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ABSTRACT 1 

Mobility-on-demand (MoD) systems have recently emerged as a promising paradigm for 2 

sustainable personal urban mobility in cities. In the context of multi-agent simulation technology, 3 

the state-of-the-art lacks a platform that captures the dynamics between decentralized driver’s 4 

decision-making and the centralized coordinated decision making. This work aims to fill this gap 5 

by introducing a comprehensive framework that models various facets of MoD, namely 6 

heterogenous MoD driver’s decision making and coordinated fleet management within 7 

SimMobility, an agent- and activity-based demand model integrated with a dynamic multi-modal 8 

network assignment model. To facilitate such a study we propose an event-based modelling 9 

framework. Behavioral models were estimated to characterize decision making of drivers using a 10 

GPS dataset from a major MoD fleet operator in Singapore was used. The proposed framework 11 

was designed to accommodate behaviors of multiple on-demand services such as traditional 12 

MoD, Lyft-like services and Automated MoD (AMoD) services which interact with traffic 13 

simulator and a multi-modal transportation network. We demonstrate the benefits of the 14 

proposed framework through a large-scale case study in Singapore comparing the fully 15 

decentralized traditional MoD with the future AMoD services in a realistic simulation setting. 16 

We found that AMoD results in more efficient service even with increased demand. Parking 17 

strategies and fleet size will also have an effect on user satisfaction and network performance. 18 

 19 

 20 

  21 
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1 INTRODUCTION 1 

A majority of past research efforts have been devoted to modelling and optimizing Mobility on 2 

Demand (MoD) fleet operations (1). Much less attention has been made to the decentralized 3 

nature of MoD decision making process (2). Such nature arises from the dependency of current 4 

MoD systems on drivers and their decision power. In the context of multi-agent simulation 5 

technology, although some facets of centralized MoD operations —such as street pick-ups, 6 

queueing, routing, and fleet dispatch—have been modelled, there is no platform that captures the 7 

dynamics between decentralized driver’s decision-making and the centralized decision making. 8 

Such decentralized perspective is critical in modeling MoD systems and the potential impacts of 9 

automation, as drivers can only be informed, incentivized or coordinated but not centrally 10 

controlled (3). 11 
 12 

This work aims to fill this gap by introducing a comprehensive framework that models various 13 

facets of MoD driver’s behavior along with a decentralized fleet management system within an 14 

agent-based demand-supply simulator, SimMobility Mid-Term. SimMobility Mid-Term (MT) 15 

simulator is an agent- and activity-based demand model integrated with a dynamic multimodal 16 

network assignment model (4). The traffic dynamics are simulated using a multi-modal 17 

mesoscopic simulator (supply simulator). MT is part of a much larger simulation platform that 18 

also contains long term and short-term models. Simulating MoD services is extremely 19 

challenging because of complex interactions between independent drivers, the central controller, 20 

and travelers' decision processes. To facilitate the study of such a complex and partially 21 

decentralized system, we propose an event-based modelling framework. In this framework, the 22 

drivers, the controllers, and the travelers are represented as separate decision agents making 23 

plans and event-triggered actions. Behavioral models were estimated to characterize decision 24 

making of drivers using a GPS dataset from a major MoD fleet operator in Singapore in 2013, 25 

containing position and service status data over 30 days. A unified framework was developed to 26 

model the operation of both traditional MoD fleets and emerging ride-hailing services such as 27 

Uber, and Lyft-like services. The specific behaviors of MoD service drivers are modelled within 28 

a discrete-choice framework. Specifically, the following models are proposed: (i) Break, (ii) 29 

Cruise/ Not to Cruise, (iii) Stand Choice (choice among the available MoD stand),  (iv) Zone 30 

Choice during cruising Model and (v) Route Choice. The suggested models can reflect strategic 31 

decisions made by the driver. 32 

While traditional MoD actions are made by the driver, some MoD services can coordinate some 33 

of the processes above. Ultimately, automated MoD (AMoD) services could fully control and 34 

optimize all decisions making processes. The AMoD controller would for example process 35 

traveler’s service requests and assign them to a given vehicle after considering its current 36 

occupancy (and potential route), whether the passenger is willing to share the ride or not, time to 37 

reach to the pick-up location and the travel time to final destination. Thus, an MoD controller 38 

agent in simulation should capture MoD service status, updated vehicle locations and monitor 39 

vehicle movement through the network, reacting to incoming requests and changes on network 40 

and fleet performance accordingly. A framework to handle MoD controllers in SimMobility was 41 

presented in (4) and integrated within the calibrated SimMobility model of Singapore [for details 42 

on the estimation, implementation and validation of the Singapore model, the reader is referred 43 

to (4). In this paper, we have extended the MoD controller framework with several features for 44 

service driver behavior modelling and simulation, and demonstrate it through a case study of 45 
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Singapore, where different MoD services are been modeled. Specifically, traditional MoD is 1 

simulated and compared to AMoD. The current work has five major contributions: (1) 2 

development of a comprehensive event-based framework that addresses complex behaviors and 3 

interactions of service drivers, MoD centralized operation, and travelers; (2) incorporation of the 4 

proposed framework within a highly realistic agent-based simulation platform, SimMobility; (3) 5 

evaluation of the suggested framework against real-world data; (4) demonstration of the 6 

proposed framework through a case study of Singapore; and (5) showcase the use of the 7 

proposed framework in the evaluation of potential mechanisms and policies when deploying 8 

