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Abstract 

Chloride-induced corrosion is one of the main causes leading to the lifetime reduction of reinforced 
concrete (RC) structures in marine environments or subjected to de-icing salts. Modeling chloride 
ingress into concrete in a comprehensive way is therefore a crucial task to evaluate corrosion initiation 
risk and carry out preventive maintenance. Nevertheless, this comprehensive modeling is a challenging 
task that requires solving simultaneously a set of coupled non-linear partial differential equations. This 
task becomes more complex if the inherent uncertainties of the process are considered for probabilistic 
lifetime assessment. The present research aims to assess the probability of corrosion initiation of RC 
structures. The polynomial chaos expansion (PCE) method is employed to propagate uncertainties in a 
chloride ingress model requiring significant computational time to perform one deterministic simulation. 
PCE is also applied to perform a sensitivity analysis to determine which are the more influential random 
variables in the problem. The proposed methodology is applied to RC structures placed in several 
locations in France (Brest, Marseille, and Strasbourg) and subjected to realistic environmental 
conditions including climate change. The results show that the PCE-based model is accurate and 
efficient for lifetime assessment of RC structures subject to chloride-induced corrosion.  

Key-words: Reinforced concrete; Chloride ingress; Corrosion; Sensitivity Analysis; Polynomial Chaos 
Expansion; Climate Change 

1 Introduction 
Chloride-induced corrosion is known to be a major cause of premature degradation for reinforced 
concrete (RC) structures. According to the results obtained from the project BRIME1, there are 26%, 
37%, 39% and 30% of the concrete highway bridges affected by chloride-induced degradation in 
Norway, Germany, France and United Kingdom, respectively. Chloride-induced damage results on 
cross-sectional reduction of steels bars, loss of bonding between steel and concrete and concrete 
cracking and spalling that will affect the serviceability and safety of RC structures2,3. It also can lead to 
important economic consequences due to additional repair and maintenance operations in RC structures. 
                                                   
1 Corresponding author: E-mail: emilio.bastidas@univ-nantes.fr 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For example, Koch et al4 found that the global cost of corrosion is US$2.5 trillion (about 3.4% of the 
global Gross Domestic Product). Thus, developing robust models for prediction and strategies for 
periodic inspection and maintenance plays a significant role in enabling target reliabilities to be met 
over a period of continued service5–8. 

Chloride penetrates into concrete by different mechanisms such as diffusion, convection, migration, 
absorption, permeation, and thermo-diffusion9,10. The mechanism of chloride ingress in sound concrete, 
and therefore the time to corrosion initiation, could be influenced by: (i) the evolution of concrete 
properties with time, (ii) weather conditions, (iii) exposure zones (submerged, tidal, splash, salt spray 
and deicing salts), and (iii) evolution in time of surface chloride concentration. Indeed several studies 
have shown that chloride penetration is highly affected by weather conditions (temperature and 
humidity) including climate change. For example, climate change can lead to lifetime reductions ranging 
from 2% to 18% for RC structures subjected to continental, tropical and oceanic weather conditions11–

13.  

The time to corrosion initiation can be considered as a primordial index to assess durability performance 
of RC structures14. Estimation of corrosion initiation time in RC structures is crucial for minimizing 
both maintenance costs and failure risks11. Simplified chloride ingress models based on an error function 
approximation of the Fick’s law diffusion model are useful to assess the corrosion initiation time with a 
low computational cost15. However, these simplified models cannot represent accurately chloride 
ingress under real (complex) exposure conditions. Numerical chloride ingress models take into 
consideration more interactions among transfer phenomena (e.g., chloride ingress mechanisms, water 
activity, and thermo-gradient transfer, etc.). Nevertheless its relatively high computational cost poses a 
serious problem to estimate corrosion initiation time. In particular, when lifetime assessment should be 
improved to include the uncertainties involved in the problem16,17.  

Nguyen et al18 recently proposed a chloride ingress model for long-term lifetime assessment of RC 
structures under realistic climate and exposure conditions. This model is computationally efficient for 
deterministic computations. However, propagating uncertainties in such a model is still challenging 
because of the number of random variables involved in the problem and small discretization time step 
required to account in a comprehensive way for climate variations. To deal with this problem, this paper 
implements a Polynomial Chaos Expansion (PCE) to develop a so-called chloride ingress surrogate 
model. PCE has been usefully implemented in other applications for uncertainty propagation and 
sensitivity analysis purposes with low computational cost19,20. 

