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The aim of this paper is to propose an efficient method to evaluate the Added Masses of generic shape bodies in infinite fluid or in the proximity of external walls. The Added Masses (AM) are the result of the inertial reaction of the fluid in response to an accelerated movement of a body immersed in it. The AM effects are more evident when the body density is similar to that of the surrounding fluid, as in the case of airships. In the take-off or landing phases, the proximity to the ground causes an increase in the Added Masses that must be correctly estimated to properly size the airship controls. In our method, the calculation of the Added Masses matrix is carried out by the Boundary Element Method (BEM). To verify the accuracy of the results, the study cases are based on simple shapes, whose Added Masses are well known. The analyses in infinite fluid and in the presence of a flat wall are carried out. Numerical results are compared to the theoretical values found in literature. The calculated Added Masses are intrinsically dependent on the mesh definition and the relative error, referred to the theoretical values, depends on the surface and volume discretization. In the case of interaction between geometries with complex shapes, the influence on the Added Masses is very difficult to predict without a numerical approach. The method proposed gives a good compromise in terms of quality

Introduction

Airships represent the frontier of the future regarding the air transport sector. These vehicles, widely used in the past, are finding more interest in our days thanks to their potential in many applications, such as the transport of heavy materials in landlocked areas, which distinguish them as unique in their kind.

The airships dynamics is very different from that of the most common aircraft because of the impact of the Added Masses (AM) effects. The concept of AM was introduced for the first time by Pierre Louis George, comte du Buat [START_REF] Du | Principes d'hydraulique et de pyrodynamique[END_REF].

The accelerated motion of a body immersed in a fluid induces a variation on the kinetic energy of the latest. The additional work done by the body to balance this effect, in the vacuum would be equivalent to the work needed to accelerate an additional inertia.

AM are directly proportional to the fluid density, so their effects are not negligible when the density of the body is comparable to that of the surrounding fluid. Their estimation is fundamental during the design phase of an airship, to evaluate the aerodynamic loads and to dimension the structure, the propulsion and control systems. Analytical expressions of AM evaluated on a sphere and on ellipsoidal shapes placed in infinite fluid, were obtained by Lamb [START_REF] Lamb | Hydrodynamics[END_REF]. Studies on the interaction of a sphere with a flat wall were realized by Hicks [START_REF] Hicks | Xiii. on the motion of two spheres in a fluid[END_REF], who obtained an analytical formulation of the AM variations when the body is moving in the orthogonal direction to the wall, with the development of the Image Method. A solution for the case of motion in the parallel direction to the wall was proposed by Davis [START_REF] Davis | High frequency limiting virtual-mass coefficients of heaving halfimmersed spheres[END_REF]. Kharlamov [5] solved the two problems by a successive-image method. More realistic shapes of airships were studied by Azouz [START_REF] Azouz | Computation of the Added Masses of an Unconventional Airship[END_REF], that presented an analytical method for the calculation of the AM, based on the integration of elliptic sections. The Boundary Element Method (BEM), described in [START_REF] Hess | Calculation of potential flow about arbitrary bodies[END_REF][START_REF] Morino | Subsonic potential aerodynamics for complex configurations: a general theory[END_REF], was applied by Ceruti [START_REF] Ceruti | A CAD environment for the fast computation of Added Masses[END_REF], Tuveri [START_REF] Tuveri | Added masses computation for unconventional airships and aerostats through geometric shape evaluation and meshing[END_REF] and Ghassemi [START_REF] Ghassemi | The added mass coefficient computation of sphere, ellipsoid and marine propellers using boundary element method[END_REF] to solve the Laplace equation and to evaluate the Added Masses on bodies with complex geometries immersed in infinite fluid. In [START_REF] Ceruti | Unconventional hybrid airships design optimization accounting for added masses[END_REF] is proposed a method to optimize the external shape of a hybrid airship by a direct evaluation of the Added Masses. The take-off case is analyzed, but no corrections on the Added Masses values as a function of the distance from the ground are considered.

