1, sp2, . . . ]. Obviously, the
number of passengers changes only when certain spi is served.
Let us introduce

ρ(spi) =

{
+1 if spi is a pickup
−1 if spi is a dropoff

The number of passengers onboard after spi has been served
is:

ni,v = n0 +

i∑
j=1

ρ(spi) < C (2)

This inequality must hold for any vehicle v and any stop
point spi in Sv .

Definition 1: A schedule is feasible if it respects con-
straints (1),(2), i.e., if all pick-ups and drop-offs are guaranteed
to be served within the expressed time requirements and the
vehicle capacity is never exceeded.



IV. DISPATCHING ALGORITHM

We describe in this section how the system we consider
associates users to available vehicles and how routes are con-
structed. We assume for simplicity all the logic is centralized
in a single coordinator. Our dispatching logic is implemented
by an on-line algorithm: every time a request arrives to the
system, we associate it to a vehicle and we modify its schedule
accordingly. The dispatch is based on the concept of schedule
cost.

Definition 2: Consider any vehicle v at a certain time instant,
its schedule Sv = [sp1, sp2, . . . , spn] and its current location
q0. Following the notation of § III-B, the cost of that schedule
is the amount of time needed to execute it completely, i.e.

c(Sv, q0) =

n∑
j=1

[τv(qj−1, qj) + bj + tl,j ] (3)

The dispatching algorithm is given in Alg. 1. Let us consider
a user with origin o, destination d, time constraint ∆t and
suppose the user “appeared” at time t (see § III-A). Suppose
the user arrives at the ingress stop at time t1 ≥ t and
generate her request from there. The corresponding pair of
stop points are spa = (φ(o), t1,∆t, pickup) and spb =
(φ(d), t2,∆t, dropoff), as in § III-A.

The dispatching algorithm seeks the “best vehicle” to serve
this request. In order to do so, we associate a cost c(v) to each
vehicle and we choose the vehicle with the lowest cost. To
compute c(v) for a vehicle v, we compute different tentative
schedules, based on the following explanation. We first try
to find the best placement for the pick-up stop-point spa. To
this aim, we create tentative schedules Si

v for i = 1, . . . , n,
obtained placing spa in position i:

Si
v = [sp1, . . . , spi−1, sp

a, spi+1, . . . , spn]

If Si
v is feasible, we compute its cost c(Si

v, q0). If for all
i = 1, . . . , n we have that Si

v is infeasible, it means the
request cannot be associated to the vehicle. We indicate this
by assigning c(v) =∞. Otherwise, we take the best tentative
schedule, i.e., we take the i∗ such that Si∗

v has minimum
cost. We than try to place the drop-off stop point spb into
the tentative schedule Si∗

v . In order to do so, we consider
different other tentative schedules Si∗,j

v , where spb is placed
in the j-position of Si∗

v , with j > i:

Si∗,j
v = [sp1, .., spi∗−1, sp

a, spi∗+1, .., spj−1, sp
b, spj+1, .., spn]

If for all j > i, we have that Si∗,j
v is infeasible, it means that

the request cannot be served by vehicle v, which we denote
with c(v) = ∞. Otherwise, we take j∗ such that the cost
c(Si∗,j∗

v , q0) is the minimum among c(Si∗,j
v , q0) for all j > i.

We set c(v) = c(Si∗,j∗
v , q0).

The operations described above allow to compute, for each
arriving request, (i) the cost c(v) of serving that request with
any vehicle v and, if c(v) < ∞ (ii) the modified schedule
Si∗,j∗
v including the pick-up and the drop-off related to that

request. The best vehicle is the one that guarantees the lowest
cost, i.e. v∗ = arg minv c(v). The request is thus assigned to

v∗ and the schedule Sv is modified in Si∗,j∗
v . Note that if for

all vehicles v we have c(v) =∞, it means there is no vehicle
which can satisfy that request and we discard it.

We repeat the process every time a new request arrives. Note
that the dispatching algorithm continuously modify vehicles
route in order to satisfy incoming requests with the lowest cost
possible, while at the same time meeting the requirements of
the incoming request as well as the requirements of requests
that have been previously assigned.

