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Abstract

In this work, we introduce and study a new graph labelling problem standing as a combi-
nation of the 1-2-3 Conjecture and injective colouring of graphs, which also finds connections
with the notion of graph irregularity. In this problem, the goal, given a graph G, is to label
the edges of G so that every two vertices having a common neighbour get incident to different
sums of labels. We are interested in the minimum k such that G admits such a k-labelling.

We suspect that almost all graphs G can be labelled this way using labels 1, . . . ,∆(G).
Towards this speculation, we provide bounds on the maximum label value needed in general.
In particular, we prove that using labels 1, . . . ,∆(G) is indeed sufficient when G is a tree, a
particular cactus, or when its injective chromatic number χi(G) is equal to ∆(G).

1 Introduction
We deal with undirected graphs only. By a labelling ` of some graph G, we mean a mapping
` : E(G) → L assigning labels to the edges of G (from a set L of labels). For every vertex v of
G, we can compute the sum of the labels on its incident edges, and assign this value as the colour
c`(v) of v. Doing this task for all vertices, we end up with c`(v) being a vertex-colouring of G. A
natural question to ask is whether ` can always be designed so that c` has particular properties.

For instance, one can require c` to be a proper colouring, i.e., to verify c`(u) 6= c`(v) for
every edge uv. This seems like a legitimate question, as proper colourings are perhaps the most
investigated type of vertex-colourings. We say that a labelling ` is proper if c` is a proper colouring.
A natural question is then: In general, what labels permit to design proper labellings? For a given
graph G, we denote by χΣ(G) the least k ≥ 1 (if any) such that G admits proper k-labellings (i.e.,
labellings assigning labels from {1, . . . , k}). Through inductive arguments, it is not complicated to
prove that χΣ(G) is defined for every connected graph G different from K2; thus, in this context,
we say that G is nice whenever it has no component being K2. The leading conjecture regarding
the parameter χΣ is the well-known 1-2-3 Conjecture, raised in 2004 by Karoński, Łuczak and
Thomason [9].

Conjecture 1.1 (1-2-3 Conjecture [9]). For every nice graph G, we have χΣ(G) ≤ 3.

Many results have been obtained towards the 1-2-3 Conjecture; see [14] for a survey on this
topic. The best result we have to date is that χΣ(G) ≤ 5 holds for every nice graph G (see [8]).
Let us also mention that determining whether χΣ(G) ≤ 2 holds for a given graph G is NP-hard in
general [6], but can be done in polynomial time when G is bipartite [16].

∗The first author was supported by a funding granted by the program “Jeunes Talents FRANCE-CHINE”. The
second author was supported by the National Natural Science Foundation of China (No. 11701440, 11626181).
The third author was supported by the National Natural Science Foundation of China (No. 11601429) and the
Fundamental Research Funds for the Central Universities (No. 3102019ghjd003).
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There are several ways for interpreting the 1-2-3 Conjecture. On the one hand, the conjecture
states that for almost all graphs G, we should be able to “encode” a proper colouring via a labelling
assigning labels with small value, no matter whether χ(G) (the chromatic number of G, i.e., the
least number of colours in a proper colouring of G) is large or not. On the second hand, we note
that, given a proper labelling ` of G, when replacing every edge e = uv with `(e) parallel edges
joining u and v, we end up with a multigraph H which is locally irregular, i.e., for every edge uv
of H we have d(u) 6= d(v). So, in some sense, the 1-2-3 Conjecture states that nearly every graph
G can be turned into a locally irregular multigraph H with the same structure (i.e., two vertices
are adjacent in H if and only if they are adjacent in G) by just replacing every edge with at most
three parallel edges. As noted in [3], such concerns take place in a more general context where one
aims at defining what an irregular graph should be, where the notion of local irregularity can then
be perceived as an antonym of the notion of regularity.

In this work, we investigate how labellings can be used to generate other kinds of vertex-
colourings, namely injective colourings. For a graph G, an injective colouring is a vertex-
colouring where, for every vertex v, no two neighbours of v get the same colour. In other words,
every two distinct vertices are required to receive distinct colours as soon as there is a path of
length 2 joining them. Equivalently, an injective colouring of G can be seen as a proper colouring
of G(2), the graph of the common neighbours of G (i.e., V (G(2)) = V (G) and there is an edge
joining u and v in G(2) if and only if u and v have a common neighbour in G). The least number of
colours in an injective colouring of G is denoted by χi(G), which is called the injective chromatic
number of G.

Injective colourings were first introduced in [7], where the authors raised several fundamen-
tal properties of these colourings. In particular, greedy colouring arguments show that χi(G) ≤
∆(G)(∆(G) − 1) + 1 holds for every graph G, while there do exist graphs for which the injective
chromatic number reaches the upper bound (these graphs being exactly the incidence graphs of
projective planes). Also, we clearly always have ∆(G) ≤ χi(G) by the very definition of injective
colouring. The authors of [7] also established that deciding whether χi(G) ≤ k holds for a given
graph G is NP-hard for every k ≥ 3. Several other results on the topic appeared later in the
literature, establishing mainly refined bounds for families of sparse graphs. We refer the interested
reader to e.g. the pointers given in [11] for more details.

We call a labelling ` of a graph G injective if c` is an injective colouring. We denote by χiΣ(G)
the least k such that G admits injective k-labellings. As will be shown in later Section 3, let
us mention that, this time, χiΣ(G) is defined for every graph G. Studying injective labellings is
motivated by the reasons exposed earlier. In particular, we note that, given an injective labelling
` of a graph G, when replacing the edges of G by parallel edges as explained earlier, we here get a
multigraph H that is highly irregular (i.e., in which no vertex has two neighbours with the same
degree), which is another possible antonym to regularity that was considered in [1].

Similarly as for the parameter χΣ, our main concern is about how large can χiΣ be in general.
It is easy to see that, contrarily to the parameter χΣ(G), there is no absolute constant upper bound
on χiΣ(G) for every graph G, which can be as large as ∆(G) (any star is an example). As will be
noted in upcoming Section 2, actually for every odd cycle G we even have χiΣ(G) = ∆(G) + 1.
Odd cycles are however the only such graphs we came up with, and, though it might seem daring,
we would like to raise the following conjecture, which is our leading thread throughout this work.

Conjecture 1.2. For every graph G, we have χiΣ(G) ≤ ∆(G) + 1. Furthermore, the upper bound
is attained only when G is an odd cycle.

This work is organised as follows. We start, in Section 2, by raising first observations on injective
labellings, and showing that Conjecture 1.2 is true for some easy graph classes. In Section 3, we
establish bounds on χiΣ(G) in terms of χi(G). In particular, our bounds show that Conjecture 1.2
holds for some graphs G verifying χi(G) = ∆(G). We then verify Conjecture 1.2 for more classes of
graphs in Section 4 (trees, cacti, and subcubic graphs G with χi(G) = 3). In Section 5, we establish
that determining χiΣ(G) for a given bipartite graph G is an NP-hard problem. Conclusions and
perspectives are presented in Section 6.
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2 First observations and warm-up results
We start off with the following observation on labellings in general, which will be useful for proving
one result later in this work.

Observation 2.1. Let G be a graph, and ` be a labelling of G. Then∑
e∈E(G)

2`(e) =
∑

v∈V (G)

c`(v).

In particular, by any labelling `, the sum
∑

v∈V (G) c`(v) must be even.

Proof. This is because every edge label contributes to the colour of exactly two vertices.

In the rest of this section, we provide some easy warm-up results towards Conjecture 1.2. First
of all, we note that, in a complete graph Kn with n ≥ 3 vertices, every two vertices have common
neighbours. Thus χ(Kn) = χi(Kn). By an injective labelling of Kn, we must thus make sure that
all vertices get different colours. In other words, an injective labelling of Kn is a proper labelling.
Since complete graphs Kn with n ≥ 3 verify the 1-2-3 Conjecture [5], the following result holds,
which shows that χiΣ(G) can be much lower than ∆(G) in general.

Theorem 2.2. For every n ≥ 3, we have χiΣ(Kn) = 3.

We now consider complete bipartite graphs Kn,m, which also easily verify Conjecture 1.2.

Theorem 2.3. For every n,m ≥ 1 with n ≤ m, we have χiΣ(Kn,m) ≤ m = ∆(Kn,m).

Proof. Let (U, V ) denote the bipartition ofKn,m, where U = {u0, . . . , un−1} and V = {v0, . . . , vm−1}.
Consider the following m-labelling ` of Kn,m. We first consider v0u0 and assign it label 1. We then
consider v1u1 and assign it label 2. We go on like this for every i ≤ n − 1, and assign label i + 1
to viui. For vn (if any), we “go back” to u0 and assign label n + 1 to vnu0. For vn+1 (if any), we
assign label n + 2 to vn+1u1. And so on: for every vertex vi with i ∈ {n, . . . ,m − 1}, we assign
label i+ 1 to viui mod n. Finally, we assign label m to all remaining edges of Kn,m.

Clearly, the maximum label value assigned by ` is exactly m. We claim that ` is injective. First
of all, since Kn,m is bipartite and complete, we only need to guarantee that all ui’s get different
colours by c`, and similarly for all vi’s. By construction of `, we note that for every vertex vi, we
have c`(vi) ≡ i + 1 mod m. Thus, no two vi’s get the same colour. Now we note that due to the
labelling scheme, we have c`(uj) > c`(ui) whenever j > i. This is because, by how the procedure
goes, labels 1, . . . ,m − 1 are assigned only once in such a way that whenever one of these labels
is assigned to an edge incident to some ui, then a strictly larger larger is assigned to an edge
incident to every uj with j > i. Thus also no two ui’s can have the same colour, and ` is indeed
injective.

In the next result, we prove Conjecture 1.2 for paths.

Theorem 2.4. For every path G, we have χiΣ(G) = ∆(G) ≤ 2.

Proof. If G has length 1, then assigning label 1 to its unique edge results in an injective 1-labelling
of G. So let us now focus on the general case. Let us denote by v1, . . . , vn the consecutive
vertices of G, where n ≥ 3. Since n ≥ 3, note that χiΣ(G) > 1. Consider the 2-labelling `
assigning labels 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, . . . to the consecutive edges of G, from one end-edge
to the other. Note that ` is injective (essentially because every two edges vivi+1, vi+3vi+4 at
distance 4 get different labels, and a situation where vi+1vi+2 gets the same label as vi+3vi+4

while vi+2vi+3 gets the same label as vivi+1 never occurs; this leads the consecutive colours to be
1, 2, 2, 3, 4, 4, 3, 2, 2, 3, 4, 4, 3, . . . ), except in two cases:

• When the length of G is 2, in which case c`(v1) = 1 = c`(v3). In that case, assigning labels 1, 2
to the edges yields an injective labelling.

• When the length of G is congruent to 4 modulo 6, in which case we get c`(vn) = 2 = c`(vn−2).
Note however that this conflict is unique. Here, assigning 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, . . .
to the consecutive edges of G instead results in an injective 2-labelling.
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We now prove Conjecture 1.2 for cycles. We start off by considering even cycles, i.e., cycles
with even length.

Theorem 2.5. For every even cycle G, we have χiΣ(G) = 2 = ∆(G).

Proof. We denote by v0, . . . , vn−1 the consecutive vertices of G, where n is even. Obviously, we
have χiΣ(G) > 1. Let us show that χiΣ(G) = 2.

• First assume G has length 4k. We produce a 2-labelling ` where, as going along the consecu-
tive vertices, the colours by c` are 3, 3, 2, 2, 3, 3, 2, 2, 3, . . . . Note that any labelling with this
property is indeed injective. To get `, we consider the set of edges F = {vivi+1 : i ≡ 0 mod 4}
of G, assign label 2 to all edges of F , and assign label 1 to all remaining edges. It is then
easy to see that, due to the value of n, the colouring c` assigns the desired colours (we have
c`(vi) = 3 if i ≡ 0, 1 mod 4, and c`(vi) = 2 otherwise). Note that by turning all 1’s by ` into
2’s and vice versa, we would as well obtain an injective 2-labelling where the resulting vertex
colours alternate between pairs of 2’s and pairs of 4’s.