MoD services. 9 

 10 

The rest of the paper is structured as follows. Section 2 provides a literature review on recent 11 

MoD and MoD services modeling and simulation. Section 3 introduces the MoD framework, 12 

including the behavioral models and the MoD controller. Section 4 includes a case study 13 

demonstrating the use of the MoD framework for modeling traditional MoD vs AMoD services 14 

in Singapore. Finally, Section 5 presents the main conclusions and findings of this work.  15 

 16 

2 LITERATURE REVIEW 17 

Many past research efforts have been devoted to the modeling of the MoD fleet operations. 18 

Leveraging on the current extensive review of MoD service modeling and simulation literature 19 

(1), we discuss the latest studies, focusing on three streams: (1) large scale simulations of MoD 20 

services; (2) theoretical and mathematical models to describe different MoD services aspects, 21 

and (3) data driven studies of MoD behavior. 22 

 23 

Within the context of large-scale simulation of MoD services, majority of past research used 24 

microscopic simulation. (6) used MATSim for the modeling of MoD services in Barcelona and 25 

Berlin and focused on assessing the performance of two MoD dispatching strategies in balancing 26 

supply and demand. The first strategy always serves awaiting requests by dispatching the nearest 27 

idle MoD, but this method has poor performance under high demand. The second strategy is a 28 

balancing strategy that minimizes pickup trip times instead of serving requests in the FIFO order. 29 

However, neither strategy simulated real MoD behavior. (7) also used MATSim to simulate the 30 

interaction between newly introduced autonomous vehicle MoD services with the existing means 31 

of transport. They used a simplified version of a greedy controller in a MATSim scenario of the 32 

city of Sioux Falls, South Dakota, USA. Both efforts using MATSim did not model the behavior 33 

of the MoD driver but used random choices. (8) studied booking strategies for a MoD 34 

dispatching system. The study identifies two types of booking: Current Booking (CBK), where 35 

the customers makes a booking call for a MoD to arrive as soon as possible, and Advance 36 

Booking (ABK), where customers indicate a pickup time which is at least in half an hour later. In 37 

the simulation model, the central region of Singapore was chosen as the study area. The results 38 

of the study show that advanced booking benefits small MoD operators with comparatively low 39 

booking demands but is ineffective for larger MoD operators with high booking demands. (2) 40 

used MoDSim to model MoD behavior at the macro-level. MoDSim is designed to be a 41 

decentralized discrete event simulation; it models MoD drivers’ cruising/roaming behavior while 42 

treating the traffic condition in the network as exogenous. Singapore was used as the study area. 43 

(9) developed a mathematical model for real-time high-capacity ride-sharing. The model was 44 

experimentally validated with New York City MoD data, and results showed that 98% of MoD 45 
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rides currently served by over 13,000 MoD drivers could be served with just 3,000 MoD vehicles 1 

via automation and sharing. 2 

 3 

The second stream of research focuses on small scale optimization problems and empirical 4 

models used to describe the different aspects of MoD services. (10) studied the MoD dispatching 5 

system in Singapore and proposed a method where the MoD assigned a booking job is the one 6 

with the shortest time path, reaching the customer in the shortest time determined by real-time 7 

traffic conditions. The microscopic simulation was performed in a small toy network. (1) 8 

proposed and tested an agent-based simulation model focused on a shared-MoD service. The 9 

proposed system optimizes fares and travel time savings for passengers. The simulation did not 10 

include a dynamic traffic model or a dynamic demand model. (11) focused on e-hailing, 11 

proposing a spatial equilibrium model to balance supply and demand of MoD services.  12 

 13 

(12) explored the market demand potential of a Shared-Ride MoD. They presented an integrated 14 

choice and latent variable modeling framework for modeling the number of times per week a 15 

Shared-Ride MoD would be used if it were implemented at the American University of Beirut 16 

campus. A series of studies by Wong et al. (see for example 13) extensively details the customer-17 

searching behavior of MoD drivers over different periods of time. (14) explored methods of 18 

optimizing mobility on demand personalized services. However, this simulation ignores actual 19 

traffic conditions on the network.   20 

 21 

The third stream of research consists of data driven studies that were used to draw insight into 22 

the behavior of MoD drivers. (15) used a stated preference survey of 400 MoD drivers conducted 23 

in 2000 in Hong Kong to estimate a multinomial logit choice model for MoD customer-searching 24 

behavior and discovered that the journey time, toll, and waiting time were found to be significant 25 

factors in the choices drivers made at the 1% level. (16) used the complete trace information 26 

from 3590 MoD drivers in Beijing to understand passenger denial behavior of MoD drivers. (17) 27 

focused on the willingness of MoD drivers to drive to the airport empty and used AVL data from 28 