All the flight phases in the proximity of the ground are the most delicate and critical for an airship. For this reason, the purpose of this study is to have a better understanding of the AM variations in the presence of nearby walls. The BEM is developed to analyze the Added Masses in more realistic environments, studying the interaction of a body with generic external walls. This paper is organized as follows: in Section 2, a summary of the Added Masses theory and of the numerical method adopted for our calculations is provided. In Section 3 are presented the results obtained on the analysis of a sphere, of ellipsoids and of an airship shape.

Methodology

Added Masses Theory

For a non-deformable body immersed in a stationary inviscid fluid, the terms of the 6-by-6 Added Masses matrix, indexed by i and j, are defined as:

λ ij = -ρ S ∂ϕ i ∂ n ϕ j dS (1) 
S and n respectively indicate the body surface and the normal vector to the surface, ρ is the density of the fluid and ϕ i represents an elementary velocity potential. With a linear combination of ϕ i , the velocity potential of the fluid can be written as:

ϕ = u x ϕ 1 + u y ϕ 2 + u z ϕ 3 + ω x ϕ 4 + ω y ϕ 5 + ω z ϕ 6 (2) 
where u j and ω j (with j = x, y, z) represent the body linear and angular velocities projected along three orthogonal directions of a reference frame placed on the body center of volume.

On the body surface, the velocity of the fluid is equal to:

∂ϕ ∂ n S = u n = u x α + u y β + u z γ = u 0x α + u 0y β + u 0z γ + ω x (d y γ -d z β) + ω y (d z α -d x γ) + ω z (d x β -d y α) (3) 
where α, β and γ are the direction cosines measured between the normal vectors 50 and the axes of the reference frame, equal to cos( n, x), cos( n, y) and cos( n, z).

The coordinates of a point on the surface S, referred to the origin of the bodyfixed reference frame, are indicated by d x , d y and d z .

Knowing that each elementary potential ϕ i is a solution of the Laplace problem,

∆ϕ i = 0 (4)
it is possible to deduce the boundary conditions of this equation from Eq. 2 and

Eq. 3, and from the stationarity condition at infinity:

∂ϕ i ∂ n S =                            α i = 1 β i = 2 γ i = 3 d y γ -d z β i = 4 d z α -d x γ i = 5 d x β -d y α i = 6
and lim

d→∞ ∂ϕ i ∂x = lim d→∞ ∂ϕ i ∂y = lim d→∞ ∂ϕ i ∂z = 0 (5) 
According to Eq. 1, it is possible to evaluate the Added Masses matrix of a generic body by solving the six Laplace equations and finding ϕ i on each point 55 of the body surface S.

Numerical Method

In order to solve Eq. 4 numerically, the Boundary Element Method is adopted.

The velocity potential of each point of the field can be expressed as an integral equation, corresponding to a distribution of sources and dipoles. Therefore, a generic velocity potential φ, evaluated on a point P of the body surface, can be defined as:

φ(P ) = S φ(Q) 2π ∂G ∂ n dS - S ∂φ(Q) ∂ n G 2π dS ( 6 
)
where G is the Green function. In a three-dimensional case G can be expressed with G = 1 r , where r is the distance between the point P and another generic point Q, associated to the surface element dS. Discretizing Eq. 6, a linear system of algebraic equations of the unknown φ is obtained (the indices i and j refer to different surface points):

φ i = N b j=1 φ j C ij 2π - N b j=1 ∂φ j ∂ n B ij 2π (7) 
in which

C ij = ∂ ∂ n j 1 r ij δS j (8) 
B ij = 1 r ij δS j (9)
and N b is the number of discretization elements of the surface. Eq. 7 can be rewritten in matrix form:

[2πI -C] N b ×N b {φ} N b ×1 = -[B] N b ×N b ∂φ ∂ n S N b ×1 (10) 
with I the N b -by-N b identity matrix. Replacing in Eq. 10 one of the six ϕ i and the corresponding boundary conditions ∂ϕi ∂ n S described in Eq. 5, it is possible to evaluate the elementary potentials on each point of the surface. The computation of the Added Masses matrix is obtained with a discretization of Eq. 1:

