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Abstract—Under the paradigm of Edge Computing (EC), a
Network Operator (NO) deploys computational resources at the
network edge and let third-party Service Providers (SPs) run
on top of them, as tenants. Besides the clear advantages for SPs
and final users thanks to the vicinity of computation nodes, a
NO aims to allocate edge resources in order to increase its own
utility, including bandwidth saving, operational cost reduction,
QoE for its users, etc. However, while the number of third-party
services competing for edge resources is expected to dramatically
grow, the resources deployed cannot increase accordingly, due
to physical limitations. Therefore, smart strategies are needed to
fully exploit the potential of EC, despite its constrains.

To this aim, we propose to leverage service adaptability, a
dimension that has mainly been neglected so far: each service
can adapt to the amount of resources that the NO has allocated
to it, balancing the fraction of service computation performed
at the edge and relying on remote servers, e.g., in the Cloud, for
the rest. We propose EdgeMORE, a resource allocation strategy
in which SPs express their capabilities to adapt to different
resource constraints, by declaring the different configurations
under which they are able to run, specifying the resources needed
and the utility provided to the NO. The NO then chooses the most
convenient option per each SP, in order to maximize the total
utility. We formalize EdgeMORE as a Integer Linear Program.
We show via simulation that EdgeMORE greatly improves EC
utility with respect to the standard where no multiple options
for running services are allowed.

Index Terms—Edge Computing, Resource Allocation, Cloud-
Edge offloading

I. INTRODUCTION

Edge computing (EC) brings computation and data storage
closer to the location where it is needed, to improve response
times and save bandwidth, e.g. traffic going out from the
access networks. EC is complementary to Cloud, i.e., the usual
assumption is that a part of service computation is peformed
at the Edge and the rest on the Cloud and similarly a part of
the required data seats at the Edge and the rest on the Cloud.

We consider a Network Operator (NO), owning computa-
tional resources in its Edge network, which must decide how
distribute these resources to different Service Providers (SP).
The goal of the NO is to maximize its own utility, which can

represent bandwidth or operational cost saving or improved
experience for his users [1], [2].

A novelty of our approach is that we exploit the opportunity
of running services at the Edge in different ways, i.e., the
SP can balance between using more memory or more CPU,
depending on the available resources, transparently to final
users. For instance, in scenarios as video streaming, the SP
has to deliver different representations of the same video
and can choose either to store all of them, which requires a
high amount of storage, or exploiting Just In Time Packaging
(JITP) store just few representations and package the missing
ones on-the-fly, only when needed, which saves storage but
incurs more CPU usage (pag 6 of [3] and [2]). These applica-
tions show the emergence of what we call service elasticity:
in the Edge, since resources are limited, they cannot scale
with services’ requirements, instead services must adapt to the
available resources and run on the Cloud all the computation
that cannot take place at the Edge. Partitioning limited Edge
resources among third party “elastic” services is the novel
core of this work. We show that by exploiting the different
configurations at which SPs can run, the NO can increase its
utility with respect to the classical case of one monolithic
configuration per SP, as if more resources were vitrually
available at the Edge than the real ones, whence the name
EdgeMORE of our strategy.

Furthermore, we consider the distributed nature of Edge
resources, which can be scattered across different nodes and
the fact that services follow a microservice architectural
style (Sec. V.B of [4]): a service is composed of different
microservices running on containers. This allows fine-grained
and responsive service adaptivity and resource exploitation ,
which makes containers attractive for Edge computing [5]. We
also consider resources are multi-dimensional (memory, CPU,
bandwidth, . . . ).

The contribution of this work is: (i) we introduce the multi-
tenant multi-dimensional multiple-nodes resource allocation
problem, which represents the decisions of the NO to allocates
multi-dimensional resources, distributed on several nodes,



among third party SPs, whose services are composed of
different containers (§ III); (ii) we propose an architecture for
this setting (§ IV) (iii) we provide an ILP formulation (§ V);
(iv) we finally evaluate its performance in simulation (§ VI).

