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Abstract

The production of analytic datasets is a significant big data trend and has gone well beyond the scope of traditional
IT-governed dataset development. Analytic datasets are now created by data scientists and data analysts using big
data frameworks and agile data preparation tools. However, despite the profusion of available datasets, it remains quite
difficult for a data analyst to start from a dataset at hand and customize it with additional attributes coming from other
existing datasets. This article describes a model and algorithms that exploit automatically extracted and user-defined
semantic relationships for extending analytic datasets with new atomic or aggregated attribute values. Our framework
is implemented as a REST service in SAP HANA and includes a careful theoretical analysis and practical solutions for
several complex data quality issues.

Keywords: schema augmentation, schema complement, data quality, SAP HANA

1. Introduction

1.1. Context and motivation

Enterprise Business Intelligence (BI) provides business
users with solutions for managed data reporting, analysis,
aggregation and visualization. These solutions heavily rely
on trusted and well documented analytic datasets compris-
ing multidimensional facts that hold measures and refer
to one or more hierarchical dimensions [1]. Traditionally,
these analytic datasets are created by the IT department
in the form of data warehouses and data marts [2] or by
enterprise application software vendors in the form of pre-
defined and customizable analytic models. For example,
SAP provisions thousands of predefined and customizable
analytic datasets, also known as “virtual data models” for
various business application domains (e.g., SCM, CRM,
ERP) [3, 4]. These datasets are defined as views over
the transactional data stored and managed by the SAP
S4/HANA business suite and carry information, including
sophisticated measures, which is easily understandable by
business users, and ready for consumption by BI tools.
Recently, agile data preparation tools [5, 6, 7] emerged to
empower business users and data scientists to easily create
their own high-quality analytic datasets from transactional
data and existing analytic datasets and to build insightful
and interactive personalized data visualizations.
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Data preparation tools have the ability to partially au-
tomate data cleaning and transformation operations, per-
form record linkage and duplicate elimination, and even
extract structured information from unstructured data.
Another typical requirement of business users or data sci-
entists is to augment the schema of an existing analytic
dataset with new attributes, coming from one or more se-
mantically related datasets that may represent additional
details on dimensions or new measures. This is a criti-
cal need in many scenarios such as the creation of data
mashups (e.g., add demographics to sales information), or
the engineering of features within datasets used to train
predictive models (e.g., features engineering to learn iden-
tifying customers that are likely to sign up for a credit
card in the following quarter). Despite the importance of
this task, existing data preparation tools poorly support
users in augmenting the schema of an analytic dataset.
This lack of assistance compels business users to redefine
multiple times similar analytic datasets in a possibly in-
consistent manner or to depend on their IT department to
create their customized datasets. This creates an impor-
tant bottleneck on the IT organization and pushes forward
the deadline for making the desired datasets available to
business users.

Addressing the problem of agile schema augmentation
in the context of building trusted analytic datasets for spe-
cific BI tasks is a major business opportunity for several
reasons. First, companies generally manage large collec-
tions of analytic datasets which keep growing with the need
for new business data analysis tasks. At the scale of a large
company, the facility offered by agile data preparation
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tools increases considerably the number of available ana-
lytic datasets with respect to those created by the IT orga-
nization or those predefined by enterprise software applica-
tion vendors. Second, semantic relationships between ana-
lytic datasets, which are essential to support schema aug-
mentation, can be accurately and automatically extracted
from the dataset definitions. Indeed, analytic datasets are
often defined over other datasets using queries, scripts, or
views. For example, in BI applications supported by SAP,
it is common to find analytic datasets with five or more
levels of nested view definitions. By parsing these view
definitions it is possible to discover the dimensions shared
by different analytic datasets. Third, analytic datasets
are generally complemented by rich and carefully designed
metadata (e.g., about which attributes represent levels of
hierarchical dimensions, or about the units and currencies
of measure attributes) to support complex data analysis
scenarios, that can be exploited during the schema aug-
mentation process. Finally, IT organization and business
users invest time to create analytic datasets containing
high quality data (i.e., clean data) for business process op-
timization and decision making. Reusing these datasets
and their metadata for schema augmentation is therefore
worthwhile. For all these reasons, analytic datasets are
a “gold mine” of high-quality and interrelated data that
is relevant to business users and data scientists, although
under-exploited by current data preparation tools.

Table 1: Sales

ORG ID CITY COUNTRY YEAR REVENUE

SALESORG TIME (M)

Oh 01 Dublin USA 2018 3.2
Ca 01 Dublin USA 2018 5.3
Ie 01 Dublin Ireland 2018 45.1

1.2. Main challenges

The manual augmentation of an analytic dataset is of-
ten a cumbersome and error-prone process, raising multi-
ple challenges illustrated hereafter. Imagine a simple use
case with two analytic datasets represented by fact tables
Sales and Dem(ographics) as shown in Tables 1 and 2. At-
tributes ORG ID, CITY and COUNTRY in table Sales come
from dimension table SALESORG, attribute YEAR in ta-
bles Sales and Dem is from dimension table TIME, and
attributes CITY, STATE, COUNTRY in table Dem are from

Table 2: Dem (Demographics)

CITY STATE COUNTRY YEAR POP UNEMP

REGION TIME (K) (%)

Dublin Ohio USA 2018 61 2.5
Dublin California USA 2018 42 3.1
Dublin - Ireland 2018 527 5.7
San Jose California USA 2018 1,035 2.3

dimension table REGION . Dimension table names are in
italic font to distinguish them from fact tables. Assume
that attribute ORG ID is unique in Sales while attributes
CITY, STATE, COUNTRY, and YEAR are unique in Dem. In
addition, assume that SALESORG and REGION are also
related through common attributes CITY and COUNTRY

which means that these attributes have the same mean-
ing in both tables. Then, tables Sales and Dem are natu-
rally related through their common attribute YEAR which
comes from the same dimension and attributes CITY and
COUNTRY which come from different dimensions but are
semantically equivalent.

In our example, all tables are defined as views over
transactional data as shown on Figure 1. Dimension ta-
bles are represented by rounded rectangles, fact tables by
square rectangles. Plain edges represent data dependen-
cies, expressing for instance that the definition of Sales

depends on SALESORG, TIME, and some transactional
data. A data analyst now might want to build a new
analytic table SalesDem by augmenting the schema of
dataset Sales with the measure attributes POP(ulation) and
UNEMP(loyment rate) of dataset Dem. This augmentation
then corresponds to yet another fact table (view) SalesDem

defined by a left-outer join with Dem on the common at-
tributes CITY, COUNTRY and YEAR.

Figure 1: The construction of table SALES−DEM

The goal of this article is to propose a solution for
assisting the user in the definition of this new augmenta-
tion view. In particular, we will show that by exploiting
all available information on analytic datasets, possibly ex-
tended by some other user-defined metadata, it is possible
to automatically generate for a given dataset, a set of use-
ful and correct schema augmentations. This is done by
solving several challenges we will describe below.

Relationship extraction. The first challenge is to discover
the relationships between analytic datasets that can be
used for schema augmentation. As explained before, many
useful relationships can be extracted from the definitions of
analytic datasets. For example, the view definition of fact
table SALES in Figure 1 uses attributes from dimensions
SALESORG and TIME. Similarly, fact table DEM uses
attributes from dimension TIME. Thus, relationships can
be extracted to identify semantically equivalent attributes
of TIME in both fact tables and to generate left-outer
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join queries like the query for the augmentation SalesDem

of table Sales.

