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Abstract 

Few years after HTLV-1 identification and isolation in humans, STLV-1, its simian counterpart, was discovered. It then 
became clear that STLV-1 is present almost in all simian species. Subsequent molecular epidemiology studies dem-
onstrated that, apart from HTLV-1 subtype A, all human subtypes have a simian homolog. As HTLV-1, STLV-1 is the 
etiological agent of ATL, while no case of TSP/HAM has been described. Given its similarities with HTLV-1, STLV-1 repre-
sents a unique tool used for performing clinical studies, vaccine studies as well as basic science.
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Background
The first human oncogenic retrovirus was discovered in the 
USA, in a T cell line obtained from blood cells of a patient 
suffering from a disease then called “cutaneous T-cell lym-
phoma” [1, 2]. Few years earlier, Adult T-cell Leukemia/
Lymphoma or ATLL (i.e. an aggressive malignancy of 
CD4+ T-cells) had been described in Japan [3, 4]. In 1982, 
Japanese researchers also reported the presence of a ret-
rovirus among ATLL patients. They named it Adult T cell 
leukemia virus (ATLV). Further work demonstrated that 
HTLV-1 specific antibodies were present among Japa-
nese ATLL patients, thus allowing identification of the first 
HTLV-1 endemic area [5]. Later, it was decided to name this 
virus HTLV-1 for Human T-cell Leukemia Virus type 1.

Few years later, Tropical Spastic Paraparesis/HTLV-1 
associated myelopathy (TSP/HAM), a severe neuromy-
elopathy, was also identified as another disease caused 
by HTLV-1 [6]. Thus, ATLL and TSP/HAM are the main 
pathologies present among HTLV-1 infected individu-
als. It was recently estimated that 5 to 10 million people 
are infected by HTLV-1 worldwide, although HTLV-1 

prevalence is likely to be underestimated. Two to 4% 
of HTLV-1 carriers will develop either ATLL or TSP/
HAM, while most of them will remain asymptomatic 
[7]. HTLV-1 is endemic in areas such as Japan, central 
Africa, the Caribbean region and South America [8]. 
Because HTLV-1 mostly replicates through clonal expan-
sion of infected cells even in asymptomatic carriers [9], 
its retroviral genome displays a remarkable genetic stabil-
ity. HTLV-1 molecular epidemiology studies have been 
carried out throughout the world. The very low genetic 
variability allowed identification of different HTLV-1 
subtypes. All but one of these subtypes, i.e. Cosmopoli-
tan subtype A that is present all over the world, are spe-
cific to a given African or Asian region [8]. ATL cases 
were described in HTLV-1 carriers infected by HTLV-1 
subtype A but also subtype B and subtype C [10, 11], 
thus suggesting that ATL occurrence is not linked to the 
most frequent HTLV-1 subtype. Of note, HTLV-1 sub-
type B and subtype C lack p12 and/or p30 auxiliary pro-
tein. Whether the lower ATL frequency in type B and C 
infected individuals is linked to the absence of these pro-
teins remains to be determined.

In 1982, lymphocytes from a Japanese monkey 
(Macaca fuscata) were co-cultured with chronically and 
productively infected T-cells from the MT-2 cells, an 
HTLV-1-transformed cell line. This allowed the authors 
to obtain a simian cell line persistently infected by 
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HTLV-1, thus suggesting that Japanese monkeys might 
be susceptible to HTLV-1 natural infection [12]. Later, 
seroepidemiological studies were performed in Japan 
and demonstrated that many Japanese monkeys were 
infected by HTLV-1-like viruses [13]. Sera from New 
World Monkeys (NWM), Old World Monkeys (OWM) 
and Apes were then tested and revealed the presence 
of antibodies reacting against HTLV-1 antigens. Such 
antibodies were detected in OWM and Apes, but not 
in NWM, suggesting endemicity of HTLV-1-related 
viruses in African and Asian monkeys, but not in Ameri-
can animals [14]. Sequence analyses characterized these 
viruses as Simian T-cell Leukemia Viruses (STLVs) [15, 
16]. To date, it is well established that Old World Non-
Human Primates (NHPs) and Apes are naturally infected 
with a great variety of STLV-1 viruses and that HTLV-1 
appeared in Humans following STLV-1 cross-species 
transmission approximately 27,300  years ago (95% CI 
19,100–35,500) in Africa, even if interspecies transmis-
sion episodes still occur [17–19]. Given the high degree 
of similarity between HTLV-1 and STLV-1 sequences, it 
was suggested to cluster these viruses in the single PTLV 
(Primate T lymphotropic virus) family [20–22]. Because 
STLV-1 induces ATLL in naturally infected NHPs [23, 
24], and even if some auxiliary proteins are lacking [25], 
it represents a suitable tool that contributes to our under-
standing of HTLV-1 pathogenesis. This review will com-
pare HTLV-1 and STLV-1 retroviruses from different 
aspects and will focus on the use of STLV-1 as a model of 
HTLV-1 infection.