Within this context, the main objective of this paper is to propose a PCE approximation of the chloride 
ingress model to perform probabilistic lifetime assessment and sensitivity analysis. The approach will 
be illustrated with case studies considering various weather and exposure conditions (including climate 
change) for RC structures placed in France. The paper is organized as follows. Section 2 summarizes 
the chloride ingress model. Section 3 presents the tools for the probabilistic lifetime assessment (PCE) 
and sensitivity analysis (Sobol’ indices). Section 4 describes the case studies that will be discussed in 
section 5 to illustrate the construction of the surrogate model, to perform the sensitivity analysis and to 
assess the corrosion initiation time by considering realistic exposure conditions including climate 
change. 

2 Chloride ingress model  
Chloride ingress mechanism into concrete structures implies several processes such as diffusion, 
convection due to capillary adsorption or permeation. In the literature, some researches were carried out 
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based on Fick’s law21. However, these models are valid under the following assumptions9: a) concrete 
is saturated (permanently submerged in seawater), b) concrete is homogeneous, c) chloride coefficient 
diffusion is constant (in time and in space), and d) surface chloride concentration is constant throughout 
time. Recently, some authors tried to improve the Fick’s law based diffusion model22. However, these 
approaches still show limitations when considering environmental conditions15. To tackle this problem, 
an efficient deterministic chloride ingress model which accounts for realistic weather conditions has 
been recently proposed in the literature18. The model takes into account the coupling of three processes 
which are presented in the following section.  

2.1 Humidity transport 
Humidity transport in concrete can be governed by the following equation: 

 
 𝜕𝑊

𝜕𝑡 + 	 div	 )𝐷+	
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𝜕𝑥 -.///0///1
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where W is the water content (m3/m3), div is the divergence operator, Eh is the activation energy of 
moisture transfer process (J/mol), R is the gas constant (8.314 J/mol.K), T is the temperature inside 
concrete (K), Tref is the reference temperature equal to 20°C, 𝐾Q is the permeability to water of concrete 
(m2), 𝐾JQ	is the relative permeability to water of concrete (-), 𝜇Q is the water viscosity (Pa×s), 𝜌Q is the 
density of water (kg/m3), Rv is the specific gas constant (461.89 J/(kg×K)) and RH is the relative 
humidity inside concrete. 

2.2 Heat transfer 
The heat transfer equation can be written as follows: 

 𝜕𝑇
𝜕𝑡
−

1
𝜌0 × 𝐶𝑝

× div	 G𝜆	grad	𝑇./0/1
conduction

N = 0 (3) 

where 

 
𝜆 = a

1.5 if	𝑇 < −4ºC

𝜆JKL 	× )	0.244	 )
𝑊
𝜖 − 1- + 1- × j0.0015	j𝑇 − 𝑇JKLk + 1k if	𝑇 ≥ −4ºC (4) 

where λref is the reference concrete heat conductivity (W/(m×ºC)) measured for a given temperature –
e.g., 20 °C, 𝜌m is the density of concrete (kg/m3), Cp is the effective heat specific of concrete (J/(kg×ºC)), 
grad is the gradient operator, 𝜖	is the porosity of concrete (-) and 𝜆 is the heat conductivity of concrete 
(W/(m×ºC)) that depends on the weather conditions and material properties. 

2.3 Chloride transfer 
Chloride transfer is governed by diffusion and convection due to capillary pressure or permeation. It can 
be expressed as follows: 
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where Cf  is the free chloride concentration (mol/m3 solution), Cb is the bound chloride concentration 
(mol/m3 concrete) (see equation (11)), De is the chloride coefficient diffusion (m2/s) which depends on 
the temperature, the aging factor, the water content, and the chloride concentration and Dw is obtained 
from equation (2). De can be expressed as follows: 

 𝐷K = 𝐷tu	 × 	𝑓w(𝑇) × 𝑓x(𝑡) ×	𝑓y(𝑊) ×	𝑓zj𝐶Lk (6) 

where DCl is the reference diffusion coefficient measured at standard conditions, 𝑓w(𝑇) is a function that 
takes into account the effect of the temperature:  