Row multiplication. In our example, the outer-join oper-
ation increases the number of rows in Sales (e.g ., gener-
ates two rows with ORG ID = ‘Oh 01’) because the join
attributes do not constitute a unique identifier in dataset
Dem. However, for some application scenarios in feature
engineering, data enrichment or data analysis, such a mul-
tiplication of rows in Sales is undesirable. There, schema
augmentation should be controlled to keep the number of
rows in Sales constant, leading to the notion of schema
complement introduced in [8]. This raises the challenge of
identifying row multiplication by computing the unique,
and possibly minimal, identifiers of analytic datasets.

Incorrect and ambiguous reduction. A simple solution to
avoid row multiplication is to transform table Dem by re-
ducing partitions identified by the common attributes with
Sales into single tuples. For instance, a possible reduction
operation is to pre-aggregate the measures of table Dem

along attribute STATE before performing a left outer join.
However, this raises two new challenges. The first chal-
lenge is to choose the correct aggregation functions that
can be applied to the aggregated attributes. For this we
need the knowledge that POP can be summed and averaged
while only a maximal or minimal value can be computed
on the unemployment rate values of attribute UNEMP. Fur-
thermore, if an averaged POP is used to augment Sales, we
must determine what aggregation functions are applicable
on this new attribute in the augmented Sales dataset to
avoid future incorrect aggregation operations. The sec-
ond challenge is the ambiguity of the aggregated measure
attributes added to Sales which, for instance, contain an
aggregated value for all cities ‘Dublin’ in country ‘USA’,
thereby destroying the distinction between cities in differ-
ent states and sharing the same name. Ambiguous mea-
sures to should be detected and controlled, e.g ., by assign-
ing a null value to POP and UNEMP for tuples with ORG ID

= ‘Oh 01’ and ORG ID = ‘Ca 01’.

Incomplete merge. Another solution to avoid row multi-
plication would be to add STATE in the schema of Sales

(although this is not necessary since ORG ID was supposed
to be unique in Sales). Then the common join attributes
would form a unique identifier in Dem and a schema com-
plement for dataset Sales can be obtained without any pre-
aggregation. However, even in that case, summing POP in
the augmented Sales dataset along CITY will not return the
same result as summing POP along CITY in Dem, even for
the same values of COUNTRY and STATE in Sales (e.g ., POP

value of city ‘San Jose’ in ‘California’ will not be counted).
This can be a problem if in the augmented Sales dataset,
REVENUE should be compared with POP in each STATE of
a COUNTRY. This issue arises because the merge of Sales

with Dem is incomplete with respect to Dem and detecting
incomplete merge is necessary to avoid such an erroneous
analysis.

1.3. Research contributions

This paper presents a new solution to assist business
users and data scientists in augmenting the schema of
an analytic dataset with attributes coming from other
datasets. This is achieved by automatically discovering
related analytic datasets and suggesting ways of building
a schema augmentations, including schema complements,
that resolve the challenges presented before.

More specifically, we make the following technical con-
tributions.

• We introduce attribute graphs as a novel concise and
natural way to define literal functional dependencies
over the level types of hierarchical dimensions from
which we can easily infer unique identifiers in both
dimension and fact tables, and minimal identifiers in
the case of dimensions.

• We give the formal definitions for schema augmenta-
tion, schema complement and merge query in the
context of analytic tables. We then present sev-
eral reduction operations for transforming schema
augmentations with row multiplication into schema
complements extending each row in the source ta-
ble by a single row in the augmented table. These
operations extend previous contributions on schema
augmentation and schema complement (e.g., [8], [9],
[10]) to the case of analytic datasets.

• We also present formal quality criteria for schema
augmentations, schema complements and merge
queries. These criteria are used to define automatic
repair operations (1) to notify the generation of am-
biguous attributes, (2) to infer applicable aggrega-
tion functions on new attributes, and (3) to supple-
ment merge results obtained by incomplete schema
augmentation.

• We describe the implementation of our solution as a
REST service within the SAP HANA platform and
provide a detailed description of our algorithms. We
separate the generic part of the algorithms from the
specific implementation optimizations done by lever-
aging the capabilities of SAP HANA.

• We evaluate the performance of our algorithms to
compute unique identifiers in dimension and fact ta-
bles, and analyze the effectiveness of our REST ser-
vice using two application scenarios.

1.4. Paper outline

The rest of this paper is structured as follows. In
Section 2, we describe the multi-dimensional data model
for analytic datasets, which is used to capture all usual
concepts of hierarchical dimensions, facts, measures, and
cubes [1]. This makes our results easily applicable to any
other database system implementing the concepts of multi-
dimensional models. We also introduce the new concept of
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attribute graph as a way to define literal functional depen-
dencies between dimension and fact table attributes and to
compute dimension and fact table identifiers. In Section 3,
we describe the relationships between analytic tables that
are used to support schema augmentation and that can be
automatically extracted from the definition of fact and di-
mensions tables. We then provide the formal definitions of
schema augmentation and of natural and reduction-based
schema complement. Section 4 introduces formal quality
criteria for schema augmentations, schema complements
and merge queries. Section 5 describes the implementa-
tion of our solution as a REST application service, not
in production yet, in the SAP HANA platform while Sec-
tion 6 details our algorithms. Section 8 presents our ex-
periments to evaluate the performance and effectiveness of
our solution. Section 7 compares our research results with
previous work on schema augmentation as well as work on
the querying of single or multiple OLAP data cubes. We
conclude in Section 9.

2. Data Model

This section presents our extension of the relational
data model to model analytic tables and their semantic
relationships. We assume as input to our model any re-
lational database containing a set of non-analytic tables.
Analytic tables, i.e., dimension and fact tables, are then
defined bottom-up as views over these non-analytic tables
and other analytic tables. We use conventional relational
database notations [11]. Each table T is a finite multiset
of tuples over a set of domains of values S = {A1, . . . ,An},
called attributes, where each domain may contain a null
marker. We call S the schema of T .

2.1. Hierarchies and dimension tables

We consider a multidimensional data model with di-
mensions, i.e. hierarchies of values defined by hierarchy
types. A hierarchy type H = (L,4) is a set of level types
L = {L1, · · · , Ln} that is organized by a partial order 4.
Li is called a child level type of Lj if there exists an edge
Li 4 Lj and Li 4

∗ Lj denotes that Li is a descendant level
type of Lj . We call all types Li where there exists no type
Lj such that Lj 4 Li or Li 4 Lj , respectively the lower
and the upper bounds of H.

Example 1. Two examples of hierarchy types are shown
in Figure 2 where an arc from A to B means that A 4 B.

Figure 2: Hierarchy types GEOGRAPHY (a) and TIME (b)

Each level type Li represents a domain Ni of values
related to the values of the domains Nj of other level types

Lj . More precisely, a hierarchy H = (N,≤) of hierarchy
type H = (L,4) is a set of values N and a partial order ≤
where N contains for each level type Li ∈ L a non empty
subset of values Ni ⊆ N such that each order relation vi ≤
vj preserves the ancestor/descendant relation 4∗ between
the corresponding hierarchy types Li and Lj , i.e., vi ∈
Ni, vj ∈ Nj ⇒ Li 4

∗ Lj . We also assume that (N,≤) is
transitively reduced, i.e., there is no pair of nodes that is
connected by an edge and a sequence of two or more edges.

Figure 3: Hierarchy REGION of type GEOGRAPHY

Example 2. Figure 3 shows a hierarchy REGION (right
part) of type GEOGRAPHY (left part).

Hierarchies can naturally be represented in relational
tables, called dimension tables or, more simply, dimen-
sions.

Definition 1 (Dimension table). Any hierarchy H = (N,≤
) of type H = (L,4) defines a dimension table D(S) with a
one-to-one mapping φ : L→ X from level types Li ∈ L to a
subset of attributes X ⊆ S in the schema of T such that for
each maximal path v1.v2. · · · .vk in N1 × N2 × · · · × Nk in
H there exists a tuple t ∈ T where t.φ(L1) = v1, t.φ(L2) =

v2, · · · , t.φ(Lk) = vk and t.Aj = null for all other attributes
in X.