STLV‑1 epidemiology
Around 132 non-human primate species represent Old 
World Monkeys (OWM). They are divided in two sub-
families, Cercopithecinae and Colobinae, distributed in 
African and Asian continents [26].

To determine which simian species carry STLV-1, 
seroepidemiological studies were performed using kits 
that had been previously developed for the detection 
of anti-HTLV-1 human antibodies, as well as by PCR 
(Fig.  1). Sera from Japanese monkeys were tested, and 
25% scored seropositive. As in humans, STLV-1 inci-
dence increased with age and was higher in females than 
males. Other species were tested later. A high seropreva-
lence was observed in African Green monkeys (AGM). 
Two studies then reported STLV-1 infection in captive 
Old World NHPs and Apes [27, 28]. Ishikawa et al. [29] 
performed an STLV-1 survey using 567 NHPs’ blood 
samples covering 30 species caught in the wild or kept 
in zoos, institutes or private owners from Kenya, Gabon, 
Ghana, Cameroon, Ethiopia and Indonesia. STLV-1 was 
detected in African Green monkeys and Sykes’ monkeys, 
in Olive baboons, Patas monkeys, Mandrills and Gorillas. 

STLV-1 was also found in different species of macaques 
from Indonesia, with a seroprevalence ranging from 11 
to 25%. Other studies reported natural STLV-1 infec-
tions in AGM, Vervet monkeys and among baboon spe-
cies (Papio anubis, Papio hamadryas, Papio papio and 
Papio cynocephalus) originating from South Africa and 
Ethiopia [30–33]. As in Japan, the infection status posi-
tively correlates with age, and disease incidence is higher 
in females than males. Other seroepidemiological stud-
ies were also performed [34–44] (Fig. 1). Thirty-one Old 
World NHP species were reported as naturally infected 
with STLV-1 [33, 45–50].

STLV-1 sequence analyses were then performed in 
order to determine relationship between STLV-1 and 
HTLV-1 and whether HTLV-1 originated from a non-
human primate virus.

STLV‑1 phylogeny
Since the first publication of a complete HTLV-1 provi-
ral genome [51], phylogenetic studies enabled to iden-
tify several HTLV-1 subtypes: Cosmopolitan subtype A, 
which is found all over the world; subtypes B, D, E, F, G, 
which are restricted to Central Africa; and Australo-Mel-
anesian subtype C which is the most divergent HTLV-1 
subtype [8]. Based on molecular clock and phylogenetic 
analyses, origin of HTLV-1 subtypes A, B, D, E was 
inferred in a time frame of 27,300 ± 8200 years, whereas 
subtype F arose more than 10,000 years ago.

In 1984, Watanabe et  al. [52] demonstrated similari-
ties between restriction maps obtained using HTLV-1 
from Robert Gallo’s laboratory or using Japanese simian 
Adult T-cell Leukemia Virus (ATLV). These results sug-
gested that HTLV-1 and simian ATLV shared a com-
mon ancestor. Other studies reported that HTLV-1 and 
STLV-1 from Japanese monkeys, Red-faced monkeys, 
Pig-tailed monkeys, AGM, Chimpanzees and baboons 
(Papio cynocephalus) had the same genomic organization 
i.e. LTR-gag-pol-env-pX-LTR [15, 20]. Sequence analyses 
comparing Pig-tailed (Asian NHP) and AGM (African 
NHP) STLV-1 sequences to HTLV-1 revealed 90% and 
95% identity respectively. These results suggested that 
(1) STLV-1 could be separated into two subgroups: Asian 
and African and that (2) HTLV-1 originated from the 
African STLV-1 subgroup [16].