• Now assume G has length 4k + 2. Let G′ be the cycle obtained from G by contracting the
edges v1v2 and v2v3. Note that G′ has length 4k. Thus, it admits an injective 2-labelling `′.
Actually, applying the arguments we used in the previous case above, we can assume that v0

and v3 (resulting from the contractions) have colour 3, vn−1 and v4 have colour 2, and the
edge v0v3 in G′ is labelled 2 (which implies that both vn−1v0 and v3v4 are labelled 1). We
extend `′ to a 2-labelling ` of G by just, in G, assigning label 2 to all of v0v1, v1v2 and v2v3.
This way, every vertex vi in V (G) \ {v1, v2} verifies c`(vi) = c`′(vi). Furthermore, we have
c`(v1) = c`(v2) = 4, and only these two vertices have colour 4. Then it is easy to see that `
is an injective 2-labelling of G.

Let us now consider odd cycles, i.e., cycles with odd length.

Theorem 2.6. For every odd cycle G, we have χiΣ(G) = 3 = ∆(G) + 1.

Proof. Let us first prove that χiΣ(G) > 2. Suppose this is wrong, and let G be an odd cycle
admitting an injective 2-labelling `. Since all vertices of G have degree 2, their possible colours
by ` are 2, 3 and 4. Furthermore, for a vertex to have colour 2, its two incident edges must be
labelled 1, while, for a vertex to have colour 4, its two incident edges must be labelled 2. This
means that G has no edge uv such that c`(u) = 2 and c`(v) = 4. So a vertex with colour 2 must
neighbour vertices with colour 2 or 3, and a vertex with colour 4 must neighbour vertices with
colour 4 or 3. Since no vertex can have its two neighbours having the same colour by c`, this means
that the vertices of G with colour 2 induce a matching, and similarly for the vertices with colour 4.
If we denote by ni the number of vertices with colour i, then we have that n2 and n4 are even,
while n3 must be odd since n1 +n2 +n3 = |V (G)| is odd. We then get a contradiction, because the
sum of the colours by c`, which is 2n2 + 3n3 + 4n4, is odd, which is impossible by Observation 2.1.

Let us now prove that χiΣ(G) = 3. We denote by v0, . . . , vn−1 the consecutive vertices of G,
where n is odd. If n = 3, then it is easy to see that we must assign different labels to all edges,
and the claim holds. Now consider G a general odd cycle with n ≥ 5 vertices. Let G′ be the cycle
obtained by contracting the edge v1v2; note that G′ has length n − 1. By Theorem 2.5, there is
then an injective 2-labelling `′ of G′ which we would like to extend to an injective 3-labelling ` of
G. Since `′ cannot assign label 1 only, we may suppose that `′(v0v2) = 2 (calling v2 the vertex
resulting from the contraction). Also, as can be checked from the proof of Theorem 2.5, we may
assume that c`′(v0) = c`′(v2) = 4 (either G′ has length 4k and we can flip labels as explained
earlier, or G′ has length 4k + 2 in which case a pair of adjacent vertices with colour 4 is created
in the proof above). We extend `′ to G by assigning label 2 to v0v1 and label 3 to v1v2. This way
we get c`(v0) = 4, c`(v1) = 5 and c`(v2) = 5. Since c`(v0) = c`′(v0) and all vertices different from
v1 and v2 have the same colour by `′ and ` (which is at most 4), no conflict arises between v0 and
another vertex. Similarly, v1 and v2 are the only two vertices with colour 5, and they do not share
any neighbour since n ≥ 5. Thus, ` is an injective 3-labelling of G.
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3 Bounding χiΣ(G) above by a function of χi(G)

We here show how injective colourings can help to design injective labellings. Towards Conjec-
ture 1.2, this is particularly useful for graphs G where χi(G) is close to ∆(G).

3.1 On switching odd and even walks
Our proofs will repeatedly modify labels along walks with certain length, that are well known to
exist under certain circumstances. This approach is actually a rather common one for designing
distinguishing labellings, see e.g. [2, 4, 5, 9, 10, 15, 16]. Recall that for two (not necessarily
different) vertices u, v of a graph, a (u, v)-walk (or walk, for short) is a path from u to v with
possible vertex and edge repetitions. Let us emphasize that a (u, v)-walk is not the same as a
(v, u)-walk; in our proofs below, it is actually important which vertex is the starting point of the
walk, and which vertex is the ending point. A (u, u)-walk is called a closed walk. A walk is said
even if its length is even, while it is said odd otherwise.

Lemma 3.1. Let G be a connected non-bipartite graph, and u and v be two (not necessarily
distinct) vertices of G. Then G has both even (u, v)-walks and odd (u, v)-walks.

Proof. Since G is not bipartite, it has an odd cycle C. Then consider, in G, a walk P from u
to a vertex w of C, and a walk P ′ from w to v. Possibly, w ∈ {u, v}. Then (u, P,w, P ′, v) and
(u, P,w,C,w, P ′, v) are two (u, v)-walks of G with different length parity.

Lemma 3.2. Let G be a connected bipartite graph, and u and v be two (not necessarily distinct)
vertices of G. Then:

• if u and v belong to different partite sets, then all (u, v)-walks are odd;

• otherwise, i.e., u and v belong to the same partite set, then all (u, v)-walks are even.

Proof. This follows trivially from the bipartition of G.

When designing labellings, a common approach is by repeatedly considering pairs of vertices
u, v and switching labels along the edges of a (u, v)-walk P . Let ` be a {0, . . . , k − 1}-labelling
of a graph G. For some number α, by α-switching P we mean modifying the labels assigned to
the edges of P , traversing it from u to v, in the following way: we apply +α to the label of the
first edge, −α to the label of the second edge, +α to the label of the third edge, −α to the label
of the fourth edge, and so forth, where the operations are understood modulo k. This switching
operation has the following properties:

Observation 3.3. Let G be a graph and ` be a {0, . . . , k−1}-labelling of G. Let P be a (u, v)-walk
of G, and let `′ be the labelling of G obtained from ` by α-switching P for some α. Then:

• for every inner vertex w of P , we have c`′(w) ≡ c`(w) mod k;

• if P is even, then c`′(u) ≡ c`(u) + α mod k and c`′(v) ≡ c`(v)− α mod k;

• if P is odd, then c`′(u) ≡ c`(u) + α mod k and c`′(v) ≡ c`(v) + α mod k.

Proof. The first item is because for every inner vertex w of P , we have c`′(w) = c`(w)+α−α. The
two last items are deduced from the length of P , and the fact that, when α-switching, we alternate
between additions and subtractions (by α) as going from u to v.

In the next series of results, we show how an initial vertex-colouring of a graph can serve as a
layout for designing labellings with specific colouring properties.

Lemma 3.4. Let G be a connected non-bipartite graph, and (V0, . . . , Vk−1) be a vertex-colouring
(with no specific properties) of G with k 6≡ 2 mod 4. Then G admits a k-labelling ` such that, for
every i ∈ {0, . . . , k − 1} and every vertex v ∈ Vi, we have c`(v) ≡ i mod k.

Proof. Aiming at colours modulo k, note that we can equivalently look for ` being a {0, . . . , k−1}-
labelling (since labels 0 and k are equivalent modulo k). We distinguish a few cases:
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• Assume an even number x ≥ 0 of the Vi’s are odd (i.e., of odd cardinality), and that at least
y ≥ 1 of the Vi’s are even (i.e., of even cardinality). Free to relabel the indexes, we can
assume that V0, V x

2 +1, . . . , Vk− x
2−1 are even while V1, . . . , V x

2
, Vk− x

2
, . . . , Vk−1 are odd. Note

that this relabelling is correct (i.e., every colour class is relabelled, and no two colour classes
get relabelled the same way) due to our assumption on k. We start from ` assigning 0 to
all edges of G. Note that all vertices of V0 are then good, i.e., for every v ∈ V0 we have
c`(v) ≡ 0 mod k, while every other vertex is bad, i.e., for every v ∈ Vi with i 6= 0 we have
c`(v) 6≡ i mod k. Our goal is to make all these bad vertices good, and, for that, we modify `
by α-switching some walks joining bad vertices.

Consider two bad vertices u and v of V x
2 +1 (if any; however, due to its cardinality, if this set

is not empty, then it has at least two vertices). Let P be an odd (u, v)-walk of G; such exists
by Lemma 3.1 since G is not bipartite. Now (x

2 + 1)-switch P ; by Observation 3.3, all bad
vertices different from u and v remain bad (with colour 0 modulo k), while the colour of u
and v becomes x

2 + 1 modulo k. Thus, u and v become good and all other vertices remain
bad. By repeating this argument for pairs of bad vertices of V x

2 +1, . . . , Vk− x
2−1 (where, for

two vertices of Vi, odd walks should be i-switched), we can make all their vertices good.
Recall in particular that all those Vi’s have an even number of vertices.

Quite similarly, by switching odd walks joining vertices of V1, . . . , V x
2
, Vk− x

2
, . . . , Vk−1, we can

make sure that the only remaining bad vertices are v1, . . . , v x
2
, vk− x

2
, . . . , vk−1, where vi ∈ Vi

for every i ∈ {1, . . . , x2 , k −
x
2 , . . . , k − 1}. That is, there remain x bad vertices, one in each of

V1, . . . , V x
2
, Vk− x

2
, . . . , Vk−1. We make them good in pairs. To achieve this, we consider each

two bad vi and vk−i, an even (vi, vk−i)-walk P joining them, and we i-switch P . This way, by
Observation 3.3, the colour of vi is altered by i modulo k (which then becomes i modulo k),
while the colour of vk−i is altered by −i modulo k (which then becomes k − i modulo k).
Also, all other bad vertices remain of colour 0 modulo k. Once every pair of remaining bad
vertices has been considered, we then end up with the desired `.

• Assume an odd number x ≥ 1 of the Vi’s are odd, and there are y ≥ 0 even Vi’s. In that case,
we relabel the indexes of the Vi’s so that V0, V1, . . . , V x−1

2
, Vk− x−1

2
, . . . , Vk−1 are odd, while

V x−1
2 +1, . . . , Vk− x−1

2 −1 are even. Again, this relabelling is correct. As in the previous case,
we start from ` assigning 0 to all edges of G so that all vertices of V0 are good. Now, note
that, omitting V0, the number of odd Vi’s is even. Quite similarly as in the previous case,
we can then make all vertices good, by first making good pairs of vertices from the even Vi’s,
and then making good pairs of vertices from the remaining even number of odd Vi’s.

• The last case to consider is when all Vi’s are odd, and there are an even number of them.
Recall that k 6≡ 2 mod 4; thus k ≡ 0 mod 4. This means that k

2 is even. In that case, we
proceed as follows. We start from ` assigning label 0 to all edges, so that all vertices of V0

are good. Just as in the previous cases, we then switch weights along odd walks until we
get to the point when the remaining bad vertices are v1, . . . , vk−1, where vi ∈ Vi for every
i ∈ {1, . . . , k − 1}. As in the first case above, by then 1-switching an odd (v1, vk−1)-walk,
then 2-switching a (v2, vk−2)-walk, and so on, we get to the point where, due to the value of
k, only v k

2
is bad. Recall that v k

2
has colour 0 modulo k, and k

2 is even. We here consider
an odd (v k

2
, v k

2
)-walk containing v k

2
, which we k

4 -switch. By Observation 3.3, this alters the
colour of v k

2
by k

2 , which then becomes good.

When G is not bipartite and the provided vertex-colouring (V0, . . . , Vk−1) verifies k ≡ 2 mod 4,
there are cases where, depending on the parity of the Vi’s, the same conclusion can be reached.