 
𝑓w(𝑇) = exp B

𝐸{
𝑅 × G

1
𝑇JKL

−
1
𝑇N
O (7) 

where Ea is the activation energy of chloride transfer process. 𝑓x(𝑡) is a function that considers the effect 
of concrete aging: 

 
𝑓x(𝑡) = )

𝑡JKL
𝑡 -

|}~�

 (8) 

where tref = 28 days is the time of exposure at which DCl has been measured, t is the actual exposure time 
(days) and mage the age factor (-). 𝑓y(𝑊) is a function accounting for the moisture content dependence23: 

 
𝑓y(𝑊) = )

𝑊
𝜖 -

�
y
 (9) 

𝑓zj𝐶Lk is a function that considers chloride concentration effect on chloride diffusion process24: 

 𝑓zj𝐶Lk = 1 − 𝑘��� × j𝐶Lk
|���  (10) 

where 𝐶L	is the free chloride concentration (kg/kg concrete), kion and mion are empirical parameters (kion 
= 8.33, mion = 0.5)25.  

In order to describe the chloride binding, we use the Langmuir isotherm which is adapted to concrete26,27: 

 𝐶p =
𝛼𝐶L

1 + 𝛽𝐶L
 (11) 

where 𝛼	and 𝛽 are two parameters estimated experimentally. 

The set of non-linear equations (1)-(11) are solved numerically using the finite volume method under 
some specific initial and boundary conditions25. 

3 Probabilistic analysis 

3.1 Probability of corrosion initiation  
Corrosion initiates when the free chloride concentration at the reinforcement bars estimated with 
equation (5) exceeds a threshold value Ccrt. The failure can therefore be defined in terms of the corrosion 
initiation time 𝑡5<5 and the associated limit state function reads: 
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 𝑔(𝐗, 𝑡) = 𝑡5<5(𝐗) − 𝑡 ≤ 0	 (12) 

where 𝐗 =	 {𝑋w,… , 𝑋�} is the vector of the input random variables of size 𝑑 considered in the ingress 
model.  Denoting by 𝑓𝐗(𝐱) the joint probability density function of X, the probability of failure at any 
instant 𝑡 can be therefore calculated as the integral of 𝑓𝐗(𝐱) in the failure domain: 

 
𝑃9(𝑡) = Prob(𝑔(𝐗, 𝑡) ≤ 0) = � 𝑓𝐗(𝐱)𝑑𝐱	

{𝐱:�(𝐱,�)�m}
 (13) 

It is clear from equation (13) that the integration domain is implicitly defined which renders the 
analytical computation of the probability of failure cumbersome. Classical reliability methods may be 
used such as Monte-Carlo, Importance-Sampling and FORM. However, it is shown by 
Damrongwiriyanupap et al25 that a maximum discretization step of 6 hours is needed when dealing with 
realistic RC structures submitted to weather conditions. This discretization step is very small compared 
to the lifespan of civil engineering structures, which makes the ingress model computationally 
ponderous. The burden is even greater for long-term reliability analysis where repeated calls to the 
chloride ingress model are needed as in the case of classical reliability methods. In the next section, a 
surrogate-based approach is proposed which allows to perform both probabilistic and sensitivity analysis 
for long-term lifetime assessments. 

3.2 Polynomial chaos expansions  
We denote by ℳ(𝐗) the numerical model that represents the chloride ingress mechanism. Due to the 
uncertainties represented by 𝐗, the output of interest 𝑡5<5 = 	ℳ(𝐗) is also random and can be 
approximated using an orthogonal polynomial basis as follows28: 

 𝑡̂��� = 	ℳ�t (𝐗) = 	 ¡ 𝑐𝐚𝜓𝐚(𝐗)
𝐚	∈	𝒜

 (14) 

where 𝒜 is a set of multi-indices 𝐚 = {𝑎w,… , 𝑎�}, {𝑐𝐚, 𝐚 ∈ 𝒜} are the unknown coefficients to be 
determined and {𝜓𝐚, 𝐚 ∈ 𝒜} are multivariate polynomials orthonormal with respect to the joint 
probability density function 𝑓𝐗(𝐱) of X. The set of multi-indices 𝒜 is defined as follows: 

 
𝒜 = ¨𝐚 ∈ ℕ�, ‖𝐚‖« = B¡𝑎�«

¬

�­w

O

w/«

≤ 𝑝¯ (15) 

with 𝑝 the total degree of the polynomial chaos (PC) expansion. When 𝛽 = 1, full polynomials of 
maximum total degree 𝑝 are retained, whereas a lower value of 𝛽 favors the main effects and low order 
interactions between input variables. 