8,954 MoD drivers during a period of five weekdays in Shanghai. Their analysis revealed that 29 

airport-serving MoD drivers earn significantly less in most time periods during the day, but 30 

vacant-MoD drivers are still more likely to serve the airport if they have relatively higher profits 31 

in airport-originated trips. (18) investigated the factors contributing to single-trip MoD 32 

efficiency. By evaluating MoD performance using GPS data from 2000 MoD drivers in Wuhan 33 

in 2013, they found that high-performing, efficient drivers operate further away from downtown 34 

areas and navigate through the whole city, changing locations consistently to obtain the best 35 

traffic conditions.  36 

  37 

Methodologies used so far in the literature focused mainly on MoD dispatching algorithms with 38 

very limited large-scale applications. Others used a real-world data to understand a specific MoD 39 

driver behavior, but none of them tried to capture the full set of behavior of the MoD driver, or 40 

combine all the pieces into one comprehensive framework that can address the complex 41 

behaviors and interactions of MoD drivers, fleet controllers, travelers, congestion and other 42 

modes. In this study we intend to fill this gap by developing a comprehensive tool to predict and 43 

evaluate the impact of the transformation of on demand services using SimMobility simulator. 44 

 45 

 46 
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3 METHODOLOGY AND FRAMEWORK 1 

  2 

3.1 Overview of SimMobility Mid-Term Simulator 3 

SimMobility (MT) simulator is an agent-based, fully econometric, and activity-based demand 4 

model integrated with a dynamic traffic assignment model (3), (4). It is capable of simulating 5 

daily travel at the individual levels. The traffic dynamics are simulated using a mesoscopic 6 

simulator. Figure 1 presents the modeling framework structure of the MT simulator in 7 

SimMobility. In this specific study, at the Pre-day level (agent planning stage), different MoD 8 

services are introduced, such as traditional MoD, Uber and Lyft-like services, and possibly, 9 

AMoD services alongside with traditional modes (car, etc.) to allow the synthetic population of 10 

agents to choose from all modes of interest for the trips associated with all planned activities. 11 

These modes are included in the combined mode-destination choice models as part of an agent’s 12 

choice set. The outcome of pre-day models is the Daily Activity Schedule (DAS) which is an 13 

input to the Within-day and Supply simulators. At the Within-day and Supply level, the DAS of 14 

all individuals are simulated, i.e. agent’s plans become actions, and it is where the MoD Driver 15 

Behavior Framework was implemented. The MoD Driver Behavior Framework is the key 16 

innovation of this work and will be discussed in detail in the next section. Uber and Lyft-like 17 

services, and AMoD services are been handled by the MoD controller, which is an external 18 

entity to SimMobility (presented in detail in section 3.3). 19 

 20 

 21 
**Figure 1: SimMobility MidTerm (MT) structure** 22 
 23 

 24 

3.2 Flexible Mobility On-Demand Framework 25 

In order to facilitate the study of complex interactions between independent drivers, the central 26 

controller and travelers’ decisions, we propose an event-based modelling framework. Here, 27 

drivers, controllers, and travelers are represented as separate decision agents with decision-28 

making triggered by specific events. In the next sections we will describe each of these three 29 

agents in our proposed framework, their decision-making dimensions and their trigger events. It 30 

is worth noting that for the service drivers, the richest set of decision dimensions is that of the 31 

traditional MoD driver, i.e. the (almost independent) taxi driver. Therefore, we will first describe 32 

this set of decisions which will later be modified and extended to accommodate other MoD 33 

driver behavior, such as ride-hailing and shared services.  34 

3.3 Traveler Agent 35 

As part of the Day Activity Schedule (DAS) generated by Pre-day, an agent has an MoD mode 36 

assigned to her, as well as start and end time of activity and exact location. When the time of 37 

simulation reached its MoD journey starting time, she will either (1) start searching for a MoD 38 

driver on the street either by hailing or by walking to the closest MoD stand or (2) request an 39 

MoD and wait for pick-up. Her request is added to a first in, first out array of potential clients for 40 

a MoD at that link and waits for the MoD acceptance. As for the Uber, and Lyft-like traveler, its 41 

meeting point with the driver will be at her home or activity location. The Uber, and Lyft-like 42 

traveler cannot be picked up at the MoD stand. 43 

 44 

3.4 Mobility On-Demand Driver Agent 45 

The traditional MoD-drivers are modelled as agents with their own preferences. They can choose 46 

their next move and their next client. Their interactions with the travelers is a result of driver’s 47 



  7 

 

choice. For the traditional MoD driver, we embed in the drivers the knowledge about the 1 

historical space and time distribution of the clients, based on historical demand data. The 2 

information is then used by MoD drivers to choose the most adequate MoD stands to stop at 3 

different hours of the day and choose the most attractive routes for finding clients in the street.  4 

 5 

3.4.1 State Vector of the MoD Driver 6 

An MoD driver is at any moment in one state of the state vector. To allow for different MoD 7 

services, the proposed state vector is composed of the following Boolean variables:  8 

  

Booked (B) A MoD driver is on its way to pick up a customer. The MoD vehicle is booked 

after it interacts with the controller 

Occupied (O) A client is in the MoD vehicle, and the MoD driver is heading towards the 

client’s destination. 

Queueing (Q) The MoD driver is in a queue at a MoD stand to pick up a client.  

Cruising (C) A MoD driver is searching the streets to find the next client. More generally, 

it represents that the vehicle is ready to take a passenger. 