Lemma 3.5. Let G be a connected non-bipartite graph, and (V0, . . . , Vk−1) be a vertex-colouring
(with no specific properties) of G with k ≡ 2 mod 4. If not all Vi’s are odd, then G admits a k-
labelling ` such that, for every i ∈ {0, . . . , k− 1} and every vertex v ∈ Vi, we have c`(v) ≡ i mod k.

Proof. If some of the Vi’s are even, then we note that some arguments used in the proof of
Lemma 3.4 apply the same way, and we can deduce ` in a similar manner.
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For the proof of Lemma 3.4 to work, it is important that the layout vertex-colouring has
convenient parity properties, and that the graph has odd walks joining any pair of vertices. The
latter point is why the situation is a bit more troublesome for bipartite graphs. However, we note
that the switching operation can be employed to get a result close to Lemma 3.4 for any graph.

Lemma 3.6. Let G be a connected graph, and (V0, . . . , Vk−1) be a vertex-colouring (with no specific
properties) of G. Let v∗ be any vertex of G, where v∗ ∈ Vx for some x ∈ {0, . . . , k − 1}. Then G
admits a k-labelling ` such that, for every i ∈ {0, . . . , k− 1} and every vertex v ∈ Vi different from
v∗, we have c`(v) ≡ i mod k.

Proof. Again, we can equivalently assume that ` assigns labels in {0, . . . , k − 1}. Start from `
assigning label 0 to all edges. Then repeatedly consider a vertex v 6= v∗, consider any (v, v∗)-walk
P , and, assuming v ∈ Vi, just i-switch P . By Observation 3.3, this makes v good, and all vertices
different from v∗ that have not been treated yet remain bad with colour 0 modulo k. Once all
vertices have been treated this way, the only remaining bad vertex is v∗.

3.2 Upper bounds on χiΣ(G)

We now show how to apply the previous results to deduce upper bounds on χiΣ(G) being functions
of χi(G). We start off with the nicest case.

Theorem 3.7. Let G be a connected non-bipartite graph with χi(G) 6≡ 2 mod 4. Then, χiΣ(G) ≤
χi(G).

Proof. Let (V0, . . . , Vk−1) be an injective k-colouring of G, where k = χi(G). Applying Lemma 3.4
on that vertex-colouring, we get that there exists a k-labelling ` of G where, for every vertex v ∈ Vi,
we have c`(v) ≡ i mod k. Since (V0, . . . , Vk−1) is injective, it is easy to see that ` is as well.

We now deal with the remaining two cases. That is, we establish an upper bound, function of
χi(G), on χiΣ(G) whenever G is not bipartite and χi(G) ≡ 2 mod 4, and when G is bipartite.

Theorem 3.8. Let G be a connected non-bipartite graph with χi(G) ≡ 2 mod 4. Then, χiΣ(G) ≤
χi(G) + 1.

Proof. Let (V0, . . . , Vk−1) be an injective k-colouring of G, where k = χi(G). Recall that k ≡
2 mod 4. If some of the Vi’s are even, then Lemma 3.5 applies. So the remaining case is when
all Vi’s are odd; in that case, we note that none of the labelling schemes described in Lemma 3.4
applies (in particular, because k

2 is not even). In that situation, we relabel the colour classes as
(V1, . . . , Vk), and we aim at designing an injective {0, . . . , k}-labelling ` where, for every vertex v
lying in part Vi, we have c`(v) ≡ i mod k + 1.

Quite similarly as in the proof of Lemma 3.4, by switching odd walks we can reach a situation
where all vertices but v1, . . . , vk are good, where vi ∈ Vi for every i ∈ {1, . . . , k}. To make these
last k vertices good, we switch even walks as follows. We first consider an even (v1, vk)-walk of G
(which exists by Lemma 3.1), which we 1-switch. By Observation 3.3, this makes both v1 and vk
good (modulo k+1). We then consider an even (v2, vk−1)-walk which we 2-switch, thereby making
v2 and vk−1 good. We go on that way, considering an even (vi, vk−i+1)-walk which we i-switch, for
every i ∈ {1, . . . , k2}. Note that this is well defined since k is even. This eventually makes all vi’s
good, and thus ` an injective {0, . . . , k}-labelling of G.

Theorem 3.9. For every bipartite graph G, we have χiΣ(G) ≤ χi(G) + 1.

Proof. Wemay assume thatG is connected. Let (U, V ) denote the bipartition ofG. Let (V0, . . . , Vk)
be an injective colouring of G with Vk empty, where k = χi(G). We aim at designing an injective
{0, . . . , k}-labelling ` of G where, for most vertices v, we have c`(v) ≡ i mod k + 1 (where v ∈ Vi).
An important thing to note is that only vertices in the same partite set of G can be joined by a
path of length 2. This means that we can focus our attention on making sure that the vertices in
U have a desired colour by c`, and independently do the same with the vertices in V . The problem
here is that, unlike in the non-bipartite case, we do not have odd walks joining vertices in a same
partite set.
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Since only vertices from a same partite set can be joined by a path of length 2, either |
⋃k

i=0 U ∩
Vi| ≥ k or |

⋃k
i=0 V ∩Vi| ≥ k. Let us thus assume that U contains at least one vertex from each Vi,

i.e., |U | ≥ k. Using Lemma 3.6, we can reach a {0, . . . , k}-labelling ` where, for every vertex v ∈ Vi
but some v∗ in U∩V0, we have c`(v) ≡ i mod k+1. If c`(v∗) ≡ 0 mod k+1 or c`(v∗) ≡ k mod k+1,
then we are done; so assume this is not the case. By the initial injective colouring, recall that there
is no vertex in Vk, and thus no vertex v with c`(v) ≡ k mod k + 1. To fix the colour of v∗, we
proceed as follows. Consider a vertex v ∈ Vk−1 ∩ U , and 1-switch a (v, v∗)-walk. This makes the
colour of v∗ decrease by 1 (modulo k+ 1), while now c`(v) ≡ k mod k+ 1, which raises no conflict
since no other vertex has this property. If now c`(v

∗) ≡ 0 mod k+ 1, then we are done. Otherwise,
we repeatedly consider another vertex v ∈ U ∩ Vk−1 (if any) and 1-switch a (v, v∗)-path, until
hopefully v∗ gets colour 0 modulo k + 1. Note that vertices that originally were in Vk−1 raise no
conflict as long as their colour is k − 1 or k modulo k + 1, since no two of them are joined by a
path of length 2.

If we reach the point where there is no more vertex v with c`(v) ≡ k− 1 mod k+ 1, but v∗ still
does not have colour 0 modulo k + 1, then we repeat this process with the vertices having colour
k−2. That is, at this point no vertex has colour k−1 modulo k+1. So we can again freely consider
vertices v ∈ V ∈ U ∩ Vk−2, and 1-switch a (v, v∗)-walk to decrease the colour of v∗ by 1, while
making the colour of v being k − 1 modulo k + 1. If at some point v∗ gets a desired colour, then
we are done. Otherwise, we get to the point where no more vertex has colour k − 2 modulo k + 1,
and we can then consider the vertices with colour k − 3, and so on. Since |U | ≥ k, by repeating
this process we can make v∗ reach the desired colour, so that all vertices that originally were in
a same Vi have the same colour (i or i + 1) modulo k + 1, except possibly for one class Vx whose
some vertices have colour x modulo k + 1 while the others have colour x+ 1 modulo k + 1.

4 Other classes of graphs verifying Conjecture 1.2
In this section, we verify Conjecture 1.2 for a few more classes of graphs with injective chromatic
number close to the maximum degree. We consider trees, cacti, and some subcubic graphs.

4.1 Trees
We start by verifying Conjecture 1.2 in the case of trees. Recall that trees T verify χi(T ) ≤ ∆(T ).

Observation 4.1. For every tree T , we have χi(T ) ≤ ∆(T ).

Proof. This can be proved by induction. The base case is that of a star T , in which case an
injective ∆(T )-colouring is obtained by assigning a distinct colour to all leaves, and any colour to
the center. In the general case of a tree T , consider a leaf v with unique neighbour u. An injective
∆(T )-colouring of T − v (obtained by induction) can then be extended to v easily, since the only
colours that cannot be assigned to v are those assigned to the neighbours of u in T − v. Since u
has at most ∆(T )− 1 neighbours in T − v, there is at least one open colour for v.

Regarding proving Conjecture 1.2 for trees, a surprising fact is that simple counting arguments
fail to make a straight induction scheme work. Also, trees are bipartite, and this is one of those
conditions where our results from Section 3 do not give the result we want immediately. The proof
we give actually makes use of Lemma 3.6.

Theorem 4.2. For every tree T , we have χiΣ(T ) ≤ ∆(T ).

Proof. Set ∆ = ∆(T ). If T is a star, then the ∆-labelling assigning a different label to every
edge is clearly injective. So we can assume that T is not a star. Let T be rooted at any vertex
r with degree at least 3, and consider a vertex v 6= r whose all sons u1, . . . , ud are leaves (where
1 ≤ d ≤ ∆− 1). Let w denote the parent of v. Recall that w has degree at least 2, since T is not
a star.

Let T ′ = T − {u1, . . . , ud}. Let (V0, . . . , V∆−1) be an injective ∆-colouring of T ′, which exists
by Observation 4.1. Free to relabel the indexes, we may assume that w ∈ V1. Now, by Lemma 3.6,
there is a labelling `′ of T ′ where v∗ = v is potentially the only vertex that does not verify
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c`′(v) ≡ x mod ∆ (where v ∈ Vx). Since w ∈ V1 and d(w) ≥ 2, note that c`′(w) ≥ ∆ + 1. We want
to extend `′ to an injective ∆-labelling ` of T , by correctly assigning a label to each of vu1, . . . , vud.
When assigning a label α to vui by `, the colour of ui becomes α. Since the labels we assign are
1, . . . ,∆, the colour of ui will necessarily be at most ∆. Furthermore, the only vertices joined with
ui via a path of length 2 are the other ui’s and w, while w was shown to have colour at least
∆ + 1. Thus, from the point of view of the ui’s, no conflict can arise as long as every two of the
vui’s are assigned distinct labels by `. Now, when labelling the vui’s, we also affect the colour of
v. However, by how `′ was obtained, note that v cannot be involved in a conflict as soon as its
colour gets congruent to x modulo ∆.

Following these arguments, ` can be obtained from `′ by assigning distinct labels to vu1, . . . , vud
so that the sum of the assigned labels is x − c`′(v) modulo ∆, which is possible to achieve since
1 ≤ d ≤ ∆− 1 and we are assigning labels in {1, . . . ,∆}. To see this is true, consider for instance
the following procedure. Start from each vui being labelled i. Then repeatedly increment the label
of vud until its label becomes ∆. So far, we have already generated ∆ − d + 1 sums. Then, for
each successive value of i = d−1, . . . , 1, increment the label of vui once. This generates d−1 more
sums. In total, we have thus generated ∆ sums, and at each step it can be noted that no two of
the vui’s are assigned a same label.

4.2 Cacti
We partially extend the previous result to the class of cacti, where, recall, a cactus is a graph
in which every two cycles intersect on at most one vertex. We say that a cactus is even if it is
bipartite, while it is odd otherwise.

Observation 4.3. For every cycle G, we have χi(G) ≤ 3.

Proof. IfG = C2k is even, then we are done by applying colours α0, α0, α1, α1, α2, α2, . . . , αk−1, αk−1

(where the αi’s belong to {1, 2, 3}) to the consecutive vertices of C in such a way that, modulo k,
we have αi 6= αi+1 for every i ∈ {0, . . . , k − 1}. Such a pattern exists when three colours are used.
If G = C2k+1 is odd, then we can basically consider such an injective 3-colouring for C2k+2 where
α0 6= α2, and contract a vertex with colour α1 while keeping the colours of the other vertices. This
yields an injective 3-colouring of G.