Once the basis has been specified, the set of unknowns 𝐜 = {𝑐𝐚, 𝐚 ∈ 𝒜} are obtained by minimizing the 
mean-square error of the polynomial expansion over a set of 𝑁 realizations of the input vector X		=
²𝐱(w), … , 𝐱(³)´ called the experimental design (ED): 

 
𝐜 = argmin

𝐜∈ℝ·¸¹º(»)
	
1
𝑁
¡¼ℳj𝐱(�)k −ℳ�t j𝐱(�)k½

x
³

�­w

 (16) 

A sequential strategy has been proposed by Blatman and Sudret29 to enhance the efficiency of the PC 
expansions by disregarding insignificant terms from the set of terms of 𝒜. The sparse version is 
therefore iteratively built by adding one by one the terms from 𝒜 and retaining only those significantly 
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improving the accuracy of the surrogate model. The algorithm converges when 𝑄x ≥ 𝑄���x , where 𝑄���x  
is a preset target value of the determination coefficient 𝑄x given by: 

 
𝑄x = 1 −¡G

ℳj𝐱(�)k −ℳ�t j𝐱(�)k
1 − ℎ�

N
x³

�­w

/¡jℳj𝐱(�)k − 𝜇����k
x

³

�­w

 (17) 

where 𝜇�ÀÁÀ = 	
w
³
∑ ℳj𝐱(�)k³
�­w  and ℎ� is the ith diagonal term of the matrix: 𝛙(𝛙Ä𝛙)Å𝟏𝛙Ä, with 𝛙�Ç =

𝜓Çj𝐱(�)k.  

The computational chloride ingress model can therefore be replaced by a surrogate model whose 
coefficients	{𝑐𝐚, 𝐚 ∈ 𝒜} contain the complete probabilistic information. Indeed the PC expansion being 
built in an orthonormal space, the statistical moments of the response, particularly the mean and variance 
are easily derived as follows: 

 	𝜇�ÀÁÀ = Ejℳ�t (𝐗)k = 𝑐𝟎 (18) 

and 

 	𝜎�ÀÁÀ
x = Varjℳ�t (𝐗)k =¡𝑐𝐚x

𝐚∈Ì
𝐚Ím

 (19) 

Furthermore since 𝑡̂5<5 = 	∑ 𝑐𝐚𝜓𝐚(𝐗)𝐚∈𝒜  is polynomial and straightforward to evaluate, the probability 
density function of 𝑡5<5 and the probability of failure as defined by equation (13) can be easily estimated 
through an intensive simulation of the surrogate model ℳ�t  . 

3.3 Sensitivity analysis  
The aim of Sensitivity analysis is to quantify how the uncertainty of the model output 𝑡��� is affected by 
the variability of each input variable 𝑋�. In this work, a variance-based method based on Sobol’s 
sensitivity indices30 is explored. The aim is to decompose the variance of the output as a sum of 
contribution of the input random variables. In practice, computing sensitivity indices through Monte-
Carlo simulation requires 2�  integrals of ℳ(𝐗) which is computationally prohibitive in our case. On 
the other hand, when the model is approximated with a PC surrogate, the sensitivity analysis can be 
performed easily by post-processing the polynomial coefficients of ℳ�t (𝐗)19. 

The Sobol’s decomposition of the PC expansion reads: 

 
ℳ�t (𝐗) = 	𝑐𝟎 +¡¡𝑐𝐚𝜓𝐚(𝑋�) + ¡ ¡ 𝑐𝐚𝜓𝐚j𝑋�Î, 𝑋�Ïk

𝐚ÐÑ�Î,�Ïw��Î��Ï��𝐚ÐÑ�

�

�­w

+ ⋯

+	 ¡ ¡ 𝑐𝐚𝜓𝐚j𝑋�Î, … , 𝑋�Ók
𝐚ÐÑ�Î,…,�Ów��Î�…��Ó��

+ ⋯+		 ¡ 𝑐𝐚𝜓𝐚j𝑋�Î, … , 𝑋�Ôk
𝐚ÐÑ�Î,…,�Ô

 
(20) 

where 𝐼�Î,…,�Ó is the set of non-zero indices (𝑖w, … , 𝑖×)	𝜖	𝒜.  