Example 3. Dimension table REGION in Table 3
represents the hierarchy REGION of hierarchy type
GEOGRAPHY in Figure 3. Each level type is translated
into an attribute of the same name and each tuple repre-
sents a maximal path in the hierarchy (null markers are
denoted with “-”).

Table 3: Dimension table REGION

CITY STATE COUNTRY CONTINENT

Dublin Ohio United States North America
Dublin California United States North America
Dublin - Ireland Europe
Dublin Ontario Canada North America
Dublin - Belarus Europe
Palo Alto California United States North America
- - - Antarctica

All attributes of a dimension table D corresponding to
level types are called the dimension attributes of D and the
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hierarchy type H = (L,4) can naturally be mapped into a
dimension attribute hierarchy A = (S,4) where Ai 4 Aj

iff Li 4 Lj . The remaining attributes are called detail
attributes and functionally depend on one or more dimen-
sion attributes (dimension table REGION only contains
dimension attributes).

Null markers in dimension tables represent regular val-
ues yielding the same interpretation for equality as null
values in SQL unique constraints [11]: two attribute val-
ues t1.A and t2.A are literally equal, denoted by t1.A ≡ t2.A,
if t1.A and t2.A are equal or both null markers. Literal
equality naturally extends to sets of attributes and leads
to the notion of literal functional dependencies (LFD) [12].
A literal functional dependency LFD X 7→ Z holds between
two subsets of attributes if for any two tuples t1 and t2 of
T , when t1.X ≡ t2.X then t1.Z ≡ t2.Z. Note that if X does
not contain any nullable attribute, which is for instance
enforced in SQL by declaring X as a primary key, an LFD
X 7→ Z is equivalent to a functional dependency with nulls.

Definition 2 (Dimension identifier). Let X ⊆ S be the set
of dimension attributes in a schema S and L be a set of
LFDs defined on X. Then, K ⊆ X is a dimension identifier
of S if K is a minimal set such that K 7→ S holds for any
instance T over S satisfying all LFDs in L.

The set of LFDs defined on a dimension table schema
characterizes the set of all valid schema instances. How-
ever, defining this set of LFDs may be difficult for the
designer of a dimension table. We introduce the notion of
attribute graphs, which are defined over attribute hierar-
chies and which allow the schema designer to characterize
the set of all valid dimension tables by additional semantic
properties in a simple and natural way.

Definition 3 (Attribute graph). An attribute graph over
some attribute hierarchy A = (S,4) is a directed labeled
graph D = (S,R , λR ,⊥,>), where S is the set of attributes
in A, ⊥ and > are two special attributes with empty do-
mains (by definition, t.⊥ ≡ t.> ≡ null for all tuples),
R ⊆ (S ∪ {⊥,>})2 is a set of edges such that there exists
an edge:

1. (Ai,Aj) ∈ R for each edge Ai 4 Aj in A;

2. (⊥,Ai) ∈ R for each lower bound in A and

3. (Ai,>) ∈ R for each upper bound in A.

There might exist also other edges (Ai,Aj) ∈ R between any
two nodes connected by a path in D.

In the following we denote by R (Ai,Aj) = l an edge
(Ai,Aj) ∈ R labeled by l = λR (Ai,Aj). The edge labeling
function λR : R → {+,1, f} assigns to each edge a unique
label encoding the presence of functional and literal func-
tional dependency constraints between the connected at-
tributes of a dimension table.

Definition 4 (Valid dimension table). A dimension table
T with schema S is valid with respect to some attribute
graph D = (X,R , λR ) where X ⊆ S, if all following condi-
tions hold in T :

1. If there exists a tuple t ∈ T such that t.Ai is not null,
then there exists either an edge R (⊥,Ai) in D or an
edge R (Ak,Ai) in D such that t.Ak is not null.

2. For all tuples t1, t2 in T and all edges R (Ai,Aj) in D
the following holds:

(a) If R (Ai,Aj) = f , then t1.Ai ≡ t2.Ai implies
t1.Aj ≡ t2.Aj;

(b) If R (Ai,Aj) = 1, then t1.Ai = t2.Ai implies
t1.Aj ≡ t2.Aj.

In Definition 4, t1.A = t2.A is true if both tuples t1.A
and t2.A are equal non-null values, false if both t1.A and
t2.A are different non-null values and unknown otherwise.
From this definition, it follows naturally that t1.A = t2.A

implies t1.A ≡ t2.A but not the opposite. Observe also that
by Definition 4, R (Ai,Aj) = f is equivalent to Ai 7→ Aj and
Ai → Aj implies R (Ai,Aj) = 1 whereas R (Ai,Aj) = 1 does
not imply Ai → Aj . Consequently, if some dimension table
T is valid w.r.t. some attribute graph D, it is also valid
w.r.t. to all attribute graphs obtained by replacing f edge
labels by 1 edge labels and 1 edge labels by + edge labels.
We can also see that all edges R (⊥,Ai) are labeled by +

or f . Indeed, ti.⊥ ≡ tj .⊥ holds for all couples (ti, tj), and
either ti.Ai ≡ tj .Ai also holds for all couples (ti, tj), i.e.
R (⊥,Ai) = f or not, i.e. R (⊥,Ai) = + (ti.Ai ≡ tj .Ai does
not hold for at least one couple). Symmetrically, all edges
R (Ai,>) are labeled by f since ti.> ≡ tj .> for all tuples ti
and tj .

Example 4. Figure 4 shows an attribute graph for
hierarchy type GEOGRAPHY that validates dimen-
sion table REGION . The lower and upper bound at-
tributes are respectively CITY (connected to node ⊥) and
CONTINENT (connected to node >). The arc labels of at-
tribute graph have the following semantics. First, since
R (STATE,COUNTRY ) = 1, for each non-null value of at-
tribute STATE, we can determine a unique value of attribute
COUNTRY. Second, R (COUNTRY,CONTINENT ) = f

states that the attribute COUNTRY literally determines the
attribute CONTINENT. Third, the same value of CITY can
have multiple values for STATE (R (CITY, STATE) = +) or
multiple values for COUNTRY (R (CITY,COUNTRY ) = +)
and no value for STATE. Finally, there exists a single con-
tinent without countries, states and cities, which is repre-
sented by the arc R (⊥, CONTINENT ) with label f .

Figure 4: Attribute graph for dimension REGION
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Proposition 1. Let D = (S, R, λR,⊥,>) be an attribute
graph. Then, the subset XD ⊆ S of all attributes in S with
at least one + labeled in-edge and no f labeled in-edge is
a dimension identifier for all valid dimension tables with
attributes S.

The proofs of the previous and the following proposi-
tions can be found in the Appendix A.

Attribute graphs concisely describe well-know prop-
erties of hierarchies, as described for instance in [1].
Edges R (⊥,A) can model “unbalanced” hierarchies, edges
R (Ai,Aj) such that Ai 64 Aj in A model “non-covering hier-
archies”, and edges R (Aj ,Ai) with label 1 represent “non-
strict” hierarchies.

Example 5. By Proposition 1, the dimension identi-
fier for dimension REGION is (CITY, STATE,COUNTRY).
Figure 5 shows an attribute graph for the schema of a
dimension table WAREHOUSE. It expresses that at-
tribute WH ID literally determines CITY and STATE but
not COUNTRY. By Proposition 1, the identifier of
WAREHOUSE is (WH ID,COUNTRY).

