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Metabolic Flux Analysis in Isotope Labeling
Experiments using the Adjoint Approach

Stéphane Mottelet, Gil Gaullier and Georges Sadaka

F

Abstract—Comprehension of metabolic pathways is considerably en-
hanced by metabolic flux analysis (MFA-ILE) in isotope labeling ex-
periments. The balance equations are given by hundreds of algebraic
(stationary MFA) or ordinary differential equations (nonstationary MFA),
and reducing the number of operations is therefore a crucial part of
reducing the computation cost. The main bottleneck for deterministic
algorithms is the computation of derivatives, particularly for nonsta-
tionary MFA. In this article we explain how the overall identification
process may be speeded up by using the adjoint approach to compute
the gradient of the residual sum of squares. The proposed approach
shows significant improvements in terms of complexity and computation
time when it is compared with the usual (direct) approach. Numerical
results are obtained for the central metabolic pathways of Escherichia
coli and are validated against reference software in the stationary case.
The methods and algorithms described in this paper are included in the
sysmetab software package distributed under an Open Source license
at http://forge.scilab.org/index.php/p/sysmetab/.

Index Terms—xxxxx, xxxxxx.

1 INTRODUCTION

NONSTATIONARY MFA can contribute significantly to
the comprehension, both qualitative and quantitative,

of a metabolic network [1], but before the creation of the
Elementary Metabolites Unit (EMU) framework [2], [3] the
high computation cost of nonstationary MFA prevented
the development of efficient software. However, topological
network reduction methods (such as the one that allows
the EMU framework) are not the only way of curbing the
computation cost of nonstationary MFA. Given that both
stationary and nonstationary MFA belong to the class of
general inverse problems where measurements depend on
parameters through a state equation, there is a technique,
namely the adjoint approach [4], [5], [6], that may be used
to greatly improve the computation of different kinds of
derivatives.

The main contribution of this paper is demonstrating
that independently of the topological network reduction, the
adjoint approach considerably speeds up the computation
of the gradient residual sum of squares (RSS), meaning

S. Mottelet is with the Department EA4297 TIMR, Sorbonne University,
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that the entire process of estimating unknown parameters is
accelerated significantly. We show that in the (usual) direct
approach the sum of the times required for the state and
gradient calculations is dominated by the computation time
of the gradient itself, whereas in the adjoint approach the
two computation times are of the same order. While the
direct approach has a cost that is unavoidably proportional
to the number p of unknown parameters (fluxes and pool
sizes), in the case of the adjoint approach the cost of the
gradient computation is independent of p. The algorithms
described below are implemented in the accompanying
Open Source software sysmetab, which can handle station-
ary and nonstationary MFA.

As theoretical results are asymptotical and can be de-
graded by practical implementation bottlenecks, we per-
form a time analysis for both gradient computations on
the central metabolism of E. Coli, in which we compare
overall computation times for the direct and adjoint ap-
proaches with respect to labeling state sizes: reduced vs.
full cumomer set and stationary vs. nonstationary data. We
contrast estimated flux values for the stationary data with
the values obtained from the reference softwares 13CFLux2
[7] and influx_s [8], which do not implement the adjoint
approach. We detail the distribution of running time on the
network mentioned above and on a larger, poorly defined
version of this network. We show that in this particu-
lar context, when multiple flux estimations from different
perturbed data are made repeatedly (i.e. the Monte Carlo
method is applied), sysmetab is competitive with other
software. For parameter estimations using time-dependent
labeling data generated by stationary flux estimations and
realistic pool size values, the ratio of running times from one
approach to the other exceeds 20.

The paper is organized as follows: In Section 2, we intro-
duce the mathematical structure of 13C MFA. Mathematical
aspects of the algorithms implemented in sysmetab are
given in Sections 3 and 4 respectively for stationary and
nonstationary MFA, and their complexity is compared. Im-
plementation details are described in Section 5. Section 6
presents numerical results obtained by sysmetab.