Direct-to-

destination (D) 

The variable describes a state where the MoD driver is direct to a specific 

destination. She will not make intermediate stops or pickups until she reaches 

the destination. 

Break (K) The MoD driver is on a break; the driver temporarily will not be available to 

accept any kind of requests. 

 

3.4.2 Events influencing the MoD driver agent 9 

The designed framework is event driven and there are seven major event types that influence the 10 

MoD driver agent as follows: 11 

Pick-up event: This event occurs when the MoD driver picks up a traveler. The pick-up can 12 

happen on-road or at any stopping bay; we treat different bays as a MoD stand. 13 

Drop-off event: This event occurs when the MoD reaches the destination of the traveler. After 14 

this event, the MoD-driver re-evaluates her strategy. 15 

Join queue event: This event occurs when the MoD driver reaches the MoD-stand. The MoD 16 

driver can join the queue at the stand only if the number of drivers already queueing at the stand 17 

is below capacity. 18 

Controller request event: This event describes the messages the controller sends to the MoD 19 

driver regarding the pick-up request. This event can occur at any time. 20 

Cruising for too long event: This event is triggered when the MoD driver has been cruising 21 

unsuccessfully for too long. Afterward, the MoD driver will choose “do not cruise.” 22 

Queuing for too long event: This event is triggered when the MoD driver has been queueing 23 

unsuccessfully for too long at a MoD-stand. After this event, the MoD driver re-evaluates her 24 

strategy. 25 

 26 

Figure 2 describes the traditional MoD driver behavior framework, showing the decision models 27 

and choices. The simulation starts by loading the agents at their home location as defined in the 28 

synthetic population. The MoD driver’s initial decision will be to work or to take a break; if the 29 

driver decides to take a break, her state will change to break activity whose duration is pre-30 

determined.  Location and time information will be kept in the simulation.  31 

 32 
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 1 
**Figure 2: Traditional MoD driver behavior framework** 2 

 3 

 4 

If the MoD driver chooses to cruise, she will search the streets to find a client. She can do so by 5 

moving towards a predetermined zone, then the zone-based cruising model will be activated first 6 

and the route choice model will be activated second. After reaching the desired zone, the MoD 7 

driver will cruise randomly from link to link with no specific target. The MoD will choose the 8 

desirable zone according to the historical demand. If a client is found, the MoD driver will pick 9 

her up; the route choice model will be activated, and the MoD will move towards the client 10 

destination. If the MoD driver is cruising for too long, she will change her state to “do not 11 

cruise,” else, she will go to her initial decision of whether to take a break. 12 

 13 

In the case of a coordinated ride-hailing driver behavior framework, majority of the decisions are 14 

taken out so that the driver cannot: (1) choose whether to cruise or not to cruise (2) choose to go 15 

to a MoD stand, queue, and pick up a passenger there (3) choose to pick up passengers on the 16 

street, or (4) choose her next zone to in which to cruise. On the interaction between the driver 17 

and the MoD controller see Section 3.5. Note that traveler’s choices are not modeled in detail 18 

and will be incorporated in future research. 19 

 20 

3.5 MoD Controller: the case of Automated MoD 21 

The model of Automated Mobility on Demand (AMoD) builds upon our previous work (5), 22 

extended to handle new capabilities, for instance parking, handling single or shareable ride 23 

requests, etc. An AMoD service consists of a fleet of vehicles and a controller. The interactions 24 

between the user, the controller and the vehicles are depicted in Fig. 3. Users send trip requests 25 

to the controller, which assigns them to vehicles in the form of schedules. The controller 26 

computes and continuously updates a schedule for each vehicle, which dictates the sequence of 27 

operations, i.e., pick-up, drop-off, etc., that the vehicle will perform. It is worth emphasizing the 28 

main difference between MoD and AMoD services: the former are driven by the choices and the 29 

experience of the drivers, while the latter are fully determined by a centralized controller and 30 

vehicles follow the instructions given in the schedule. 31 

User requirements 32 

In the trip request, the user specifies pick-up and drop-off locations, shareability, indicating 33 

whether the user is willing to share her ride with other users or not, maximum waiting time she is 34 

willing to accept and the tolerated delay at arrival, i.e., the amount of additional delay she can 35 

accept with respect to the minimum travel time possible. With the tolerated delay, the user 36 

declares an upper bound of the delay she is willing to accept. In brief, we call time constraints of 37 

a trip request its maximum waiting time and tolerated extra delay. 38 

 39 

 40 
**Figure 3: Interactions between agents in the model of AMoD service** 41 
 42 