M a = -ρ       N b i=1 (ϕ 1 ) i ∂ϕ1 ∂ n S i dS i . . . N b i=1 (ϕ 1 ) i ∂ϕ6 ∂ n S i dS i . . . . . . . . . N b i=1 (ϕ 6 ) i ∂ϕ1 ∂ n S i dS i . . . N b i=1 (ϕ 6 ) i ∂ϕ6 ∂ n S i dS i       (11) 

Singular points

In the numerical method presented in the previous section, the presence of singular points is observed in Eq. 8 and Eq. 9 when i = j, because of r ij = 0.
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The strategy adopted to solve this numerical problem consists in a further discretization of each element of the mesh, divided into k sub-elements, as shown in Figure 2 and considering the distance between the centroid of the i element and the centroid of all relative k sub-elements. The distance r iik , that is always greater than zero, because the centroid of each k sub-elements cannot coincide with the centroid of the i element, is employed to evaluate the k contribution to C ii and B ii , in Eq. 8 and Eq. 9, by the following equations:

C iik = - r iik • n i r iik 3 δS ik = 0 ( 12 
)
B iik = 1 r iik δS ik (13) 
The final value of C ii and B ii is calculated by the sum of the k contributions C iik and B iik .

In order to increase the quality of the results, the method is not only applied to the i = j case, but also to the rest of the domain. So Eq. 7, Eq. 8 and Eq. 9

are rewritten as:

65 φ i = N b j=1 φ j N sub k=1 C ijk 2π - N b j=1 ∂φ j ∂ n N sub k=1 B ijk 2π (14) 
C ijk = - r ijk • n j r ijk 3 δS jk ( 15 
)
B ijk = 1 r ijk δS jk ( 16 
)
where r ijk is the distance from the center of the i element and the center of the k sub-element of the j element, δS jk is the surface of the k sub-element and N sub is the number of internal subdivisions of each mesh element. The matrix formulation of Eq. 10 doesn't change with the implementation of our method, maintaining constant the size of the original linear system. In this way, the computational cost and the size of computer memory that is needed for running these calculations is unchanged. The only impact, in terms of CPU operations, concerns the generation of C and B matrices, that will depend on N sub . 

Multiple Bodies

The additional novelty proposed in this paper concerns the possibility to implement the method described in the previous sections to study the Added Masses of generic bodies in the presence of external objects or surfaces.

The case of a body-wall interaction is presented below. The effects of the flat wall can be computed by a discretization of its surface, or modeling it with the Image Method. In the first case, Eq. 10 is rewritten as:

[2πI-C] (N b +Nw)×(N b +Nw) {ϕ i } (N b +Nw)×1 = -[B] (N b +Nw)×(N b +Nw) ∂ϕ i ∂ n S b +Sw (N b +Nw)×1 (17) 
where N w represents the number of discretization elements of the wall. The fundamental step to solve the problem is the correct definition of the boundary conditions ∂ϕi ∂ n S b +Sw , which are imposed by the motions of the body and the wall. In the case of a fixed wall, therefore with a surface that has no velocities and no rotations, the six boundary conditions of each discretization point of the wall are equal to zero. So, for each elementary potential, the boundary conditions are:

∂ϕ i ∂ n S b +Sw (N b +Nw)×1 =   ∂ϕi ∂ n S b N b ×1 {0} Nw×1   ( 18 
)
The evaluation of the Added Masses matrix is obtained from Eq. 11, with no modifications. It is important to underline that the local reference frame is unique and linked to the body center of volume.
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The study of the wall presence by the Image Method is obtained by different modifications on the boundary conditions. In this case, Eq. 10 can be rewritten as:

[2πI-C] (N b +Nim)×(N b +Nim) {ϕ k } (N b +Nim)×1 = -[B] (N b +Nim)×(N b +Nim) ∂ϕ k ∂ n S b +Sim (N b +Nim)×1 (19) 
where N im is the number of elements of the image body. The boundary conditions depend on the reflected movement of the image body, so:

∂ϕ k ∂ n S b +Sim (N b +Nim)×1 =    ∂ϕ k ∂ n S b N b ×1 ∂ϕ k ∂ n Sim Nim×1    (20) 
and, for example, when the wall is positioned orthogonally to the z axis of the first body, the boundary conditions of the image body are:

∂ϕ k ∂ n Sim =                            α k = 1 β k = 2 -γ k = 3 -(d y γ -d z β) k = 4 -(d z α -d x γ) k = 5 d x β -d y α k = 6 (21) 
The negative signs depend on the fact that when the body moves in the positive direction of z axis, its image moves in the opposite direction, and when it rotates in the positive sense of the x and y axes, the rotation of the image along the same axes is negative.