Algorithm 1 Dispatching Algorithm (running for any incom-
ing request)

Input: Request stop-points spa, spb. Current vehicle location q0 and
current vehicle schedule Sv of any vehicle v.

Output: The vehicle v∗ that will serve the request. Its modified
schedule Si∗,j∗

v∗ .
1: for each vehicle v do
2: Consider the current schedule Sv = [sp1, . . . , spn].
3: c(v) = ∞; S∗

v = Sv; i∗ := 1

// Find the best placement for the pick-up stop point.
4: for i in 1, ..., n do
5: Si

v := [sp1, . . . , spi−1, sp
a, spi+1, . . . , spn]

6: if Si
v is feasible then

7: Compute c(Si
v, q0) as in (3).

8: if c(Si
v, q0) < c(v) then

9: c(v) := c(Si
v, q0)

10: i∗ := i
11: end if
12: end if
13: end for
14:
15: if c(v) < ∞ then

// Find the best placement for the drop-off.
16: c(v) := ∞; j∗ := i+ 1
17: for j = i∗ + 1, ..., n do
18: Si∗,j

v = [sp1, .., spi∗−1, sp
a, spi∗+1, .., spj−1, sp

b, spj+1, .., spn]

19: if Si∗,j
v is feasible then

20: Compute c(Si∗,j
v , q0) as in (3).

21: if c(Si∗,j
v , q0) < c(v) then

22: c(v) := c(Si∗,j
v , q0)

23: j∗ := j
24: end if
25: end if
26: end for
27: end if
28: end for
29: v∗ := argminv c(v)

V. RESULTS

We present in this section the results of our simulation
campaign that we ran on AMoDSim [7], an open-source
simulation. The code to reproduce the results presented here is
available in the AMoDSim’s repository. We will first describe
the scenarios considered and then study the impact of con-
solidation on the operations of the system (capacity, vehicle
routes, sharing degree) and on the QoS.



A. Scenarios

As in [7], the network consists in a Manhattan grid of 60
Km2, representative of the city of Manhattan with static travel
times as in [20]. The distance between east-west-oriented roads
and north-south oriented roads is 80m and 200m, respectively.

Requests are generated as a Poissonian process with a
certain rate r ranging from 20 req/h/Km2 to 320 req/h/Km2,
compatible with to the scenarios in the literature [12], [21].
The origins and destinations are uniformly distributed in the
surface. The time constraint ∆t (see § III-A) is fixed to
20 minutes. Note that not all the requests will be actually
generated: if the origin-destination pair of a trip is within a
distance of 1.6 Km, we assume the traveler prefers to walk
and does not call the system.

Vehicle cruising speed is 35 Kmph. The acceleration and
deceleration of the vehicle after/before it stops is 1.676 mpss
in absolute value, which gives an additional time lost for
accelerating and decelerating of 11.5 s (see § 3.3 of [7] and
references therein for a description of the vehicle movement
model). The walk speed is constant and fixed to 3.6 Kmph. The
board and alight times are 5s and 10s, respectively, as in [22].
Observe that we do not want to make assumptions on the
capacity of the vehicles, as we are exploring a service which
is in the middle between a taxi-like and a bus-like service.
For this reason, we set in our simulations the seat capacity to
C = 45 passengers, which in our simulation is never filled
in our scenarios and thus corresponds de facto to not being
limited by a pre-determined capacity. We consider a relatively
small fleet (with respect to [12]), of 500 or 1000 vehicles,
since our challenge is to offer a high capacity service with
relatively low cost operations. In all the simulations, if not
explicitly specified, the fleet size is 1000 and the request rate
320 req/h/Km2, which we fix as default values. We consider
different values of spacing between admitted stops, ranging
from 80m, which corresponds to admit stops, thus forcing non
consolidation, up to 860m. All results are collected during 4h
simulation, to wash out transient effects.

B. Impact on system capacity

We show in this section the benefits of limiting the density
of admissible stops when the demand, i.e., the request rate,
is high with respect to the number of vehicles. In Fig. 2 we
represent the number of requests over the simulation time. In
particular, we represent the total number of requests sent by
the users, the requests that the system has been able to assign
to some vehicle, the number of drop-offs and pick-ups. Recall
that a request remains unassigned if no vehicle can serve it
within the time-limits. In this case, the requests are rejected,
i.e., the user would receive a message saying that the system
is not able to handle her request. The number of assigned
requests is thus representative of the system capacity.