The first-order sensitivity index 𝑆� considers the main effect of each input variable 𝑋� considered 
separately, on the variability of the model response 𝑡5<5. It can be computed through the coefficients of 
the polynomial expansion as follows: 

 
	𝑆� =

∑ 𝑐𝐚x𝐚ÐÑ�

𝜎�Ù���
x  (21) 
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The overall effect of the input random variable 𝑋� may also be assessed by the total sensitivity index 𝑆�Ú . 
This index accounts for both the main effect of 𝑋� and its interactions with the other input variables and 
is given by: 

 
	𝑆�Ú =

∑ 𝑐𝐚x𝐚ÐÑ�
∗

𝜎�Ù���
x  (22) 

where 𝐼�∗ denotes the set of all indices with non-zero 𝑖�D component.  

4 Case Study definition 
This section describes three case studies that will be considered to illustrate how the PC surrogate model 
could be implemented for sensitivity analysis and lifetime assessment. Each case study will consider a 
structure built in 2017 using the same concrete but exposed to three locations in France (Brest, Marseille 
and Strasbourg, Figure 1) that represent different chloride exposure and weather conditions (including 
climate change). It is observed in Table 1 that the study cases account for chlorides coming from the 
seawater and de-icing salts under Atlantic, Mediterranean and continental weather conditions.  

 

Figure 1: Studied locations. 

 

 

 

Brest

Marseille

Strasbourg
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Table 1: Summary of chloride exposure and weather conditions for the studied locations 
Location Chloride exposure Surface chloride 

concentration 
Weather conditions 

Brest Tidal cycles: wetting (6h) and drying 
(18h) per day 

17.75 kg/m3 water during the 
immersion period (high tide) 
and 0 during the low tide26 

Cold and humid 
Atlantic west climate 

Marseille Salt spray from sea chlorides mixed in 
the humid air. The surface chloride 
concentration is constant during the 
structural lifetime 

3.5 kg/m3 concrete17 Hot and dry 
Mediterranean 
climate 

Strasbourg De-icing salts applied during a winter 
period of 5 months (from October to 
February). This cold period length was 
assumed based on recorded weather data 

2.95 kg/m3 concrete10 Mild continental 
climate with a cold 
winter 

 

Climate conditions (temperature and relative humidity) will be used as boundary conditions for 
assessment of the probability of corrosion initiation using the deterioration model described in Section 
2. Figure 2 gives the annual values of air temperature and relative humidity for each location and climate 
change scenario. It is observed that the structures will be exposed to more or less hot and wet climates 
if climate change effects are neglected (Reference case). These local surrounding environmental 
conditions will produce different probability of corrosion damage even if the same concrete is used to 
build the structures31,32. Two climate change scenarios (RCP 4.5 and RCP 8.5, Figure 2) defined 
according to the Fifth Assessment Report (AR5)33 will be also considered in the analysis. RCP 4.5 and 
RCP 8.5 respectively represent moderate and pessimist effects of climate change on the future weather34. 
The overall impact of climate change on the future weather of the selected locations was estimated by 
using data computed by the French general circulation model CNRM-CM5. For locations in a coastal 
area (Brest and Marseille), the temperature increases until 2100 by 1.5°C and 3.5°C for the RCP 4.5 and 
RCP 8.5 scenarios, respectively. The change of the relative humidity is not significant for these locations 
(Figure 2). For a continental climate such as Strasbourg (Figure 2), the increases of temperature are in 
the same order of magnitude than for coastal locations but there is a decrease in relative humidity. For 
Brest it will be considered that the structure will be subjected to the seawater temperature during the 
immersion. The values of seawater temperature before 2005 are detailed in Nguyen et al18 and were 
obtained from real measurements available in https://donneespubliques.meteofrance.fr for this location 
will vary between 10 and 20°C depending on the season.  
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Figure 2: Average climate data (temperature and relative humidity) for the selected locations and 
climate change scenarios 