Figure 5: Attribute graph for dimension WAREHOUSE

2.2. Fact tables

Fact tables associate measures with dimension values.
A fact table over a set of dimensions D1, · · · , Dn is a ta-
ble T whose schema S contains a non-empty subset Xi of
dimension attributes from each dimension Di, and a non-
empty set of attributes Z representing one or more mea-
sures where X1 ∪ · · · ∪Xn 7→ S. The active domain of each
dimension attribute T.A ∈ Xi is a subset of the active do-
main of Di.A. Each measure is represented by a group of
attributes where one attribute has the role of Value and
other attributes have the role Detail. Value attributes
carry the actual measure values while Detail attributes
provide auxiliary information on the measure. In particu-
lar, each measure attribute can be associated with a Unit
or Currency detail attribute to control the application of
aggregate functions. For simplicity, the term measure at-
tribute will refer in the following to a Value attribute.

Definition 5 (Fact identifier). Let K ⊆ S be a set of di-
mension attributes in the schema of a fact table T (S) and
L be a set of LFDs defined on S. Then, K is a fact identi-
fier of S if K 7→ S holds for any instance T over S satisfying
all LFDs in L.

Each attribute graph of some dimension represents a
set of LFDs and can be used to compute fact identifiers
for some schema S as stated in the following proposition.

Proposition 2. Let T (S) be a fact table defined over a set
of dimensions D1, · · · , Dn and K1, · · · ,Kn be the dimension
identifiers of D1 ∩ S, · · · , Dn ∩ S respectively. Then K =

K1 ∪ · · · ∪Kn is a fact identifier of T , and K is a minimal
identifier if all dimensions in T are mutually independent.

Example 6. Consider fact tables SALES and
INVENTORY below. SALES contains the sales of
products, is defined over dimensions STORE, TIME,
and PROD. INVENTORY is defined over dimensions
WAREHOUSE, TIME, TAX and PROD. Measure
attributes are in italics. Figure 6 shows the attribute
graphs for dimensions STORE, PROD and TAX with
identifiers STORE ID, PROD SKU and TAX NO respectively.

SALES( PROD SKU, BRAND, MONTH, YEAR, CITY,
STATE, COUNTRY, AMOUNT, CURRENCY)

INVENTORY( PROD SKU, BRAND, YEAR, WH ID,
CITY, COUNTRY, TAX NO, RATE,
TAX DESC, QTY ON HAND)

Figure 6: Attribute graphs of dimensions STORE, PROD and TAX

The fact identifiers of fact tables SALES and
INVENTORY are defined by the union of the correspond-
ing dimension identifier attributes. If all dimensions are
mutually independent, they form a minimal set.

2.3. Aggregable attributes

In analytic tables, attributes are aggregable, but an at-
tribute does not necessarily aggregate with any aggregate
function along any dimension, as shown by extensive pre-
vious work in statistical and OLAP databases [13].

Example 7. In the schema of fact table SALES, mea-
sure AMOUNT is aggregable using SUM along all dimension
attributes. However, measure QTY ON HAND in fact table
INVENTORY is not aggregable along the TIME dimen-
sion, i.e. summing the quantity of products QTY ON HAND

over all months produces is considered senseless. So, a
SUM over QTY ON HAND must at least be grouped by YEAR.

Our model enables the designer of an analytic table
to declare for each attribute the aggregate function that
is applicable and the maximal set of dimension attributes
along which this aggregation can be computed. Clearly,
if some attribute A is aggregable along a set of dimension
attributes Z, then it is also aggregable along any subsets
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of Z. In the following we denote by aggA(F,Z) the ag-
gregable property of A and state that property aggA(F,Z)

holds in T if Z is the maximal set of attributes along which
A is aggregable using F in T . More precisely, we give the
following definition for aggregable properties aggA(F,Z):

Definition 6. Let X be the set of dimension attributes
in an analytic table T over schema S, A be an aggregable
attribute in S and F be an aggregate function on A. Ag-
gregable property aggA(F,Z) holds in T if

1. all aggregations along any subsets of Z are considered
as meaningful by the user;

2. Z only contains dimension attributes which deter-
mine A, i.e. for all dimension attributes B ∈ Z ∩ X

there exists a minimal subset of dimension attributes
U ⊆ X such that U 7→ A and B ∈ U;

3. F is applicable to A.

Example 8. Considering Example 7, attribute
QTY ON HAND depends on all dimension attributes and can
be aggregated along these attributes except attribute YEAR

of dimension TIME which is considered meaningless to
the user (item 1 in Definition 6). We then state that
aggQTY ON HAND(SUM, Z) holds in INVENTORY where Z

contains all dimension attributes of INVENTORY except
YEAR.

Aggregable properties generalize the approach of [14]
and [2], which only focused on SUM aggregations and cat-
egorized measures as being additive, fully-additive, non-
additive, or semi-additive.

For determining valid aggregate function for new at-
tributes, we provide a default categorization of attributes.
Two categories, NUM and DESC, are obtained from the
(SQL) data type of attributes. A third category STAT

captures numerical values resulting from the use of some
aggregate functions. Table 4 describes the five common
SQL aggregate functions applicable to each category.

Table 4: Categories of aggregable attributes

Category Properties

NUM • Numerical values
• Applicable functions: SUM, AVG, COUNT,
MIN, MAX

DESC • Descriptive or categorical values
• Applicable functions: COUNT

STAT • Numerical statistical values
• Applicable functions: COUNT, MIN, MAX

Example 9. Attribute STORE ID of data type string in di-
mension table STORE is of category DESC and can only
be counted. Attributes AMOUNT and QTY ON HAND in ta-
bles SALES and INVENTORY respectively are of category
NUM. Thus, by default, both attributes can be summed up
unless a user-defined aggregable property is specified, as in
Example 8 for attribute QTY ON HAND.

If A is an attribute of T for which no aggregable prop-
erty was defined by a user, we first use the default category
of A to define which aggregate function F is applicable
to A and then state that a default aggregable property
aggA(F,Z) holds in T where Z is the set of all dimension
attributes of T (by default, A literally depends on all di-
mension attributes).

2.4. Summary of metadata acquisition

To conclude this section, we summarize the data and
related metadata introduced by our data model in Table
5 and indicate how they are obtained. We distinguish be-
tween data and metadata that can be user-defined, auto-
matically computed from other data or metadata and de-
rived by default rules. Most human effort is required on the
definition of dimension and fact tables (analytic schemas)
with a careful description of their attribute graphs. We
shall see in Section 6.1 that attribute graphs can also be
automatically computed from dimension tables or samples
thereof. This essentially reduces the human-effort for en-
abling schema augmentations and complements to defining
analytic schemas and aggregable properties.

Table 5: Summary of data model concepts

Metadata Source

Dimension and fact tables User-defined
Attribute graphs User-defined or computed
Dimension identifiers Computed
Fact identifiers Computed
Aggregable properties User-defined or default rule

3. Schema Augmentation and Complement

In this section we first describe the relationships that
can be automatically extracted from the definitions of di-
mension and fact tables and formally define the notion of
schema augmentation between tables connected by such
relationships. We then introduce natural and reduction-
based schema complements as a special case of schema aug-
mentation where the tuples of a table are augmented with
new attribute values obtained from another table without
generating new tuples in the result.

3.1. Relationships

We distinguish between join relationships and
attribute-mapping relationships. Both kinds of relation-
ships link semantically equivalent attributes and can be
extracted from the view definitions of analytic tables.
New join relationships between tables that are not related
through views can also be added by the business user if
necessary.

Definition 7 (Join relationship). A join relationship
R (T1, T2) between two tables T1 and T2 is defined by a non-
empty set of equality atoms {P1, · · · , Pk} where each Pi is
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of the form T1.A = T2.B. It relates all tuples of T1 and T2
satisfying the join predicate P1 ∧ · · · ∧Pk, i.e., the set of all
related tuples is defined by T1 ./P1∧···∧Pk

T2.