Results
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Validation of the method and mesh-sensitivity study

In this section the validity of the method is studied by applying it to simple cases whose results are known.

Firstly, the analysis on a sphere, placed in infinite fluid, is presented. In this case the AM matrix is composed of three terms: λ 11 , λ 22 , λ 33 . The theoretical values are:

λ s = λ 11 = λ 22 = λ 33 = 2 3 ρπR 3 ( 22 
)
where R is the radius of the sphere. In this paper, the results are presented by the adimensional values λ , obtained by dividing the Added Mass by the total mass of the fluid displaced by the sphere, M f , that is the mass of fluid that would fill in the volume of the body. For a sphere this value is:

λ s = λ s M f = 2 3 ρπR 3 4 3 ρπR 3 = 1 2 (23) 
Numerical results depend on the level of discretization of the body surface mesh and on the number of internal subdivision of its elements. When N θ = 1 there is an overestimation of the AM value (in the theoretical case λ s = 0.5) and with N θ ≥ 2 a smooth and stable evolution is found. From the last result, the parameter N θ = 2 is chosen for the rest of our analysis. As might be expected, a greater discretization along the radial direction of the element ensures a better quality of the results. For the next analysis the value N r is fixed to 10, to guarantee a compromise in terms of quality of results and computational cost. In this case, the theoretical AM can be evaluated by the following equa-120 tions [START_REF] Lamb | Hydrodynamics[END_REF]:

λ 11 = 4 3 πρabc A 0 2 -A 0 (24) 
λ 22 = λ 33 = 4 3 πρabc B 0 2 -B 0 (25) 
λ 44 =0 (26)

λ 55 = λ 66 = 4 15 πρabc (a 2 -b 2 ) 2 (A 0 -B 0 ) 2(b 2 -a 2 ) + (B 0 -A 0 )(b 2 + a 2 ) (27) 
with:

A 0 = 2(1 -e 2 ) e 3 1 2 ln (1 + e) 1 -e -e (28) 
B 0 = C 0 = 1 e 2 - 1 -e 2 2e 3 ln 1 + e 1 -e (29) 
e = 1 - b 2 a 2 (30) 
Dimensionless mass terms of the AM matrix are obtained dividing λ ii (i = 1, 2, 3) by:

M f = 4 3 πρabc (31)
and the inertia terms (λ ii with i = 4, 5, 6) by the body moments of inertia, respectively:

J xx = 4 15 πρabc(b 2 + c 2 ) (32) J yy = 4 15 πρabc(a 2 + c 2 ) ( 33 
)
J zz = 4 15 πρabc(a 2 + b 2 ) ( 34 
)
The same analyses, carried out in the sphere case, are reproposed. The graphics in Figure 9 show the dependence of AM to N θ . For this analysis the parameters N r = 10 and N b = 2428 are adopted. As previously, the N θ = 1 case must be avoided, while N θ ≥ 2 provides much more consistent results. The 125 parameter N θ = 2 is chosen for the next investigation. Graphs in Figure 12 show that the relative error committed on the calculation of λ ii , with i = 1, 2, 3, is very low and it is similar to the error committed on the surface discretization. The absolute value of the relative error for λ ii , with i = 4, 5, shows the same sensitivity of inertia terms to the volume discretization. The first two graphics show that the simulation time is a linear function of N θ and N r , because of the "for-loop" used for the generation of C and B matrices. In the last graphic, time is a function of N 2 b , because of the matrix inversion required to solve the linear system of equation 10.