Phylogenetic studies revealed that HTLV-1 subtype B 
is very closely related to STLV-1 strains infecting chim-
panzees (98% identity), Allen’s swamp monkeys (around 
96% identity) and gorillas from Zaïre, Central African 
Republic and Cameroon [45, 53–55]. STLV-1 strains 
infecting Mandrillus sphinx, Cercopithecus cephus, C. 
agilis, C. pogonias, G. agilis and C. nictitans share close 
relationships with HTLV-1D and -F from Cameroon 
and Gabon [49, 56–58]. Regarding HTLV-1 subtype E, 
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the Env region clusters with STLV-1 isolated from two 
baboon species, Papio ursinus and Papio cynocephalus 
[59]. No data has been so far reported about a simian 
counterpart of HTLV-1G and HTLV-1A. Altogether, 
the diversity of STLV-1 strains found in different NHPs 
species and related to a given HTLV-1 subtype from the 
same geographical areas is strongly supporting the con-
cept of multiple cross-species transmissions between 
NHPs but also from NHPs to humans.

Most divergent STLV-1 strains were described in 
Asian Macaca tonkeana (living in Indonesia) and 
Macaca arctoides (living in India, Thailand and China) 
[60–62]. Macaca tonkeana virus is related to the most 
divergent HTLV-1 subtype C that is present in Melane-
sia and Australia. Molecular clock data inferred STLV-1 
introduction around 156,000 to 269,000  years ago on 
the Asian continent [59]. These results suggest that 
macaque infection with STLV-1 might have led to the 
emergence of HTLV-1 in Asian human population.

Finally, Calvignac et al. [63] demonstrated that STLV-1 
sequences could be amplified from bones samples origi-
nating from an early 20th century Chlorocebus pygeryth-
rus sample. Therefore, it should now be possible to use 
this technique to determine STLV-1 virus evolution over 
time using available Egyptian or Asian NHP mummies.

STLV‑1 interspecies transmission
Prevalence of HTLV-1 may reach 1 to 40% in adults 
depending on age, sex and geographic location [8]. It is 
well known that HTLV-1 can be transmitted under dif-
ferent routes: sexual, mother-to-child and contact with 
infected blood. However, STLV-1 transmission occurs 
mostly through aggressive contacts instead of mother 
to infant or sexual transmissions [64–68], even if sexual 
transmission of STLV-1 is more important in NHPs such 
as vervet [40].

Fig. 1 Epidemiology of Simian T-Leukemia Virus Type-1 in wild-caught or captive non-human primates (NHPs) from Asia and Africa. All studies 
which reported STLV-1 infection in NHPs are listed. Orange and purple colors represent Asian and African STLV-1 infected NHPs, respectively. 
Countries with both colors and hatching represent Asian and African NHPs hosted in geographical areas where they are not naturally present
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STLV‑1 associated‑disease in naturally infected 
animals
As it is the case for HTLV-1-infected individuals, most 
STLV-1-infected monkeys remain lifelong asympto-
matic hosts [69]. For some unexplained reasons, TSP/
HAM cases have never been observed in infected 
NHPs, even when those animals were living in animal 
facilities for a long period. Phylogenetic studies per-
formed using samples from an African human TSP/
HAM patient showed that the viral sequence was highly 
related to an STLV-1 sequence obtained from asympto-
matic West-African sooty mangabey [70]. Other strains 
obtained from HTLV-1 African TSP/HAM patients also 
clustered with STLV-1 strains obtained from asympto-
matic animals [71, 72]. It is well established that there is 
no specific mutation in HTLV-1 genome that would be 
associated with a given disease. Altogether, these data 
suggest that the lack of TSP/HAM described cases in 
NHPs might only be linked to the mode of viral trans-
mission rather than the age of infection.

On the contrary, a number of ATLL-like diseases 
sharing clinical and pathological features with human 
ATLL were reported in NHPs [24, 69, 73–79]. The first 
report was made in STLV-1 infected macaques which 
developed malignant lymphoma [80]. Subsequent stud-
ies reported similar symptoms in captive Papio anubis, 
Gorillas and AGM [75–78, 81, 82]. In a recent study, 
Tax-positive cells were detected in lymphoid and non-
lymphoid organs, mesenteric and axillary lymph nodes 
and lung, but not in the blood from an infected Papio 
anubis suffering from ATL [24]. In that case, skin lesion 
biopsies also showed a massive dermal, hypodermic 

and muscular cell infiltrates of positive CD3+ CD25+ T 
cells, as described in human ATL.

