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Industrial robot identification is usually based on the In-
verse Dynamic Identification Model (IDIM) that comes from
the Newton’s laws and has the advantage of being linear
with respect to the parameters. Building the IDIM from the
measurement signals allows the use of linear regression tech-
niques like the Least-Squares (LS) or the Instrumental Vari-
able (IV) for instance. Nonetheless, this involves a careful
preprocessing to deal with sensor noise. An alternative in
system identification is to consider an output error approach
where the model’s parameters are iteratively tuned in order
to match the simulated models output and the measured sys-
tems output. This paper proposes an extensive comparison
of three different output error approaches in the context of
robot identification. One of the main outcomes of this work
is to show that choosing the input torque as target identifica-
tion signal instead of the output position may lead to a gain
in robustness versus modeling errors and noise and in com-
putational time. Theoretical developments are illustrated on
a 6-degree-of-freedom rigid robot.

1 Introduction
During decades, Least-Squares (LS) optimization and

estimation of the Inverse Dynamic Identification Model
(IDIM) have been the two key elements of the most common
method used for industrial robot identification: see e.g. [1].
With the IDIM, the input torque is expressed as a linear func-
tion of the physical parameters: see e.g. [2]. Nevertheless,
it is not always robust to the measurement noise correlation
that arises from the closed-loop structure required for robot
operation. To overcome this issue, in [3], the authors sug-
gested an Instrumental Variable (IV) optimization adapted to

robot systems that was recently improved [4].
Both the IDIM-LS and the IDIM-IV methods require the

construction of the IDIM from the measured signals. Ac-
cording to the authors of [5], they belong to the equation
error class, also denoted as ”using explicit mathematical re-
lations” [6]. The idea of this class is to obtain an overde-
termined set of equations linear with respect to the param-
eters that can be solved with a linear regression technique.
An alternative class is the output error one, also denoted as
”using a model-adjustment technique” [6]. With this class,
the parameters are tuned in such a way that the model’s out-
put fits the measured signal. The tuning of the parameters
is usually performed thanks to nonlinear optimization algo-
rithms, whereas the prediction of the model’s output can be
simulated by solving the differential equations modeling the
system.

The drawback of the equation error methods is that,
if all the signals are not available to the user, they must
be estimated prior to the identification with a specific pre-
processing [7]. For rigid industrial robots, only the joint po-
sition is sensed and must therefore be differentiated to ob-
tain the joint velocity and acceleration see e.g. [8–11]. This
pre-processing can be complex and/or a potential source of
error. This is why, in [1], the authors introduced an output er-
ror method called Direct and Inverse Dynamic Identification
Models (DIDIM), based on the torque linearity with respect
to the parameters and optimized with a Gauss-Newton algo-
rithm.

Because the output error class can deal with outputs
nonlinear with respect to the parameters, one may wonder
if it would be interesting to consider the measured position
as the identification signal as usually done in the automatic
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control community see e.g. [12–14] . The resultant question
is: would it be possible to consider another identification sig-
nal like the output position to improve the robustness of the
estimation? Furthermore, since those methods rely on the
simulation of the closed-loop system, an underlying issue
is the robustness of those simulations. In other words, the
question is to what extent those methods can reject modeling
errors or a too large noise.

The aim of this paper is therefore to evaluate the robust-
ness of output error methods for robot identification which
has attracted some renewed interest over the past few years
[15–20] among others. In pursuing this goal, this work shows
that it is more interesting to consider the input signal rather
than the output one due to the larger sensitivity. Further-
more, if the torque linearity with respect to the parameters
is insured, the designer should favor the DIDIM method to
save computation time. This paper also illustrates the limit of
the underlying white noise assumption of the equation error
methods in the case of rigid robots.

This paper is organized as follows. Section 2 is ded-
icated to the modeling of rigid industrial robots. Section
3 reviews the identification methodologies. The compari-
son between those methodologies is undertaken in Section 4
and validated with experimental results in Section 5. Finally,
Section 6 provides concluding remarks.

Notations
General notations

a,b,c = Scalars
aaa,bbb,ccc = Vectors

AAA,BBB,CCC = Matrices
Conventions

AAA−1 = Inverse of matrix AAA
AAAT = Transpose of matrix AAA
‖AAA‖2 = Euclidean norm of matrix AAA

x̂xx = Estimated vector
xki = ith component of vector xxxk

∂ggg(xxx)
∂xxx = Jacobian matrix of function ggg

2 Robot Modeling
2.1 Dynamic Models

If a robot with n moving links is considered, the vector
τττ(t) contains the inputs of those links, which are the applied
forces or torques. The signals qqq(t), q̇qq(t) and q̈qq(t) are respec-
tively the (n× 1) vectors of generalized joint positions, ve-
locities and accelerations, [2] . With respect to the Newton’s
second law it comes out:

MMM (qqq(t)) q̈qq(t) = τττ(t)−NNN (qqq(t), q̇qq(t)) (1)

where, MMM (qqq(t)) is the (n×n) inertia matrix of the robot, and
NNN (qqq(t), q̇qq(t)) is the (n×1) vector modeling the disturbances
or perturbations. Those perturbations contain the friction
forces, gravity, centrifugal and Coriolis effects. The mathe-
matical expressions show that those disturbances are linear in
the parameters, but not in the states see [2]. Therefore, it ap-
pears to be very convenient for the identification to consider

the Inverse Dynamic Model (IDM). The IDM is described by
τττidm(t) = φφφ(qqq(t), q̇qq(t), q̈qq(t))θθθ, where: the input torque is the
dependent (or observation) variable; φφφ is the (n×b) matrix of
regressors (or independent variables); θθθ is the (b×1) vector
of base parameters to be estimated. Because of perturbations
coming from measurement noise and modeling errors, the
actual torque τττ differs from τττidm by an error vvv. The Inverse
Dynamic Identification Model (IDIM) is given by

τττ(t) = τττidm(t)+ vvv(t) = φφφ(qqq(t), q̇qq(t), q̈qq(t))θθθ+ vvv(t). (2)

The last alternative is the Direct Dynamic Model (DDM) that
expresses the joint accelerations as a function of the torques,
the joint positions and velocities:

q̈qq(t) = MMM (qqq(t))−1 (τττidm(t)−NNN (qqq(t), q̇qq(t))) . (3)

The DDM is not used directly for the identification because
the joint accelerations are nonlinear with respect to the pa-
rameters and so they are more difficult to estimate. Nonethe-
less, it is more convenient for simulation purposes and is
used as such in section 3.2.