Figure 7: The construction of INVENTORY

Example 10. Fact table INVENTORY of Example 6
is a view over dimensions PROD, TIME, TAX and
WAREHOUSE, the view is defined by a star join between
a non-analytical table ct INVENTORY and these dimen-
sions as shown in Figure 7. The analysis of the view defini-
tion yields four join relationships between ct INVENTORY

and the dimension tables.

Join relationships might also exist in the database
schema between non-analytic tables (i.e., tables that are
neither dimension nor fact tables) through foreign key con-
straints which can be easily extracted from the schema
definition.

Definition 8 (Attribute mapping relationship). Let T1
and T2 be two tables such that T1 is derived from T2 using a
query Q and auxiliary tables: T1 = Q (T2, Ti, · · · , Tn) with
n ≥ 0. Query Q defines an attribute mapping from T2.B

to T1.A, denoted by T2.B � T1.A, if for all possible values
x ∈ dom(A) and all possible instances of T2, Ti, · · · , Tn:

σA=x(Q (T2, Ti, · · · , Tn)) = σA=x(Q (σB=x(T2), Ti, · · · , Tn))

An attribute mapping relationship R (T1, T2) between T1
and T2 is defined by a non-empty set of attribute mappings
from T1 to T2.

Example 11. Dimension PROD from Example 6 is de-
fined as a view over three non-analytic tables, where
X is the set of attributes in PROD, and P1, P2

are join predicates: PROD = πX(PRODUCT ./P1

SUBCATEGORY ./P2
CATEGORY). Predicate P1 defines a

join relationship between PRODUCT and SUBCATEGORY

on SUBCATEGORY ID whereas predicate P2 defines a join
relationship between SUBCATEGORY and CATEGORY on
CATEGORY ID. An attribute mapping relationship between
PROD and each non-analytic table providing an attribute
in X is also extracted from the view definition.

Example 12. In the view definition of Example 10,
since INVENTORY is a projection of the star join result,
there exists an attribute mapping relationship between table
INVENTORY and the other five tables.

Each relationship R (T1, T2) between two tables T1(S1)

and T2(S2) defines a partial mapping µR from attributes A

of T1 to attributes B of T2 where µR (T1.A) = T2.B if (i) R is
a join relationship containing an atom T1.A = T2.B or (ii) R

contains an attribute mapping T1.A� T2.B or T2.B� T1.A.
Relationship R is well-formed if µR is a one-to-one map-
ping. For the sake of simplicity, unless specified differently,
we assume in the following that all relationships R define a
natural mapping µR (T1.A) = T2.A for some attributes A of
S1∩S2 shared by table T1 and T2 and the set of attributes
A is called the common attributes of T1 and T2.

Example 13. In Example 11, the common attributes
for join relationships R (CATEGORY, SUBCATEGORY)

and R (PRODUCT,SUBCATEGORY) are respectively
{CATEGORY ID} and {SUBCATEGORY ID}. Similarly, the at-
tribute mapping relationship R (PROD,SUBCATEGORY)

between dimension table PROD and non-analytical
table SUBCATEGORY has common attributes
{PROD SKU,BRAND}.

Consider now a fact table ORDER recording de-
tail descriptions for orders from different stores and
customers. ORDER has two attributes ORDER DAY,
SHIP DAY, each one referring to attribute DAY of dimen-
sion TIME. A single attribute mapping relationship
R (ORDER, T IME) mapping the two ORDER attributes to
the same attribute TIME.DAY, µR (ORDER.ORDER DAY) =

TIME.DAY, µR (ORDER.SHIP DAY) = TIME.DAY, is not
a one-to-one mapping and therefore not well-formed.
Thus, two distinct relationships R 1(ORDER, T IME) and
R 2(ORDER, T IME) are needed, one for ORDER DAY and
the other for SHIP DAY.

Figure 8 shows a graph of relationships issued from
previous examples. Dimension tables are represented by
rounded rectangles, fact tables by bold square rectangles,
and non-analytic tables by square rectangles. Each node
contains its identifier (ID), and edges indicate relation-
ships labelled with their common attributes. Edges with
solid lines are extracted relationships while edges with bold
dashed lines are user-defined relationships. For instance, a
join relationship is explicitly defined by a designer between
dimensions STORE and WAREHOUSE, using equality
atoms on attributes CITY, STATE and COUNTRY.

3.2. Schema augmentation

We first introduce the notion of schema augmentation
using well-formed relationships and the notion of merge
query.

Definition 9 (Schema augmentation). Let T0(S0) and
T (S) be two tables related by a relationship R with a set of
common attributes Y = S0 ∩ S. Then table T is a schema
augmentation to T0 with respect to R if Y ⊂ S.

Observe that, by definition, common attributes Y is
not empty and T must bring new attributes to T0.
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Figure 8: Examples of relationships

Definition 10 (Merge query). Let T0(S0) and T (S) be two
tables related by a relationship R with a set of common
attributes Y. Then the merge of T0 and T is a left-outer
join query Q = ΠX(T0 ./P1∧···∧Pk

T ), where K = |Y| is
the number of common attributes of R , Π is a duplicate
elimination projection. Q is defined as follows:

1. If all common attributes are dimension attributes,
and there exists a pair of common attributes A1,A2 ∈
Y in T0 such that T0.A1 4 T0.A2 ∧ T.A1 � T.A2, then
X = S0 ] S else X = S0 ∪ S.

2. For each Ai ∈ Y, ∃Pi ∈ P such that Pi is of the form:
(T0.Ai = T.Ai) OR (T0.Ai = null AND T.Ai = null).

In the following, we will abbreviate Q = ΠX(T0 ./P1∧···∧Pk

T ) to Q = T0 ./Y T .

Item 1 checks if the attribute hierarchy is preserved by
relationship R and keeps the common attributes separately
(disjoint union ]) for each table if this is not the case.
Item 2 manages the SQL semantics of joins in presence of
nulls by adapting the join predicates.

Example 14. Table SALES is a schema augmentation
to INVENTORY with respect to common attributes: Y=
{PROD SKU, BRAND, YEAR, CITY, COUNTRY} and adds
MONTH, STATE and AMOUNT to INVENTORY. The merge
query is INVENTORY ./Y SALES and the schema of the
resulting merge does not duplicate the common attributes.

After merging a table with a schema augmentation,
the identifier of the new augmented table might change.
The following proposition describes how to compute the
identifiers of augmented tables.

Proposition 3. Let T ′0(S′0) be a merge of table T0(S0) with
a target schema augmentation T (S). Let K be the identifier
of T0 and Snew ⊆ S′0−S0 be the set of dimension attributes
added to T0 in the merge. Then, for all minimal subsets
Knew ⊆ Snew where Knew 7→ Snew, K∪Knew is an identifier
of T ′0.

Example 15. Consider the merged result INVENTORY′

in Example 14. Then, K = {PROD SKU, YEAR, WH ID,
COUNTRY} and Snew = {MONTH, STATE}. The set Snew

is also the minimal subset where Snew 7→ Snew. Thus, the
identifier of INVENTORY′ is K∪Snew ={PROD SKU, YEAR,
WH ID, COUNTRY, MONTH, STATE}.

Schema augmentations define no restriction on the
common attributes in underlying table relationship R .
The consequence of this unrestricted setting is that many
augmentations lead to tuple duplication and unexpected
results. For example, in the merge results of Exam-
ple 14, tuples in INVENTORY will be duplicated be-
cause of the newly added dimension attributes MONTH and
STATE. Then an aggregation with functions SUM or AVG

of QTY ON HAND could easily produce wrong results. To
better control the schema augmentation process, we intro-
duce new restrictions that can be applied for filtering and
transforming schema augmentations before merging them
with the source tables.