Using STLV‑1 infected animals
After natural STLV‑1 infection
Given the high degree of sequence similarities between 
STLV-1 and HTLV-1 genomes and the fact that both 
viruses cause ATL, STLV-1 infected NHPs (Japanese 
macaques, Mandrillus sphinx and Papio anubis) have 
been used for performing molecular studies [79, 83–89] 
(Table 1). As HTLV-1, STLV-1 infection is mostly occur-
ring in CD4+ T-cells, although STLV-1 Tax expression 
was also detected in bone marrow hematopoietic stem 
cells in vivo, and viral DNA was retrieved in all myeloid 
and lymphoid cells derived from these infected progeni-
tors [86].

STLV-1 natural infection leads to Tax and SBZ (sim-
ian equivalent of HBZ) expression. Simian SBZ and Tax 
amino-acid sequences are highly similar to human HBZ 
and Tax (see Tables 2 and 3). These viral proteins also 

Table 1 STLV‑1 naturally or  experimentally infected non‑human primates (NHPs) described in  published biological 
studies

STLV-1 infection mechanisms, experimental treatments and immune response were analyzed in several NHP species

Studies Natural STLV‑1 infection STLV‑1 inter‑NHPs transmission Experimental 
HTLV‑1 infection

Mechanisms of (co-)infection : retroviral 
replication

Miura et al. [79] Dube et al. [94] Kazanji et al. [96]

Ma et al. [83] Voevodin et al. [82] Kazanji et al. [97]

Castro et al. [84] Voevodin et al. [93] Kazanji et al. [98]

Termini et al. [85] Voevodin et al. [32] Mortreux et al. [99]

Furuta et al. [86] Voevodin et al. [53] Debacq et al. [100]

Drugs and vaccine treatments Yee et al. [87] McGinn et al. [95] Heraud et al. [101]

Souquière et al. [88] Pise-Masison et al. [102]

Souquière et al. [90] Valeri et al. [103]

Souquière et al. [111] McGinn et al. [104]

Sugata et al. [89]

Cytotoxic response Turpin et al. [24]

Afonso et al. [92]

Table 2 Amino acid sequence comparison of  HTLV‑1 HBZ 
vs. STLV‑1 SBZ

ATK belongs to HTLV-1 A cosmopolitan subtype, EL to HTLV-1 B subtype, STLV-1 
Papio anubis was obtained from an African NHP, while STLV-1 Mf5 was obtained 
from an Asian NHP (Macaca fuscata)

HTLV‑1a ATK HTLV‑1b EL

HTLV-1a ATK – 74.27%

HTLV-1b EL 74.27% –

STLV-1 Papio anubis 83.01% 71.36%

STLV-1 Mf5 75.71% 61.43%
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display activating properties on viral LTR and NF-κB 
signaling pathways. As an example, a high STLV-1 pro-
viral load (PVL) is linked to IL-2, IL-6, IL-10, IFNγ and 
TNF-α elevated expression in asymptomatic STLV-
1-infected Mandrillus sphinx [90]. Given well-estab-
lished results published in the HTLV-1 situation, this 
is likely due to STLV-1 Tax expression, although this 
hypothesis has not been formally demonstrated. IL-2 
and IFNγ results were also obtained in asymptomatic 
STLV-1-positive Macaca mulatta [87], while anti IFNγ 
and TNF-α responses against Tax expressing cells were 
also observed in STLV-1 infected baboons [85]. STLV-1 
infection also promotes CTL response against STLV-1 
Tax protein [84, 85].

Interestingly, TCF1 and LEF1, two T-cell specific pro-
teins, prevent Tax effect on viral LTR. Their expression 
is high in thymocytes and thus counteract STLV-1 rep-
lication in thymus. On the opposite, their expression 
and thus their effect is down-regulated in peripheral 
blood T-cells (both in human and simian cells), thanks 
to a Tax effect on STAT5a. This might explain why Tax 
is more potent in these cells, and why HTLV-1 induces 
ATL in the periphery [83].

Depending upon STLV-1 strain, SBZ protein 
sequence is highly similar or contain insertions and 
deletion compared to HBZ (see Table 2). Nevertheless, 
in both cases, animals can develop ATL [24, 79]. This 
might be due to conservation of the N-terminal region 
as well as of C-terminus basic leucin zipper domain 
between human and simian viral proteins.