First, observe the load of the system with no consolidation
(Fig. 2-left). The system is much slower to assign requests
then the rate of incoming requests, which denotes overload.
Note that the overload is instead alleviated reducing the stop
density, e.g., increasing the stop spacing (Fig. 2-right): by

Fig. 2: Load of the system with stop spacing 80m (left) and
stop spacing 860m (right).

consolidating the demand in fewer locations, the system is
able to better serve a high request rate, thus offering more
capacity.

We validate this finding by depicting the number of requests
after 3h, with different values of stop spacing (Fig. 3). We
chose 3h, since it is usually considered the maximum duration
of peak periods in transportation.

We observe in the plot in the center, where 1000 vehicles
are deployed and the request rate is 320 req/h/Km2, that the
responsiveness of the system in terms of requests assigned,
picked-up and dropped-off consistently improves when reduc-
ing stop density. Note that this holds only in situations where
the request rate is high with respect to the deployed vehicles,
i.e., in the central plot and also in the plot on the right, where
160 req/h/Km2 are served by just 500 vehicles. If we instead
maintain the same request rate 160 req/h/Km2, but we serve it
with more vehicles (figure on the left), we see consolidation is
not important, as the system is not overloaded anyways. We
obtain the same picture, which we omit here, when further
reducing the demand. Therefore, the correct stop spacing to
avoid overload depends on the proportion between request rate
and the fleet size and consolidation by reducing stop density
becomes important only when this proportion is high.

C. Impact on route efficiency

Fig. 4 shows that aggregating demand in fewer stops reduces
the kilometers traveled by the vehicles and thus operational
cost. To explain this, we study how “efficient” are the routes
constructed by the dispatching algorithm.

We adopt the convention that a route is ‘efficient’ if it visits
all the stop locations contained in it traveling a small distance.
The more routes are tortuous, e.g., passing more times than
necessary through the same stops or making un-necessary long
detours, the less the system is efficient. To quantify this aspect
we define a measure of tortuosity.

Let us consider a trajectory of a vehicle v, i.e., the sequence
q1, . . . , qn, where qi is the location of stop point spi. Let us
truncate the trajectory starting from i and ending in i + H ,
i.e., thus considering the sub-trajectory qi, . . . , qi+H . We call
the parameter H ∈ N horizon. Let us consider the length
`(qi, . . . , qi+H) of this subtrajectory. Starting from qi, we
can visit all the other points {qi+1, . . . , qi+H} in H! ways,
each associated with a length. Let mqi{qi+1, . . . , qi+H} the
minimum length to visit all the other points starting from qi.



Fig. 3: Load of the system after 3h with 160 req/h/Km2 and 1000 vehicles (left), 320 req/h/Km2 and 1000 vehicles (center)
and 160 req/h/Km2 and 500 vehicles.

Fig. 4: Mean distance traveled by a vehicle

Fig. 5: Mean tortuosity of a vehicle route with a fleet size of
500 vehicles (left) or 1000 vehicles (right).

We define the tortuosity of the trajectory at the i-th stop-point
as

T (i, v) ≡ `(qi, . . . , qi+H)

mqi{qi+1, . . . , qi+H}

The tortuosity of a vehicle is the average of the tortuosity
at all its stop-points:

T (v) =
1

n−H

n−H∑
i=1

T (i, v)

The smaller the tortuosity, the more efficient the route of
the vehicle. Note that the best we can have is T (v) = 1
meaning that at every stop point the vehicle chooses the
shortest trajectory. Note also that the shortest trajectory may
be impossible for a vehicle to follow, if it violates the time
constraints of § III-B. Therefore, one must not be tempted
to associate a physical meaning to the measures of tortuosity
in absolute. They are just useful when comparing different
system configurations, which we do in this section. The results

we report are the tortuosity, averaged across als vehicles, for
a horizon H = 4.