II. RELATED WORK

Under the taxonomy of [5], [6], the scenario in which we
study the resource allocation problem is Metro Edge Cloud
and Mobile Edge Computing. Since literature on EC is vast,
here we just focus on work concerning resource allocation.

a) Multi-Tenant Resource Allocation: Resource alloca-
tion among third party tenants is currently done in Cloud
computing via pricing. However, in the Cloud resources are
assumed to be infinite, so they can be granted as long as
the tenant is willing to pay. At the Edge, instead, resources
are limited and the NO, which owns them, want to allo-
cate them in order to increase its own utility. Allocation of
finite resources among different service providers (tenants),
which compete for their consumption, has not vastly been
explored in the context of EC. Some examples of this kind
of problems can be found in [1] and [7], where resource is
mono-dimensional (storage) and the utility is the bandwidth
reduction, QoS and fairness.

b) Resource Provisioning: There is agreement that Edge
and Cloud computing form a unique pool of resources, orga-
nized hierarchically and services can use both simultaneously.
In this context, there is vast literature in resource provisioning,
which regards the decision of how much resource should be
deployed at the Edge nodes or at the Cloud [8], [9]. We
emphasize that our resource allocation problem is different, as
we assume the amount of resources at the nodes has already
been decided, nodes are already deployed, and we optimize
their usage by third party SPs.

c) Network Slicing: Network slicing consists in cre-
ating virtual network slices on top of a physical network
infrastructure, whose owner has to allocate resources among
slices. In this context, resources are mainly mono-dimensional
(bandwidth [10]), with some exception ( [11], [12] consider
also CPU).

d) Service Adaptability: Some work assumes, as we
do, that services can run under different configuration, thus
adapting to the resources provided. Services span from Fed-
erated Machine Learning [13] to video streaming [2]. Other
work [14], [15] assumes that multiple configurations result in
different multi-dimensional resource usage and different QoE.
However, most of this work, considers one only tenant.

e) Resource allocation for container-based EC: The
micro-service architecture is particularly suitable for resource
allocation, as services can adapt to the resources avail-
able by launching/destroying the containers hosting micro-
services [16]–[18].

f) Task-oriented models: It is important to emphasize
that most of the aforementioned literature and other work [15],
[19], [20] model workload as a sequence of jobs or tasks,
and deals with allocating resources among them. While this
models are suitable for grid computing environments, we

adopt instead a service-oriented viewpoint, which we believe
is more indicative of the current interactions between users
and services in the Internet. Indeed, in order to live at the
Edge, services consume persistent resources, which are not
tightly coupled to the single user request. For instance, a
content provider consumes memory to store its most popular
objects, independent from the single user requests. This would
not be reflected by task-oriented models.

III. SYSTEM MODEL

We consider an edge cluster, composed of m = 1, . . . ,M
nodes, owned by the Network Operator (NO). These cluster
nodes may be servers installed on a Central Office or machines
installed in a base station. Nodes have resources of different
types, e.g., RAM and CPU. We denote the types of resources
as l = 1, . . . , L, where l = 1 may indicate CPU, l = 2 may
indicate RAM, etc. Each node has a limited amount of each
resource type. We denote with cl,m the capacity of node m
in terms of resource type l. Node resources are virtualized so
that third party Service Providers (SPs) can concurrently run
their services there. Virtualization of resources is based on a
container platform, like Docker, which allows to run many
virtual environments, called containers, each hosting a third
party piece of software.

SPs are denoted with i = 1, . . . , N . For simplicity, and with
no loss of generality, we assume that one SP runs one and only
one service.1 Each service is decomposed in a set of micro-
services, each hosted in a container. Moreover, each service
i can run in multiple possible configuration options j =
1, . . . , J i. Each configuration option j of service i requires
concurrently running a set of containers z = 1, . . . , Zi,j . Each
SP i declares the possible configurations under which it is
capable to run and the NO decides (i) which configuration
option to accept and (ii) for all the containers belonging to
that option, which node they should run to. These decisions
are based on utility and resource consumption.

As in [14], we assume that each configuration option j of
SP i brings a certain utility ui,j to the NO. For instance,
suppose SP i is a video streaming service. If the NO selects
a configuration option j that includes containers with large
memory limits, the SP will be able to cache more content and
thus to serve more user requests locally, only generating traffic
from/to some remote server or Cloud only for the content that
is not cached at the Edge. In this case, the utility ui,j for the
NO would be big, in terms of traffic saved.

Ideally, the NO would like to choose for each SP the option
that provides the largest utility. Unfortunately, this is in general
not possible, due to the scarcity of resources available in the
Edge nodes. Indeed, each container consumes resources. We
denote with wi,j

l,z the amount of resource of type l consumed by
the z-th container of the j-th option of SP i. Each Edge node
can host different containers, from different SPs. Obviously,
the sum of resource type l consumed by the containers running

1The terms “service” and “service provider” will thus be used interchange-
ably.
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Fig. 1. Netflix architecture for OCAs CDN

in a certain node m cannot exceed its capacity cl,m, for
any resource type l = 1, . . . , L. Therefore, the NO must
optimally choose one option per SP, trading off utility and
resource consumption and, at the same time, optimally place
the containers of the chosen options in the available Edge
nodes, without exceeding their capacities.