Sphere near a Flat Wall

Here, the Added Masses matrix of a sphere, in the presence of a flat wall, is evaluated. The distance h, measured between the sphere center of volume and The number of elements chosen for the discretization of the sphere is N b = 2624. The wall is discretized with 2876 elements. For the latter, the size of the mesh elements is variable, going from the size of a sphere element in the closest region to the body, to a larger size as one moves away from this point.

The parameters chosen for the internal subdivisions of each element are N θ = 2 and N r = 10. Simulation results, performed in the two cases, are presented in Figure 16. These are compared to the results obtained by Kharlamov [START_REF] Kharlamov | Hydraulic formulae for the added masses of an impermeable sphere moving near a plane wall[END_REF] and Korotkin [START_REF] Korotkin | Added Masses of Ship Structures[END_REF].

Added Masses variations are equivalent in the two parallel directions to the wall (λ 11 and λ 22 ). The variation of λ 33 (orthogonal direction) is more important when the sphere approaches the wall. The influence of the latter becomes negligible from six radii, where the Added Masses variation is less than 0.2% if compared to the infinite-value. From the last analysis it is possible to assume that the edge effects of the wall are limited to the range of influence of the wall on the body. So, in this case, a wall extension of S w = π(6R) 2 , considering 6R as the distance of the wall influence, is sufficient to achieve a good accuracy for our calculations. There are not evident differences between the curves of our simulations and Kharlamov's results, for each λ ii /λ ii inf considered. Korotkin's values seem to deviate slightly from ours and Kharlamov's ones, so they will not be further considered for the next analyzes. In the area h/R < 1.5, represented in Fig- ure 17, some minimal discrepancies are evident between the results obtained by the discretization of the wall and by the Image Method. In particular, for λ 33 /λ 33 inf , a little deviation of the curve is observable when h/R = 1. To quantify the accuracy of our methods, the root mean square of the error is evaluated in the considered domain ( A further analysis consists in comparing the simulated AM to the existent theoretical values, when the sphere and the wall are in contact (h/R = 1). The solutions found by Davis [START_REF] Davis | High frequency limiting virtual-mass coefficients of heaving halfimmersed spheres[END_REF] (λ 11 = λ 22 = 0.621) and Hicks [START_REF] Hicks | Xiii. on the motion of two spheres in a fluid[END_REF] (λ 33 = 0.803085) are the references. Results are presented in Table 2. Multiplying by the theoretical infinite-value λ ii inf = 0.5, the relative error with respect to the Davis and Hicks' values is obtained, as presented in Table 3.

0.9 1 1.1 1.2 1.3 1.4 1.5 Distance [h/R
λ ii λ ii inf h R = 1
Err% h R = 1 λ 11 λ 22 λ 33
Wall discretization -0.2463 -0.2359 -3.2469

Image Method -0.1105 -0.1096 -1.0097 As already noted above, the larger error is committed on λ 33 through the discretization of the wall. However, it is clear from the graphs in Figure 17 that only the contact point seems to be ambiguous. The problem can be due to the discretization of the sphere mesh, since some points of the latter could penetrate the wall, generating numerical aberrations.

With the considered sphere and wall meshes, the method give very satisfying results. Avoiding the contact point between the body and the wall, the error between our simulations and the theoretical references is very low, less than 1%.

In addition, a study on the mesh sensitivity is carried out. Figure 18 shows the relative error of four simulations, realized using the Image Method on a sphere with an increasing number of discretization elements N b . The results are compared to those of Kharlamov. The equation for the calculation of the error is:

Err% λ ii λ ii inf = 100 *   λ ii λ ii inf λ ii Kharlamov λ ii inf th -1   ( 35 
)
The graphs show that the absolute value of the error increases by reducing the number of mesh elements. The maximum difference between the theoretical values and those of the simulations is observed when h/R = 1. At this position, the error committed on λ 33 /λ 33 inf is -1.9% with a mesh of 764 elements.