Note that in cacti with maximum degree at least 3 as well, the injective chromatic number is
very close to the lower bound.

Lemma 4.4. Let G be a cactus with maximum degree ∆ ≥ 3. Then:

• if G is even, then χi(G) = ∆;

• if G is odd, then χi(G) ∈ {∆,∆ + 1}.

Furthermore, there exist odd cacti G with maximum degree ∆ ≥ 3 verifying χi(G) = ∆ + 1.

Proof. We prove the claim for even cacti first. The proof is by induction. Since the claim can be
checked by hand when G is small, we focus on the general case. If G has a leaf v with unique
neighbour u, then we note that an injective ∆-colouring of G − v (obtained by induction, or by
Observation 4.3) can be extended to v, thus to G, since we have ∆ colours in hand and we just
need to assign to v a colour different from the colours of the at most ∆− 1 other neighbours of u.
Thus G is just made of cycles joined by (possibly length-0) paths, every two of these cycles sharing
at most one vertex. There is thus, in G, a cycle C whose all vertices but one, say u, have degree 2
in G. This is what we call an end-cycle. Let v be a vertex of C which is as far as possible from u.
Then v has degree 2 with two neighbours v1, v2 of degree 2.

We deduce an injective ∆-colouring of G− v by induction. Assume first C has even length at
least 6. Since v1 has degree 1 in G−v, its colour must only be different from the colour assigned to
the unique other vertex adjacent to its unique neighbour. Thus, we can recolour v1, if necessary,
to make sure that v1 and v2 have different colours. This ensures that this colouring remains valid
in G, and we are left with finding an open colour for v. By our choice of v, it can be checked
that at most two colours are forbidden at v since |C| ≥ 6; here we are done since we are colouring
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the graph with at least three colours. When C has length 4, then we note that, by the injective
∆-colouring of G − v, it already holds that v1 and v2 have different colours. Thus the colouring
is valid in G as well. Then the previous arguments apply just the same for finding an open colour
for v.

We now focus on odd cacti. Let us proceed by induction again. We note that all arguments
used in the previous case also apply here. The only difference here is that |C| might be odd. If
|C| ≥ 5, then we note that the arguments used earlier when |C| ≥ 6 apply here. So the remaining
case is when C is a triangle (v, v1, v2, v). Here, we consider G′ = G−{v1, v2}. By induction, there
is an injective (∆ + 1)-colouring of G′. When extending this colouring to v1 and v2, we need to
make sure that the assigned colours are different from the at most ∆ − 2 other neighbours of v,
and also from the colour of v since v, v1 and v2 form a triangle. This argument also implies that v1

and v2 must be assigned different colours. Since we have ∆ + 1 colours in hand, we can correctly
extend the colouring to v1 and v2, thus to an injective (∆ + 1)-colouring of G.

Regarding the very last part of the statement, we note that a cactus G with even maximum
degree ∆ verifies χi(G) = ∆ + 1 as soon as G has a fan vertex, which we define as a vertex with
degree ∆ to which are attached ∆/2 triangles. As will be remarked later, there are actually other
types of structures that force the injective chromatic number of a cactus with maximum degree ∆
to be ∆ + 1.

We now prove upper bounds on χiΣ(G) for cacti G. We start by proving Conjecture 1.2 for
even cacti with maximum degree at least 3.

Theorem 4.5. For every even cactus G with maximum degree ∆ ≥ 3, we have

χiΣ(G) ≤ χi(G) = ∆.

Proof. Recall that for such an even cactus, we have χi(G) = ∆, by Lemma 4.4. If G has no cycle,
then G is a tree in which case the result follows from Theorem 4.2. Thus, let us assume that G
is not a tree. Since ∆ ≥ 3, we have also that G is not a cycle. We now consider a cycle C of G
obtained as follows. While G has vertices with degree 1, we keep on removing them. Since G has
cycles, the process finishes with the remaining graph G− having minimum degree at least 2. In
G−, we consider a cycle C whose all vertices but at most one, say v∗, have degree 2 (while v∗ has
degree at least 3). Back in G, this cycle C is a kind of end-cycle: v∗ is the vertex of C which is
the closest to all other cycles of G, if any. At every vertex v of C different from v∗, there is a tree
attached, possibly reduced to v, which we denote by Tv. In what follows below, we consider that
every Tv is rooted at v. In particular, all vertices of C might actually be of degree more than 2.

For every vertex r ∈ V (C) \ {v∗}, let us have a look at Tr. Assume there is an r such that Tr is
not just r, i.e., Tr has edges. In that case, let us consider a deepest non-leaf vertex v of Tr whose
all descendants u1, . . . , ud (d ≥ 1) are its sons (i.e., leaves of Tr). If v 6= r, then the result follows
using the arguments used in the proof of Theorem 4.2. Thus, let us assume now that v = r, i.e.,
Tr is a star rooted at r. In particular, d(r) = d + 2, where r has two neighbours v1 and v2 on C
(hence of degree at least 2).

Now let (V0, . . . , V∆−1) be an injective ∆-colouring of G′ = G−{u1, . . . , ud}, which exists either
by Observation 4.3 or Lemma 4.4. Free to relabel the indexes, we may assume that v1 ∈ V1 and
v2 ∈ V2 (since v1 and v2 must be in different parts, due to r). Also, we have r ∈ Vx, where we
might have x ∈ {1, 2}. By Lemma 3.6, there is an injective ∆-labelling `′ of G′ where, for every
vertex v ∈ Vi different from r, we have c`′(v) ≡ i mod ∆. Our goal is to extend `′ to the rui’s, so
that an injective ∆-labelling ` of G results. To that aim, similarly as in the proof of Theorem 4.2,
we must assign different labels to the vui’s, in such a way that no ui’s gets the same colour as one
of v1 and v2, and the colour of r becomes x modulo ∆.

Because d(v1) ≥ 2 and v1 ∈ V1, we have c`′(v1) ≥ ∆ + 1. If d(v2) ≥ 3, then, because v2 ∈ V2,
we have c`′(v2) ≥ ∆ + 2; in that case, none of the ui’s can have its colour becoming one of c`′(v1)
and c`′(v2), in which case we can freely assign distinct labels to the rui’s in such a way that they
sum up to ∆ − c`′(r) modulo ∆. Thus, now assume d(v2) = 2. If c`′(v2) > ∆ then we are done
as well, by the same arguments. So assume c`′(v2) ≤ ∆. Since c`′(v2) ≡ 2 mod ∆, this means
that c`′(v2) = 2, i.e., the two edges incident to v2 are labelled 1. In that situation, we 1-switch
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C, as traversing the closed (r, r)-walk that starts from r and goes along C back to r. Whatever
the length of C is, by Observation 3.3 this does not alter, modulo ∆, the colours of the vertices in
V (C) \ {r}. However, this switching changed the labels of the two edges incident to v2 to ∆ and 2,
respectively, so that now c`′(v2) > ∆ and the previous case applies.

Thus, we may now suppose that V (Tr) = {r} for every r ∈ V (C) \ {v∗}, which means that
d(v) = 2 for every vertex v of C different from v∗. Let us first assume that C = v1v2v3v4v1 has
length 4, where v1 = v∗. In that case, let us consider (V0, . . . , V∆−1) an injective ∆-colouring of
G, where we assume that v∗ ∈ V2. By Lemma 3.6, there is an injective ∆-labelling ` of G where,
for every vertex v ∈ Vi different from v3, we have c`(v) ≡ i mod ∆. If ` is injective, then we are
done. Otherwise, it means that c`(v∗) = c`(v3), because v∗ is the only vertex of G that shares a
neighbour with v3. Since v∗ ∈ V2 and d(v∗) ≥ 3, this means that c`(v∗) = c`(v3) = ∆ + 2. In that
case, we α-switch C, as traversing the closed (v3, v3)-walk that starts from v3 and goes along C
back to v3, where α is chosen so that one of the two edges incident to v3 has its label becoming 1
(for instance, if `(v3v2) = x, then we consider α = x − 1 and make sure to finish the walk with
v3v2). Note that this does not modify the colour of the vertices of C modulo ∆, and this makes
c`(v3) being at most ∆ + 1, thus less than ∆ + 2 ≤ c`(v∗).

Now assume C = v0v1 . . . vn−1v0 is an even cycle with length n at least 6, where v0 = v∗.
Let us consider (V0, . . . , V∆−1) an injective ∆-colouring of G. We may suppose that v0 ∈ V2. By
Lemma 3.6, there is an injective ∆-labelling ` of G where, for every vertex v ∈ Vi different from
v2, we have c`(v) ≡ i mod ∆. If c`(v2) 6∈ {c`(v0), c`(v4)}, then we are done, since v0 and v4 are the
only vertices that share a neighbour with v2. First assume c`(v2) = c`(v4), and assume v4 ∈ Vx. In
this case, we 1-switch the path v2v3v4 if v4+2 mod n 6∈ Vx+1, while we −1-switch this path otherwise.
Note that this does not modify the colour of v3 modulo ∆ in both cases. Regarding v4, its colour
becomes x+ 1 or x−1 modulo ∆, which is different from the colour modulo ∆ of v4+2 mod n. Also,
c`(v4) is now different from c`(v2). So now the only possible remaining conflict is c`(v2) = c`(v0),
which we can deal with just as in the previous case.

We now prove the counterpart of Theorem 4.5 for odd cacti.

Theorem 4.6. For every odd cactus G with maximum degree ∆ ≥ 3, we have

χiΣ(G) ≤ χi(G) ≤ ∆ + 1.

Proof. We may assume that G is not a tree or a cycle, as otherwise Theorem 4.2, 2.5 or 2.6 would
apply. Also, we may assume that χi(G) ≡ 2 mod 4, as otherwise Theorem 3.7 would apply. Since
G is not a cycle (and, in particular, verifies ∆ ≥ 3), this means χi(G) ≥ 6. Set k = χi(G), and let
(V0, . . . , Vk−1) be an injective k-colouring. By Lemma 3.5 we can suppose that all Vi’s are odd.

First assume that G has a leaf v with unique neighbour u. Since G is not a star, u has another
neighbour w with d(w) ≥ 2. We may assume that w ∈ V1. Since u is a common neighbour of
v and w, we have v 6∈ V1. Now let us consider the vertex-colouring (V ′0 , . . . , V

′
k−1) obtained from

(V0, . . . , Vk−1) by moving v to V1 (where we assume every V ′i ’ corresponds to the original Vi). Since
not all V ′i ’s are odd, by Lemma 3.5 there is a k-labelling ` of G where c`(x) ≡ i mod k for every
x ∈ V ′i . Note that ` must be injective, because (V0, . . . , Vk−1) is an injective colouring, and c`(v)
must be 1 because v ∈ V ′1 and d(v) = 1 while c`(w) is more than k since w ∈ V1 and d(w) > 1.

So we may now assume that G has no leaf. Just as in the proof of Theorem 4.6, let C be an
end-cycle. Then all vertices of C but one have degree 2. If C has length at least 4, then let us
consider a degree-2 vertex v whose two neighbours also have degree 2. Assume v ∈ Vx. Since
χi(G) ≥ 6, we note that, from (V0, . . . , Vk−1), we can freely move v to another class to get an
injective k-colouring (V ′0 , . . . , V

′
k−1) where not all Vi’s are odd. This is because v has at most two

vertices at distance 2, so there are at most two Vi’s to which v cannot be moved. Then, from
(V ′0 , . . . , V

′
k−1), Lemma 3.5 can be applied.