Note that we do not define a per-container utility, but only
the utility ui,j of an entire option. The rationale is that running
containers individually is not useful at all. For instance, to
provide an on-line gaming service, we might need a container
for authenticating users, another for retrieving video frames
and another to transcode them. They might all be needed
together. Running the authentication server alone, may be
senseless. Either the containers of an option run all or no
one. Therefore, utility comes from the concurrent run of all
the containers of a configuration option, and not from any
single container. Since the different sets of containers that can
collectively provide a service depend on the service itself, we
let the SP declare the possible configuration options. Note
also that we adopt a snapshot model, i.e., we assume time
is divided in slots of few minutes and we focus on a single
slot. At the beginning of each time slot the SPs declare their
configuration options, the NO decides to accept one option
per SP and assigns each container belonging to that option
to one Edge node. We assume all the quantities mentioned in
this section are known at the beginning of the time slot.

IV. REFERENCE ARCHITECTURE

We now describe the architecture in which our system
model can materialize. In order to ground our architecture
into an existing and practical technology, we briefly outline
a successful solution widely adopted by Netflix. Then, we
describe our proposed architecture.

A. An existsing implementation of Edge Computing

Netflix is one of the largest content providers. It deploys
its own hardware appliances, called Open Connect Appliances
(OCAs) [21], into Internet access networks. OCAs store a part
of the content catalog and can serve directly a fraction of
local users’ requests, without generating inter-domain traffic.
For this reason, NOs often accept to install this hardware in
their premises. Requests are processed as in Fig. 1: (1) A user
requests a video. (2) A micro-service in the Cloud selects the
files to be sent to the user. (3) The steering service determines
the OCAs closest to the user based on its IP address and
generates a list of URLs pointing to the OCAs. (4) The user
client uses the URLs list to play the video.

While this solution is currently successful and effective, it
is not future-proof: it is infeasible that hundreds of SPs, like

Fig. 2. Overview of the proposed architecture. SPs run part of their service
in their premises or in remote Clouds, which we denote as Headquarters.

Youtube, Netflix, gaming providers, IoT providers, etc., will
each install physical boxes into thousands of access networks:
installing and maintaining such physical infrastructure would
have an enormous cost for both SPs and NOs. Moreover,
there is no physical space to host many physical boxes in
the network locations at the Edge. However, the case of the
OCA shows that both SPs and NOs have interest in EC, to
run services at the Edge. To make EC feasible, we propose to
let the NO owns the computational resources and to vitrualize
them, in order to allocate them to third party SPs, acting as
tenants. Each SP can then behave individually similarly to
Fig. 1.

B. EdgeMORE architecture

The components of the proposed architecture are (Fig. 2):
• Edge slave nodes: owned by the NO, they run the SPs’

containers.
• Edge Master: a process controlled by the NO, respon-

sible for (i) monitoring resource usage (e.g. using fine
grained monitoring functions available in containerized
environments like Kubernetes [22]); (ii) collecting the
different deployment options from SPs; (iii) deciding the
options to be deployed; (iv) informing the SPs about
the authorized options and receiving back the containers
descriptors (e.g. Dockerfile or Pods YAML); (v) running
the containers in the Edge slaves. The optimization
strategy of § V runs in the edge master.

• SP Scheduler: each SP has its own scheduler; First,
it declares the set of possible configuration options to
the Edge Master, specifying resource requirements and
utility. After the Edge Master selects one of these options,
the SP Scheduler forwards to the Edge Master the relative



containers descriptor files to deploy its application at the
Edge;

• SP Load balancer: each SP has its own load balancer;
it intercepts user requests as in [23] and, based on the
amount of requests served by the Edge it decides to
forward the request to a remote Cloud or to handle it
within the Edge [20].

C. Edge Master workflow

The Edge Master is the core component of the proposed
architecture. Periodically, it performs the following operations.