2 OPTIMIZATION MODEL OF MFA

The aim of 13C metabolic flux analysis is to determine fluxes
v, pool sizes m (in the nonstationary case), expressed as a
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vector of p parameters θ = (v,m), such that experimental la-
beling data y and other measurements w, e.g. input/output
fluxes and pool sizes, are best fitted to their simulated
values. This means minimizing the objective function

J(θ) = 1
2‖g(x(θ), θ)− y‖2Y + 1

2‖h(θ)− w‖2W , (1)

where g and h are given functions and x(θ) denotes the
(possibly time-dependent) n labeling states of the metabolic
network, implicitly defined by the state equation

f(x, θ) = 0. (2)

This equation takes the form of a system of algebraic or
ordinary differential equations, respectively for stationary
or nonstationary metabolic flux analysis. The notations ‖·‖Y
and ‖ · ‖W are used for the norms in the space of la-
beling and non-labeling measurements, denoted by Y and
W respectively. These norms (may) model variations due
to experimental noise by introducing weighting covariance
matrices. In both the stationary and nonstationary cases
the spaces Y and W are finite-dimensional normed vector
spaces, hence y and w can be considered as vectors contain-
ing real measured data.

Below, Θ denotes the space of admissible parameters,
i.e. the space describing realistic physical parameters com-
prising constraints on fluxes, such as the stoichiometric
equations for fluxes. In order to find

θ̂ = arg min
θ∈Θ

J(θ), (3)

different optimization methods can be considered. Finding θ̂
can be performed by determining the solution of successive
linearized problems, as the in Gauss-Newton method (GN)
with a first-order Taylor expansion of g(x(θ)) with respect
to θ by the computation of the sensitivity matrix x′(θ). In
the nonstationary case this n × p matrix is time-dependent
and satisfies a system of differential equations, which means
that it is very expensive to compute.

In contrast, if the minimization is considered as a general
nonlinear optimization problem, only the gradient of J
needs to be computed, as in the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) and Sequential Quadratic Problem (SQP)
methods. In the 1970s the adjoint state method was devel-
oped to compute the gradient in the situation frequently en-
countered in control theory where the function to minimize
depends indirectly on parameters through state variables,
with a minimal cost [4], [5], [6]. This cost is asymptotically
independent of the number of parameters p, and is equiv-
alent to the cost of a single-state equation, while using the
sensitivity matrix generates a cost proportional to p.

3 STATIONARY MFA
The cumomer fraction variables x = (x1, . . . , xN ) model in-
troduced in [9] means that the structure of balance equations
in stationary MFA is given by a cascade of linear algebraic
equations. If xk denotes the vector of cumomer fractions of
weight k , x←k the vector of input cumomers of weight k, and
x<k, x≤k the sequences (xi)i<k and (xi)i≤k, respectively,
then the state equation (2) can be written as

fk(v, x≤k, x
←
k ) = 0, 1 ≤ k ≤ N, (4)

where the function fk is affine with respect to xk as

fk(v, x≤k, x
←
≤k) = Ak(v)xk + bk(v, x<k, x

←
≤k),

the matrix Ak and vector bk being determined by the
structure of the metabolic network under consideration.
From the forward cascade structure of (4), we successively
obtain x1, x2,. . . ,xN by solving at each step a system of
linear equations. For the sake of conciseness we do not
consider the terms which explicitly depend on θ in (1),
but only labeling measurements. In this case, measurements
linearly depend on the state variable, so that the functional
to minimize is of the form

J(v) = 1
2‖Cx(v)− y‖2,

for a given matrix C = (C1, . . . , CN ) depending on the
measurement model.

3.1 Direct approach
For a given flux vector v, we first need to solve the state
equation, which provides the cumomer vector x(v). The
sequence of derivatives (x′k)1≤k≤N is then computed by
solving each step of the forward cascade (the sum in the
second row vanishes for k = 1)

Ak(v)x′k =− ∂vfk(v, x≤k, x
←
≤k)

+
∑
i<k ∂xibk(v, x<k, x

←
≤k)x′i, k ≥ 1,

(5)

which is obtained by implicit differentiation of (4) with
respect to v. Finally, the gradient of J is computed as

∇J(v) =

N∑
k=1

x′k(v)>C>k (Cx(v)− y), (6)

where the symbol > denotes vector and matrix transposi-
tion.