This means that all end-cycles of G are triangles. Let C = v1v2v3v1 be an end-cycle of G.
Note that if we cannot obtain, from (V0, . . . , Vk−1), an injective k-colouring of G by moving v2 to
another class (in which case we would be done by Lemma 3.5), then this means that v1 has degree
at least 5. Let then w be a neighbour of v1 different from v2 and v3, such that w does not lie in
the same Vi as v1 (there has to be one such, since any two neighbours of v1 cannot lie in the same
Vi). Let us assume that w ∈ V2. Note that, by definition, w is the only neighbour of v1 in V2,
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and thus the only vertex in V2 joined to v2 by a path of length 2. Now let (V ′0 , . . . , V
′
k−1) be a

k-vertex-colouring of G obtained from (V0, . . . , Vk−1) by moving v2 to V2 (where we assume every
V ′i ’ corresponds to the original Vi). Not all V ′i ’s are odd, so by Lemma 3.5 there is a k-labelling
` of G where c`(v) ≡ i mod k for every v ∈ V ′i . If c`(v2) 6= c`(w), then ` is actually injective. So
assume this is not the case.

Since d(v1) ≥ 5, there must be, in G, another end-block C ′ 6= C such that w does not lie on a
shortest path from v2 to a vertex of C ′. Consider the closed walk W starting from v2, going to v1

via the edge v2v1, then following a shortest path from v1 to a vertex x of C ′, then going along C ′
all the way back to x, then back to v1, and finally traversing the edges v1v3 and v3v2. Note that
W is an even walk not containing w, and containing both edges incident to v2. By 1-switching or
−1-switching W , recall that we do not change the colours of the vertices modulo k. One of these
two operations, however, has to change the colour of v2, which then gets different from c`(w). Then
` becomes injective.

To refine Theorem 4.6 further, a result we miss is a full characterization of the (odd) cacti G
with maximum degree ∆ ≥ 3 and χi(G) = ∆ + 1. Let us call such a cactus a bad cactus. As
mentioned earlier, a cactus is bad as soon as it has a fan vertex. Fan vertices are not enough,
however, as there exist bad cacti without fan vertices. For instance, for any even ∆ ≥ 4, an easy
class of bad cacti with maximum degree ∆ is obtained starting from an odd cycle C with length
at least 5, and attaching, to every vertex of C, exactly (∆− 2)/2 pending triangles. This is what
we call a fan cycle. Note, in particular, that every fan cycle has no fan vertex.

Again, fan vertices and fan cycles are not sufficient to describe bad cacti. Let us indeed describe
a last construction to illustrate this. For the sake of the explanation, we here describe how to
construct more bad cacti with maximum degree ∆ = 3, but the construction can be generalized to
any odd ∆ ≥ 3. Consider a single edge uv, and attach a triangle at v, so that v has degree 3. We
note that, already for this simple odd cactus G, we have χi(G) = 3, and u and v must receive the
same colour in every injective 3-colouring of G. We call G a virtual vertex, with root u and subroot
v. Given a graph H with a vertex x, by attaching a virtual vertex V at x we mean identifying
x and the root of V . Note that if we originally have ∆(H) ≤ 3 and d(x) ≤ 2, then H remains
subcubic after the attachment.

There are situations where, upon attaching virtual vertices in a subcubic graph, finding an in-
jective 3-colouring becomes equivalent to finding a distance-2 3-colouring, i.e., a 3-vertex-colouring
where no two vertices at distance at most 2 receive the same colour. From this, we can indeed
design many subcubic cacti with injective chromatic number 4, and having no fan vertex nor
fan cycle. Let us give a simple example. Consider a claw (K1,3) with center c and three leaves
u1, u2, u3, and attach a virtual vertex to each ui. Then the resulting cactus is subcubic, and in
every injective colouring u1, u2, u3 must receive distinct colours (since they share c as a common
neighbour), while also c must receive a distinct colour. This is because is every virtual vertex the
root and subroot get the same colour, while c shares a neighbour with each of the three subroots
of the virtual vertices we have attached (namely, the ui’s).

Question 4.7. What is the precise structure of bad cacti?

4.3 Subcubic graphs
Before proving our main result in this section, let us start with a structural lemma. In that lemma,
we make use of the following terminology. Let G be a graph, and C = (v0, . . . , vn−1, v0) be a cycle
of G. Consider

−→
C a natural orientation of C being a directed cycle, i.e., either vivi+1 is an arc for

every i ∈ {0, . . . , n − 1} or vivi−1 is an arc for every i ∈ {0, . . . , n − 1} (where the operations are
understood modulo n). For every vertex vi of C, there is then a successor v+

i being the one of vi−1

or vi+1 such that vivi−1 or vivi+1 is the arc in
−→
C . Similarly, for every vi there is a predecessor v−i

in C. A chord of C is an edge vivj such that vj is neither a successor nor a predecessor of vi. For
two vertices vi, vj of C, we denote by

−→
C [vi, vj ] the path (vi, vi+1, . . . , vj) of C.

Lemma 4.8. Let G be a 2-connected cubic bipartite graph different from K3,3. Then there is a
vertex x ∈ V (G) such that G− x−N(x) is connected.
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Proof. First suppose that G has a Hamiltonian cycle C (with any natural orientation
−→
C ). Recall

that G is not K3,3. Let xy be a chord of C such that
−→
C [x, y] is as short as possible. Since G is

bipartite, x+ 6= y−. Let x+y′ and x′y− be the chord incident to x+, y−, respectively. If y′ 6= y+,
then G − y − N(y) is connected, and we are done. So we assume that y′ = y+ and similarly,
x′ = x−. It follows that G− y+ −N(y+) is connected.

Now assume that G is not Hamiltonian. We also assume that G − v − N(v) is disconnected
for all v ∈ V (G). Because it is cubic and 2-connected, by Petersen’s Theorem (see [13]) G has a
2-factor. We choose a 2-factor F of G with number of cycles as small as possible, and we consider
that every cycle of F comes with a natural orientation. A link of G is an edge between two distinct
cycles of F .

Let xy be a link between two cycles C1, C2. Recall that G− x−N(x) is disconnected. Let H1

be the component of G− x−N(x) containing C1 − {x, x+, x−}. We choose the link xy such that
H1 is as large as possible. We conclude that E({x+, x−}, {y+, y−}) = ∅, as otherwise we would
have a 2-factor with less cycles than F .

First assume that H1 does not contain C2 − {y}. Let H2 be a component of G − x − N(x)
containing C2 − {y}. By the 2-connectedness of G, NH2(x+) ∪ NH2(x−) 6= ∅. Without loss of
generality we assume that x+x′ ∈ E(G) with x′ ∈ V (H2). So x′ /∈ {y+, y−}. If x′ ∈ V (C2), letting
H3 be the component of G− y −N(y) containing C2 − {y, y+, y+}, then H3 would contain H1, a
contradiction. So we assume that x′ /∈ V (C2). Let C3 be the cycle of F containing x′. It follows
that E({x′+, x′−}, {y+, y−}) = ∅, as otherwise we would have a 2-factor with less cycles than F .
Let P be a path of H2 between x′ and y. Then P contains some links. If there is a cycle C4

of F such that |E(P ) ∩ E(C4)| ≥ 2, letting uv be a link contained in P with u ∈ V (C4), and
H4 be the component of G − u −N(u) containing C4 − {u, u+, u−}, then H4 contains H1, also a
contradiction. It follows that the edges along P are successive links and edges in cycles of F . Thus
G has a 2-factor with less cycles than F , a contradiction.

Now we assume that H1 contains C2−{y}. Let H2 be a component of G−x−N(x) other than
H1. By the 2-connectedness of G, both NH2(x−) and NH2(x+) are not empty. Let x+x1, x

−x2 ∈
E(G) with x1, x2 ∈ V (H2). If x1 and x2 are contained in a same cycle of F , say C3, letting H3

be the component of G − x1 − N(x1) containing C3 − {x1, x
+
1 , x

+
1 }, then H3 would contain H1,

a contradiction. So we assume that x1 ∈ V (C3) and x2 ∈ V (C4), where C3 and C4 are distinct
cycles of F . Let P be a path of H2 between x1 and x2. Then P contains some links. If there is a
cycle C5 of F such that |E(P ) ∩ E(C5)| ≥ 2, letting uv be a link contained in P with u ∈ V (C5),
and H5 be the component of G − u −N(u) containing C5 − {u, u+, u−}, then H5 contains H1, a
contradiction. It follows that the edges along P are successive links and edges in cycles of F . Thus
xx+x1Px2x

−x is an odd cycle, a contradiction.

We will also need a counterpart of the results in Section 3 when the graph is bipartite and we
are considering a 3-vertex-colouring of it. For a bipartite graph G with bipartition (X,Y ), we say
that a 3-vertex-colouring (V0, V1, V2) is good if |X1| − |X2| ≡ |Y1| − |Y2| mod 3, where Xi = Vi ∩X
and Yi = Vi ∩ Y for every i ∈ {0, 1, 2}.

Lemma 4.9. Let G be a bipartite graph with bipartition (X,Y ), and (V0, V1, V2) be a 3-vertex-
colouring (with no specific properties) of G, where Vi = Xi ∪ Yi, for Xi ⊆ X and Yi ⊆ Y , for
every i ∈ {0, 1, 2}. Then G admits a 3-labelling ` such that, for every i ∈ {0, 1, 2} and every vertex
v ∈ Vi, we have c`(v) ≡ i mod 3 if and only if (V0, V1, V2) is good.

Proof. Again, we can equivalently look for a {0, 1, 2}-labelling ` with the desired properties. Sup-
pose we have a labelling ` satisfying the assertion. Then∑

x∈X
c`(x) =

∑
e∈E(G)

`(e) =
∑
y∈Y

c`(y).

Note that
∑

x∈X c`(x) ≡ |X1| − |X2| mod 3 and
∑

y∈Y c`(y) ≡ |Y1| − |Y2| mod 3. So we have that
|X1| − |X2| ≡ |Y1| − |Y2| mod 3.

We now prove the converse direction. Suppose that |X1| − |X2| ≡ |Y1| − |Y2| mod 3. We
design a labelling ` satisfying the assertion. First label every edge 0, so that every vertex, for
now, has colour 0 modulo 3. Now, take three vertices from one of the sets X1, X2, Y1, Y2, say
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x, x′, x′′ ∈ Xi, and one arbitrary vertex v ∈ V (G)\{x, x′, x′′}. Let P, P ′, P ′′ be three paths from
x, x′, x′′, respectively, to v. Note that the lengths of these three paths have the same parity. Let us
now i-switch the paths P, P ′, P ′′. As seen earlier, the colour of x, x′, x′′ becomes i modulo 3, while
the colour of all other vertices remains the same modulo 3. Repeating this operation, we can get
to a situation where at most two vertices in each of X1, X2, Y1, Y2 does not have the desired colour
modulo 3.

If there remain defective vertices in both X1 and X2, or in both Y1 and Y2, say x ∈ X1 and
x′ ∈ X2, then we choose a path P from x to x′. So P has even length. Let us 1-switch P . The
colour of x and x′ becomes 1 and 2 modulo 3, respectively, while all other vertices keep the same
colour modulo 3. Repeating this operation, we get to the a situation where either X1 or X2 is
empty, and either Y1 or Y2 is empty.

If there remain defective vertices in Xi (for i ∈ {1, 2}), then there are the same number of
defective vertices in Yi (recall that |X1| − |X2| ≡ |Y1| − |Y2| mod 3). For two such remaining
vertices x ∈ Xi and y ∈ Yi, we choose a path P from x to y. So P has odd length. We here
i-switch P . Again, the colour of x and y becomes i modulo 3, while all other vertices keep the
same colour modulo 3. The resulting labelling is now as desired.

We are now ready to prove our main result in this section.

Theorem 4.10. For every graph G with ∆(G) = 3 and χi(G) = 3, we have χiΣ(G) ≤ 3 = ∆(G).

Proof. Let G be a connected graph with χi(G) = 3. So G is subcubic. If G is not bipartite, then
the result follows from Lemma 3.4. So let us assume G is bipartite, and let (X,Y ) denote the
bipartition of G. Towards a contradiction, assume G is a counterexample to the claim. If G has a
good injective 3-vertex-colouring, then we can deduce an injective 3-labelling of G by Lemma 4.9,
a contradiction. So we assume that every injective 3-vertex-colouring of G is not good.