2.2 Control Law
Due to their double integrator behavior, robots must be

operated in closed-loop. In most cases, the control laws are
simple Proportional Derivative (PD), Proportional Integral
Derivative (PID), or computed torque and passive control [2,
see Chapter 14]. In this paper, the controller is assumed to
be linear; that each link is controlled separately from the oth-
ers; and that there is one position sensor (i.e. an encoder or
a resolver) for each link. According to [2], this is a typical
configuration for an industrial robot and the integral action is
usually weak, or even deactivated when the position error is
too small, in order to avoid oscillations due to the Coulomb
friction.

Because there is one position sensor and one motor per
link, there is usually one controller C j for link j defined by

ντ j(t) =C j(p)(qr j(t)−qm j(t)), (4)

where p = d/dt is the differential operator, ντ j , qr j and qm j

are respectively the control signal, the reference trajectory
and the measured position of link j. The robot controller is
given by the transfer matrix CCC = diag(C1, ..Cn). For conve-
nience, the controller is modeled as a continuous-time sys-
tem although, in practice, it is implemented in Discrete Time
(DT) on the micro-controllers that are used to perform the
control actions. The control signals, ννντ, serve as references
to the inner current loops of the amplifiers that supply the
motors. For link j, assuming that the current closed-loop
has a bandwidth greater than 500 Hz, its transfer function
is modeled as a static gain, gτ j that applies in the frequency
range of the rigid robot dynamics ωdyn (usually less than 10
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Hz), [1]. In this article, this gain is assumed known. With
GGGτ = diag(gτ1 , ..gτn), the actual torque is then calculated by

τττ(t) = GGGτννντ(t). (5)

3 Identification Methodologies
3.1 IDIM-LS Method
Prefiltering Process

To build the matrix of regressors, φφφ, the velocity and the
acceleration must be estimated from the measured position.
In most applications, the only available information is indeed
the joint positions, qqqm. As described in [9] for instance, the
differentiation is performed with a centralized finite differ-
ence. The drawback of this technique is the amplification of
the noise. In practice, that phenomenon is limited by an ad-
equate filtering of qqqm, prior to the differentiation, to obtain
an estimate q̂qq. The filter, which is usually a Butterworth one,
is applied in both forward and reverse directions to eliminate
the phase lag that is inherent in the forward-pass filtering op-
eration. Its cut-off frequency, ω fq , is influenced by the sam-
pling frequency, ωs, usually chosen 100 times larger than the
natural frequency of the highest mode to be modeled, ωdyn,
in order to satisfy the Nyquist rule. According to [9], the rule
of thumb for the cut-off frequency is ω fq ≥ 5ωdyn. The com-
bination of the two-pass Butterworth filter and central differ-
encing is referred to as the BandPass (BP) filtering process.
By selecting the cut-off frequency, the user must ensure that(

q̂qq, ̂̇qqq, ̂̈qqq)≈ (qqq, q̇qq, q̈qq) in the range [0,ω fq ].
In practice, unmodeled friction and flexibility effects

disturb the torque. Although they are rejected by the con-
troller during the operation of the robot, those perturbations
must be removed prior to the identification with a parallel
low-pass filtering at the cut-off frequency ωFp ≥ 2ωdyn [9].
To be consistent, this filter is also applied to the independent
variables. Thereafter, there is no more useful information
beyond the cut-off frequency. A ’decimation’ procedure is
thus undertaken: i.e. re-sampling to keep one sample over
nd = ωnyq/ωF p [9]. After data acquisition and decimation,
we obtain

τττFp(t) = Fp(z−1)τττ(t) = φφφFp

(
q̂qq(t), ̂̇qqq(t), ̂̈qqq(t))θθθ+ vvvFp(t),

(6)
with Fp the parallel filter applied to each element

of the observation matrix φφφFp

(
q̂qq(t), ̂̇qqq(t), ̂̈qqq(t)) =

Fp(z−1)φφφ
(

q̂qq(t), ̂̇qqq(t), ̂̈qqq(t)), as well as the error vector

vvvFp(t) = Fp(z−1)vvv(t) and z−1 is the backward shift (delay)
operator.

Least-Squares Estimation
The model described by (2) can be straightforwardly ex-

tended to a regrouped matrix formulation, which we may
also be called en-bloc formulation. The IDIM is re-written

yyy(τττ) = XXX
(

q̂qq, ̂̇qqq, ̂̈qqq)θθθ+ εεε, (7)

where

• yyy(τττ) is the (r× 1) measurements vector built from the
filtered torques τττFp ;

• XXX
(

q̂qq, ̂̇qqq, ̂̈qqq) is the (r×b) regrouped observation matrix;
• εεε is the (r×1) vector of errors terms;
• r = n ·N is the number of rows in (7), where N = nm/nd

is the number of sampling points after decimation and
nm is the number of measurement points.

In yyy and XXX , the equations of each joint j are regrouped to-
gether. Thus, yyy and XXX are partitioned so that

yyy(τττ) =

yyy1

...
yyyn

 , XXX
(

q̂qq, ̂̇qqq, ̂̈qqq)=
XXX1

...
XXXn

 , (8)

where yyy j =


τ

j
Fp
(t1)
...

τ
j
Fp
(tN)

; XXX j =


φφφ

j
Fp

(
q̂qq(t1), ̂̇qqq(t1), ̂̈qqq(t1))

...

φφφ
j
Fp

(
q̂qq(tN), ̂̇qqq(tN), ̂̈qqq(tN))

;

and φφφ
j
Fp

(
q̂qq(tk), ̂̇qqq(tk), ̂̈qqq(tk)) is the jth row of the (n× b) fil-

tered observation matrix at time tk (k between 1 and N).
With the en-bloc matrix formulation (7), the Ordinary

LS (OLS) estimates are computed with

θ̂θθLS(N) =
(
XXXT XXX

)−1
XXXT yyy(τττ). (9)

The solution exists if
(
XXXT XXX

)
is invertible. That is to say

that XXX is full column rank. The covariance matrix of the LS
estimates is

ΣΣΣ(θ̂θθLS) =
(

XXXT
Ω̂ΩΩ
−1
τ XXX

)−1
. (10)

Ω̂ΩΩτ is the estimate of ΩΩΩτ defined such as:

ΩΩΩτ = diag
(
σ

2
1IIIN , . . . ,σ

2
j IIIN , . . . ,σ

2
nIIIN
)

(11)

where IIIN is the (N×N) identity matrix and σ2
j is the noise

variance of link j. This matrix is constructed from the co-
variance matrix of the vvvFp defined by:

ΛΛΛτ = diag
(
σ

2
1, . . . ,σ

2
j , . . . ,σ

2
n
)
. (12)

For each link j, the noise vFp j is assumed to have zero mean,
to be serially uncorrelated and to be homoskedastic; i.e. a
white noise.