 43 

Controller-Vehicle interaction 44 

As explained before, the activities of the vehicles are completely determined by the centralized 45 

controller, by means of schedules computed by the controller and sent to vehicles. At any time, 46 

each vehicle has a schedule, which is a sequence of commands that can be of the following types: 47 
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• Pick-up a user; it includes the user-ID and the related trip-request containing all the user 1 

requirements. 2 

• Drop-off a user: similar to the pick-up command. 3 

• Cruise to a certain zone. 4 

• Go to park at a certain node. 5 

 6 

The commands in a schedule can be arranged in any plausible order ensuring, for example, that a 7 

drop-off for any user comes after the respective pick-up and that the number of passengers never 8 

exceeds the number of seats available in the vehicle 9 

  10 

Schedule Computation 11 

The controller continuously collects request from users and periodically, i.e., every 10 seconds, 12 

computes or updates vehicle schedules in order to match them. The controller computes feasible 13 

schedules. A schedule is feasible if (i) all its pick-ups can be performed respecting the maximum 14 

waiting time specified in the respective trip request and (ii) all its drop-offs can be performed 15 

respecting the tolerated extra-time specified in the respective trip request. Note that if a feasible 16 

schedule is updated inserting the pick-up and the drop-off of a new user, in order to ensure that 17 

the new schedule is still feasible, not only we have to check that the time constraints of new user 18 

are met, but we have also to consider that the insertion of the new pick-ups and drop-offs may 19 

imply a detour for the vehicle that can delay the pick-up of the drop-offs of the passengers 20 

previously inserted in the schedule, possibly violating their time constraints. If a modified 21 

schedule is unfeasible, the modification is not accepted, i.e., the new passenger cannot be served 22 

by that vehicle and the controller will attempt to match her to another vehicle.  The controller is 23 

able to handle both shareable and non-shareable requests. To do so, first the shareable requests 24 

are matched to the available vehicles with some available seats, using the insertion heuristic 25 

detailed in (5). Then, the controller matches the non-shareable requests with the closest empty 26 

vehicles. Finally, updated schedules are sent to the vehicles. 27 

 28 

  29 

4 CASE STUDY: FROM TRADITIONAL TO AUTOMATED MOBILITY ON 30 

DEMAND IN SINGAPORE  31 

Researchers who have focused on the algorithms to optimize fleet operation, have claimed the 32 

superiority of AMoD over MoD and supported the assumption that AMoD will improve urban 33 

mobility. While research has produced its claims overlooking the effect of congestion and an 34 

accurate model of drivers, the second side has been represented, with few exceptions, by 35 

conceptual or economic reasoning, with lack of quantifiable results. To fully understand the 36 

impact of shifting from current human-driven MoD to future Automated MoD, we claim it is 37 

necessary to accurately model driver behavior, which has been overlooked in current studies on 38 

AMoD. We demonstrate the validity of this claim by comparing accurately-modeled traditional 39 

MoD service and future AMoD in Singapore. 40 

 41 

4.1 Model Estimation 42 

For the estimation of each of the driver decision dimensions, a GPS dataset collected from a 43 

major MoD fleet operator in Singapore in 2013 was used. This data set contains more 25 million 44 

records each day for a period of 30 days, and containing vehicle number, time, position and 45 

service status data. MoD fleet size was fixed according to the information provided by the Land 46 
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Transport Authority in Singapore (19). The simulation is focused in reproducing MoD driver’s 1 

behaviors in a typical working day in a city. MoD driver agents are identified by synthetic 2 

population generated for Singapore for 2012. Their start time of work and shift duration was 3 

modeled by fitting a distribution based on MoD GPS data, which was then used to determine 4 

each driver's starting time and shift duration. In Figure 4 (a) and (b) the distribution of shift 5 

duration and shift starting time, as obtained using the GPS traces, is presented (in blue). 6 

The specific behaviors of the traditional MoD drivers are modelled using a discrete-choice 7 

framework. Five are estimated, namely: (i) Break Model; (ii) Cruising Model; (iii) Stand Choice 8 

Model; (iv) Zone Based Cruising Model; and (v) Route Choice Model.  9 

 10 

 11 
**Figure 4: The distribution of (a) shift duration and (b) shift starting time** 12 
 13 

 14 

Break Model 15 

The break model was estimated as a binary logit model estimating the probability of a MoD 16 

driver to take a break. A subsample of 39,831 observations taken from the GPS dataset were 17 

used for the model estimation. Table 1 shows the estimation results of the break model. The 18 

directions of the effects of all variables are theoretically consistent. 86% of breaks take place 19 

outside the CBD and 50% of the drivers take a break within 5 hours from their previous one.    20 

 21 
Spatial Choice Model: Stand Choice  22 
The second model is for simulating the choice of a stand. It is estimated as a location choice 23 

model using the multinomial logit formulation for the probability of a MoD driver to choose a 24 

specific stand from 214 alternative stations scattered around in the network. We used a 25 

subsample of 2,324 observations taken from the GPS dataset. Table 1 presents the parameter 26 

estimates for the stand choice model. The directions of the effects of all variables are 27 

theoretically reasonable, with an estimated marginal effect of travel cost per kilometer of 0.24.  28 
 29 
Integrated Spatial Choice: Zone Based Cruising and Route Choice Model 30 
We estimated a multi-level decision model for the cruising zone selection and the route selection 31 

to reach the zone, using the nested logit formulation. The model was estimated by the sequential 32 

estimation procedure. At the upper level of this model, the probability to choose a specific zone 33 

to cruise in among all 1169 traffic zones, is estimated while at the lower level, a specific route to 34 

reach this zone is chosen. The data used were a subsample of 4000 observations taken from the 35 

GPS dataset. As the number of alternatives is very large, the ρ2 is small as expected. 36 