Claim 4.11. Let (V0, V1, V2) be an injective 3-vertex-colouring of G, where Xi = Vi ∩ X and
Yi = Vi ∩ Y for every i ∈ {0, 1, 2}. Then, up to symmetry, all Xi’s have the same size modulo 3,
and all Yi’s have pairwise distinct size modulo 3.

Proof of the claim. If |Xj | ≡ |Xk| mod 3 for some 0 ≤ j < k ≤ 3 and |Ys| ≡ |Yt| mod 3 for some
0 ≤ s < t ≤ 3, then (X3−j−k ∪ Y3−s−t, Xj ∪ Ys, Xk ∪ Yt) is a good injective 3-vertex-colouring of
G, and Lemma 4.9 raises contradiction. Thus without loss of generality we assume that Y0, Y1, Y2

have pairwise distinct size modulo 3. Now if |Xj | 6≡ |Xk| mod 3 for some 0 ≤ j < k ≤ 3, then
either |Xj | − |Xk| ≡ |Y1| − |Y2| mod 3 or |Xk| − |Xj | ≡ |Y1| − |Y2| mod 3. Thus G has again a
good injective 3-vertex-colouring, and Lemma 4.9 gets us to a contradiction. Thus we must have
|X0| ≡ |X1| ≡ |X2| mod 3. �

Claim 4.12. Let (V0, V1, V2) be a good (non-injective) 3-vertex-colouring of G, where Xi = Vi ∩X
and Yi = Vi ∩ Y for every i ∈ {0, 1, 2}. Then, for any two permutations (i, j, k) and (r, s, t) of
(0, 1, 2), the 3-vertex-colouring (Xi ∪ Yr, Xj ∪ Ys, Xk ∪ Yt) is also good.

Proof of the claim. By Claim 4.11, we have |X| ≡ |Y | ≡ 0 mod 3. It can be checked that
|X0| − |X1| ≡ |X1| − |X2| ≡ |X2| − |X0| mod 3 and |Y0| − |Y1| ≡ |Y1| − |Y2| ≡ |Y2| − |Y0| mod 3.
Thus the assertion follows from the definition of good 3-vertex-colourings. �

Claim 4.13. δ(G) ≥ 2.

Proof of the claim. Suppose G has a vertex, say x ∈ X, of degree 1. Let y be the unique
neighbour of x, and x′ be a neighbour of y with d(x′) ≥ 2 (recall that |X| ≡ |Y | ≡ 0 mod 3,
implying that G is not a star). Let (V0, V1, V2) = (X0 ∪ Y0, X1 ∪ Y1, X2 ∪ Y2) be an injective
3-colouring of G with x ∈ X0 and x′ ∈ X1. By moving x from X0 to X1, we get a new 3-colouring
(V ′0 , V

′
1 , V

′
2) = ((X0\{x})∪ Y0, (X1 ∪ {x})∪ Y1, X2 ∪ Y2) of G. By relabelling, if necessary, some of

the parts, note that this colouring is good. By Lemma 4.9, there exists a 3-labelling ` of G such
that c`(v) ≡ i mod 3 for every vertex v ∈ V ′i . Clearly c`(x) = 1 and c`(x′) ≥ 4. It follows that c`
is an injective colouring of G, thus that ` is injective, a contradiction. �
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Claim 4.14. Let u ∈ V (G) be a vertex of G such that each edge incident to u is contained in
a cycle, and let (V0, V1, V2) be a good (non-injective) 3-colouring of G, where u ∈ Vi for some
i ∈ {0, 1, 2}. Set S = {u1, . . . , uk} = {v ∈ Vi : N(u) ∩N(v) 6= ∅ and d(v) = d(u)}. Suppose that

1. every two vertices v1, v2 ∈ V (G)\{u} with N(v1) ∩ N(v2) 6= ∅ are not contained in a same
colour class; and

2. there exist cycles C1, . . . , Ck avoiding u, and there exist edges e1, . . . , ek incident to u1, . . . , uk,
respectively, such that ei ∈ E(Cj) if and only if i = j.

Then G has an injective 3-labelling `.

Proof of the claim. Here and throughout, we call a 3-colouring of G with the properties above a
better colouring (associated with u). First suppose that d(u) = 2. By Claim 4.12, we can assume
that u ∈ V2. By Lemma 4.9, there exist a 3-labelling ` of G such that c`(v) ≡ i mod 3 for every
vertex v ∈ Vi. Thus every two vertices of V (G)\{u} having a common neighbour get distinct
colours modulo 3.

Let e be an edge incident with u and C be a cycle containing e. Recall that G is bipartite and
thus C is an even cycle. Let us 1-switch C, as initiating the closed walk from any vertex. This does
not change the colours modulo 3 of the vertices. We repeat this operation until `(e) = 1 holds.
Since d(u) = 2 and c`(u) ≡ 2 mod 3, we deduce that c`(u) = 2.

For every vertex ui ∈ S, we repeatedly 1-switch Ci until `(ei) ≥ 2 holds. It follows that
c`(ui) ≥ 5 for all ui ∈ S. For every vertex v ∈ V2 with N(u) ∩N(v) 6= ∅ and d(v) = 3, it is clear
that c`(v) ≥ 5. Thus c` is an injective colouring of G, and ` an injective 3-labelling, a contradiction

Now we suppose that d(u) = 3, and we start again from a 3-labelling ` of G such that c`(v) ≡
i mod 3 for every vertex v ∈ Vi (a such one exists by Lemma 4.9). Let e1, e2, e3 be edges incident
to u, and C be a cycle containing e1. Without loss of generality we assume that C contains e2.
Let C ′ be a cycle containing e3. Without loss of generality we assume that C ′ contains e2. So
e1, e2 ∈ E(C) and e2, e3 ∈ E(C ′). We repeatedly 1-switch C and C ′ until `(e1) = `(e3) = 3.
Because c`(u) ≡ 0 mod 3, we deduce that c`(u) = 9.

For every vertex ui ∈ S, we repeatedly 1-switch Ci until `(ei) ≤ 2. It follows that c`(ui) ≤ 6
for every ui ∈ S. For every vertex v ∈ V0 with N(u) ∩ N(v) 6= ∅ and d(v) = 2, it is clear that
c`(v) ≤ 6. Thus c` is an injective colouring of G, and ` an injective 3-labelling, a contradiction. �

We now distinguish two main cases, depending on whether G is 2-connected or separable (i.e.,
has articulation vertices).

Case 1: G is separable.
Let B be an end-block of G,and u be the cut-vertex of G contained in B. Recall that δ(G) ≥ 2,

implying that B is 2-connected. In particular, we have d(u) = 3. Let u′ be the unique neighbour
of u outside B. Then uu′ is a cut-edge of G. We claim that there is some vertex v ∈ V (B) with
d(v) = 2. This is because otherwise we would have

∑
x∈V (B)∩X dB(x) 6≡

∑
y∈V (B)∩Y dB(y) mod 3,

a contradiction. In particular, all vertices in B have degree 3 except u which has degree 2; then
the size of B can be expressed both as the sum of the degrees of the vertices in V (B) ∩ X or as
the sum of the degrees of the vertices in V (B) ∩ Y , while these two quantities are not equal.

First assume that B is a cycle B = (u, v1, u1, v2, u2, . . . , u) (we might have u = u2). Let
(V0, V1, V2) be an injective 3-colouring of G with, say, u1 ∈ V0 and u2 ∈ V1. By moving u1 from
V0 to V2, we get a 3-colouring (V ′0 , V

′
1 , V

′
2) = (V0\{u1}, V1, V2 ∪ {u1}). Note that the only vertices

having a common neighbour with u1 are u and u2. Since u and u1 have distinct degree, and u1

and u2 do not belong to a same V ′i , we get that (V ′0 , V
′
1 , V

′
2) is a better 3-colouring associated with

u1. Now Claim 4.14 applies, a contradiction. So we assume that B is not a cycle, i.e., there are
some vertices in V (B)\{u} with degree 3.

Now we assume that B has two adjacent vertices both of degree 2. By consider a longest path
with all internal vertices of degree 2 in B, we can find a path, say (y, x, y′), such that d(y) = 3
and d(x) = d(y′) = 2. Set N(y) = {x, x1, x2} and N(y′) = {x, x′1}. Let (V0, V1, V2) be an injective
3-colouring with x ∈ V0 and x′1 ∈ V1. By moving x from X0 to X2, we get a new 3-colouring
(V ′0 , V

′
1 , V

′
2) = (V0\{x}, V1, V2 ∪ {x}). Note that the only vertices in V ′2 that have a common

neighbour with x is one vertex of x1, x2. Since (x1, y, x2) (or (x1, y, x) if u = y) is contained in
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a cycle avoiding x, we get that (V ′0 , V
′
1 , V

′
2) is a better 3-colouring of G associated with u1, and

Claim 4.14 raises a contradiction. It follows that the set of vertices in B of degree 2 must be an
independent set.

Suppose now that there are two adjacent vertices both of degree 3. Let H be the component
of the subgraph induced by {v ∈ V (B) : dG(v) = 3}, with |V (H)| ≥ 2. Let u1v1 ∈ E(H,B −H).
So d(v1) = 2 and set N(v1) = {u1, u2}. We claim that we can choose u1v1 such that u 6= u2.
Suppose that for every edge u1v1 ∈ E(H,B−H), the neighbour of v1 other than u1 is u. It follows
that v1 has one neighbour outside H (which is u) and that there are exactly two edges between H
and B −H. But now

∑
x∈V (H)∩X dH(x) 6≡

∑
y∈V (H)∩Y dH(y) mod 3, a contradiction due to the

number of edges B.
Now let (y, x, y′, x′) be a path in B such that d(x) = 2, d(y) = d(y′) = d(x′) = 3 and u 6= y.

Set N(y) = {x, x1, x2} and N(y′) = {x, x′, x′1} (we might have x′ ∈ N(y)). Let (V0, V1, V2) be an
injective 3-colouring with x ∈ V0, x′1 ∈ V1 and x′ ∈ V2. By moving x from X0 to X2, we get a
new 3-colouring (V ′0 , V

′
1 , V

′
2) = (V0\{x}, V1, V2 ∪ {x}). Note that the only vertices in V ′2 that have

a common neighbour with x and possibly having the same degree with x are one of x1, x2. Since
(x1, y, x2) is contained in a cycle avoiding x, we get that (V ′0 , V

′
1 , V

′
2) is a better 3-colouring of G

associated with x. Claim 4.14 gives another contradiction. It follows that the set of vertices in B
of degree 3 must be an independent set.

Now let x ∈ V (B) ∩X be a vertex with d(x) = 3. Set N(x) = {y1, y2, y3} and N(yi) = {x, xi}
for i ∈ {1, 2, 3}. Let (V0, V1, V2) = (X0 ∪ Y0, X1 ∪ Y1, X2 ∪ Y2) be an injective 3-colouring with
x ∈ X1. So x1, x2, x3 ∈ X0∪X2. If necessary, we relabel X0 and X1 so that |X0∩{x1, x2, x3}| ≤ 1.
If |X0 ∩{x1, x2, x3}| = 0, then by moving x from X1 to X0, we get a good 3-colouring of G, thus a
contradiction by Claim 4.12. So we assume without loss of generality that x1 ∈ X0 and x2, x3 ∈ X2.
By moving x from X1 to X0, we get a 3-colouring (V ′0 , V

′
1 , V

′
2) = ((X0∪{x})∪Y0, X1\{x}∪Y1, X2∪

Y2) of G. If necessary, we can relabel X1\{x}, X2 so that (V ′0 , V
′
1 , V

′
2) is a good 3-colouring. If

necessary, we relabel some of Y ′0 , Y ′1 , Y ′2 so that y1 ∈ Y1. By Lemma 4.9, there exists a 3-labelling
` of G such that c`(v) ≡ i mod 3 for every vertex v ∈ V ′i . Thus every two vertices in V (G)\{x}
having a common neighbour get distinct colours modulo 3.