From a theoretical point of view, the LS estimates (9) are
unbiased if the error has a zero mean and if the regressors are
uncorrelated with the error, see relations (13), [21] and [7].

E[εεε] = 0, E[XXXT
εεε] = 0 (13)
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It is assumed that those two assumptions hold. However, sys-
tems considered in this article operate in closed-loop, since
they are unstable in open-loop. In that case, the assumption
given by (13) does not hold; see e.g. [22]. This partly ex-
plains why a tailor-made pre-filtering of the data is done in
practice.

3.2 Output Error Methods
OEM Principles

The purpose of the Output Error Methods (OEM) is to
find the best parametric model with respect to a specific cri-
terion. The criterion is a function of the error between the
noisy measured output and the simulated model output. As
explained in [23], many criteria may be used. In this article,
we focus on the quadratic criterion given by

VN(θθθ) =
1
N

N

∑
i=1

(yyy(ti)− yyys(ti,θθθ)))
2 , (14)

where yyy is the (n× 1) vector of measured output and yyys is
the (n× 1) vector simulated output. As explained in chap-
ter 7 of [24] for instance, with such a criterion, output error
models assume that the additive noise on the output is white.
According to the same reference, the estimator can be con-
sistent although the noise model is not adequate. To min-
imize that quadratic error, the unknown system parameters
are tuned iteratively so that the simulated model output fits

the measured system output, with θ̂θθ
it+1

= θ̂θθ
it
+∆∆∆θ̂θθ

it
, where

∆∆∆θ̂θθ
it

is the innovation vector at iteration it. The innovation is
calculated differently depending on the applied nonlinear op-
timization algorithm. The criterion minimization is usually
solved thanks to nonlinear optimization algorithms based on
a first- or second-order Taylor series expansion like the gra-
dient, the Gauss-Newton (GN) and the Levenberg-Marquardt
methods. For the GN method, the parameter innovation is
given by

∆∆∆θ̂θθ
it
=−

[
V ′′N (θ̂θθ

it
)
]−1

V ′N(θ̂θθ
it
), (15)

where V ′N(θ̂θθ
it
) and V ′′N (θ̂θθ

it
) are the gradient vector and the

Hessian matrix of the criterion VN . That innovation vector
requires the computation of the criterion derivatives with re-
spect to the parameters. In some cases those derivatives can
be exactly known. For example, in [14], the authors devel-
oped an exact formulation of the first derivative for CT-LTI
systems. In [25], the authors derived the same for nonlin-
ear systems. Those derivatives of the criterion are function
of the derivatives of the system’s outputs with respect to the
parameters, which are called sensitivities.

To simulate the continuous-time system and obtain a
simulated output, the differential equations must be solved.
Many numerical solvers exist in the literature like the well-
known Runge-Kutta method, for further examples see [26].
In this article, they will be referred as ”integration solvers” to

avoid confusion with the ”optimization solvers” introduced
in the previous paragraph. In practice, the integration solver
needs the same input as the real system and a set of values
for the parameters to identify. The choice of the integration
solver is decisive. For each model, the practitioner must find
the integration solver which suits to the system properties.
For instance, if the system presents two dynamics with char-
acteristic times that greatly differ, a stiff solver should be
employed. If the integration solver is not appropriate, it may
lead to a biased identification.

The initial values is a crucial point for OEM. With a
bad initialization the optimization solver may lead to local
minimum (if it is a local optimizer) or even diverge [23]. The
integration solver may also diverge if the parameters are not
suitable. Depending on the application, different techniques
may be used to initialize correctly the method. If the problem
is linear with respect to the parameters and if all the states
are available, a LS estimation can be employed. As shown
in [1], in the field of robotics the Computer-Aided Design
(CAD) values of the inertia are accurate enough to initialize.

Closed-Loop Output Error
By applying directly the OEM to a robot model, it seems

natural to take the joint position vector as the identification
signal. The output error vector is defined by:

εεεCLOE(t,θθθ) = qqqm(t)−qqqs(t,θθθ), (16)

where qqqs is the (n× 1) vector of simulated joint positions.
Since the robots are unstable in open-loop, they are identi-
fied in closed-loop and the dedicated identification method is
called the Closed-Loop Output Error (CLOE) method. The
simulated output qqqs is generated with the reference signal qqqr
that is perfectly known and consequently noise-free. There-
fore, there is not bias induced by a noise correlation and the
estimation is consistent, assuming that there is no modeling
error and that the optimization solver has converged to the
global minimum.

As explained in the previous section, OEM problem is
usually solved thanks to nonlinear optimization algorithms.
In this part, we focus on the GN method, which is based
on a second order Taylor series expansion of qqqs, at current
estimates θθθCLOE ; see (15). After data sampling, the following
over-determined system is obtained at iteration it:

∆∆∆yyy(qqq) = ΨΨΨ
it
CLOE∆∆∆θθθ

it
CLOE + eeeCLOE (17)

where

• ∆∆∆yyy(qqq) is the (r′× 1) vector built from the sampling of
εεεCLOE(t,θθθ), similarly to (8);
• ΨΨΨ

it
CLOE is the (r′ × b) matrix built from the n matrices

ΨΨΨ
it
CLOE

j =

 ∆∆∆
j
qqqs
(t1)
...

∆∆∆
j
qqqs
(tnm)

, where ∆∆∆
j
qqqs
(·) is the jth row of the

(n×b) Jacobian matrix ∆∆∆qqqs =
∂qqqs
∂θθθ

∣∣∣
θθθ=θ̂θθ

it
CLOE

;
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• eeeCLOE is the (r′× 1) vector built from the sampling of
εεεCLOE and the residuals of the Taylor series expansion

• r′ = n ·nm is the number of equation considered, without
any decimation.

∆∆∆θ̂θθ
it
CLOE is the (b×1) vector of estimated parameters in-

crements and is the LS solution of (17). Each element of the
Jacobian ∆∆∆qqqs is an output sensitivity function which defines
the variation of the output position with respect to the pa-
rameters. Usually, those sensitivity functions are not exactly
known and approximated with finite differences.