 

We also consider that the three RC structures were built using the same concrete that contains 330 kg/m3 
of ordinary Portland cement, 8% of C3A and w/c =0.5. This concrete has a characteristic compressive 
strength, f’ck = 35 MPa. It is assumed that the hydration period tref is equal 28 days. The model parameters 
(mean and coefficient of variation (COV)) for the considered concrete were determined based on a 
literature review17,35,36,18 and are described in Table 2. It is assumed that all random variables are 
statistically independent to provide the worst scenario that overestimate deterioration consequences. 
Real data is required to estimate correlations between the parameters given in Table 2 and improve 
deterioration assessment. 
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Table 2: Deterministic and probabilistic input parameters17,35,36,18 
Parameter Unit Mean COV Distribution 
Concrete cover depth, Xac m 0.05 0.25 Beta [0.04; 0.1] 
Concrete permeability to water, Kw m2 3.4x10-21 0.2 Lognormal  
Activation energy for humidity transport, Eh J/mol 30,750 0.15 Uniform [22,500; 39,000] 
Water viscosity, µw Pa×s 1×10-3 –a –a 
Concrete porosity, 𝜖 – 0.12 –a –a 
Reference concrete thermal conductivity, λref W/m°C 2.5 0.2 Beta [1.4; 3.6] 
Concrete heat capacity, Cp J/kg°C 1,000 0.1 Beta [840; 1,170] 
Concrete density, ρ0 kg/m3 2,400 0.04 Normalb 
Chloride threshold concentration, Ccrt % cem. wt. 0.5 0.15 Normalb 
Chloride coefficient of diffusion, Dcl m2/s 3x10-11 0.2 Lognormal  
Activation energy for chloride transfer, Ea J/mol 41,800 0.1 Beta [32,000; 44,600] 
Aging factor, mage – 0.15 0.15 Beta [0; 1] 
Surface chloride concentration, Cs kg/m3 Table 1c 0.2 Lognormal 
Langmuir isotherm parameter, α m3 sol./m3 conc. 0.38 –a –a 
Langmuir isotherm parameter, β m3 sol./mol Cl- 0.07 –a –a 

aDeterministic  
bTruncated at 0 
cCs is considered as random variable for Strasbourg and Marseille. For Brest, the structure is subjected to tidal cycles. Therefore, during the 
immersion, Cs is modeled as a deterministic value that corresponds to the seawater chloride content which variability is negligible in comparison 
to deicing salt or salt spray exposure conditions. Cs is set to zero during the drying periods. 

5 Results and discussions 
This section starts illustrating for one location how to construct a PCE surrogate model. The second part 
is focused on a sensitivity analysis based on Sobol’s estimates. The last part illustrates the use of PCE 
approximation for lifetime assessment for all the selected locations including climate change effects. 

5.1 Construction of the surrogate model 
Let us consider as an illustrative example the case of a RC structure located in the Mediterranean city 
of Marseille. The structure is studied over 150 years throughout which it would be subject to corrosion 
induced mainly by salt spray. A single deterministic run of the chloride ingress model needs about 10 
minutes using a workstation (processor: 2.2 GHz, 30 MB cache, 12 cores; memory: 16 GB). It is thus 
clear that using classical approaches for reliability and sensitivity analyses is unaffordable here since 
this would require an important number of calls to the deterministic model. We aim therefore to compute 
the PC expansion of the output of the chloride ingress model 𝑡��� which depends on the input random 
vector 𝑿 = ²𝑐, 𝐸D,𝐾Q,𝐶ÝJ�, 𝜌m, 𝐶Þ, 𝜆JKL, 𝐶×, 𝐷tuJKL, 𝐸{,𝑚{�K´. The candidate polynomial basis is 
determined with 𝛽 = 0.7 (equation 15) and a preset target accuracy 𝑄���x = 0.99 is chosen (equation 
17). Numerical experiments from the literature show that both values achieve a good trade-off between 
computational efficiency and reliability analysis accuracy. 