3.2 Adjoint approach
The adjoint approach is based on the Lagrangian functional

L(x, v, λ) = 1
2‖Cx− y‖

2 +
∑N
k=1 λ

>
k fk(v, x≤k, x

←
≤k),

where λ = (λk)1≤k≤N is the sequence of adjoint variables.
Expanding the adjoint equation ∂xL(x, v, λ) = 0 [6] leads to
the backward cascade (the sum vanishes for k = N )

A>k (v)λk =C>k (Cx− y)

−
∑
i>k ∂xk

bi(v, x<i, x
←
≤i)
>λi, k ≤ N. (7)

For a given v, equations (7) are solved backwards, once
the cumomer vector x(v) has been computed from (4).
This procedure provides successively λN , λN−1, . . . , λ1. The
gradient ∇J can then be obtained by the solutions of the N
previous linear systems as follows

∇J(v) =

N∑
k=1

∂vfk(v, x≤k, x
←
≤k)>λk. (8)

The adjoint approach can also be used to compute the
derivative of any function of x with respect to v without
requiring x′(v) to be computed. One example of this would
be the output sensitivity matrix S(v) = Cx′(v), which is
used in first order sensitivity analysis [10]. This matrix is
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also used at each iteration of the optimization method to
compute the descent direction when a Gauss-Newton type
algorithm is used [8]). In both usages, the adjoint approach
allows S(v) to be computed as a fraction ny/n of the usual
cost, where ny is the number of measurements and n the
size of cumomer vector x.

3.3 Computational comparison

Both approaches involve the computation of the state x(v)
in the computation of ∇J(v). To achieve this, the matrices
Ak(v) need to be factorized and the derivatives ∂vfk and
∂xi

bk computed for i < k. The crucial difference between
the two approaches is to be found in the two remaining
equations: for a given k, equation (5) involves solving a
linear system whose right-hand side is a matrix with p
columns, whereas in equation (7) the right-hand side is a
(single) column vector. A subsequent analysis of equations
(6) and (8) shows that even though the elementary oper-
ations are identical, the computation cost of equation (8)
differs from (6) in that ∂vfk is sparse, unlike x′k which
is full. While the difference remains negligible for small
metabolic networks, our numerical results show that the
larger the network, the more significant the reduction in
computation cost.

We show in the following section that for nonstationary
MFA the improvements obtained from the adjoint approach
are of the same magnitude. But, since the problem is time-
dependent, the overall computation cost increases consid-
erably. In order for the problem to become tractable, the
adjoint approach is essential.

4 NONSTATIONARY MFA

In nonstationary MFA, the balance equations are modeled
by a cascade of ordinary differential equations given for 1 ≤
k ≤ N by xk(0) = 0,

Xk(m)
d

dt
xk(t) = fk(v, x(t), x←k ), t ∈]0, T ].

(9)

To simplify the presentation we will consider that the pool
sizes are known. We consider that labeling measurements
yj are made at times τ1 < · · · < τM , where 0 < τ1 and
τM < T , so that the functional to minimize is given by

J(v) =
1

2

M∑
j=1

‖Cx(τj ; v)− yj‖2,

where x(τj ; v) is the solution of (9) at time τj .
Since the cumomer fractions xk are time-dependent,

the space X of the labeling states is no longer a finite-
dimensional vector space as in stationary MFA, but an
infinite-dimensional functional space L2([0;T ]) given by
square-integrable functions. The inner product (·, ·)X in
X is the usual inner product in L2([0;T ]), i.e. (φ, ψ)X =∫ T

0
φ(t)>ψ(t)dt.

4.1 Direct approach
As in the stationary case, the direct approach is based on the
calculation of the partial derivative x′k with respect to the
flux v. When the sequence (x′k)1≤k≤N is time-dependent,
this approach involves a cascade of ordinary differential
equations (ODE)

Xk(m)
d

dt
x′k =∂vfk(v, x≤k, x

←
≤k) +Ak(v)x′k

+
∑
i<k ∂xi

fk(v, x≤i, x
←
≤i)x

′
i,

(10)

for 1 ≤ k ≤ N , obtained by the differentiation of (9) with
respect to the flux parameter v. In (10), the sum in the
second row vanishes for k = 1, and d

dtx
′
k denotes the time

derivative of x′k. The initial condition related to (10) is given,
for all k such that 1 ≤ k ≤ N , by x′k(0) = 0. The gradient of
J is expressed as

∇J(v) =

M∑
j=1

N∑
k=1

x′k(τj ; v)>C>k (Cx(τj ; v)− yj). (11)

4.2 Adjoint approach
In the adjoint approach, the N ODEs (9) are incorporated
into a Lagrangian functional as follows

L(x, p, λ) = 1
2

∑M
j=1 ‖Cx(τj)− yj‖2 +

+

N∑
k=1

∫ T

0

λ>k (t)
(
fk(v, x≤k(t), x←≤k)−Xk(m) ddtxk(t)

)
dt.