The construction of the en-bloc formulation is really
similar to the one of the IDIM-LS method (7). The difference
is the use of r′ instead of r. This is due to the fact that we
are in an output error framework. Hence, the additive noise
is assumed white and does not need any prefiltering such as
the decimate filter. It thus begins to emerge here a limita-
tion of OEM for robot identification. In addition, as we shall
see later the decimation process presents also an advantage
for the conditioning number because the number of sampling
points to treat is indeed reduced for the optimization solver.

Closed-Loop Input Error
As we have seen in section 2.1, it is common to use the

input torque/force for robot identification. Therefore, a vari-
ant of the CLOE method based on the input signal can be
considered. This technique, termed as Closed-Loop Input
Error (CLIE) method in [27], relies on the input error vector

εεεCLIE(t,θθθ) = τττ(t)− τττs(t,θθθ). (18)

If the problem is solved with the GN algorithm, ∆∆∆θθθ
it
CLIE is the

LS solution of

∆∆∆yyy(τττ) = ΨΨΨ
it
CLIE∆∆∆θθθ

it
CLIE + eeeCLIE (19)

where

• ∆∆∆yyy(τττ) is the (r′× 1) vector built from the sampling of
εεεCLIE(t,θθθ), similarly to (8);

• ΨΨΨ
it
CLIE is the (r′ × b) matrix built from the n matrices

ΨΨΨ
it
CLIE

j =

 ∆∆∆
j
τττs(t1)

...
∆∆∆

j
τττs(tnm)

, where ∆∆∆
j
τττs(·) is the jth row of the

(n×b) Jacobian matrix ∆∆∆τττs =
∂τττs
∂θθθ

∣∣∣
θθθ=θ̂θθ

it
CLIE

;

• eeeCLIE is the (r′ × 1) vector built from the sampling of
εεεCLIE and the residuals of the Taylor series expansion.

The CLOE and CLIE methods are iterative and can share
the initialization and the convergence criterion. In section 4,
we investigate their properties.

3.3 Direct and Indirect Dynamic Identification Method
Recently in [1], the authors have introduced a pseudo

OEM dedicated to robots based on the DDM, called DIDIM

for Direct and Inverse Identification Model. Similarly to
the CLIE method, the observation variable is the torque.
This method may be regarded as pseudo OEM because it
includes the parallel filter. Hence, the additive noise, vvv, is
not necessary considered as white. The second specificity
of the DIDIM method is that the dependence of φφφ in θθθ is
neglected. In the field of system identification, such an as-
sumption is called Pseudo-Linear Regression (PLR), see Eq.
(7.112) in [28]. According to the same reference, PLR is
derived from [29]. Thanks to the PLR, the GN algorithm be-
comes equivalent to the linear LS, as shown in section 4.3.3.3
of [23]. The input sensitivity is written:

∆∆∆τττs(t) =
∂τττs(t)

∂θθθ

∣∣∣∣
θθθ=θ̂θθ

it
DIDIM

(20)

= φφφ

(
qqqs(t, θ̂θθ

it
DIDIM), q̇qqs(t, θ̂θθ

it
DIDIM), q̈qqs(t, θ̂θθ

it
DIDIM)

)
.

Thanks to this relation, the input sensitivity can be calcu-
lated with only one simulation of the closed-loop system. In
the opposite, with finite differences, b + 1 simulations are
needed to evaluate the sensitivity; considering a forward or
a backward first order and one-sided difference scheme. As
we shall see later, the gain in computing time is therefore not
negligible.

4 Comparison of Output Error Methods
4.1 Sensitivity Relation

For the CLIE method, at iteration it, the input sensitivity
is defined such as

∆∆∆τττs(t) =
∂τττs(t)

∂θθθ

∣∣∣∣
θθθ=θ̂θθ

it
CLIE

. (21)

By using the controller definition (5), it comes:

∆∆∆τττs(t) =
∂GGGτττCCC(p)

(
qqqr(t)−qqqs(t, θ̂θθ

it
CLIE)

)
∂θθθ

∣∣∣∣∣∣
θθθ=θ̂θθ

it
CLIE

, (22)

and assuming that the controller is known, or at least not
identified at the same time:

∆∆∆τττs(t) =−GGGτττCCC(p)
∂

(
qqqs(t, θ̂θθ

it
CLIE)

)
∂θθθ

∣∣∣∣∣∣
θθθ=θ̂θθ

it
CLIE

(23)

=−GGGτττCCC(p)∆∆∆qqqs(t).

Eq. (23) is the key relation to compare the CLOE and CLIE
methods. Loosely speaking, the CLIE method is a frequency
weighting of the CLOE method by the controller. In prac-
tice, the input sensitivity functions can be obtained from the
filtering of the output ones, if they are available.
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Because the robots are controlled in position and assum-
ing that the optimization solver is adequately initialized, the
following relations are expected:

qqqm(t)≈ qqqr(t), (24)
qqqs(t)≈ qqqr(t), (25)

at each iteration it of the algorithm. Because of (24) and (25),
the controller may be assumed to operate in low frequencies
range and, then, to be a (n× n) constant matrix CCC0. If the
controller is a PD control law then this result is straightfor-
ward. If the controller contains an integral term, this result
can be still considered as valid. In fact, as explained in sec-
tion 2.2, to avoid oscillations due to the Coulomb friction,
the integral action is deactivated when the position error is
too small and this implies that PID controller reduces to PD
controller. Thus, (23) may be re-written

∆∆∆τττs(t) =−GGGτττCCC0∆∆∆qqqs(t). (26)

4.2 Equivalence of the CLOE and CLIE estimations
Considering relation (26), the CLIE method can be seen

as a weighted CLOE method (WCLOE). That can be seen
with the LS solution of (19):

∆∆∆θ̂θθ
it
CLIE =

[(
ΨΨΨ

it
CLIE

)T
ΨΨΨ

it
CLIE

]−1 (
ΨΨΨ

it
CLIE

)T
∆∆∆yyy(τττ) (27)

≈
[(

ΨΨΨ
it
CLOE

)T
C̄CCT

0 C̄CC0ΨΨΨ
it
CLOE

]−1 (
ΨΨΨ

it
CLOE

)T
C̄CCT

0 C̄CC0∆∆∆yyy(qqq)

=
[(

ΨΨΨ
it
CLOE

)T
WWWΨΨΨ

it
CLOE

]−1 (
ΨΨΨ

it
CLOE

)T
WWW∆∆∆yyy(qqq),

where

• C̄CC0 is (r′× r′) matrix built from the constant controller
matrix GGGτττCCC0;
• the relation between both errors is ∆∆∆yyy(τττ) ≈ −C̄CC0∆∆∆yyy(qqq),

because it is built from

τττ(t)− τττs(t) = GGGτττCCC(p)(qqqr(t)−qqqm(t))

−GGGτττCCC(p)(qqqr(t)−qqqs(t))

=−GGGτττCCC(p)(qqqm(t)−qqqs(t))

≈−GGGτττCCC0 (qqqm(t)−qqqs(t)) .