We observe in Fig. 5 that when the rate of requests is high
consolidating demand around fewer stops helps decreasing the
tortuosity, as expected. This explain the reduction in kilometers
traveled (Fig. 4). However, the opposite effect is recorded with
low request rates. One hypothesis to explain this behavior at
low rates is that, while serving the users on board, each vehicle
does not collect enough requests in a unit of time so that it can
optimize the route. However, this deserves further investigation
in future work.

It is interesting to emphasize again that all results do not
depend on just stop spacing but also on the fleet size. Fig. 5
shows the beneficial impact of consolidation shows off earlier
(i.e., already with smaller request rates) with a fleet of 500
vehicles than 1000 vehicles.

D. Impact on sharing degree

Conceptually, the sharing degree of the system is its ability
to aggregate together multiple trips in the same vehicle at the
same time. We quantify the sharing degree as the average
percentage of time a vehicle spends with certain number of
passengers on-board. Fig. 6 shows that consolidating demand
around fewer stops helps increasing the sharing degree: each
vehicle is able to aggregate more trips. This explains why, with
a fixed amount of vehicles, the system offers more capacity to
serve high volume of requests, when more consolidation is put
in place (less stops), as discussed in § V-B. Observe that with
consolidation vehicles behave for a non-negligible amount of
time as minibuses.

Fig. 6: Vehicle occupation: percentage of time each vehicle
spends with different numbers of passengers onboard. The x-
value -1 denotes that the vehicle is idle.



E. Impact on quality of service

While in § V-B we have shown that it is advantageous for
an operator to limit the density of possible stop locations, we
need to study possible negative side effects on the quality of
service offered to the users. It is obvious to observe that the
more the stop spacing, the longer the ingress and egress times
suffered by users. It is possible to compute the mean ingress
and egress time for any given value of stop spacing with the
help of Fig. 7.

Fig. 7: Computation of the mean ingress time. Dotted lines
indicate the road network. The 4 dots represent 4 admitted
stops and the cross the origin of a user. The surface is divided
in 4 Voronoi cells. The L-shaped line is the y-x route followed
by the user to walk from her origin to the closest stop location.

Let us focus on the mean ingress distance walked by a user
(the mean egress distance would be computed similarly). Let
us denote with D the stop spacing. Since we assume that
a user always goes to the closest stop, we can partition the
entire studied surface in a Voronoi tassellation where the seeds
correspond to the stops. A Voronoi cell of a stop is the set of
points that are closer to that stop than to any other. Since
our stops are by construction located in a regular grid, the
Voronoi cells are simply squares with edge measuring D. Let
us consider any origin point (x, y) in any certain Voronoi cell
around a stop (x0, y0). The distance traveled by a user to go
from that origin to the ingress stop is z = |x−x0|+ |y− y0|.
Since x and y are generated uniformly at random, we are
sure that |x− x0| ' U(0, D/2). The same holds for |y − y0|.
Therefore the mean walked distance is E[z] = D/4 +D/4 =
D/2. Since we assume a fixed walking speed vw = 3.6 Km/h,
we can immediately compute the mean ingress and egress time
based on the value E[z]. With maximum consolidation, i.e.,
D = 860m, the mean ingress time is D/2/vw = 7 min and
the maximum value of ingress time is 14 min. In other words,
the ingress and egress time imposed on users to aggregate the
demand around fewer stops is, in our scenario, in a limited
range of acceptable values.

Fig. 8: Waiting time and onboard time.

Fig. 9: Total travel time with 20 req/h/Km2 (left) and 320
req/h/Km2. On the left, no requests are rejected.

It is interesting to observe (Fig. 8) that the waiting time
slightly improves with less stop density and the on-board time
(time spent by the user on board of a vehicle) is practically
not affected, thanks to the increased overall efficiency of routes
(§ V-C) that finally benefits users as well. However, we should
recall that the more stop spacing, the more ingress and egress
time suffered by users. It is thus important to compute the
total travel time, which is the time passed from the moment
the user appears at her origin to the moment where she
arrives at the intended destination. The total travel time is the
sum of ingress, waiting, onboard and egress times. The total
travel time is plotted in Fig. 9, which shows, as expected,
that maximum consolidation (stop spacing 860m) increases
total travel time. This increase is severe with a low request
rate (33% of increase with r = 20 req/h/Km2), while it is
less important with high request rate (23% with r = 320
req/h/Km2). This confirms that consolidation is deleterious
with low demand, since it reduces QoS without improving
capacity, while it is desirable when high demand has to be
satisfied, as high capacity can be achieved in exchange for an
acceptable loss in QoS. Fig. 9 helps also to visualize the trade-
off this paper is about: the more the consolidation, the higher
service capacity (less requests are rejected) but the lowest the
QoS for the requests that manage to be served.