1) It monitors the available resources and receives the set
of options from the SPs schedulers; it is given as a
list containing, for each option, the relevant amount
of utility estimated and information on the resource
requirements for each container;

2) It executes the placement algorithm to select the best op-
tion for each SP according to the collected information
in point (1). The decision is sent to the SPs schedulers;

3) It receives the (chosen) option descriptors files (e.g.
Dockerfiles, Smarm configurations files, Kubernetes
YAML. . . ) for the authorized options and runs these
containers in the slaves nodes;

4) Finally, it communicates to SPs’ load balancers the
addressing data to reach the Edge internal containers.
Based on the occupied resources the load balancers
redirect the user requests to the Edge resources or to
the Cloud.

V. OPTIMAL RESOURCE ALLOCATION

The NO aims to maximize its overall utility, i.e., the sum of
the utilities coming from all the selected options. In order to
do so, the NO must concurrently take two decisions: (i) Option
selection: the NO must select at most one configuration option
per SP. (ii) Container placement: the NO must deploy each
container of the selected options to one of the available nodes

The following is an Integer Linear Programming (ILP)
formulation of the problem. The decision variables modeling
the Option selection are xi,j , which is 1 if the j-th option of
the SP i is chosen. Container placement is instead represented
by the decision variables yi,jz,m, which is 1 if the z-th container
of the j-th option of SP i is placed on node m. The objective
is

max

N∑
i=1

Ni∑
j=1

ui,j · xi,j (1)

The following constraints must be satisfied.

M∑
m=1

yi,jz,m = xi,j
i = 1 . . . N
j = 1 . . . J i

z = 1 . . . Zi,j (2)

N∑
i=1

Ji∑
j=1

Zi,j∑
z=1

yi,jz,m · wi,j
l,z ≤ cl,m

l = 1 . . . 2
m = 1 . . .M

(3)

Ji∑
j=1

xi,j ≤ 1 i = 1 . . . N (4)

Equations (2) guarantee that each container z of the chosen
option j by the SP i (xi,j = 1) is deployed (∃m ∈ {1 . . .M} :
yi,jz,m = 1); constraints (3) guarantee that the sum of the
requirements for the set of containers deployed on a node m
for each resource l is less than the total amount of available
resources in node m so that these containers can actually
run on the node; finally the constraints (4) guarantee that a
service provider can deploy at most one option in the Edge
cluster. If we have one only option per SP and a unique
dimension, e.g. memory, the problem is similar to a Set-union
Knapsack problem [24] and it has been solved via Dynamic
Programming or via bio-inspired algorithms like bee-colony
optimization [25]. If we have a single node, we can just
consider for each option the total memory and the total CPU
needed by all the containers composing the option. We can
thus forget about the different containers and in this case we
have a Multiple-Choice Multi-Dimensional Knapsack Problem
(MCMDKP) [26], like in [14], although the authors do not
clearly state it. Considering just one option per SP and one
node, the problem reduces to a multi-dimensional knapsack
problem (l-KP), which is a challenging problem. Methods
based on the Lagrangian dual exist but difficult to apply in
practice (Sec.9.2 of [27]). Moreover, Fully Polynomial Time
Approximation Schemes cannot exist unless P=NP (Sec.9.4.1
of [27]), which motivates the several greedy-type heuristics
proposed in the literature (Sec.9.5 of [27]). However, they
cannot be directly used in our problem, which is more
complicated than l-KP, since we need to cope with multiple
options, nodes and containers. In our future work, we will
explore the design of efficient heuristics to solve the problem.

VI. NUMERICAL RESULTS

Here we present results that show how enabling service
elasticity by allowing multiple configuration options to SPs
notably improves the utility of the Edge. We compare the
performance of EdgeMORE, computed with the ILP (§ V),
with a naive allocation, which consists in randomly option
selection and container placement. The code of the ILP in glpk
and the python code to orchestrate the simulation are available
as open-source [28], together with the scripts to reproduce the
results presented here. The simulations run in a Intel Xeon
CPU E5-4610 @ 2.30 GHz with 256GB RAM, the results
are averaged across 20 runs and 95% percentiles are reported.

a) Scenarios: In our simulations the edge cluster con-
sists of M machines with 16 cores and 32GB RAM. For
each simulation N = 50 SPs compete to gain resources in
the Edge, each declaring the same number J of configuration
options. Each option consists of Z = 8 containers. The CPU
and RAM required by a container are drawn from uniform
random distributions with mean w̄l. They are expressed as
dimensionless values representing CPU time for CPUs while
the memory is expressed in GB. To obtain w̄l, we first set a
load factor K = 1.8 and then compute

w̄l · Z ·N = K · cl,tot; l = {CPU,RAM} (5)



where cl,tot =
∑M

m=1 cl,m is the total amount of resource
of type l available at the edge. In other words, on average we
allow services to request K times the available resources.