Relation (27) is clearly a weighted least-squares solu-
tion. If nm is sufficiently large and assuming that the trajec-
tories are exciting enough, according to the theory of statis-
tics [21], one has

E[θ̂θθ
it
CLIE ]→ E[θ̂θθ

it
CLOE ].

It comes out that the CLIE and CLOE methods asymptoti-
cally provide the same estimates. The resulting question is:
is there a dominant estimator?

Because we are in an output error framework, the output
position can be written:

qqqm(t) = qqq(t)+nnnq(t), (28)

where nnnq is a (n×1) vector of independent white noises with
a (n× n) covariance matrix ΛΛΛq. With the closed-loop, the
input is given by:

τττ(t) = GGGτττCCC(p)(qqqr(t)−qqqm(t)) (29)
= GGGτττCCC(p)(qqqr(t)−qqq(t))−GGGτττCCC(p)nnnq(t).

The reference trajectory being noise-free, the noise seen by
the input torque is vvv(t) = −GGGτττCCC(p)nnnq(t); see (2). With
no further assumption, it appears that if the output error
assumption is made on the output position, it is not vali-
dated for the input torque. Nonetheless, we assume that
the closed-loop system operates in its bandwidth and con-
sequently CCC(p)≈CCC0. The noises relation is given by:

vvv(t) =−GGGτττCCC0nnnq(t). (30)

Consequently, E[vvv] = −GGGτττCCC0E[nnnq] = 0 and the covariances
are linked such as:

ΛΛΛv = E
[
(vvv−E[vvv]) (vvv−E[vvv])T

]
= E

[
GGGτττCCC0nnnqnnnT

q CCCT
0 GGGT

τττ

]
(31)

= GGGτττCCC0ΛΛΛnqCCCT
0 GGGT

τττ .

In practice, the matrices GGGτττ and CCC0 can be assumed di-
agonal, which is justified by the technology: one controller
by link as presented in section 2.2. Attention is drawn to the
fact that the covariance ΛΛΛv is the one of vvv(t) whereas ΛΛΛτ is
the one of vvvFp(t); see (12). Assuming no modeling error and
that the optimization solver has converged to true parameters
values, the estimated parameters covariances are then given
by:

ΣΣΣ

(
θ̂θθ

it
CLIE

)
=
[(

ΨΨΨ
it
CLIE

)T
ΩΩΩ
−1
v ΨΨΨ

it
CLIE

]−1
(32)

=

[(
ΨΨΨ

it
CLOE

)T
C̄CCT

0

(
C̄CC0ΩΩΩqC̄CCT

0

)−1
C̄CC0ΨΨΨ

it
CLOE

]−1

=
[(

ΨΨΨ
it
CLOE

)T
ΩΩΩ
−1
q ΨΨΨ

it
CLOE

]−1
= ΣΣΣ

(
θ̂θθ

it
CLOE

)
,

where ΩΩΩv and ΩΩΩq are the (r′× r′) covariances matrices re-
spectively built from ΛΛΛv and ΛΛΛq like in (11). It comes out
that the CLIE and the CLOE methods provide the same esti-
mates with the same variances.

To summarize, the users have the choice between qqqm
and τττ, but the CLIE and the CLOE methods asymptoti-
cally provide the same results. The question is: what is the
best choice to identify continuous-time systems operating in
closed loop? The following subsection presents the main dif-
ference between the CLOE and CLIE methods.
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4.3 Robustness of the CLIE method to errors
With the good tracking assumption (25), qqqs has a lit-

tle dependence on parameters’ variations and the output sen-
sitivity matrix ∆∆∆qqqs contains little information. This implies
that the singular values of ∆∆∆qqqs are small whereas its condi-
tioning number denoted as condCLOE

2 may be very good i.e.
condCLOE

2 ≈ 1; see e.g. [30]. To show that, from (17), the
OLS solution can be written

∆∆∆θ̂θθ
it
CLOE =

[(
ΨΨΨ

it
CLOE

)T
ΨΨΨ

it
CLOE

]−1 (
ΨΨΨ

it
CLOE

)T
∆∆∆yyy(qqq) (33)

Then, the relative variation of the solution ∆∆∆θ̂θθ
it
CLOE denoted as

d∆∆∆θ̂θθ
it
CLOE is expressed by two upper bounds given by

∥∥∥d∆∆∆θ̂θθ
it
CLOE

∥∥∥
2∥∥∥∆∆∆θ̂θθ

it
CLOE

∥∥∥
2

≤ condCLOE
2
‖d∆∆∆yyy(qqq)‖2
‖∆∆∆yyy(qqq)‖2

, (34)

∥∥∥d∆∆∆θ̂θθ
it
CLOE

∥∥∥
2∥∥∥∆∆∆θ̂θθ

it
CLOE +d∆∆∆θ̂θθ

it
CLOE

∥∥∥
2

≤ condCLOE
2

∥∥dΨΨΨ
it
CLOE

∥∥
2∥∥ΨΨΨ

it
CLOE

∥∥
2

, (35)

where d∆∆∆θ̂θθ
it
CLOE , d∆∆∆yyy(qqq) and dΨΨΨ

it
CLOE are small variations of

∆∆∆θ̂θθ
it
CLOE , ∆∆∆yyy(qqq) and ΨΨΨ

it
CLOE respectively. ‖·‖2 is the 2-norm of

a vector or a matrix.
Let µCLOE

min and µCLOE
max be the smallest and the greatest

singular values of ΨΨΨ
it
CLOE respectively. With, condCLOE

2 =

µCLOE
max /µCLOE

min and
∥∥ΨΨΨ

it
CLOE

∥∥
2 = µCLOE

max , one obtains

∥∥∥d∆∆∆θ̂θθ
it
CLOE

∥∥∥
2∥∥∥∆∆∆θ̂θθ

it
CLOE

∥∥∥
2

≤ µCLOE
max

µCLOE
min

‖d∆∆∆yyy(qqq)‖2
‖∆∆∆yyy(qqq)‖2

, (36)

∥∥∥d∆∆∆θ̂θθ
it
CLOE

∥∥∥
2∥∥∥∆∆∆θ̂θθ

it
CLOE +d∆∆∆θ̂θθ

it
CLOE

∥∥∥
2

≤
∥∥dΨΨΨ

it
CLOE

∥∥
2

µCLOE
min

. (37)

Assuming that µCLOE
min and µCLOE

max are very small with µCLOE
min ≈

µCLOE
max , one has condCLOE

2 ≈ 1 and 1/µCLOE
min very large.