As its human counterpart, STLV-1 replication occurs 
through clonal expansion of infected cells, both in 
asymptomatic and ATL animals [24, 79]. Antiviral ther-
apy based on the use of azidothymidine (AZT) com-
bined with interferon-α (IFN-α) improves the survival 
rate of ATL patients suffering from acute and chronic/
smoldering forms. A confirmation clinical trial using 
these compounds was reported in an STLV-1 infected 
Papio anubis suffering from ATL. The animal was 
treated with a combination of AZT and interferon-α. 
However, and contrary to human ATL, no clinical 

improvement was observed. It would now be interest-
ing to determine post-mortem whether, this absence of 
remission was linked to p53 mutation already present 
when treatment started as shown in human ATL cases 
who were not responding to AZT [91].

Given the fact that treating ATL patients is difficult, 
and because an elevated PVL is a characteristic of ATL, 
a study tested whether PVL decreases when valproate 
and AZT were delivered to asymptomatic STLV-1-in-
fected animals [92]. This was indeed the case and it was 
associated to an increased anti-Tax CTL response, thus 
confirming the importance of immune response for con-
trolling viral infection [92]. In another study, STLV-1 
infected asymptomatic Japanese monkey were inocu-
lated with mogamulizumab (anti-CCR4), a component 
that is also used for human relapsed ATL cases. This led 
to a strong reduction of STLV-1 proviral load [79, 89]. 
Altogether, these results support the fact that STLV-1 
infected animals represent a useful tool for testing drugs.

Finally, a recent study was performed in two asympto-
matic STLV-1-infected animals. This showed that immu-
nization using recombinant vaccinia viruses expressing 
either Tax-22 (which cannot activate the NF-kB pathway) 
or an HBZ LL/AA mutant (which is partially impaired for 
blocking Tax ability to induce transcription) was linked 
to a temporary decrease of STLV-1 PVL [89].

After STLV‑1 interspecies transmission
A limited number of reports described STLV-1 inter-sim-
ian species transmission [32, 53, 93, 94] (Table 1). In one 
report and following an unknown mode of transmission, 
it was shown that baboons accidentally infected with a 
rhesus macaque STLV-1 virus, developed leukemia/lym-
phoma at a high frequency [93]. This is the only reported 
case suggesting that inter-simian species transmission 
might impact viral pathogenesis. Experimental infection 
of pig-tailed macaques with sooty mangabey STLV-1 was 
also tested. Animals maintained low antibody titers and 
displayed a high mortality rate without any identified 
cause [95]. Finally, another work reported tantalus and 
patas animals artificially infected with STLV-1 from other 
species. All animals became infected, as shown by PCR 
results, even if one stayed seronegative due to mutations 
in the genome [94]. Why were these pol mutant viruses 
still able to infect animals remains unexplained.

After artificial HTLV‑1 infection
Finally, given the high degree of similarity between 
HTLV-1 and STLV-1 genomes and the abundance of 
molecular tools available in the HTLV-1 field, some labo-
ratories decided to use the HTLV-1 molecular clone or 
HTLV-1 infected cells to perform studies in non-human 
primates (Table  1). Artificial infection after inoculation 

Table 3 Amino acid sequence comparison of  HTLV‑1 Tax 
vs. STLV‑1 Tax

ATK belongs to HTLV-1 A cosmopolitan subtype, EL to HTLV-1 B subtype, STLV-1 
Papio anubis was obtained from an African NHP, while STLV-1 Mf5 was obtained 
from an Asian NHP (Macaca fuscata)

HTLV‑1a ATK HTLV‑1b EL

HTLV-1a ATK – 97.26%

HTLV-1b EL 97.26% –

STLV-1 Papio anubis 96.03% 95.74%

STLV-1 Mf5 92.92% 93.31%
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of HTLV-1 to primates provides an inestimable tool to 
study primo-infection and viral dissemination, in vivo, a 
process that is inaccessible in humans. HTLV-1 infection 
of Saimiri sciureus, i.e. non-human primates that are not 
naturally infected with STLV-1 [96], demonstrated that 
lymphoid organs represent the major viral reservoir [97]. 
As in HTLV-1 infected humans and STLV-1 naturally-
infected animals, IL-2, IL-10, IFNγ levels also increased 
after HTLV-1 infection [98]. In Saimiri sciureus, the 
virus also replicates through clonal expansion after hav-
ing used reverse transcription (RT) at the initial stages 
[99] and it causes ATL [100]. As in baboons treated with 
AZT/IFN [24], arsenic combined to IFN-α was not able 
to lead to HTLV-1 proviral load reduction, even if the 
number of circulating ATL flower cells decreased for 
some unexplained reason [101].