An initial ED with 𝑁× = 1000 samples is first generated which corresponds to 1000 chloride ingress 
model evaluations. Extra 𝑁�KQ = 200 samples are then sequentially added until the prescribed accuracy 
𝑄���x  is reached. The polynomial degree of the PC approximation, the number of basis elements and the 
determination coefficient are given in Table 3 for different sizes of the ED. It can be observed that the 
target accuracy is reached for an ED of final size 𝑁× = 2000. The corresponding PC approximation is 
of order 𝑝 = 7 and contains 185 basis elements. Figure 3 compares the exact values of 𝑡��� obtained by 
the chloride ingress model with the surrogate ones 𝑡̂��� considering the initial (𝑁× = 1000) and final 
(𝑁× = 2000) experimental designs. It is shown that the accuracy of the surrogate is improved with the 
number of samples. 
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Table 3: Accuracy of the PC approximation depending on the number of simulations 
𝑁× 𝑝 Size of 𝒜 𝑄x 

1000 6 150 0.9839 
1200 6 122 0.9869 
1400 7 174 0.9854 
1600 7 198 0.9873 
1800 7 229 0.9895 
2000 7 185 0.9902 

 

 

Figure 3: Comparison between values of tini obtained from the chloride ingress model and the PCE 
approximation 

Once the PC expansion is defined, statistical analyses become easily affordable by performing MC 
simulations on the polynomial model. Figure 4 depicts the discrete probability density function (PDF) 
of the model input 𝑡5<5 obtained with 2000 samples. It can be concluded that this histogram is well fitted 
with the continuous function obtained by the surrogate model using 106 MC simulations. It is also 
noticed that the distribution of 𝑡̂5<5 is positively skewed with a high coefficient of variation of 104%. It 
is worth noting here that the shape of the output variable highly affects the size of the ED. The highly 
non-Gaussian the output is and the more number of samples is needed in order to achieve good accuracy 
of the surrogate model. 

 

Figure 4: Comparison of discrete probability density functions of the time to corrosion initiation 
obtained from ED and PCE 
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5.2 Global sensitivity analysis of corrosion initiation to input parameters 
This section aims at determining the more influential random variables when estimating the time to 
corrosion initiation. The results presented herein consider the study cases described in Section 4 and 
were determined using a PC approximation with similar accuracy to the indicated in Table 3 for Brest 
and Strasbourg.  

Figure 5 provides the results of the sensitivity analysis based on the total Sobol indices. It is noted that 
the sensitivity was different for each study case. For RC structures exposed to tidal zone in Brest, 
chloride comes from the Atlantic Ocean with a constant (deterministic) concentration when the structure 
is submerged (Table 1). Cs is not included in the sensitivity analysis for this location because this 
parameter is modelled as a deterministic function (see footnote in Table 2) and therefore the output of 
the model is associated with ten random variables: Kw, Dcl, Eh, 𝜌m, Ccrt, Xac, 𝜆JKL, Cp, Ea, and mage. Among 
the ten random variables only four have a significant sensitivity: the chloride threshold concentration 
Ccrt, the concrete cover Xac, the chloride diffusion coefficient Dcl and the aging factor mage with the 
following ranking from the most to the less influential: Ccrt, Xac, Dcl, and mage.  

 

Figure 5: Sensitivity analysis results based on Sobol indices for the reference scenario 

For Marseille and Strasbourg, eleven random variables including the ten parameters above-mentioned 
and Cs are considered. Figure 5 shows that five random variables are the more influencing for these 
locations with the following ranking from the most to the less influential: Cs, Ccrt, Xac, Dcl, and mage. The 
surface chloride concentration was the most sensitive parameter in both cases.  