However, with the same mesh, the error is reduced to -0.55% when h/R = 1.05. Therefore avoiding only the point of contact between wall and sphere, the maximum error committed by our simulations is very low even with a very coarse surface discretization. The same mesh-sensitivity analysis is carried out on the results obtained through the wall discretization method. In this case, the sphere and wall meshes change at the same time. The same elements size for the two meshes is imposed (concerning the wall, we refer to the closest wall region to the sphere). The error, calculated as before, is represented in Figure 19. The number of elements N b on the graphs is referred to the sphere mesh. The values corresponding to the contact point have not been considered, because the error evaluated in the simulations with the coarsest mesh is quite high. On the other hand, the error evaluated on the rest of the domain is limited to -1%.

1 1.5 2 2.5 3 Distance [h/R] -0.5 -0.4 -0.3 -0.2 -0.1 0 Err% ( ' 11 )/( ' 11 inf ) N b =764 N b =1172 N b =2024 N b =3860 1 1.5 2 2.5 3 Distance [h/R] -0.5 -0.4 -0.3 -0.2 -0.1 0 Err% ( ' 22 )/( ' 22 inf ) N b =764 N b =1172 N b =2024 N b =3860 1 1.5 2 2.5 3 Distance [h/R] -2 -1.5 -1 -0.5 0 Err% ( ' 33 )/( ' 33 inf ) N b =764 N b =1172 N b =2024 N b =3860
1 1.5 2 2.5 3 Distance [h/R] -0.5 -0.4 -0.3 -0.2 -0.1 0 Err% ( ' 11 )/( ' 11 inf ) N b =776 N b =1160 N b =1892 N b =2624 1 1.5 2 2.5 3 Distance [h/R] -0.5 -0.4 -0.3 -0.2 -0.1 0 Err% ( ' 22 )/( ' 22 inf ) N b =776 N b =1160 N b =1892 N b =2624 1 1.5 2 2.5 3 Distance [h/R] -1 -0.8 -0.6 -0.4 -0.2 0 Err% ( ' 33 )/( ' 33 inf ) N b =776 N b =1160 N b =1892 N b =2624
Figure 19: Mesh sensitivity on the Added Masses variations by the discretization of the wall.

Relative error evaluated from the Kharlamov's results.

Finally, we can state that it is possible to estimate with good accuracy the relative variation of the AM with respect to the infinite value, even with a coarse mesh. Consequently, knowing the analytical infinite value, or calculating it with high precision, the associated absolute values is obtained with an error from the theoretical value lower than 1%.

Ellipsoids near a Flat Wall

In the following section, results of the numerical simulations, realized on ellipsoidal shapes with different combinations of the axes ratios a/b and c/b (referring to the ellipsoid in Figure 8), are presented. In this case, only the Image Method is adopted. The wall is parallel to the longitudinal axis of the 230 ellipsoid. The reference frame is fixed on the body center of volume, with the z-axis directed towards the wall. The graphs of Figure 20 show the Added Masses variations of ellipsoids with axes ratio c/b = 1. In the last graph it is shown the AM value λ 15 . This adimensional value is obtained by:

λ 15 = λ 15 4 3 πab 2 c = λ 15 M f b (36) 
This term of the AM matrix is not present when the ellipsoids are immersed in infinite fluid.

The last results suggest that the presence of the wall induces both an increase of all Added Mass values, and the emergence of new off-diagonal terms.

In Figure 21 and Figure 22 are shown the results obtained on ellipsoids with axes ratios c/b = 2 and c/b = 3. The increase in the axes ratios determines a larger variation on the AM, especially in the near wall area. In addition to λ 15 , the λ 24 term appears when a scalene ellipsoids (a = b = c) is in the vicinity of the wall. The dimensionless value is obtained from the equation:

λ 24 = λ 24 4 3 πab 2 c = λ 24 M f b (37) 
The last analysis helps better the understanding on how the presence of external walls has an impact on the Added Masses matrix. The take-off and landing are the most sensitive flight phases to these AM variations. Consequently, these results can not be neglected in the implementation of an aerodynamic As in the sphere case, a study on the influence of the mesh on results is carried out. Simulations on an ellipsoid of revolution with axes ratios a/b = 3 and c/b = 1, are realized through the Image Method. Results of a configuration with N b = 2916 are compared to Korotkin's [START_REF] Korotkin | Added Masses of Ship Structures[END_REF] results, as shown in Figure 23. From the graphs it is possible to see marked differences in all AM curves. Furthermore, Korotkin's results seem incomplete, since there is no reference to λ 55 and λ 15 terms. For these reasons and for the doubts already arisen in the sphere case, the results of Korotkin will not be further considered for the 250 analysis of the error.