Studies were also performed in pig-tailed and rhesus 
macaques inoculated with autologous cells previously 
transfected with the HTLV-1 ACH molecular clone 
[102–104]. Following infection with wild-type HTLV-
1, pig-tailed macaques developed a series of extremely 
aggressive diseases that were different from ATL. These 
results therefore suggest that this animal model can-
not be used for studying events that are resulting from 
HTLV-1 infection.

Consequences of rhesus macaque infection with the 
same molecular clone were different since animals 
remained asymptomatic. HTLV-1 p12 and p8 proteins 
have been shown previously to increase NFAT activity, 
IL-2 production and STAT-5 activity, while p30 controls 
viral expression at the post-transcriptional level in vitro 
(for a review, see [105, 106]). Thus, this simian model was 
useful to investigate the role of p12, p13, and p30 auxil-
iary proteins in  vivo [102, 103]. This allowed research-
ers to show that p12 and p30 are required for allowing 
HTLV-1 presence and replication in dendritic cells [103], 
while p12 and p8 are necessary for allowing a viral resist-
ance to CTL responses. These studies provided the first 
in  vivo evidence on the mechanisms that HTLV-1 uses 
to establish chronic infection and on the crucial role of 
myeloid cells in that process.

Interestingly, the authors also demonstrated that the 
results obtained in rhesus macaques were different from 
those obtained in rabbits infected with the same viral 
clones, thus reinforcing the fact that NHPs are the more 
relevant system for studying HTLV-1 pathogenesis.

PTLV retroviral coinfection in NHPs and in humans
In addition to STLV-1, other retroviruses, i.e. Simian 
Immunodeficiency Virus (SIV) and Simian Foamy Virus 
(SFV) infect NHPs. Cases of natural coinfection have 
been reported both in humans and in NHPs: HTLV-1/
HIV-1, HTLV-1/HFV, STLV-1/SFV or STLV-1/SIV-1 

[67, 107–115]. HIV-1/HTLV-1 coinfection leads to sig-
nificant increase of HTLV-1 PVL as well as on a possible 
delay in HIV-1 pathogenesis in humans [107, 108, 116]. 
Anti-HIV-1 therapy promotes an increase in HTLV-1 
PVL in HIV-1/HTLV-1 coinfected carriers. These 
results strongly suggest that both retroviruses compete 
for CD4+ T-cell infection. However, it is worth not-
ing that opposite results were obtained in other studies 
[117–121].

Natural STLV-1/SIV-1 co-infection induces the devel-
opment of a neoplastic disease in sooty mangabey [122] 
and of a lymphoproliferative disease in AGM [123]. 
Souquière et  al. described pathological manifestations, 
i.e. infective dermatitis and scabies, in two STLV-1/SIV-1 
co-infected mandrills [111], while no clinical sign has 
been reported previously in STLV-1 naturally infected 
mandrills [90]. Thus, these symptoms could be due to 
co-infection. Ongoing experiments should allow us to 
determine whether STLV-1 clonal expansion impacts SIV 
replication in vivo.

Finally, blood SFV proviral load from STLV-1/SFV nat-
urally co-infected Papio anubis, was recently shown to be 
much higher compared to SFV mono-infected animals 
[124]. These results either suggest that cells might be co-
infected with both retroviruses, with STLV-1 promoting 
clonal expansion, or that soluble STLV-1 Tax transactiva-
tor enters SFV-infected cells where it promotes viral rep-
lication. Ongoing experiments should allow us to answer 
this question.

Altogether, these data demonstrate that STLV-1 is a 
useful tool to understand mechanisms of HTLV-1 trans-
mission and ATL pathogenesis. PTLV-1 mono-infected 
as well as SIV co-infected animals could also be used to 
develop possible new anti-HTLV-1 clinical approaches 
and to modify anti-HIV treatment.
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