Now let C be a cycle containing (y1, x, y2), and C ′ be a cycle containing (y2, x, y3) (which exists
since B is 2-connected, so every edge is contained in two cycles). We repeatedly 1-switch C and
C ′ so that `(xy1) = `(xy2) = `(xy3) = 1 (first make `(xy1) = 1, and the make `(xy3) = 1; now,
since x ∈ X0 we have `(xy2) = 1). Thus we have c`(x) = 3. Recall that y1 ∈ Y1 and d(y1) = 2. We
have `(y1x1) = 3, implying that c`(x1) ≥ 6, and c` is a injective colouring of G, and ` an injective
labelling, a contradiction.

Case 2.1: G is 2-connected and δ(G) = 2.
Recall that ∆(G) = 3. First assume that G has two adjacent vertices both of degree 2. By

considering a longest path with all internal vertices of degree 2, we can find a path (y, x, y′) such
that d(y) = 3 and d(x) = d(y′) = 2. Set N(y) = {x, x1, x2} and N(y′) = {x, x′1}. Let (V0, V1, V2)
be an injective 3-colouring of G with x ∈ V0 and x′1 ∈ V1. By moving x from X0 to X2, we get
a better 3-colouring (V ′0 , V

′
1 , V

′
2) = (V0\{x}, V1, V2 ∪ {x}) associated with x (the only vertex in V ′2

with the same degree as x (if any) is exactly one in {x1, x2}, while x1, y, x2 are contained in a cycle
avoiding x), and we get a contradiction through the use of Claim 4.14. It follows that the set of
vertices of degree 2 must be an independent set.

Suppose now that there are two adjacent vertices both of degree 3. So there is a path (y, x, y′, x′)
such that d(x) = 2 and d(y) = d(y′) = d(x′) = 3. Set N(y) = {x, x1, x2} and N(y′) = {x, x′, x′1}.
Let (V0, V1, V2) be an injective 3-colouring of G with x ∈ V0, x′1 ∈ V1 and x′ ∈ V2. By moving x
from X0 to X2, we get a better 3-colouring (V ′0 , V

′
1 , V

′
2) = (V0\{x}, V1, V2 ∪ {x}) associated with

x (by the same reasons as earlier). So that Claim 4.14 does not yield a contradiction, the set of
vertices of degree 3 must be an independent set.

Now let x ∈ X be a vertex with d(x) = 3. Set N(x) = {y1, y2, y3} and N(yi) = {x, xi} for
i ∈ {1, 2, 3}. Let (V0, V1, V2) = (X0 ∪Y0, X1 ∪Y1, X2 ∪Y2) be an injective 3-colouring with x ∈ X1.
So x1, x2, x3 ∈ X0 ∪X2. If necessary, we relabel X0, X1 so that |X0 ∩ {x1, x2, x3}| ≤ 1. If |X0 ∩
{x1, x2, x3}| = 0, then by moving x from X1 to X0, we get a good 3-colouring of G, a contradiction
by Claim 4.12. So we assume without loss of generality that x1 ∈ X0 and x2, x3 ∈ X2. By moving
x from X1 to X0, we get a new 3-colouring (V ′0 , V

′
1 , V

′
2) = ((X0 ∪ {x})∪ Y0, X1\{x} ∪ Y1, X2 ∪ Y2).
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Figure 1: The gadget T , and an injective 2-labelling of T . An integer in a vertex indicates its
colour by the depicted labelling.

If necessary, we can relabel X1\{x}, X2. Then this results in a good 3-colouring. If necessary, we
relabel some of Y ′0 , Y ′1 , Y ′2 so that y1 ∈ Y1. By Lemma 4.9, there is a 3-labelling ` of G such that
c`(v) ≡ i mod 3 for every vertex v ∈ V ′i . Thus every two vertices in V (G)\{x} having a common
neighbour get distinct colours modulo 3.

Let C be a cycle of G containing (y1, x, y2), and C ′ be a cycle containing (y2, x, y3). Just as
in the last case of Case 1, we repeatedly 1-switch C and C ′ until `(xy1) = `(xy2) = `(xy3) = 1.
Thus we have c`(x) = 3. Recall that y1 ∈ Y1 and d(y1) = 2. We have that `(y1x1) = 3, implying
that c`(x1) ≥ 6 and c` is a proper injective colouring of G, and thus ` an injective 3-labelling, a
contradiction.

Case 2.2: G is 2-connected and cubic.
Note that G 6= K3,3 since G has no good 3-colouring. By Lemma 4.8, there is a vertex x ∈ X

such that G − x − N(x) is connected. Set N(x) = {y1, y2, y3} and N(yi) = {x, xi, x′i} where
i ∈ {1, 2, 3} (possibly xi = xj or xi = x′j or x′i = x′j for some 1 ≤ i < j ≤ 3). Let (V0, V1, V2)
be an injective 3-colouring with x ∈ V0. Thus xi, x′i ∈ X0 ∪ X2 for i ∈ {1, 2, 3}. Without loss
of generality we assume that xi ∈ V1 and x′i ∈ V2. By moving x from X0 to X1, we get a new
3-colouring (V ′0 , V

′
1 , V

′
2) = (V0\{x}, V1 ∪ {x}, V2).

Let Pi be a path of G− x−N(x) between xi and x′i (recall that G− x−N(x) is connected),
and let Ci = (yi, xi, Pi, x

′
i, yi). Thus the edge xiyi is not contained in the cycle Cj for i 6= j. It

follows that (V ′0 , V
′
1 , V

′
2) is a better 3-colouring associated of G with x. Now Claim 4.14 gives us

our final contradiction.

5 On the complexity of determining χiΣ

In this section, we investigate the hardness of determining χiΣ(G) for a given graph G. Our main
result below, Theorem 5.3, is that deciding whether χiΣ(G) ≤ 2 holds is an NP-complete problem,
even when restricted to instances where G is bipartite. Note that this is contrasting with the
problem of deciding whether χΣ(G) ≤ 2 holds for a given bipartite graph G, which was shown to
be in P (see [16]).

Before proceeding with the proof, we first need to introduce some gadgets. The 1-gadget T is
depicted in Figure 1. In what follows, we deal with its vertices and edges through the notation
from the figure. The vertex v1 of T is its root, the vertex v2 is its subroot, while the unique edge
incident to v1 is its root edge. The important property is that all injective 2-labellings of T assign
the same label to the root edge.

Lemma 5.1. Let ` be an injective 2-labelling of T . Then:
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• `(v1v2) = 1;

• c`(v3) ≤ 6;

• c`(v2) ≤ 3.

Furthermore, injective 2-labellings of T do exist.

Proof. The last two items follow from the degree of v2 and v3, because of the first item, and because
we are considering 2-labellings. To see that the last part of the statement is true as well, we provide
an example of injective 2-labelling of T in Figure 1. So we just need to focus on proving the first
item.

Let us investigate how ` behaves in T . We want to show that we must have `(v1v2) = 1, so
let us assume to the contrary that `(v1v2) = 2. We distinguish the two possible values as `(v2v3)
separately.

• Assume `(v2v3) = 1. Then c`(v2) = 3. First, we note that if `(v3v4) = `(v3v8), then, so
that c`(v4) and c`(v8) are different from c`(v2) (which is required, since v3 is a common
neighbour of v2 and v4, v8), we must actually have `(v3v4) = `(v3v8) = `(v4v5) = `(v8v7).
Then c`(v4) = c`(v8) while v3 is a common neighbour of v4 and v8, a contradiction. So we
must have, say `(v3v4) = 1 and `(v3v8) = 2, and thus c`(v3) = 4. By the same argument
as above, we must have `(v4v5) = 1 and `(v8v7) = 2, and thus c`(v4) = 2 and c`(v8) = 4.
Now we cannot have `(v6v7) = 2 as otherwise we would have c`(v7) = c`(v3) = 4 while v3

and v7 share v8 as a common neighbour. Thus `(v6v7) = 1, and thus c`(v7) = 3. Now, if
`(v5v6) = 1, then v5 neighbours v4 and v6 which both have colour 2, while, if `(v5v6) = 2,
then v6 neighbours v5 and v7 which both have colour 3. Thus with get a contradiction in all
cases.

• Assume `(v2v3) = 2. Then c`(v2) = 4.

First, consider the case `(v3v4) = `(v3v8) = 1. Then c`(v3) = 4. Since v3 neighbours both
v4 and v8, we must have, say, `(v4v5) = 1 and `(v8v7) = 2, which yields c`(v4) = 2 and
c`(v8) = 3. Now we cannot have `(v6v7) = 2, as otherwise v7 would have colour 4 just as v3,
and they share v8 as a neighbour. So `(v6v7) = 1, and c`(v7) = 3. Now we get a contradiction
no matter whether v5v6 is labelled 1 or 2: in the first case, v5 is a neighbour of both v4 and
v6 which would have colour 2, while, in the second case, v6 is a neighbour of v5 and v7 which
would both have colour 3.

Second, consider the case `(v3v4) = 1 and `(v3v8) = 2. Then c`(v3) = 5. Because v3

neighbours v2 and v8, we must have `(v8v7) = 1, which yields c`(v8) = 3. Now, because v3

neighbours v4 and v8, we must have `(v4v5) = 1, which gives c`(v4) = 2. Since v6 shares a
common neighbour with both v4 and v8, note that the edges incident to v6 must be labelled
to that c`(v6) = 4. So the two edges must be labelled 2, which yields c`(v5) = c`(v7) = 3, a
contradiction.

Third, consider the case `(v3v4) = `(v3v8) = 2. Then c`(v3) = 6. Because v3 is a common
neighbour of v2 and v4, and of v2 and v8, we must have `(v4v5) = `(v8v7) = 1, which yields
c`(v4) = c`(v8) = 3, while v3 is a common neighbour of v4 and v8, a contradiction.

We now need an infinite family of additional gadgets (see Figure 2 for an illustration). The
(1, 2)-gadget G1,2 is a star on three vertices with two leaves u, v and root r, where ru and rv are the
two root edges, while, for the sake of consistency with what follows, u and v are called the subroots.
Now, for every k ≥ 4 with k ≡ 1 mod 3, the (k, k+1)-gadget Gk,k+1 is obtained by considering two
copies H1,2, H

′
1,2 of G1,2, two copies of H4,5, H

′
4,5, and similarly, for every i < k with i ≡ 1 mod 3,

two copies Hi,i+1, H
′
i,i+1 of Gi,i+1, identifying the roots of H1,2, H4,5, . . . ,Hk−3,k−2 to a single

vertex u, identifying the roots of H ′1,2, H ′4,5, . . . ,H ′k−3,k−2 to a single vertex v, and adding two
edges ur and vr where r is a new vertex. We call r the root of Gk,k+1, the subroots are u and v,
while ru and rv are the two root edges. The properties of interest of these gadgets are the following.

Lemma 5.2. Let k ≥ 1 with k ≡ 1 mod 3, and let ` be an injective 2-labelling of the (k, k+1)-gadget
Gk,k+1 with root r and subroots u and v. Then:
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Figure 2: Examples of (k, k + 1)-gadgets, and their unique injective 2-labelling. An integer in a
vertex indicates its colour by the depicted labelling.

• `(ru) + `(rv) = 3;

• {c`(u), c`(v)} = {k, k + 1};

• c`(r) = 3;

• when k > 1, u is adjacent to a vertex with colour x, for every x < k with x 6≡ 0 mod 3;

• when k > 1, all vertices different from u and v have colour strictly less than k.