The adjoint equation is obtained by expanding
∂xL(x, p, λ) = 0, which leads to the following backwards-
in-time ODE cascade

Xk(m)
d

dt
λk = Ak(v)>λk

−
∑
i>k ∂xk

bi(v, x<i, x
←
≤i)
>λi,

(12)

for 1 ≤ k ≤ N , where the second row vanishes for k = N
and the equalities read for t ∈ [0, T [\{τj}1≤j≤M . The final
condition is given for each k by λk(T ) = 0 and the following
jump conditions

Xk(m)[λk(τ+
j )− λk(τ−j )] = C>k (Cx(τj)− yj), (13)

occur for j = 1 . . .M . From (12)-(13) we obtain the functions
λk(t) which enter into the gradient of J (with respect to v)
as follows

∇J(v) =

N∑
k=1

∫ T

0

∂vfk(v, x≤k(t), x←≤k)>λk dt. (14)

4.3 Discrete time schemes
Both the direct and the adjoint approaches in nonstationary
MFA require state x(t; v) to be computed, and this can be
done efficiently using discrete schemes. From a time grid
tn = nh, with h = T/NT (NT +1 denoting the total number
of points sampling the interval [0;T ]), discrete schemes are
based on approximating the integral of the right-hand side
of (9) over [tn; tn+1]. For the sake of simplicity we consider
the implicit Euler scheme, but a similar approach can be
used with schemes having a greater order, while also taking
into account the possible stiffness of the state equation, such
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as the implicit trapezoidal rule [11] or implicit Runge-Kutta
schemes [12].

Denoting the approximations xnk ' xk(tn) and xn≤k '
x≤k(tn), the implicit Euler scheme gives the following dis-
crete version of (9){

x0
k = 0,

Xk(m)
(
xn+1
k − xnk

)
= hfk(v, xn+1

≤k , x
←
≤k),

(15)

where the second row has to be considered for 0 ≤ n < NT ,
and the objective function is given by

J(v) = 1
2

∑M
j=1 ‖Cxn(j) − yj‖,

where tn(j) = τj , i.e. each measurement time is assumed to
correspond to a sampling point of the time grid.

In the direct approach, implicit derivation of scheme (15)
with respect to v and applying the Euler scheme to the
continuous time equation (10) provides the approximated
derivatives x′k at sampling points tn by solving

Xk(m)(x′n+1
k − x′nk ) =hAk(v)x′n+1

k + h∂vfk(v, xn+1
≤k , x

←
≤k)

+h
∑
i<k ∂xi

fk(v, xn+1
≤i , x

←
≤i)x

′n+1
i ,

(16)
combined with the initial condition x′ 0k = 0 for k = 1 . . . N .
From the time-dependent state sequence and the time-
dependent state derivative sequence, the gradient is ob-
tained by

∇J(v) =

M∑
j=1

N∑
k=1

(x
′n(j)
k )>C>k (Cxn(j) − yj). (17)

In the adjoint approach, the chosen discrete scheme gener-
ates NT equalities incorporated into the Lagrangian func-
tional by NT discrete Lagrange multiplier (λnk )0≤n<NT

.
Considering all cumomer fractions of weight k, we obtain
the following discrete version of the Lagrangian functional
corresponding to (15)

L(x, p, λ) = 1
2

∑M
j=1

∥∥Cxn(j) − yj
∥∥2

+

N∑
k=1

NT−1∑
n=0

(λnk )>
(
hfk(v, xn+1

≤k , x
←
≤k)−Xk(m)

(
xn+1
k − xnk

))
.

(18)

It should be emphasized that the discrete version of (12)
must be established by deriving the discrete Lagrangian
(18), and not simply by choosing discrete schemes corre-
sponding to (12) and (14). The discrete adjoint equation is
completely determined once a discrete scheme is chosen
for the state equation. For the Euler scheme (15) and the
Lagrangian (18), the discrete adjoint scheme is thus given
for n = 1 . . . NT − 1 by

Xk(m)(λnk − λn−1
k ) = hAk(v)>λn−1

k

− h
∑
i>k

∂xk
bi(v, x

n
<i, x

←
≤i)
>λn−1

i + δn,
(19)

with final condition λNT−1
k = 0 and

δn =

{
C>k (Cxn − yj), if n = n(j),

0, otherwise,

which determines (λnk )0≤n<NT
for each weight k. Finally,

the gradient of J at v is given by

∇J(v) = h

N∑
k=1

NT−1∑
n=0

∂vfk(v, xn+1
≤k , x

←
≤k)>λnk . (20)