3.3. Natural schema complement

We extend the original definition of natural schema
complement [8] by considering LFD and relationships in-
cluding attribute mappings.

Definition 11 (Natural schema complement). Let T (S)

be a schema augmentation of T0(S0) with a set of com-
mon attributes Y = S0 ∩ S. Table T is a natural schema
complement to a table T0 with respect to R if Y 7→ S.

Condition Y 7→ S guarantees that by joining T0 and T

on their common attributes Y, each tuple of T0 will match
at most one tuple of T . The merge of T0 and T through nat-
ural schema complement follows Definition 10 for merging
schema augmentations and, by Definition 11 and Propo-
sition 3, the identifier of the merge result is equal to the
identifier of the source table T0. We refer to the merge with
a schema augmentation and natural schema complement
by augmented merge and natural merge respectively.

Example 16. The non-analytical table
PRODUCT(PROD SKU, BRAND, . . .) is a natural schema
complement to dimension table PROD since the common
attribute PROD SKU is a primary key in PRODUCT. This
constraint guarantees that the corresponding merge query
PROD ./PROD SKU PRODUCT generates exactly one tuple
for each tuple in PROD. The schema of the natural
merge only has one occurrence of the common attribute
PROD SKU (natural outer join).

3.4. Reduction queries

When the common dimension attributes of T0 and T do
not literally determine all attributes of T , a natural schema
complement can still be obtained by transforming T before
applying the outer join merge. These transformations can
be obtained by queries which reduce each partition of T
identified by the shared attributes to a single tuple. We
refer to those queries as reduction queries.
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Definition 12 (Reduction query). Let T (S) be a table with
identifier K. A query Q (T ) producing the table T ′(S′) is
called a reduction of T on a subset of attributes K′ ⊆ S′ if
K′ ⊂ K is a proper subset of identifier K and K′ 7→ S′ holds
in T ′ (K′ is an identifier of T ′). The attributes in K − K′

are called the reduced attributes.

Example 17. Consider the fact table SALES with iden-
tifier K = {PROD SKU, MONTH, YEAR, CITY, STATE,
COUNTRY}. A query SALES′ = Q (SALES) that filters
COUNTRY = ‘USA’ and projects on all other attributes is a
reduction of SALES on attributes K′ = K−{COUNTRY}. K′

is the key of SALES′ and COUNTRY is the reduced attribute.

Each reduction query Q (T ) of table T with key K on
attributes K′ ⊂ K reduces each partition of T with the
same values for attributes K′ and different values for the
reduced attributes K−K′ into a single tuple (K′ is the key
of the result).

For a given table and set of attributes, there might
exist a great variety of reduction queries. In our work, we
focus on three types of reduction queries: aggregate, filter
and pivot.

Aggregate reduction. Let T (S) be an analytic table, A be
an aggregable attribute in S, and F be an aggregate func-
tion such that aggregable property aggA(F,Z) holds in T .
We denote by Q (T ) = Agg

T
(F(A) | X), S − Z ⊆ X ⊆ S,

an aggregate query on table T that aggregates A using
aggregate function F with group-by attributes X. When
K′ ⊂ K, where K is the identifier of T , we call query
Q (T ) = Agg

T
(F(A) | K′) an aggregate reduction of T on

attributes K′, and K−K′ are the reduced attributes. Note
that the SQL group-by operator implements literal equal-
ity semantics for null values (null values are not distinct).

Filter reduction. Let T (S) be a table, we denote by
Q (T ) = FilterT (P | X), P = {P1 ∧ · · · ∧ Pi}, a filter query
that filters T by a set of predicates P on attributes X of
T . When K′ ⊂ K, where K is the identifier of table T ,
and for each attribute A ∈ K − K′, there exists a predi-
cate Pi ∈ P of the form A = vi, vi ∈ dom(A), we call query
Q (T ) = FilterT (P | K − K′) a filter reduction of T on at-
tributes K′, and K−K′ are the reduced attributes.

Pivot reduction. Let T (S) be a table, and A be an attribute
in S. We denote by Q (T ) = PivotT (A | X), X ⊂ S, a
pivot query with a set of attributes X whose values are
transformed into columns, and the values of attribute A

are pivoted into the new columns. The query replaces
attributes A and X by converting every distinct tuple t ∈
πX(T ) in the projection of T to a new attribute T.t storing
the corresponding values of A. When K′ ⊂ K, where K is
the identifier of T , we call query PivotT (A | K−K′) a pivot
reduction of T on attributes K′, and K−K′ are the reduced
attributes.

The above definitions of aggregate and pivot reductions
can be easily generalized by replacing attribute A with a
set of attributes.

Example 18. Consider a table T (S) in Table 6a with two
attributes A1,A2 forming an identifier of T . The result of
a pivot reduction query of T on attribute A1, as PivotT (M |
{A2}), is shown in Table 6b. Domain values of A2 are
pivoted into two new attributes M b1,M b2 storing the value
of M.

Table 6: Example of pivot reduction

(a) Table T

T A1 A2 M

t1 a1 b1 x1
t2 a2 b1 x2
t3 a1 b2 x3

(b) Table PivotT (M | {A2})

T ′ A1 M b1 M b2

a1 x1 x3
a2 x2 -

Proposition 4. Let T0(S0) and T (S) be two tables such
that T is a schema augmentation to T0 with common at-
tributes Y. Let K be an identifier of T . The result of a
reduction query Q (T ) on attributes K′ = K ∩Y, is a natu-
ral schema complement to T0.

Example 19. Fact tables SALES and INVENTORY in
the relationship graph of Figure 8 have common at-
tributes Y = {PROD SKU,BRAND,YEAR,CITY,COUNTRY}.
INVENTORY is a schema augmentation to SALES since
Y is not a fact identifier of INVENTORY (it misses
{WH ID,TAX NO}). We can then define several reduc-
tion queries which transform INVENTORY into a natural
schema complement of SALES. A first reduction query is
Q (INVENTORY) = Agg

INVENTORY
(AVG(QTY ON HAND |

X), X = {PROD SKU,YEAR,COUNTRY} which aggregates
measure attribute QTY ON HAND on X. It produces a natu-
ral schema complement to SALES. Similarly, a pivot query
Pivot INVENTORY(QTY ON HAND | {WH ID,TAX NO}) or a fil-
ter query Filter INVENTORY(WH ID = ‘1234’ ∧TAX NO =

‘abcd’) reduces attributes WH ID, TAX NO and trans-
forms INVENTORY into a natural schema complement of
SALES. Finally, a reduction query Q (SALES) that first
applies a filter SALESFIL = Filter SALES({STATE =′ Ohio′})
followed by a pivot query PivotSALESFIL

({AMOUNT} |
{MONTH}) reduces attributes MONTH and STATE and pro-
duces a natural schema complement to INVENTORY.

3.5. Derived relationships

We derive new relationships by composition and fusion
of relationships which respectively perform the intersection
and union of common attributes. Derived relationships
offer more schema augmentation opportunities, especially
between fact tables. For example, in Figure 8, there is no
direct relationship between fact tables INVENTORY and
SALES (edge with plain line). However, both tables share
dimension tables PROD and TIME which can be used to
derive a new relationship shown by the edge with a dashed
line.
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Proposition 5. Composition of relationships. Let
R 1(T1, T2) and R 2(T2, T3) be two well-formed relationships
between tables T1, T2 and T3 with respective common at-
tributes Y1 and Y2. If Y3 = Y1 ∩Y2 6= ∅, then there exists
a well-formed relationship R 3(T1, T3) that is a composition
of R 1(T1, T2) and R 2(T2, T3) with common attributes Y3.