Surprisingly, many highly visited cruise zones are not in the CBD. In fact, the most visited zone 37 

is outside the CBD with more than 1,580 pickups.  38 
 39 
Cruise Choice Model 40 
The cruise/no cruise choice model was estimated as a binary logit model, which estimates the 41 
probability of a MoD driver to cruise. The data used were a subsample of 13,742 observations 42 
taken from the GPS dataset. Table 1 presents the parameter estimates for this model. The 43 
directions of the effects of all variables are theoretically reasonable. Interestingly, it was found 44 
that as the employment density increases, the driver is less likely to cruise. In Singapore, the high 45 
employment areas are also characterized by a large number of stands which makes the search for 46 
customers easy. Overall 30% of the drivers choose to go to a stand while the rest choose to 47 
cruise. 48 
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 1 

**Table 1: The MoD driver behavior model estimates** 2 
 3 
 4 
Cruising for too long, and the queueing for too long are handled by drawing a unique value for 5 
each driver from the distribution obtained using the GPS data. In Figure 5, the distribution of 6 
cruising durations, and queuing durations as obtained using the GPS traces, is presented (in blue) 7 
as well as a log-normal curve that was fitted (in red).   8 
 9 

 10 
**Figure 5: The distribution of (a) cruising duration, and (b) queuing duration** 11 

 12 

 13 

4.2 Study Area 14 

Our study was conducted using a representative synthetic population and network of Singapore. 15 

The total area of Singapore is 721.5 km2 with a population of 5.3 million individuals in 2012 16 

(20). In Singapore, passengers make over 8 million trips on a daily basis with an average stop 17 

rate of 1.5 per individual. Singapore has a developed transportation system covering 3,356 km of 18 

roads which includes 10 expressways. The public transportation system consists of 15 MRT and 19 

LRT lines with a total of 124 subway stations (92 MRT stops and 32 LRT stops) and 728 bus 20 

lines spanning the island with a total of 4607 bus stops. The road network consists of 6220 nodes 21 

(intersections), 30585 segments (road sections with homogeneous geometry) and 14799 links 22 

(groups of one or more segments with similar properties). Singapore Island is divided into 1169 23 

Traffic Analysis Zones (TAZs).  24 

 25 

 26 

4.3 Experimental Design 27 

Two different scenarios are designed and simulated. We consider a “traditional MoD only” 28 

scenario where traditional MoD is operated for on-demand service delivery. The available modes 29 

are single occupancy car (Car), sharing with one extra passenger (Car Sharing 2), sharing with 30 

two extra passengers (Car Sharing 3), Private Bus, public Bus, Mass Rapid Transit (MRT), 31 

Motorcycle, Walk and traditional MoD. The modal availabilities are in accordance with our 32 

study area, which we describe in the following section. In the second scenario we introduce 33 

automated MoD, replacing traditional MoD service with two new modes: AMoD as a non-34 

shared, driverless ride (AMoD), and AMoD as a shared ride (AMoD Pool), while the availability 35 

of all other modes from the base case scenario stays the same. We refer to this scenario as 36 

“AMoD only” scenario. In order to generate the demand for AMoD modes, given the absence of 37 

appropriate data, we assumed that individual preference towards AMoD is similar to that of 38 

MoD with some modifications. The first set of assumptions is that a single AMoD ride will be 39 

50% cheaper compared to MoD, and that a shared ride will be 30% cheaper than a single ride 40 

(21). We also implemented a distance-based additional in-vehicle travel time for the passengers 41 

who share the vehicle with other passengers (based on current Uber data). Furthermore, we have 42 

added the expected additional waiting time for the AMoD Pool rider. We conduct morning peak 43 

(6-10 am) simulations for each scenario in SimMobility using the Singapore network. The results 44 

are summarized in the following section. We also compare the impacts of fleet size and parking 45 

strategies for AMoD on network performance. 46 
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5 RESULTS AND DISCUSSION 2 

The mode share distribution for each scenario, and the demand locations for MoD and AMoD 3 

are shown in Figure 6. In the “traditional MoD only” case, MRT and Public Bus (PT) account for 4 

48.6% of the share, while Walk is about 20% of the share, and Private Bus 10%. Private car 5 

accounts for 12% of the share, and an additional 4.3% will share the Car with other passengers. 6 

The traditional MoD service consists of 3% of the share. In the “AMoD only” scenario, where 7 

AMoD services are offered as a substitute for traditional MoD services, we see significant 8 

reduction in PT mode share of more than 6%, with a shift towards AMoD, which consists of 9 

13.2%. We also observe a small reduction in Walk and Private Bus, as well as in Car Sharing 10 

modes, while there is no change in Car mode share. 11 

 12 

 13 
**Figure 6: Mode share and demand profile during morning peak for (a) Traditional MOD and (b) 14 
Automated Mobility on Demand services** 15 

 16 

 17 

Fig. 6 shows the activity of the traditional MoD drivers under the models specified in section 4. 18 

As expected, the number of drivers queueing at the MoD stands and cruising reduces during peak 19 

hours. On average, drivers spend 8 minutes cruising and 2 minutes queueing during the morning 20 

peak. 21 

 22 
 23 
**Figure 7: MoD driver behavior during simulation** 24 
 25 

 26 

In Fig. 8, we observe the performance of the controller with regard to trip request satisfaction 27 

under various fleet loadings. Based on these results and on those in Figure 10, the 45,000-fleet 28 

case appears as the user-optimal case. In order to compare to the alternate strategy wherein 29 

vehicles are cruising, instead of parked, we compare the 36,000-fleet case under both conditions. 30 