4.4 Computational comparison

As in the stationary case, the computation of ∇J(v) in
both the direct and the adjoint approaches involves com-
puting the time-dependent state x, and the associated cost
will depend on the discrete scheme that is chosen. Once
again, the difference between the two approaches lies in the
cascades (10) and (12): in the direct approach we have N
differential equations with p-column matrices, whereas in
the direct approach the left-hand side of (12) contains 1-
column vectors. Hence, at the very least, we should expect
a gain equivalent to the gain obtained in the stationary case.

Another interesting aspect of the adjoint approach ap-
pears when the pool sizes are also unknown: in the direct
approach equation (10) has to be implicitly derived with
respect to m, which leads to a more complex system to
express and to solve than (10). In contrast, the structure
of the system (12) is independent of the actual unknown
parameters in the adjoint approach and only the final step
(14) changes.

5 IMPLEMENTATION

The methods and algorithms described in this paper
have been included in the sysmetab software pack-
age, distributed under an Open Source license via
http://forge.scilab.org/index.php/p/sysmetab/ and avail-
able for Linux and MacOSX platforms.

In order to be processed by sysmetab, metabolic net-
work description, carbon atom transition map and mea-
surements (stationary or nonstationary Mass Spectrometry
(MS) or Nuclear Magnetic Resonance spectroscopy (NMR)
data) need to be coded in a plain text XML that respects
the FML (Flux Markup Language) format developed for the
13CFlux2 software package [7] (whereas 13CFlux2 only
handles stationary problems, the FML input format also
allows nonstationary data to be described). For stationary
data, FTBL files (input format of the texttt13CFlux previous
version) are also supported, and these are automatically
converted to FML format. The sysmetab software parses
the input file and generates a flux identification program
in the Scilab language [13] that is specific to the network
under consideration. After execution, results are output to a
plain text XML file conforming to the Forward Simulation
Markup Language developed for the 13CFlux2 software.
This file can easily be converted into other file formats,
and the fact that sysmetab is a command-line tool makes
scripting and batch processing straightforward.

Using the adjoint approach is not the only innovative
feature of the software. Another novel aspect is the tech-
nique chosen for generating the code: starting from the
original FML file, the Scilab program is entirely generated
using XSL transformations (http://www.w3.org/TR/xslt).
These transformations are specified in XSL stylesheets, writ-
ten in another XML dialect. XSL is very different from other

http://forge.scilab.org/index.php/p/sysmetab/
http://www.w3.org/TR/xslt
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programming languages in use today in that it is a declar-
ative (as opposed to imperative) language. XSL stylesheets
have the advantage of being explicit, readable by humans
and easy to debug and maintain. The program is generated
in several steps, the final step being the transformation of
the XML program description into the actual Scilab pro-
gram. This final step may easily be adapted for other script
languages such as Matlab (http:/www.mathworks.com) or
Julia (http://julialang.org).

The generated program makes full use of Scilab’s poten-
tial for improving the speed of calculations: vectorization
and sparse matrices are used, and UMFPACK multi-frontal
LU factorization [14] is used for calculating the state and
adjoint state. The optimization phase is performed using
the Feasible Sequential Quadratic Programming (FSQP) al-
gorithm [15], which is available as a Scilab module. Lin-
earized statistics or Monte-Carlo simulations can be used to
determine confidence intervals on estimated fluxes. Where
Monte-Carlo simulations are used, Scilab allows for parallel
execution of the optimization algorithm in a multi-core
architecture.

6 NUMERICAL RESULTS

As an example, we considered the central metabolism of E.
Coli, described in [16] and provided in the network exam-
ples in the influx_s distribution (the file e_coli.ftbl).
The experimental stationary data consist of mass spectrom-
etry measurements of the intermediate metabolites Suc,
ICit, PEP, PGA, FruBP, Glc6P, Fru6P, Rib5P, Gnt6P, and of
the extracellular flux of Acetate. For the adjoint vs. direct
comparison in the stationary case, the original data were
used. For the nonstationary case, synthetic noisy data were
generated by a forward nonstationary simulation using
the estimated values of flux from the stationary data and
some realistic pool sizes (the file e_coli_ns.fml in the
sysmetab distribution).