Proposition 6. Fusion of relationships. Let R 1(T1, T2)

and R 2(T1, T2) be two well-formed relationships between
two tables T1 and T2 with respective common attributes
Y1 and Y2. If ∀A ∈ Y1 ∩ Y2, µR 1

(A) = µR 2
(A) then there

exists a well-formed relationship R 3(T1, T2) that is a fu-
sion of R 1(T1, T2) and R 2(T1, T2) with common attributes
Y3 = Y1 ∪Y2.

Given a set of well-formed relationships
R 0(T0, T ), · · · ,R n(T0, T ), n ≥ 0 between two tables
T0, T with respective common attributes Y0, · · · ,Yn. The
common attributes of T0 and T is the union of Y0, · · · ,Yn.

Example 20. In Figure 8, relationships
R (SALES, PROD) and R (PROD, INV ENTORY ) are
composed to yield R (SALES, INV ENTORY ) with com-
mon attributes {PROD SKU,BRAND}. Similarly, R (SALES,

TIME) and R (TIME, INV ENTORY ) are composed
to generate R (SALES, INV ENTORY ) with common
attribute YEAR. Finally, R (SALES, STORE),R (STORE,

WAREHOUSE) and R (WAREHOUSE, INV ENTORY )

are composed to produce R (SALES, INV ENTORY )

with common attributes {CITY,COUNTRY}. Then
the fusion of R (SALES, INV ENTORY ), R (SALES,

INV ENTORY ) and R (SALES, INV ENTORY ) yields
R ′(SALES, INV ENTORY ) with common attributes
{YEAR,PROD SKU,BRAND,CITY,COUNTRY}. However, the
fusion of the two relationships R 1(ORDER, TIME) and
R 2(ORDER, TIME) in Example 13 is not possible because
µR 1

(DAY) 6= µR 2
(DAY) (both relationships map two differ-

ent attributes ORDER.ORDER DAY and ORDER.SHIP DAY to
the same attribute TIME.DAY.

Consider a table T ′0(S′0) which is the result of merg-
ing table T0(S0) with a target schema augmentation T (S)

through a path of relationships reaching T from T0. Then,
each relationship R (T, Ti) (resp. R (T0, Ti)) with common
attributes Y yields a relationship R (T ′0, Ti) if S′0 ∩Y 6= ∅.

4. Quality Guarantees

We now describe the quality guarantees managed by
our system. Section 4.1 evaluates the correctness of aggre-
gated attribute values produced by reduction operations
and merge queries. Sections 4.2 and 4.3 deal with the gen-
eration of ambiguous and incomplete attribute values dur-
ing the construction of schema augmentations (and schema
complements).

4.1. Propagation of aggregable properties

When the schema of a table T0 is augmented with a new
attribute A after a merge with a table T , stating the aggre-
gable property of A that holds in the augmented table is
critical to avoid incorrect aggregations on that augmented
table. This raises two problems:

• The first problem is to define the aggregable prop-
erties of all new attributes which are computed by
some reduction query. These properties include the
identification of the applicable aggregate functions
and the set of dimension attributes along which each
new attribute can be aggregated in the query result
(before merging).

• The second problem is to define the aggregable prop-
erties of the new attributes in the augmented table
obtained after merging the source table with the re-
duction query result.

To address the first problem we determine which aggre-
gate functions are applicable to A in the result T = Q (T ′)

of a reduction query Q over T ′. This falls into one of the
following cases:

1. A is an attribute of T ′, filtered or not. Then if F is
applicable to A in T ′, it is also applicable to A in T .

2. A = F (A′) for some A′ in T ′, i.e., A′ has been aggre-
gated. Then if F is a distributive aggregate function
(see Definition 13 below), F is also applicable to A

in T . Other default functions applicable to A are de-
termined by the co-domain categories of function F

(NUM, DESC or STAT) using Table 4.

3. A holds pivoted values of an attribute A′ of T ′. Then,
if F is applicable to A′ in T ′, it is also applicable to
A in T .

Definition 13 (Distributive aggregate function). Let F

be an aggregate function applicable to a set of domain val-
ues V. If for any partition V1,V2 of V, F(V1 ∪ V2) =

F(F(V1)∪F(V2)) then F is said to be a distributive aggre-
gate function.

Let us illustrate the previous case analysis. Suppose
that an attribute A contains values that are aggregated
from attribute A′ using the average function AVG (case 2).
First, we can easily see that AVG is not distributive, i.e.
cannot be applied to A. Then, according to Table 4, sta-
tistical functions like AVG and STDEV have the domain
category NUM, the co-domain category STAT and the
only functions that can be applied are COUNT, MIN and
MAX. We can conclude that the default aggregate func-
tions that are applicable on A are COUNT, MIN and MAX.

Now, if aggA′(F,Z
′) holds in T ′ and F is applicable to

A in the reduction query result T = Q(T ′), the aggregable
property aggA(F,Z) holds in T for some subset Z ⊆ Z′ of
attributes that are not reduced by the reduction query on
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T ′. For determining Z, we use Definition 6, which states
that it is not possible to aggregate an attribute A along
dimension attributes which do not determine A (item 2).
The following example illustrates how Z can be validated
using Definition 6.

Example 21. Suppose that the fact table
PRICE LIST(PROD SKU, YEAR, PRICE) is a natural schema
complement to SALES with common attributes PROD SKU

and YEAR. Let SALES′ be the natural merge of SALES

with PRICE LIST adding a new attribute PRICE to SALES.
PRICE is of category NUM and aggregable along some
set of variables X using SUM, i.e. aggPRICE(SUM,X).
Suppose that the user decides to define X = {CITY,
COUNTRY}. Then, it is easy to see that an aggregation
Agg

SALES′
(SUM(PRICE) | {PROD SKU,YEAR,REGION})

would wrongly sum up the PRICE values for all products
sold in all cities of the same REGION. Using Definition 6
for aggregable properties, we can see that since attribute
PRICE depends on attributes PROD SKU and YEAR of table
PRICE LIST, these two attributes are the only dimension
attributes that might appear in X and aggPRICE(SUM,X)

does not hold in SALES′ for X = {CITY, COUNTRY}.

We now consider the problem of determining the ag-
gregable properties of the new attributes after merge. The
following proposition states which aggregable properties
hold for attribute A in the augmented table T ′0, knowing
the aggregable properties of A that hold in the used schema
augmentation T .

Proposition 7. Let T ′0(S′0) be a merge of table T0(S0) with
a target schema augmentation T (S). Then the following
aggregable properties hold for all aggregable attributes A ∈
S′0:

1. If aggA(F,V0) holds in T0 and A ∈ S′0 ∩ S0 then
aggA(F,V0) holds in T ′0.

2. If aggA(F,V) holds in T and A ∈ S′0 − S0 , then
aggA(F,V ∩ S′0) holds in T ′0.

Example 22. Suppose SALES′ is the complete natural
merge of SALES and INVENTORY in Figure 8 reduced
by the aggregate query Agg

INVENTORY
(AVG(A) | X) where

A = QTY ON HAND and X = {PROD SKU,YEAR,COUNTRY}.
Function AVG is applied on A that transforms A from cate-
gory NUM to attribute AV G(A) of category STAT. Then,
only COUNT,MIN and MAX are applicable on AV G(A) by
default. Because aggA(AVG,V) holds in INVENTORY for
V = {PROD SKU,YEAR,WH ID,CITY,COUNTRY,TAX NO},
then by Item 2 in Proposition 7, aggAVG(A)(COUNT,V′)

holds in SALES′ where V′ = {YEAR,COUNTRY} (V ′ only
contains dimension attributes which are necessary to de-
termine attribute AV G(A)).