Comparing Figures 7c and 7d, we see that waiting time is slightly lower under the parking 31 

strategy (as indicated by the area between the blue and orange curves). Overall, parking ensures 32 

that demand is ultimately met, as can be seen toward the end of the curves in both Fig 7c and 7d. 33 

Note that Fig. 7 counts the requests, pick-ups and drop-offs observed in each 5-minute interval. 34 

Obviously, not all the requests sent in a certain 5-minute interval are picked up and dropped off 35 

in the same interval, as they will be served later. The request-to-dropoff ratio is highest at about 36 

8:00am and narrows down toward the end of the observed scenario. When the service is not well 37 

configured, e.g. with 36,000 vehicles and no parking, the number of requests served do not 38 

recover the number of requests sent, while using parking solves this problem. 39 

 40 

 41 

 42 
**Figure 8: Controller performance for AMOD service under various fleet size scenarios, all 43 
implemented with parking except (d)** 44 
 45 

 46 

(a) (b) 
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In Figure 8 we compare driver behavior and fleet management between the “Traditional MoD 1 

only” and the “AMoD only” scenarios. Note that MoD vehicles are not parked or driven to a pre-2 

specified location to pick up. Instead, passengers are picked up while hailing or waiting at the 3 

taxi stand.  In the AMoD case, the fleet is more efficiently managed, as they are introduced 4 

incrementally, while MoD drivers are introduced according to their shift starting time. As the 5 

MoD shifts are set inefficiently, they spend a lot of time cruising. However, this inefficiency is 6 

greatly reduced towards the end of peak period. 7 

 8 

  9 
**Figure 9: Vehicle utilization profiles for “Traditional MoD only” (20,000 vehicles) and best-case 10 
“AMoD only” (45,000 vehicles) scenarios** 11 

  12 

 13 

 14 
**Figure 10: Waiting time (W) across automated on-demand modes for the different scenarios (in 15 
minutes). Avg Network-Wide W is the average W over buses, trains and MoD. Journey Time 16 
captures average travel time across all modes** 17 
 18 

 19 

In Fig. 9 we report the impact on user-metrics of the different services, under different settings. 20 

Journey times (JT) do not include waiting times (W), which are represented separately. As 21 

expected, the shared requests experience higher waiting times. The increase in fleet size is 22 

clearly beneficial for non-shared requests, while its impact is less pronounced for the shared. 23 

This can be explained by the interest of the operator in decreasing the miles traveled: even if a 24 

large fleet is available, it will try to serve the shared requests with as few active vehicles as 25 

possible, as long as the user requirements are satisfied. This is reflected in the matching 26 

algorithm we have used (5). It is clear from Fig. 9 that the 45,000 AMoD fleet case is user-27 

optimal. A limitation of the simulation framework at the time this experiment was carried out is 28 

that taxi waiting times are not given explicitly. However, as can be seen from the average 29 

journey times, similar levels of service are provided by both the AMoD and the traditional MoD 30 

cases. In Table 2, we compare average travel times and distances for passenger-vehicle trips for 31 

the two scenarios. These indicate that the overall patterns for single-passenger trips are largely 32 

unchanged. As expected, travel times for AMoD Pool are about 50% greater on average. 33 

 34 
 35 
**Table 2: Average travel times and distances for passenger-vehicle trips in both scenarios** 36 

 37 

 38 

6 CONCLUSIONS 39 

We have demonstrated an agent-based simulation of daily activity patterns and movements in a 40 

dense urban network, using Singapore as a case study. Importantly, we have modeled in 41 

adequate fashion the behavior and movement of traditional mobility on demand services and 42 

compared comprehensively how this performs relative to the near-futuristic automated mobility 43 

on demand service. Our simulator – SimMobility – has enabled us to test the impacts on network 44 

performance of the user optimal automated case to the traditional case. 45 

 46 
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A key finding of this research is that a significant reduction in PT modes (12%) and a dramatic 1 

increase in mobility on-demand share (four times greater) are observed when AMoD services are 2 

offered as a substitute for traditional MoD services. Additionally, while demand for AMoD is 3 

over four times greater than that of traditional MoD, only about twice as many fleet are required 4 

to satisfy the increased demand levels. In the “traditional MoD only” case, there are 20,000 taxis 5 

available during the morning peak. For the “AMoD only” case, we employed simulation tests to 6 

obtain the user optimal fleet size of 45,000 for the same period, servicing 0.2 million trips (over 7 