The results presented in this section were obtained on a
dedicated Linux server hosting two ten-core Xeon E5-2660
v2 (2.20 GHz) processors with Scilab 5.5.2. Unless explicitly
stated otherwise, computations used only one core of the
processor, and every reported running time is the median
over ten runs. Although the running times themselves may
be very different if different hardware is used, we assume
that the ratios between the different running times will
remain similar.

6.1 Adjoint versus direct gradient computation

6.1.1 Stationary data
Table 1 compares the average computation times from steps
(5)-(6) in the direct approach with steps (7)-(8) in the adjoint
approach. We report the computation times required for
solving the state equation so that the overall times of the two
approaches may be compared. In Table 1, time results from
the reduced network (using the backwards tracing method
[17]) of 1069 cumomers are contrasted with those obtained
from the full original network of 5455 cumomers.

Since there are almost five times as many cumomers in
the full network as in the reduced network, the time needed
to compute the state derivative rises. In the direct approach,

TABLE 1
sysmetab direct vs. adjoint average computation times and ratios for

the reduced and full E. Coli network with stationary data

Direct Adjoint Ratio

Reduced network
State computation (4) 1.5 1.5 1
Cascade (5) vs. (7) 6 0.35 17.5
Gradient assembly (6) vs. (8) 0.9 0.05 17.2
Total 8.4 1.9 4.47

Full network
State computation (4) 3.5 3.5 1
Cascade (5) vs. (7) 47.2 1.5 31
Gradient assembly (6) vs. (8) 4.2 0.2 19
Total 55 5.2 10.6

Time unit=10−3 s.

TABLE 2
sysmetab direct vs. adjoint average computation times and ratios for

the reduced and full E. Coli network with nonstationary data

Direct Adjoint Ratio

Reduced network
State computation (15) 21 21 1
Cascade (16) vs. (19) 948 15 60
Gradient assembly (17) vs. (20) 11 16 0.70
Total 980 53 18.4

Full network
State computation (15) 87 87 1
Cascade (16) vs. (19) 11214 178 63
Gradient assembly (17) vs. (20) 118 90 1.3
Total 11420 355 32

Time unit=10−3 s.

the contribution of this step to the overall time increases the
ratio between the two approaches to approximately 10. In
the adjoint approach, the size of the state derivative com-
putation is in relation relation to overall time is smaller. The
distribution of overall time reported in Table 1 clearly shows
the efficiency of the adjoint computation in comparison with
the direct computation.

6.1.2 Nonstationary data

Using the same network, we obtained estimated flux values
from stationary data (given in the next section) and com-
bined them with arbitrary pool size values comprising pool
size measurements available in [16]. The resulting values
were used to simulate the time course of labeling states. We
obtained the data by running the implicit ODE scheme (15)
up to a fixed terminal time T , and selecting the simulated
measurements at time values τj , j = 1, . . . ,M . Gaussian
noise was then added by considering the standard deviation
values of each of the original stationary labeling state data
values.

The different time values comprise ten equally dis-
tributed values up to τM = 10 seconds, namely τj = j
for j = 1, . . . , 10. We make use of the unconditionally stable
property of the implicit Euler scheme in order to set the time
step h to τM/200. Other experiments show that the outcome
x does not vary significantly for smaller values of h.
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TABLE 3
Estimated free flux values and final RSS obtained by influx_s,

sysmetab and 13CFlux2.

Software influx_s sysmetab 13CFlux2

Free fluxes
Glucupt 1.n 0.80651342 0.80651338 0.80634528
gnd.n 0.14223488 0.14223479 0.13804339
out Ac.n 0.21300000 0.21300001 0.21299847
pyk.n 1.54425504 1.54425507 1.52116680
zwf.n 0.14233488 0.14233479 0.14145512
ald.x 0.72497526 0.72497650 0.89824047
eno.x 999 999 98486.1688
fum a.x 0.43135328 0.43136935 0.40973977
ppc.x 0.17317878 0.17317925 0.17122549
ta.x 0.56653486 0.56653403 0.56756226
tk1.x 0.17878854 0.17878863 0.17125450
tk2.x 0 0 0.00213

Final RSS
61.5141593 61.5141593 62.0877059

For the gradient computation, and more generally for the
parameter estimations, we chose a value of h larger than that
used to generate the simulated data, typically h = τM/100,
so that the time discretization of the grid is not the same as
for the forward problem.