Proof. Note that the first item implies the third item. We prove the claim by induction on k. This
is true for k = 1: because r is a common neighbour of u and v, and d(u) = d(v) = 1, we must
have `(ur) 6= `(vr) so that c`(u) 6= c`(v), which gives, say, c`(u) = 1, c`(v) = 2 and c`(r) = 3. Now
assume the claim is true for all values of k up to some i ≥ 1, and consider the next step k = i+ 3.
By the induction hypothesis, all the gadgets H1,2, . . . ,Hk−3,k−2 attached at u, and similarly all
the gadgets H ′1,2, . . . ,H ′k−3,k−2 attached at v must be labelled by ` so that, for each Hj,j+1 (resp.
H ′j,j+1) of them, the two root edges incident to u (resp. v) are labelled 1 and 2, and u (resp. v)
neighbours vertices in Hj,j+1 with colour j and j + 1, while all other vertices of the gadget have
colour less than j. Thus, the labelling of all these gadgets implies that the colour of u and v is
at least k − 1, while all other vertices have colour strictly less than k. Now, since r is a common
neighbour of u and v, we must have c`(u) 6= c`(v), and the only way to achieve this is to have, say,
`(ur) = 1 and `(vr) = 2. This yields c`(u) = k and c`(v) = k + 1. Note that all conditions in the
statement are met.

We are now ready to prove our main result.

Theorem 5.3. Given a graph G, it is NP-complete to decide whether χiΣ(G) ≤ 2 holds. This
remains true if G is assumed bipartite.

Proof. The problem is clearly in NP. We prove its NP-hardness by reduction from Monotone
Cubic 1-in-3 SAT, which is NP-hard [12]. An instance of this problem is a 3CNF formula F
with n variables x1, . . . , xn and m clauses C1, . . . , Cm, where each clause contains exactly three
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distinct variables (no negations), while every variable appears in exactly three distinct clauses.
The question is whether F can be 1-in-3 satisfied, i.e., whether there is a truth assignment to the
variables such that every clause has exactly one true variable. From F , we construct, in polynomial
time, a bipartite graph G such that F is 1-in-3 satisfiable if and only if χiΣ(G) ≤ 2.

We start from G being the cubic bipartite graph modelling the structure of F . That is, for
every variable xi of F we have a variable vertex vi in G, for every clause Cj of F we have a clause
vertex cj in G, and whenever a variable xi belongs to a clause Cj in F , we have a formula edge
vicj in G.

We next consider every clause vertex of G in turn. Let us consider c1 first. We attach the
root of a 1-gadget at c1, as well as the roots of a (13, 14)-gadget and of a (16, 17)-gadget. Next
consider c2. We attach the root of a 1-gadget at c2, as well as the roots of a (13, 14)-gadget, of a
(16, 17)-gadget and of a (19, 20)-gadget. The construction goes on like this for every cj : we attach
the root of a 1-gadget at cj , as well as the root of a (k, k+1)-gadget for every k ∈ {13, . . . , 13+3j}
with k ≡ 1 mod 3.

Finally we consider every variable vertex in turn. At v1, we attach the root of a (10, 11)-gadget.
At v2, we attach the roots of a (10, 11)-gadget, of a (13, 14)-gadget and of a (16, 17)-gadget. At
v3, we attach the roots of a (10, 11)-gadget, of a (13, 14)-gadget, of a (16, 17)-gadget, of a (19, 20)-
gadget and of a (22, 23)-gadget. More generally, at every vi, we attach the root of a (k, k+1)-gadget
for every k ∈ {10, . . . , 10 + 6(i− 1)} with k ≡ 1 mod 3.

Note that the construction of G is achieved in polynomial time, and that G is indeed bipartite.
This is because we have started from a cubic bipartite graph (modelling the structure of F ), and
have only attached to the vertices some copies of T , which is bipartite, and some copies of gadgets
Gk,k+1, which are trees. Also, note that there is no vertex neighbouring a clause vertex and a
variable vertex.

Let ` be an injective 2-labelling of G. Recall that, by Lemma 5.1, all 1-gadgets attached to the
clause vertices have their root edge labelled 1, their subroot has colour at most 3, and their subroot
neighbours a vertex with a colour that can be at most 6. By Lemma 5.2, all (k, k + 1)-gadgets
attached to the (clause and variable) vertices have their root edges labelled so that the sum of their
labels is 3, each of these (k, k + 1)-gadgets has its subroots being adjacent to vertices with colour
k − 3 and k − 2, and the root is potentially the only vertex of the whole gadget that has a colour
being a multiple of 3. By these remarks, we note that:

• For every clause vertex cj , the labels of the incident root edges sum up to 3j+ 4 ≥ 10. Since
there are only three other incident edges (the formula ones), this means that c`(cj) must
lie in {3j + 7, 3j + 8, 3j + 9, 3j + 10}. Furthermore, since, for every 10 ≤ k ≤ 13 + 3j + 1
with k 6≡ 0 mod 3, there is a vertex (subroot) adjacent to cj that itself neighbours a vertex
(different from cj) with colour k, this means that c`(cj) must be 3j + 9 (which is a multiple
of 3), i.e., exactly one formula edge incident to cj must be labelled 1 while the other two
incident edges must be labelled 2.

• By those arguments, no two clause vertices cj and cj′ can get the same colour by `.

• For every variable vertex vi, the labels of the incident root edges sum up to 6i − 3. There
are only three other incident edges (the formula ones), which means that c`(vi) must lie in
{6i, 6i + 1, 6i + 2, 6i + 3}. Also, by construction, for every 7 ≤ k ≤ 10 + 6(i − 1) + 1 with
k 6≡ 0 mod 3, there is a subroot adjacent to vi which neighbours a vertex (different from vi)
with colour k. Then, c`(vi) must be 6i or 6i+3 (i.e., a multiple of 3). This happens when the
remaining three formula edges incident to vi are all labelled 1 (for 6i), or are all labelled 2
(for 6i+ 3).

• By these arguments, no two variable vertices vi and vi′ can have the same colour by `.

By all these arguments, we get that, so that ` raises no conflict, we must manage to label the
formula edges so that 1) for every clause vertex there is exactly only one incident formula edge
labelled 1, and 2) for every variable vertex all three incident formula edges are assigned the same
label. The equivalence with 1-in-3 satisfying F is then easy to see, by just considering that assigning
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label 1 (resp. 2) to the formula edge vicj means that variable xi brings truth value true (resp.
false) to clause Cj . The first condition above models the fact that every clause is regarded satisfied
only if it has exactly one true variable by a truth assignment. The second condition models the
fact that, by a truth assignment, all variables bring the same truth value to all clauses containing
it.

6 Conclusion and perspectives
In this work, we have introduced and investigated the notion of injective labellings, as a variant of
the 1-2-3 Conjecture for injective colouring of graphs. Our guiding line was Conjecture 1.2, towards
which we have provided several results. In particular, the first part of the conjecture holds for trees,
for most cacti, and more generally for most graphs with injective chromatic number being equal
to the maximum degree. We have also shown that determining χiΣ(G) for a given bipartite graph
G is an NP-complete problem. We are very far, however, from fully understanding the problem.

Towards finding counterexamples to Conjecture 1.2, there are a few graph classes which could be
legitimate candidates to consider. A first class could be the class of graphs G with χi(G) = |V (G)|,
which are, in some sense, the equivalent for injective colouring of complete graphs for proper
colouring. We call these graphs injective-complete. It was shown in [7] that injective-complete
graphs are exactly the graphs with diameter at most 2 in which every edge belongs to a triangle.
Since all vertices of injective-complete graphs require different colours by an injective colouring, it
might be that some of them require large labels to be labelled in an injective way. So we ask:

Question 6.1. Is Conjecture 1.2 true for injective-complete graphs?

We note that Question 6.1 is actually a weakening of the 1-2-3 Conjecture, since, by both an
injective labelling and a proper labelling of an injective-complete graph, all adjacent vertices must
receive different colours. In Corollary 6.4 below, we give a context in which Question 6.1 is positive.

Lemma 6.2. In every injective-complete graph, every cut-vertex is a dominating vertex.

Proof. Let G be an injective-complete graph with a cut-vertex v. Then note that if a vertex u from
a component of G− v is not adjacent to v, then u is at distance more than 2 from the vertices in
the other components. This implies that G has diameter more than 2, a contradiction.

Lemma 6.3. For every graph G of order at least 4 with a dominating vertex, we have χiΣ(G) ≤
|V (G)| − 1 = ∆(G).

Proof. Let v be a dominating vertex of G. Consider the following ∆(G)-labelling ` of G. For every
edge e not incident to v, we set `(e) = 1. We now look at the current partial colour s(u) of every
vertex u different from v, and we order the vertices u1, . . . , un−1 different from v in such a way
that s(ui) ≤ s(uj) whenever i ≤ j. We achieve the construction of ` by setting `(vui) = i for every
i ∈ {1, . . . , n − 1}. Because we have `(vui) ≤ `(vuj) whenever i ≤ j, and also s(ui) ≤ s(uj), note
that we also have c`(ui) < c`(uj). Also, we have c`(ui) ≤ ∆(G) + ∆(G)− 1 = 2∆(G)− 1 for every
i ∈ {1, . . . , n − 1}, while c`(v) =

∑∆(G)
i=1 i = ∆(G)(∆(G)+1)

2 . Thus, c`(v) > c`(ui) since ∆(G) ≥ 3.
This means that no two vertices have the same colour by `, which is thus injective.

Combining the previous two lemmas now gives the following.

Corollary 6.4. Conjecture 1.2 is true for every injective-complete graph of order at least 4 with
a cut-vertex.

What makes the proof of Corollary 6.4 work is that the considered graphs have large maximum
degree (compared to the number of vertices). We note however that injective-complete graphs, in
general, can have much lower maximum degree. To see this is true, consider any graph G with
diameter at most 2, choose k ≥ 2 an even number, and let H be the graph obtained from G as
follows. For every vertex v of G, we add, in H, a set Sv of k new independent vertices. Then,
for every edge uv of G, in H we completely join Su and Sv (that is we add an edge joining every
vertex of Su and every vertex of Sv). Finally, for every set Sv of H, we add a perfect matching
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Figure 3: An injective 3-labelling of P3. Red edges are labelled 1, blue edges are labelled 2, and
green edges are labelled 3. An integer in a vertex indicates its colour.

(i.e., k/2 independent edges) over the vertices of Sv. It is easy to check that H has diameter 2,
and every edge is contained in a triangle; thus H is injective-complete. However, we note that
∆(H) = k∆(G) + 1, while |V (H)| = k|V (G)|. For instance, if we take the Petersen graph as G,
then the graph H we get via this construction verifies ∆(H) = 3k + 1 and |V (H)| = 10k.

Regarding Conjecture 1.2, another interesting class of graphs to consider could be that of
incidence graphs of projective planes, which are exactly the graphs with arbitrary maximum degree
∆ for which the injective chromatic number is equal to the maximum value in theory, i.e., ∆(∆−
1) + 1, see [7]. Every such graph P∆ is the bipartite graph obtained from the projective plane
of order ∆, by having vertices in one part corresponding to points, vertices in the other part
corresponding to lines, and in which an edge indicates that some point lies on some line. As a
result, P∆ is ∆-regular, every two vertices in a same partite set are joined by a path of length 2,
and every partite set has cardinality ∆(∆− 1) + 1.

Question 6.5. Is Conjecture 1.2 true for incidence graphs of projective planes?

We note that for every such graph P∆, the possible colours for the vertices by a ∆-labelling
range in {∆, . . . ,∆2}, which is a set of cardinality ∆2 −∆ + 1. Thus, in an injective ∆-labelling
of P∆, for every partite set the set of the colours of its vertices should be exactly {∆, . . . ,∆2}.
We were unable to find a labelling scheme guaranteeing this for all P∆’s. However, as depicted in
Figure 3, such a 3-labelling exists for P3.
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