With (36), it appears the interest of having a condition-
ing number as close as possible to one in order to minimize
the relative norm error on the solution vector. That property
was pointed out in [31] where a new criterion of exciting tra-
jectory was developed based on this relation. Equation (37)
pinpoints the role of µCLOE

min as we shall see below. In practice,
two cases must be considered for the CLOE method.

• The first case is when (24) and (25) are fulfilled. That is
to say that the controller was designed to provide an ex-
cellent tracking, while rejecting perturbations and model
mismatches. In this case, there is εεεCLOE(t,θθθ) ≈ 0, for
each t, or equivalently ∆∆∆yyy(qqq) ≈ 0. Then, from (33), the
innovation is approximately zero. It comes out that the

CLOE method may be totally insensitive to modeling
errors and/or to measurement noise, if the control law
is effective enough. In practice, the optimization solver
would not move from the initialization point.
• The second case to be considered is when (24) and (25)

are not totally fulfilled. In other words, the controller
presents relatively poor tracking performances. Regard-

ing the upper bound (37), ∆∆∆θ̂θθ
it
CLOE may not be robust

against a small variation dΨΨΨ
it
CLOE . In fact,

∥∥dΨΨΨ
it
CLOE

∥∥
2

is amplified by 1/µCLOE
min . It can be thought that dΨΨΨ

it
CLOE

is mainly due to modeling errors and a poor initializa-
tion, since the simulated output is not affected by the
measurement noise. This leads to unpredictable results
because those errors can be interpreted as an information
by the optimization solver. It comes out that the CLOE
method may be sensitive to small modeling errors, if the
control law is not effective enough.

As a result, the objective is to obtain a conditioning
number as close as possible to one while having the small-
est singular value as large as possible. Contrary to the CLOE
method, the CLIE one will not suffer from small singular val-
ues because it is the CLOE method weighted by the control;
see (26). As regards the industrial robots, the gains of the
controller are usually high and this implies CCC0 � IIIn. Then,
it follows that µCLIE

min and µCLIE
max the smallest and the greatest

singular values of ΨΨΨ
it
CLIE are far greater than µCLOE

min and µCLOE
max .

It comes out that the CLIE method is more robust against
a small modeling error and is more sensitive to parameters’
variations than the CLOE method.

5 Experimentations
5.1 Experimental Setup

In this part, we illustrate the performances of the CLIE,
CLOE and DIDIM methods with the Stäubli TX40 [32],
which is a serial manipulator composed of six rotational
joints. There is a coupling between the joints 5 and 6 that
adds two parameters: f vm6 and f cm6, which are, respec-
tively, the viscous and dry friction coefficient of the motor
6. The SYMORO+ software is used to automatically calcu-
late the customized symbolic expressions of models; see [2].
The robot has 60 base dynamic parameters and from these
60 base parameters, only 28 are well identified with good
relative standard deviations. These 28 parameters define a
set of essential parameters that are sufficient to describe the
dynamic behavior of the robot. This set was validated with a
F-statistic, as shown in [3] and only the estimation of these
parameters is considered here.

The reference trajectories are trapezoidal velocities
(also called smoothed bang-bang accelerations). With
cond(φφφFp

) = 200, these reference trajectories provide suf-
ficient excitation for the estimation of the base parameters
according to [33]. The joint positions and control signals are
stored with a measurement frequency ωs = 5 kHz. For the
IDIM-LS method, the filter cut-off frequencies are tuned ac-
cording to [1]: i.e. ω fq = 5ωdyn = 50 Hz and ωFp = 2ωdyn =
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20 Hz for the Butterworth and the decimation filters, respec-
tively. The maximum bandwidth for joint 6 is ωdyn = 10 Hz.

The DDM is simulated thanks to a Simulink c© model
integrated with the ode3 integration solver: Bogacki-
Shampine. The gains of the simulated controller are not up-
dated to keep the bandwidth constant as it could be done with
the DIDIM method, see e.g. [1]. For the CLIE and CLOE
methods, the optimization is done with the Levenberg-
Marquardt (LM) algorithm implemented in the lsqnonlin
function of the MatLab c© Optimization Toolbox. The three
methods are initialized with acceptable CAD values: all base
parameters equal to 0 except ia j = 1 for j 6= 5 and ia5 = 2
because of the coupling effect.

5.2 Experimental Results
This section provides the results of the comparison be-

tween the IDIM-LS, CLIE, CLOE and DIDIM methods. In
a first time, the CLIE and CLOE methods are studied in a
strict output error framework. In a second time, the three
methods are compared in more general framework by taking
into account the decimate filter. In addition of the estimated
parameters, the relative standard deviations, the prediction
errors, the singular values, the conditioning numbers and the
computing times are used as metrics.