Applying the same computation time analysis to these
time-dependent data that we applied in the case of station-
ary MFA, we report the time distribution of the different
steps of the gradient computation: state computation, cas-
cade computation and gradient assembly, namely (15), (16),
(17) for the time-dependent direct approach, and (15), (19),
(20) for the time-dependent adjoint approach.

For the reduced E. Coli network, associated computa-
tion times are presented in Table 2. As expected, the time
required to compute the state derivative using the direct
method (row 2) is greater than the stationary cascade cost
(see the second row of Table 1) multiplied by the over-
all number of time steps (i.e. 100). The cost of the state
derivative (direct) cascade in the nonstationary case is in
fact more than 150 times the cost of one stationary (direct)
cascade. The ratio between the direct approach and the
adjoint approach is 60, which demonstrates the efficiency
of the adjoint approach. The ratio of over 18 for overall gain
is seen to be significantly better than the ratios obtained in
the stationary case: the adjoint approach benefits from the
nonstationary case, while the direct gradient computation,
as expected, is seen to be severely time consuming.

6.2 Assessment of parameter estimates
6.2.1 Stationary data
After comparing the adjoint and the direct approach in
sysmetab we consider its validation by performing the
complete estimation from stationary data. The provided
e_coli.ftbl file was processed in influx_s with the
--emu command line option. In addition, after conversion
to the FML format, it was processed first with the last
version of 13CFlux2 with default options and then in
sysmetab with the command line options --reg=0 (the

default regularization term is not added to the RSS). Ta-
ble 3 presents the flux values obtained after optimization,
(exchange fluxes given by influx_s have been converted
from normalized [0, 1[ values to [0,+∞[ interval)) and the
final value of the RSS function J(v).

As the exchange flux eno.x is nearly non-identifiable,
the default upper bound is reached by sysmetab and
influx_s. We tried to add the constraint explicitly in the
FML file before running 13CFlux2, but the optimization
stopped with a very large value of the RSS. We therefore
do not include 13CFlux2 in the discussion below, since we
were not able to solve this problem.

As influx_s and sysmetab give very similar results,
we compare their respective behavior in terms of overall
computation time, which includes code generation, op-
timization to obtain the optimal flux values, and linear
statistics to obtain their confidence intervals. On the well-
defined and quickly converging example of e_coli.ftbl,
the fastest is influx_s (6.7 vs. 11.9 seconds for sysmetab).
But if we only consider optimization time, sysmetab is seen
to be more efficient (0.35 vs. 0.74 seconds for influx_s).
Comparing sub-second results for a particular network may
not be so informative, and we therefore considered a Monte-
Carlo estimation of flux statistics with 1000 data samples,
using all available cores of the processors. In this typical
situation where the code has to be generated only once,
influx_s took 105 seconds and sysmetab 24 seconds.

We did the same Monte Carlo study involving 1000
samples on a poorly defined network describing the central
metabolism of E. Coli and reactions for amino acid biosyn-
thesis (the file Ecoli.1.ftbl, available as part of the [8]
additional material). Here, influx_s shows its superiority
in terms of numerical stability. But even though sysmetab
requires more (but less costly) iterations than influx_s for
each optimization, it is faster than influx_s, terminating
in 110 seconds instead of 480.

6.2.2 Nonstationary data
We are first interested in checking wether the time-
dependent labeling measurements are best fitted. Figure 1
shows the reconstruction of mass isotopomer fractions of
measured metabolites using the free fluxes and pool size
values obtained after optimization. Comparing these sim-
ulated data with the different time measurements marked
with circles demonstrates that synthetic data are well recov-
ered. The estimated pool sizes and the estimated flux values
obtained from the nonstationary data are reported in Table 4
and contrasted with the fluxes obtained from the stationary
data. The 95% confidence intervals were computed from the
empirical repartition of optimal parameters, estimated by
the Monte Carlo method (1000 resamplings of stationary
and nonstationary data were used). We first note that the
estimated values obtained from time-dependent labeling
state data are similar to those obtained from the stationary
state. Then, focusing on the confidence intervals of fluxes,
we note that for almost all of them, considering ten mea-
surements during the transient phase gives better accuracy
than using a single measurement when the stationary state
is reached. As far as the pool sizes are concerned, for those
which have an associated measurement (in bold font), the
measurement is well recovered, but apart from Gnt6P all
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Fig. 1. Experimental mass isotopomers fractions (dots) reconstruction
by simulated data (solid lines) after optimization of the parameters.

the pools have a significantly larger confidence interval. The
choice of measurement times could be further optimized in
order to improve the parameter statistics.