The results of this sensitivity analysis are in agreement with other findings reported in the literature as 
well as with the mechanisms of chloride penetration. For example, Bastidas-Arteaga et al16 also found 
that the surface chloride concentration had a large impact on the probabilistic assessment of the 
corrosion initiation time. Since the chloride ingress is governed principally by diffusion, it is expected 
that the chloride diffusion coefficient Dcl and the aging factor mage become key parameters for lifetime 
assessment37. Finally, as a way of protection against corrosion initiation, the concrete cover was also 
identified as an influential parameter38. Excluding the fact that the chloride concentration was not 
considered as random variable for Brest, the ranking of importance of the more influential parameters 
remains similar for all the studied locations in France. Therefore, these results are useful to orientate 
further research or to help infrastructure decision-makers to identify the most influential parameters 
where the uncertainty quantification efforts should be addressed to improve lifetime assessment.  
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5.3 Probabilistic assessment of time to corrosion initiation including climate change effects 
The procedure described in section 5.1 was applied to each study case to develop appropriate surrogate 
models. These surrogates were used to estimate the mean and standard deviation of the times to 
corrosion initiation provided in Table 4. The results in this table indicate that the mean time to corrosion 
initiation depends on the chloride exposure and weather conditions even if the RC structure is built using 
the same material and concrete cover. Similar results were also reported in other studies11,13,31,39. As 
expected, the smaller time to corrosion initiation corresponds to structures placed in Brest and subjected 
to tidal cycles that will accelerate the chloride ingress process. Times to corrosion initiation in the range 
of 49 to 61 years were estimated for Marseille and Strasbourg. It is also noted that propagating 
uncertainties in the chloride ingress models generates larger standard deviations that correspond to 
coefficients of variation in the range 0.9 to 1.08 for all the studied cases. This higher variability in the 
response justifies the use of an efficient tool for probabilistic lifetime assessment such as the PC in order 
to consider these uncertainties for optimizing maintenance procedures. 

Table 4 also includes the results concerning the effects of climate. It is noted that for all cases climate 
change induces a reduction of the mean and standard deviation of the time to corrosion initiation. In 
general, the reductions are larger for the mean values and vary in the range [3%, 10%] and [4%, 14%] 
for the RCP 4.5 and RCP 8.5 scenarios, respectively. These results are in the order of magnitude of those 
reported by Bastidas-Arteaga et al16. The minor climate change impacts were found for Brest. This is 
mainly explained by two reasons. First, corrosion initiation will occur in a short-term (in average 30 
years) and as noted in Figure 2 the effects of climate change on temperature will be appreciable after 
2060; thus, the structures will be mostly subjected to a weather similar to the reported for the reference 
case. Second, as mentioned in section 4, during the immersion cycles the concrete is exposed to the 
seawater temperature that is less affected by climate change. 

Table 4: Mean and standard deviation of the time to corrosion initiation for the considered locations 
including climate change effects 

Exposure condition Climate 
scenario 

Mean  
(years) 

St. Dev. 
(years) 

Reduction of 
the mean 

Reduction of 
the St. Dev. 

 Brest (Tidal zone) 
Reference 31.5 29.9 – – 
RCP 4.5 30.6 29.6 3.0% 1.0% 
RCP 8.5 30.4 29.5 3.6% 1.3% 

Marseille (Salt spray) 
Reference 61.2 61.2 – – 
RCP 4.5 55.3 58.5 9.7% 4.5% 
RCP 8.5 53.1 57.2 13.3% 6.6% 

Strasbourg (Deicing salts) 
Reference 55.1 50.8 – – 
RCP 4.5 51.1 48.0 7.3% 5.7% 
RCP 8.5 49.0 46.9 11.1% 7.7% 

6 Conclusions  
This work presented a probabilistic model for assessing the long-term reliability of RC structures 
subjected to chloride-induced corrosion. The corrosion initiation time is obtained from a deterministic 
chloride ingress model that combines humidity, heat and chloride transfer. To reduce the cost of the 
probabilistic analysis, PC expansions are implemented to assess a surrogate function of the chloride 
ingress model from a sample evaluation set. 
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The first results showed that an accurate surrogate of the chloride transfer model can be obtained with a 
reduced number of output evaluations. Moreover and because the PC surrogate is fast to evaluate, the 
PDF of the corrosion initiation time is efficiently estimated. The second outputs concerned a sensitive 
analysis based on Sobol’s indices. This analysis indicated that the sensitivity is different for each 
location but the more influencing parameters are Cs, Ccrt, Xac, Dcl, and mage. Finally, surrogate models 
were used to estimate the effects of climate change on the time to corrosion initiation for several 
locations and scenarios. As expected, the time to corrosion initiation depends on environmental and 
exposure conditions that are specific for each case. It was also found that climate change could accelerate 
corrosion initiation from 3 to 13%. Climate change could also have an effect on the critical chloride 
concentration for corrosion initiation Ccrt. Further research concerning the effects of environmental 
conditions (temperature and relative humidity) on Ccrt is necessary to update the above-mentioned 
climate change consequences on corrosion initiation. 
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