VI. NEGATIVE RESULTS AND FUTURE EXTENSIONS

Observe that the systems model we adopt is one of the
many possible. A first element we emphasize is that the
time constraint ∆t does not include the walking time. For
example, if a user specifies a certain ∆t, it means she wants
to wait at most ∆t after she arrives at φ(o), independent of
whether her ingress time is high or small. Moreover, the time
constraint ∆t also means that if she arrives at the stop at
time t1 and the minimum time to drive from φ(o) to φ(d)
is τv (φ(o), φ(d)), she wants to arrive at φ(d) within a time
t1 + τv (φ(o), φ(d)) + ∆t, independent of whether the ingress
and egress time are high or small. We have also experimented
with alternative formulations, which take into account the
ingress and egress time in the expression of time constraints,
in order, for example, to compensate users with higher ingress
time by making them wait less. However, we observed that the
results were worse both in terms of operational costs for the
operator and user QoS. We noticed that by including ingress
and egress time in the time constraints translates in too strict
conditions for the dispatching algorithm to construct efficient



schedules. For instance, if a user has a ∆t = 20 min and has
to walk 14 minutes, the system would see the request after
the user arrives at the stop and would have to satisfy it within
6 minutes waiting time, which leaves no sufficient degree of
freedom for the construction of vehicle routes: if a vehicle is
able to make a detour to satisfy this strict constraint it would
do it, even if it could be highly inefficient. While this type of
behavior would be acceptable in a taxi-like service with few
requests with respect to the fleet size, we observed that it is
not appropriate for high capacity MoD, which should instead
resemble a bus-like system, i.e., should be less sensitive to the
single user time requirements and more sensitive to the overall
system performance.

Observe that the system we presented can re-configure its
behavior just by changing the admitted stop density and we
showed that it has a relevant impact on capacity and QoS,
although the dispatching algorithm does not change at all. We
will explore in the future other algorithmic strategies which
can improve both QoS and capacity by changing the algorithm
behavior based on the value of stop density or input demand.

Another margin of improvement is given by the introduction
of a reservation. While in the model adopted now a user sends
a request only after she arrives at the closest stop, it would
be possible to let her send the request immediately after she
“appears” at the origin, specifying that she will arrive at the
closest stop in a certain time interval. The algorithm could
thus be able to handle this request in advance. We expect
improvement in both operational cost metrics and QoS and
we plan to study such possibility as part of future work.

To make our study more realistic, we also plan to introduce
variable speed for vehicles, depending on the conditions of
traffic, and to let traffic be impacted by MoD vehicles.
However, as the goal of this paper is to study the high level
impact of demand consolidation in MoD, the lack of these
elements of realism does not invalidate the findings presented
here.

VII. CONCLUSION

In this paper we studied the importance of consolidation
in Mobility on Demand (MoD) systems. We observed that
by varying the parameter determining the spacial density
of admitted stop locations, we can favor high capacity or
Quality of Service (QoS). We showed that the benefits of
consolidation cannot be evaluated in absolute. They depend on
the vehicle fleet size and the amount of demand (request rate).
In particular, consolidation is beneficial when the demand is
high with respect to the number of available vehicles, but is
deleterious otherwise.

Ride-sharing systems have mostly no-consolidation at all,
being mainly door-to-door services. On the opposite side,
fixed-route traditional transit has maximum consolidation, as
only a restricted amount of stops are served. We show instead
that a system can be engineered so as to function in any
intermediate operational mode between those two extremes,
varying the level of consolidation. This paper is a first step

toward an investigation of such systems, which we will pursue
in our future work.
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