If we now compare the computation time on our hard-
ware for the two approaches, we remark that estimating
the fluxes and pool size parameters takes almost 8 minutes
using the direct method. Using the adjoint method this
estimation takes only 36 seconds (21 seconds just for the
optimization) and the computation of confidence intervals
(Monte Carlo method with 1000 samples) takes 13 minutes,
which demonstrates the efficiency of the approach.

7 CONCLUSION

In this paper we address the MFA problem by making use
of the adjoint state, in the spirit of a general optimization
problem governed by a state equation, as in control theory.
The proposed methods and algorithms are included in the
sysmetab software, distributed under an Open Source

TABLE 4
Comparison of estimated parameter values by sysmetab from

stationary and nonstationary data

Data Nonstationary Stationary

Free fluxes Median 95% C.I. Median 95% C.I.
Glucupt 1.n 0.807 [0.803, 0.811] 0.806 [0.798, 0.813]
pyk.n 1.522 [1.293, 1.547] 1.535 [1.355, 1.552]
zwf.n 0.150 [0.131, 0.182] 0.143 [0.114, 0.177]
gnd.n 0.143 [0.128, 0.160] 0.136 [0.101, 0.169]
out Ac.n 0.213 [0.213, 0.213] 0.213 [0.213, 0.213]
ald.x 0.647 [0.579, 0.717] 0.731 [0.558, 0.929]
eno.x 999 [2.371, 999] 88.61 [0.638, 194.2]
ta.x 0.570 [0.531, 0.611] 0.556 [0.486, 0.635]
tk1.x 0.183 [0.151, 0.214] 0.157 [0.086, 0.222]
tk2.x 0.000 [0.000, 0.021] 0.005 [0.000, 0.066]
fum a.x 0.100 [0.000, 0.480] 0.310 [0.000, 66.50]
ppc.x 0.241 [0.080, 0.427] 0.189 [0.083, 0.363]

Free pool sizes Median 95% C.I.
FruBP 1.860 [1.857, 1.862]
Glc6P 1.435 [1.428, 1.441]
Fru6P 0.425 [0.420, 0.431]
Rib5P 0.020 [0.013, 0.026]
GA3P 0.470 [0.470, 0.470]
PEP 0.110 [0.110, 0.110]
Sed7P 0.057 [0.052, 0.063]
Suc 0.854 [0.078, 2.427]
ICit 1.281 [0.376, 1.707]
PGA 0.478 [0.086, 0.868]
Gnt6P 0.836 [0.736, 1.022]
AKG 0.638 [0.000, 1.786]
Ery4P 0.278 [0.004, 0.619]
OAA 0.000 [0.000, 1.501]
Pyr 0.530 [0.000, 2.756]

license. In the stationary case, results demonstrate the ef-
ficiency of the approach in terms of precision and compu-
tation time when a typical metabolic network is considered.
Estimated values were validated against those obtained by
other reference software. With the adjoint framework, only
vectors (instead of matrices) are updated, which consid-
erably speeds up the computation of the gradient. In the
nonstationary case, we considered the same network with
synthetic noisy data. On our hardware and using 100 time
steps of the ODE integration scheme, a forward simulation
followed by the adjoint gradient computation takes 53 mil-
liseconds, instead of almost 1 second when the gradient is
computed with the direct method, and a full estimation of
fluxes and pool sizes takes 36 seconds. These timings make
the nonstationary MFA problem computationally tractable
for larger networks and make sysmetab competitive with
other software.

Although sysmetab does not yet implement it, the
EMU framework can be used simultaneously with the
adjoint approach, and this simultaneous implementation
could represent the best computational solution when only
MS measurements are used. Although this approach favors
gradient-based methods, it can also be used in Gauss-
Newton type methods: in this case it allows the computation
of the output sensitivity matrix at the cost of ny adjoint
gradients, where ny is the size of the measurement vector
at a given time [12].

Our current development efforts include improving the
speed of the code generation step, and implementing high-
order ODE solvers and alternative methods for computing
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nonlinear confidence intervals [18].
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