In Figure 24, the influence of the mesh has been studied comparing the ellipsoid discretized with a number of elements N b = 2916 to coarser meshes. The relative error is calculated according to the following equation:

Err% λ ii λ ii inf = 100 *    λ ii λ ii inf λ ii N b =2916 λ ii inf N b =2916 -1    (38) 
Also in this case, with less detailed meshes there is an underestimation of the AM variations. The maximum relative error is obtained when the body and the wall are in contact. For λ 33 λ 33 inf , the error in this position is about -1.2% with a mesh that 255 has a number of elements five times smaller than the reference.

The mesh-sensitivity studies conducted on the sphere and on the ellipsoid give the same tendencies. To ensure a very good quality of the results, so with -0.2% < Err% < 0%, it's suggested to use a mesh with N b > 2000. To obtain results with an error -1% < Err% < -0.2%, but with an inferior computational cost, it's recommended to use 700 < N b < 2000. 29

Airship near a generic-shape wall

The potentiality of our method concerns the possibility to calculate the AM on bodies in the vicinity of walls with generic shapes. Below, results of simulations carried out on an airship, discretized with a mesh of 5732 elements, The simulated AM values of the airship in infinite fluid are :

M a =               0.2034 0 0 0 0 0 0 0.3513 0 0 0 -0.0141 0 0 1.4829 0 0.0479 0 0 0 0 0.5926 0 0 0 0 0.0479 0 0.7954 0 0 -0.0141 0 0 0 0.0762               (39) 
where λ ii with i = 1, 2, 3 are normalized by the mass of the airship, λ ii with i = 4, 5, 6 are normalized by the respective moments of inertia, λ 26 and λ 35 are In the closest area to the wall, 1 < z/b < 2, the AM variations on the ellipsoid are greater than those observed on the airship. This is particularly evident in the graph of λ 66 λ 66 inf . The last analysis highlights that the simulations realized on simplified shapes can lead to erroneous results in the near wall region with an overestimation of the AM. Calculations realized on the real shape are recommended to obtain more truthful results.

Conclusions

In this study the Boundary Element Method was adopted to determine the Added Masses of generic shape bodies interacting with external walls. Results of these analyses are fundamental for the airship dynamics, in particular to ensure the correct maneuverability and stability of the aircraft during operations in the proximity of the ground. The simulations carried out demonstrated that the quality of the numerical results depend on the mesh discretization level, as a function of the number of mesh elements and sub-elements. The cases of a sphere and of ellipsoids interacting with a flat wall are studied through the discretization of the wall surface and via the Image Method. In both cases, the results obtained are very satisfactory and in good agreement with the theoretical references. A mesh-sensibility study demonstrate that a number of elements N b = 1500, with internal subdivisions of N θ = 2 and N r = 10, can lead to the best compromise in terms of results quality and computational cost for ellipsoidal shapes. Finally, the study on an airship shows that the approximation of the body by the relative ellipsoidal shape lead to insufficient accurate results in the near-wall area, with the tendency to overestimate the AM variations.
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Figure 5

 5 Figure 5 shows the influence of N r on a configuration when N θ = 2 and N b = 2624.

Figure 5 :

 5 Figure 5: Added mass of the sphere as a function of Nr.

Finally, in Figure 6 Figure 6 :

 66 Figure 6: Added mass and relative error of the sphere as a function of N b .

Figure 7

 7 Figure7shows the comparison between the error committed on the calculation of the AM and the error due to the discretization of the sphere surface with respect to its theoretical value, S = 4πR 2 . The two curves show the same trend 115

Figure 7 :

 7 Figure 7: Comparison of the relative error in the calculation of the AM with the level of discretization of the sphere surface.