Strict Output Error Framework
Table 1 summarizes the essential estimated parameters

and relative standard deviations. The first method illustrates
the results obtained with an appropriate setting of the pre-
filters. The LS estimate can therefore be considered as refer-
ence values. The CLIE and DIDIM estimated parameters are
close to those of the IDIM-LS method and lie in the 3σ con-
fidence intervals of the LS estimates. The CLOE estimates
are not so far except for the Coulomb parameters f c j and
other parameters like mx4, which are highlighted in bold in
the table. This can be explained by the lack of sensitivity of
this method. As explained in section 4.3, the CLIE method
is in fact a CLOE method weighted by the controller. Due
to large controller gains, the sensitivity with respect to the
parameters is more important at the input than at the output.
That is confirmed by the singular values of the Jacobian ma-
trices in Table 2. The interest of considering the input torque
for the identification is also visible in Table 3 that gives the
relative errors averaged over the axes. The CLOE method
indeed provides larger simulation errors on the torques than
the CLIE method, whereas both have equivalent errors on
the positions. The relative standard deviations of the esti-
mated parameters may seem promising, however there is an
issue with the computation of the variances. The additive
noises are indeed assumed to be serially uncorrelated which
is not verified with the residuals autocorrelations; see Fig-
ures 1 and 2 for the CLOE and CLIE methods respectively.
Consequently, the CLOE, CLIE and DIDIM methods can-
not be applied in a strict output error framework to indus-
trial robots, although the CLIE and DIDIM methods provide
consistent estimates. Since the CLIE and DIDIM results are
really close, only the correlation of the CLIE residuals is pre-

Table 1. CLIE, CLOE and DIDIM estimates - No decimate filter
θ̂θθLS θ̂θθ

7
CLIE θ̂θθ

7
CLOE θ̂θθ

7
DIDIM

zz1r 1.24 (1.45 %) 1.25 (0.32 %) 1.22 (0.24 %) 1.25 (0.32 %)

f v1 8.00 (0.91 %) 7.96 (0.28 %) 8.18 (0.12 %) 7.99 (0.28 %)

f c1 7.34 (2.66 %) 7.21 (0.87 %) 6.34 (0.37 %) 7.11 (0.89 %)

xx2r -0.48 (3.28 %) -0.47 (0.97 %) -0.42 (0.55 %) -0.48 (0.98 %)

xz2r -0.16 (5.40 %) -0.16 (1.85 %) -0.17 (0.72 %) -0.15 (1.89 %)

zz2r 1.09 (1.29 %) 1.09 (0.29 %) 1.08 (0.18 %) 1.09 (0.30 %)

mx2r 2.21 (3.01 %) 2.24 (0.94 %) 2.43 (0.73 %) 2.22 (0.95 %)

f v2 5.50 (1.45 %) 5.47 (0.35 %) 5.68 (0.22 %) 5.45 (0.35 %)

f c2 8.24 (2.26 %) 8.35 (0.53 %) 7.40 (0.28 %) 8.35 (0.53 %)

xx3r 0.13 (10.6 %) 0.13 (2.07 %) 0.18 (1.31 %) 0.13 (2.10 %)

zz3r 0.11 (9.57 %) 0.12 (1.81 %) 0.11 (1.59 %) 0.11 (1.89 %)

my3r -0.60 (2.52 %) -0.59 (0.44 %) -0.53 (0.60 %) -0.59 (0.44 %)

ia3 0.09 (9.39 %) 0.09 (1.94 %) 0.09 (1.62 %) 0.09 (1.94 %)

f v3 1.93 (2.05 %) 1.94 (0.31 %) 1.93 (0.46 %) 1.94 (0.31 %)

f c3 6.48 (2.06 %) 6.47 (0.31 %) 5.80 (0.31 %) 6.47 (0.32 %)

mx4 -0.02 (35.1 %) -0.03 (3.40 %) 0.01 (12.4 %) -0.03 (3.50 %)

ia4 0.03 (9.10 %) 0.03 (1.08 %) 0.03 (1.38 %) 0.03 (1.09 %)

f v4 1.09 (1.62 %) 1.11 (0.19 %) 1.15 (0.28 %) 1.11 (0.19 %)

f c4 2.57 (2.46 %) 2.44 (0.31 %) 2.17 (0.54 %) 2.42 (0.31 %)

my5r -0.03 (15.2 %) -0.04 (1.81 %) -0.06 (1.31 %) -0.03 (1.85 %)

ia5 0.04 (10.6 %) 0.04 (1.35 %) 0.05 (1.29 %) 0.04 (1.38 %)

f v5 1.79 (2.33 %) 1.82 (0.24 %) 1.92 (0.34 %) 1.82 (0.25 %)

f c5 3.07 (3.59 %) 3.01 (0.39 %) 2.26 (0.48 %) 2.99 (0.39 %)

ia6 0.01 (13.3 %) 0.01 (2.06 %) 0.01 (1.78 %) 0.01 (2.08 %)

f v6 0.65 (1.85 %) 0.66 (0.20 %) 0.67 (0.23 %) 0.65 (0.21 %)

f c6 0.30 (32.9 %) 0.18 (5.92 %) 0.04 (24.4 %) 0.25 (4.18 %)

f vm6 0.61 (1.97 %) 0.60 (0.22 %) 0.57 (0.46 %) 0.60 (0.22 %)

f cm6 1.90 (4.40 %) 1.94 (0.46 %) 1.95 (0.78 %) 1.92 (0.46 %)

Table 2. CLIE, CLOE and DIDIM optimization parameters - No dec-
imate filter

CLIE CLOE DIDIM

µmax 2.26 104 9.85 2.23 104

µmin 19.3 2.6 10-3 19.1

Conditioning number 1172 3845 1166

Computing time 23min 23min 1min

sented. In fact, the CLIE and DIDIM estimators appear to be
consistent but inefficient. The interest of the DIDIM method
compared with the CLIE one appears with the computing
time in Table 2. The DIDIM method has the advantage of
calling only one time the simulator at each optimization step
thanks to the PLR assumption. In the opposite, the CLIE
method must call the simulator b+ 1 times the simulator to
estimate the Jacobian matrix with finite differences. This ex-
plains the lower computing time of the DIDIM method in
Table 2.
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Fig. 1. CLOE residuals autocorrelations (red dots) and 2σ confidence intervals (blue lines) - No decimate filter

Fig. 2. CLIE residuals autocorrelations (red dots) and 2σ confidence intervals (blue lines) - No decimate filter

Output Error with the Decimation

In this part, we consider the CLIE and CLOE methods
with the decimate filter as well as the DIDIM method. The
estimated parameters provided in Table 4 are close to the
previous estimations. There is still a lack of sensitivity for
the CLOE method. Concerning the relative standard devia-
tions of the CLIE, CLOE and DIDIM methods, they proved

to be equivalent. The CLIE and DIDIM results are still re-
ally close and, regarding the correlation, the CLOE residu-
als present the same behaviour as the DIDIM ones. Thus,
Figure 3 depicts the autocorrelations of the DIDIM residu-
als, representative of the three methods. The effect of the
parallel filter is clear since the estimated autocorrelations co-
efficients are included in the confidence intervals indicated
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Table 3. Direct comparison - Mean relative errors over axes - CLIE,
CLOE and DIDIM - No decimate filter∥∥∥qqqm j