The utility is also a random variable. As common in the
literature [1], [7] we assume there is a concave relation
between the resources used and the utility: the more resources
are used by an option, the larger one should expect the utility
to be, but the additional utility tends to decrease with the
resources. The utility is the following function of the required
resources:

ui,j = αi,j ·

(
wi,j

CPU

cCPU,tot

) 1

β
i,j
CPU

+ (1− αi,j) ·

(
wi,j

RAM

cRAM,tot

) 1

β
i,j
RAM

(6)

where αi,j , βi,j
CPU, β

i,j
RAM are randomly thrown, for each option,

from the random uniform distributions between 0 and 1 for
αi,j and between 1 and 5 for βi,j

CPU and βi,j
RAM. Note that the

formula above would be a concave increasing function if the
parameters αi,j , βi,j

CPU, β
i,j
RAM were fixed. Choosing the param-

eters from a random distribution complicates the scenario. We
did this on purpose since: (i) although the relation utility vs.
resources can be reasonably assumed to broadly show a con-
cave and increasing behavior, in realistic scenarios this relation
may not be as “clean” as assuming a perfectly increasing
and concave function; (ii) we want to check the performance
of our solution in pessimistic and ‘unclean” situations. For
this reason, (6) is aimed to “loosely” show monotonicity and
concavity. We underline that this characterization would be
much more accurate if real datasets were available, which is
unfortunately not the case. On the other hand, research on
allocation strategies must not be paralyzed by the absence
of datasets, and fortunately is not. Researchers have coped
with it by proposing reasonable assumptions on the relation
between resources and utility [1], [7], [14], [29] and following
them, which is enough to evaluate the benefits of allocation
strategies. We follow here this line.

The utility reported in the following plots is a percentage
of the maximum utility, which is N because ui,j ∈ [0, 1] as a
consequence of (6).

b) Benefits of multiple options: In Fig. 3 we report the
effect of varying the number of options provided by each SP,
assuming always M = 8 Edge nodes available. The utility
increases with the number of options declared by SPs. Note
that the classic assumption correspond to the first point of
the plot, SP=1. While varying the number of options from 1
to 8 the utility has a gain almost equal to 1.6. This means
that all the approaches adopted in the literature lose the
opportunity to gain 60% of utility (at least in our scenario),
which instead EdgeMORE can grasp by allowing SPs declare
multiple options. This is the core result of the paper and also
justify the name EdgeMORE: by letting SPs express their
service-elasticity, it is like increasing virtually the available
resources, as the ones that are available can be used better.
The second plot of Fig. 3, reports that Naive uses ∼ 3.3 times
the resources of EdgeMORE, despite its poor utility, which
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Fig. 3. Benefits of multiple options.

shows that careful option selection and container placement
is of paramount importance.

c) Insensitivity to cluster scaling: In Fig. 4 we increase
the number of nodes, considering J = 5 options per SP. We
keep K = 1.8, thus increasing the resources requirements
proportionally (5). We also keep all the other parameters at
their default values. In other words, we are testing here how
the performance is affected when varying the scale of the
problem, in terms of size of resources available and required.
Fig. 4 shows that the utility of EdgeMORE remains unchanged
with the scale of the problem. This means that the results
presented here are likely to consistently appear both on tiny
instances of EC as well as in larger clusters of servers available
at the Edge.

d) Computation time: The bottom plots show that the
computation time of EdgeMORE may be too high if respon-
sive dynamic re-allocation is envisaged. This motivates to
explore faster heuristics in our future work.
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Fig. 4. Insensitivity to cluster scaling

VII. CONCLUSION AND FUTURE WORK

This paper presented EdgeMORE, a strategy for resource
allocation for Edge Computing (EC), where tenants are third
party Service Providers (SPs). The novelty of this work is
that it exploits service elasticity: by allowing SPs to declare
the different configurations (aka options) in which they can
run, we show that the Network Operator (NO) owning EC
resources can greatly increase utility. Relying on service
elasticity is crucial in resource-constrained environments as
EC. A future work will be devoted to a heuristic for the ILP
and scenarios where jobs arrive in different times, exploiting
a time-batched implementation of EdgeMORE. Moreover, the
architecture and the strategy itself can be expanded in order to
take into account different NOs (Edge roaming) and to account
for inter-container communication, leveraging our previous
work [30].
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