Figure 8 :

 8 Figure 8: Scheme of an ellipsoid.

Figure 9 :

 9 Figure 9: Added masses of the ellipsoid as a function of N θ .

Figure 10

 10 Figure10shows the variation of AM as a function of N r . The quality of results improves by increasing the number of N r divisions. As before, an excellent compromise, in terms of quality of results and computational cost, is obtained by N r = 10.
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Figure 10 :

 10 Figure 10: Added masses of the ellipsoid as a function of Nr.

Figure 12 :

 12 Figure 12: Relative error of ellipsoid AM as a function of N b .
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  In the analyzed case, the error calculated on all AM values, with N θ = 2, N r = 10 and N b ≥ 2000, is less than -1% and it depends only on the error committed on the surface and volume discretizations compared to the respective theoretical values.To complete these analyses, in Figure13are shown the graphics representing 140 the computational time required for a simulation as a function of N θ , N r and N b . Numerical simulations are carried out on a laptop computer with an Intel Core i7-8550U and 16GB of RAM memory.

Figure 13 :

 13 Figure 13: Simulation time as a function of N θ , Nr and N b .
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  the wall is varied from h = R to h = 8R. The comparison of two different simulation methods of the wall vicinity influence are analyzed. Firstly, a simulation is realized by direct discretization of the wall, as showed in Figure14, with a circular surface of extension S w = π(20R) 2 . Secondly, by the Image Method, as it is shown in the scheme of Figure 15. To have a better representation of the 155 relative variation of the AM, results are presented normalized by their simulated infinite-values.

Figure 14 :

 14 Figure 14: Discretization of a Flat Wall for the calculation of Added Masses.

Figure 15 :

 15 Figure 15: Modeling of a Flat Wall by the Image Method.

Figure 16 :

 16 Figure 16: Sphere Added Masses variation as a function of the distance with the Wall.

Figure 17 :

 17 Figure 17: Added Masses variation in the near-wall area.

Figure 18 :

 18 Figure 18: Mesh sensitivity on the Added Masses variations by the Image Method. Relative error evaluated from the Kharlamov's results.

Figure 20 :

 20 Figure 20: Variation of the AM on ellipsoids with axes ratios c/b = 1 as a function of the distance with a flat wall.

Figure 21 :

 21 Figure 21: Variation of the AM on ellipsoids with axes ratios c/b = 2 as a function of the distance with a flat wall.

Figure 22 :

 22 Figure 22: Variation of the AM on ellipsoids with axes ratios c/b = 3 as a function of the distance with a flat wall.
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Figure 23 :

 23 Figure 23: Ellipsoid Added Masses variation as a function of the distance with the Wall.

Figure 24 :

 24 Figure 24: Mesh sensitivity on the Added Masses variations of an ellipsoid.
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  in the presence of a possible mountain ground are presented. A representation of the configuration is shown in Figure 25. A better representation of the airship is shown in Figure 26. The dimensions of the airship are 3 b for the longitudinal half-length, 2.2 b for the lateral half-length and b for the half height. The two mountains are modeled by a Gaussian distribution. The distance of their mean 270 from the airship is 20b.

Figure 25 :

 25 Figure 25: Discretization of the airship and of a mountain ground.

Figure 26 :

 26 Figure 26: Discretization of the airship.

Figure 27 :

 27 Figure 27: AM variations on an airship in the presence of a mountain ground and on an ellipsoid with axes ratios a/b = 3 and c/b = 2 in the presence of a flat wall.

Table 1 :

 1 1 ≤ h/R ≤ 8), comparing our and Kharlamov's results. These values are presented in Table 1. Root Mean Square of the error for the three relative values of AM.

	RMS error	λ 11 λ 11 inf	λ 22 λ 22 inf	λ 33 λ 33 inf
	Wall discretization -Kharlamov 7.8895e-04 7.0915e-04 7.3847e-03
	Image Method -Kharlamov	2.9811e-04 2.9811e-04 2.1911e-03

Table 2 :

 2 Relative AM variation in the contact condition.

Table 3 :

 3 AM error in the contact condition.

In Figure 11 the variation of AM as a function of N b is presented.