−qqqs j

∥∥∥/∥∥∥qqqm j

∥∥∥ ∥∥τττ j− τττs j

∥∥/∥∥τττ j
∥∥

CLIE 0.017 % 6.97 %

CLOE 0.017 % 10.7 %

DIDIM 0.013 % 6.95 %

by the blue lines. These estimated autocorrelations prove
that the DIDIM residuals can be considered as almost seri-
ally uncorrelated, and so are the CLIE and CLOE ones. The
differences between the intervals sizes compared with Fig-
ures 1 and 2 are due to the number of samples considered
for each method. If the methods without decimate filter take
into account nm = 34500 sampling points for the estimation,
the others consider N = nm/nd = 276 sampling points due
to the down-sampling. Finally, the careful reader can won-
der why there is no significant time reduction between Ta-
ble 2 and Table 5 since the amount of data is reduced. That
comes from the fact that the most time consuming opera-
tion is the integration of the Ordinary Differential Equations
(ODEs) and not the matrix inversion for the optimization.
In practice, for a precision purpose, the ODEs integration is
performed at the sampling frequency and not at the decimate
one. Furthermore, at each call of the Simulink with a new set
of parameters, a new compilation is required. This method is
certainly not the optimal one from a computational perspec-
tive but is a practical way and the overall computing time is
still acceptable, especially for the DIDIM method.

The experimental results show the advantages of consid-
ering the input (i.e. torque) signal for the identification. If the
PLR assumption is admissible, the DIDIM method should be
preferred to save computation time.

6 Conclusion
To overcome some difficulties of the equation error

methods for robot identification, we considered the alterna-
tive of the output error methods. The idea is to simulate the
closed-loop model of the robot and compare its identification
signal with the one measured on the system. Two variants for
identification signal have been studied and compared: the
CLOE and CLIE methods that are respectively based on the
output position and the input torque. In addition, a modifica-
tion of the CLIE method named DIDIM has been considered
in the case where the input torque is linear with respect to the
parameters.

Experimental validation of the theoretical comparison
has been carried out on a 6 DoF industrial robot and it is
concluded that:

• For industrial robot with an effective control law, it is
more interesting to consider the input torque as identifi-
cation signal than the output position;

• If the Pseudo-Linear Regression assumption is admissi-
ble, the practitioner should consider DIDIM method to
save computation time;

Table 4. CLIE, CLOE and DIDIM estimates - Decimate filter

θ̂θθ
7
CLIE θ̂θθ

7
CLOE θ̂θθ

7
DIDIM

zz1r 1.25 (1.52 %) 1.22 (2.69 %) 1.25 (1.23 %)

f v1 7.96 (0.91 %) 8.18 (1.39 %) 7.99 (0.75 %)

f c1 7.21 (2.84 %) 6.34 (4.22 %) 7.11 (2.36 %)

xx2r -0.47 (3.72 %) -0.42 (5.95 %) -0.48 (3.06 %)

xz2r -0.16 (6.82 %) -0.17 (7.92 %) -0.15 (6.01 %)

zz2r 1.09 (1.37 %) 1.08 (2.05 %) 1.09 (1.12 %)

mx2r 2.24 (4.05 %) 2.43 (8.57 %) 2.22 (3.32 %)

f v2 5.47 (1.55 %) 5.68 (2.66 %) 5.45 (1.24 %)

f c2 8.35 (2.36 %) 7.40 (3.38 %) 8.35 (1.85 %)

xx3r 0.13 (11.1 %) 0.18 (14.5 %) 0.13 (8.97 %)

zz3r 0.12 (10.3 %) 0.11 (17.8 %) 0.11 (8.47 %)

my3r -0.59 (2.70 %) -0.53 (6.38 %) -0.59 (2.11 %)

ia3 0.09 (11.1 %) 0.09 (17.7 %) 0.09 (8.61 %)

f v3 1.94 (2.14 %) 1.93 (4.51 %) 1.94 (1.58 %)

f c3 6.47 (2.19 %) 5.79 (3.22 %) 6.47 (1.59 %)

mx4 -0.03 (26.9 %) 0.01 (124 %) -0.03 (18.8 %)

ia4 0.03 (9.33 %) 0.03 (12.8 %) 0.03 (7.78 %)

f v4 1.11 (1.81 %) 1.15 (2.52 %) 1.11 (1.48 %)

f c4 2.44 (2.97 %) 2.17 (5.00 %) 2.42 (2.43 %)

my5r -0.04 (14.5 %) -0.06 (13.7 %) -0.03 (11.0 %)

ia5 0.04 (12.1 %) 0.05 (15.4 %) 0.04 (9.78 %)

f v5 1.82 (2.33 %) 1.92 (4.20 %) 1.82 (1.84 %)

f c5 3.01 (3.72 %) 2.26 (6.00 %) 2.99 (2.92 %)

ia6 0.01 (20.2 %) 0.01 (20.9 %) 0.01 (18.7 %)

f v6 0.66 (2.07 %) 0.67 (2.85 %) 0.65 (1.59 %)

f c6 0.18 (19.5 %) 0.042 (315 %) 0.25 (11.6 %)

f vm6 0.60 (2.19 %) 0.57 (5.66 %) 0.60 (1.67 %)

f cm6 1.94 (4.50 %) 1.96 (9.84 %) 1.92 (3.44 %)

• A strict output error framework does not suit to robot
identification. A careful filtering strategy must be em-
ployed to insure white residuals and thus a correct esti-
mation of the error covariance.

Research and development are ongoing to compare the
IDIM-IV and DIDIM methodologies, concentrating on their
robustness and statistical properties. The work could also be
extended to parallel robots that represent an important topical
issue [34]. In this regard, [35] and [11] have applied the stan-
dard IDIM-LS method to parallel robots; while in [36], the
authors have applied a standard LS procedure that is equiva-
lent to the IDIM-LS approach.
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Fig. 3. DIDIM residuals autocorrelations (red dots) and 2σ confidence intervals (blue lines) - Decimate filter

Table 5. CLIE, CLOE and DIDIM optimization parameters

CLIE CLOE DIDIM

µmax 1589 1.34 1571

µmin 1.3 1.74 10-4 1.3

Conditioning number 1178 7622 1165

Computing time 23min 23min 1min
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[23] Walter, É., and Pronzato, L., 1994. Identifica-
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