5 times those of traditional MoD). This demonstrates that AMoD fleet are more efficiently 8 

managed compared to MoD fleet, and have the potential to improve urban mobility outcomes 9 

with the same level of service, at likely lower costs. We also show that when ridesharing is 10 

predominant, then fewer fleet can serve the demand just as efficiently. 11 

 12 

Our further avenues of research include quantifying the cost implications of AMoD 13 

implementation strategies and comparing their respective benefits. Given our capabilities to 14 

sufficiently model current Uber-like mobility-on-demand systems, we would like to further 15 

investigate driver behavior under today’s MoD frameworks. 16 

 17 

The differences in urban form and rates of technological and infrastructural development indicate 18 

that the introduction of AMoD services will have widely varying impacts. There are critical 19 

questions to be answered regarding its effects on congestion, parking and public transportation 20 

ridership. In order to better understand these future patterns, we are currently developing 21 

prototype cities representing distinct urban typologies. By simulating relevant scenarios in these 22 

prototype cities, we can further obtain insights into policy intersections for the best outcomes for 23 

AMoD service implementation. 24 

 25 
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Figure 1: SimMobility MidTerm (MT) structure 2 
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Figure 2: Traditional MoD driver behavior framework 2 
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Figure 3: Interactions between agents in the model of AMoD service 2 
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Figure 4: The distribution of (a) shift duration and (b) shift starting time 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 

 37 

 38 

(a) (b

) 



  22 

 

Table 1: The MoD driver behavior model estimates 1 

Break model 

Variable Coefficient  
Asymptotic 

st. error 
t statistic Summary statistics 

Break constant -3.03 0.0457 -66.28 Num. of observations 

= 39,831 In CBD dummy -0.47 0.0451 10.43 

Log employment  0.19 0.0165 11.5    L (0) = -27608.74 

Travel cost to the nearest stand 

(SGD) 
-0.473 0.0744 -6.36    L (β) = -14377.43 

Time passed from the last break 

(hr) 
0.0633 0.00343 18.44    ρ2 = 0.479 

Time left to the end of the shift 

(hr) 
0.0557 0.00402 13.84 

  

Number of previous breaks  -0.365 0.00787 46.32   

Stand choice model 

Variable Coefficient  
Asymptotic 

st. error 
t statistic Summary statistics 

Break constant 2 0.0896 22.37 Num. observations = 

2324 In CBD dummy -1.24 0.0944 -13.19 

Log employment  -0.299 0.0212 -1.41 L (0) = -12254.165 

Travel cost to the nearest stand 

(SGD) 
-5.02 0.432 -11.88 L (β) = -5720.485 

Time passed from the last break 

(hr) 
1.08 0.188 -5.72 

   ρ2 = 0.533 

Time left to the end of the shift 

(hr) 
1.75 0.0674 25.94   

Number of previous breaks  2.31 0.0792 29.16   

Integrated spatial choice and route choice model  

Variable Coefficient  
Asymptotic 

st. error 
t statistic Summary statistics 

In CBD dummy 1.38 0.0748 18.41 Num. of observations 

= 4999 Stand dummy 0.633 0.0427 14.81 

Route choice logsum  0.00313 0.000452 6.93    L (0) = -34924.773 

Log scale parameter 0.799 0.0102 78.6   L (β) = -31192.34 

Zone’s area (km^2) 2.38 0.175 13.59    ρ2 = 0.107 

Cruise choice model 

Variable Coefficient  
Asymptotic 

st. error 
t statistic Summary statistics 

Cruise constant 0.639 0.0468 13.65 
Num. of observations 

= 13742 Time left to the end of the shift 

(hr) 
0.0144 0.00436 3.31 

In CBD dummy -0.354 0.0541 -6.53 L (0) = -9525.229 

Total pick up at the stand  -0.147 0.0403 -3.64 L (β) = -7624.537 

Employment density (1/ km^2) -0.0314 0.00329 -9.52    ρ2 = 0.200 

Travel distance to stand (km) 0.595 0.0373 15.95   
 2 
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 1 
Figure 5: The distribution of (a) cruising duration, and (b) queuing duration 2 

 3 

(a) (b) 
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Figure 6: Mode share and demand profile during morning peak for (a) Traditional MOD and (b) 1 
Automated Mobility on Demand services 2 

 3 

 4 



  25 

 

 1 
Figure 7: MoD driver behavior during simulation 2 
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 1 
Figure 8: Controller performance for AMOD service under various fleet size scenarios, all 2 
implemented with parking except (d). 3 
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 1 
Figure 9: Vehicle utilization profiles for “Traditional MoD only” (20,000 vehicles) and best-case 2 
“AMoD only” (45,000 vehicles) scenarios 3 
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1 
Figure 10: Waiting time (W) across automated on-demand modes for the different scenarios (in 2 
minutes). Avg Network-Wide W is the average W over buses, trains and MoD. Journey Time 3 
captures average travel time across all modes.  4 
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Table 2: Average travel times and distances for passenger-vehicle trips in both scenarios 1 
Scenario MoD Avg. 

Travel Time 

(min) 

MoD Avg. 

Trip 

Distance 

(km) 

AMoD 

Avg. 

Travel 

Time 

(min) 

AMOD 

Avg. Trip 

Distance 

(km) 

AMoD 

Pool 

Avg. 

Travel 

Time 

(min) 

AMoD 

Pool 

Avg. 

Trip 

Distance 

(km) 

Car Avg. 

Travel 

Time 

(min) 

Car Avg. 

Travel 

Distance 

(km) 

Traditional 

MoD 

14.5 10.1 - - - - 14.6 9.4 

AMoD   13.2 8.0 20.3 13.7 15.6 10.0 

 2 