4.2. Non-ambiguous aggregable attributes

As illustrated in Section 1, merge queries may produce
attribute values that are ambiguous with respect to a non-
strict dimension hierarchy. The next definition states that

a schema augmentation T (S) may contain ambiguous at-
tribute values with respect to a dimension D if S misses
some attributes of D which are necessary to distinguish two
tuples of T that are literally equal on their D attributes.

Definition 14 (Ambiguous analytic table). Let T (S) be
an analytic table over a dimension D(SD). Let X = S ∩
SD be the set of attributes in S from dimension D and
X∗ = {Aj ∈ SD | ∃Ai ∈ X,Ai 4

∗ Aj} be the ancestors of
all attributes in X in the hierarchy type of D. Table T

is said to be a non-ambiguous with respect to D if the
literal functional dependency X 7→ X∗ holds in T ./X D

and ambiguous otherwise.

In the following, X∗ is called the closure of X in D. We
also say that a table T is ambiguous if it is ambiguous w.r.t.
at least one dimension and non-ambiguous otherwise.

Example 23. Fact table SALES contains attributes X =

{CITY, STATE,COUNTRY} from dimension STORE (Fig-
ure 8). X is closed w.r.t. the ancestor relationship, i.e.
X∗ = X. Then X 7→ X∗ holds in table SALES ./X STORE

and SALES is not ambiguous with respect to STORE.
Now suppose that SALES′ only contains two attributes
X1 = {CITY,COUNTRY} from dimension STORE. Then
X∗1 = {CITY, STATE,COUNTRY} and X1 7→ X∗1 does not hold
in SALES′ ./X STORE (the city of Dublin exists in two
different states of country USA). In this case, SALES′ is
ambiguous with respect to dimension STORE.

We can show that merge queries over two non-
ambiguous tables generate non-ambiguous results. Con-
sider two tables T1 and T2 that are non-ambiguous w.r.t.
to some common dimension D, i.e. both literal func-
tional dependencies X1 7→ X∗1 and X2 7→ X∗2 hold in D.
Then, by composition of literal functional dependencies,
X1 ∪X2 7→ X∗1 ∪X∗2 holds in T1 ./P T2.

In the case of reduced schema augmentations, it may
happen that a reduction query generates an ambiguous
schema complement from a non-ambiguous input table (by
removing some dimension attributes). The next proposi-
tion defines a sufficient condition for reduction queries to
produce non-ambiguous schema augmentations.

Proposition 8. Let T (S) be a non-ambiguous analytic ta-
ble w.r.t. a dimension D of schema SD. Let T ′(S′) = Q (T )

be a reduction of T . Let X = S ∩ SD and X′ = S′ ∩ SD. If
X′ 7→ X in D, then T ′ is non-ambiguous w.r.t. D.

From Proposition 8 we can directly conclude that any
filter reduction over a non-ambiguous tables generates a
non-ambiguous table (for filter reduction X′ = X and X′ 7→
X holds in all dimensions D). However, for pivot and ag-
gregate reduction queries we must check if X′ 7→ X′∗ holds
in T ′ ./X′ D (Definition 14) to guarantee non-ambiguity
(X′ 7→ X holds in D is a sufficient but not necessary condi-
tion for non-ambiguity).

Example 24. Fact table INVENTORY contains at-
tributes X = {WH ID,CITY,COUNTRY} from dimension
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WAREHOUSE. X∗ = {WH ID,CITY, STATE,COUNTRY}
is the schema of WAREHOUSE and X 7→ X∗ holds
in INVENTORY ./X WAREHOUSE. Therefore, ta-
ble INVENTORY is not ambiguous with respect to
WAREHOUSE. Now, let T be the result of an aggre-
gate reduction as Agg

INVENTORY
(AVG(QTY ON HAND) | X′)

where X′ = {CITY,COUNTRY}. Using Proposition 8, X′ 7→
X does not hold in D. Thus, T might be ambiguous with re-
spect to WAREHOUSE. We then check whether the con-
dition X′ 7→ X′∗ holds in T ./X′ WAREHOUSE, where
X′∗ = {CITY, STATE,COUNTRY}. Based on the attribute
graph in Figure 5, X′ 7→ X′∗ does not hold, and T is am-
biguous with respect to WAREHOUSE

4.3. Complete merge results

A third quality problem we presented in the introduc-
tion concerns merge queries which might produce results
which are incomplete with respect to the original schema
augmentation table.

Example 25. Consider the two analytic tables T0 and T

below related by a well-formed relationship R with com-
mon attributes A1 4 A2 from dimension D1, and B1 4 B2

from dimension D2. Identifiers of T0 and T are K0 =

{A1,A2,B1,B2} and K = {A1,A2,A3,B1,B2} respectively.
Clearly, T is a schema augmentation to T0 with respect
to R . However, merging T0 with T with a left outer join
yields a table T ′0 containing tuples t5 and t6 augmented by
two new null valued attributes A3 and M (there’s no match-
ing tuple in T ). Then, by Proposition 7, if aggregable prop-
erty aggM(F, {A1,A3,B1}) holds in T , it also holds in T ′0.
Then, some valid aggregate query Agg (F(M) | {A2,B2}) will
generate a null value for partition (b1, e1) in the merge T ′0
while the same query has value F({y1, y4}) for the same
partition in T . This possibly undesirable situation occurs
because T ′0 is not a complete merge with respect to T .

Table 7: Example of incomplete merge

T0 A1 A2 B1 B2

t5 a1 b1 d1 e1
t6 a2 b3 d3 e3

T A1 A2 A3 B1 B2 M

t1 a1 b1 c1 d2 e1 y1
t2 a3 b2 c1 d2 e1 y2
t3 a2 b1 c2 d2 e3 y3
t4 a1 b1 c1 d3 e1 y4

Definition 15 (Candidate completion tuples). Let T ′0 be
the merge of T0 and T that are related by a relationship R

with a set of common attributes Y. Let Ytop ⊆ Y be the set
of the “highest” attributes of Y in the corresponding at-
tribute hierarchies. We can define the following two tables
T ct ⊆ T and T cand ⊆ T :

• the natural semi-join T ct = T nY T ′0, where Y =

∧i(T.Ai = T ′0.Ai) for each Ai ∈ Y, is called the com-
pletion table of T with respect to T ′0.

• the natural semi-join T cand = T nYtop T ′0, where
Ytop = ∧i(T.Ai = T ′0.Ai) for each Ai ∈ Ytop, is called
the candidate completion table of T with respect to
T ′0.

Example 26. In Example 25, we have Y = {A1,A2,B1,B2}
and Ytop = {A2,B2}. Then completion table and candidate
completion of T with respect to T ′0 are T ct = T nY T ′0 = ∅
and T cand = T nYtop T ′0 = {t1, t4}.

It is easy to see that T ct ⊆ T cand for all schema aug-
mentations tables T of some table T0. The completeness
of merge queries can now be defined by comparing the
candidate completion table with the completion table.

Definition 16 (Complete merge). Let T be a schema aug-
mentation to T0 with respect to a relationship R having a
set of common attributes Y. The merge result T ′0 of T0
and T is said to be a complete merge with respect to T if
T ct = T cand.

Example 27. Continuing with Example 26, since T cand 6=
T ct, we can conclude that T ′0 is not a complete merge with
respect to T .

The following proposition states how it is possible to
complete the result of an incomplete merge query.

Proposition 9. Let T0(S0) and T (S) be two analytic tables
with a relationship R and common dimension attributes
Y. Let T ′0(S′0) be the merge of T0 and T and Tmiss =

T cand − T ct be the set of all tuples in T lost in the merge
with T0. We can define a completion table T com(S′0) for
all dimensions Di of schema SDi

in T0, 0 ≤ i ≤ n, where
(SDi

∩ S) ⊂ (SDi
∩ S0):

T com = ΠS′0
(Tmiss ./SD0

∩Y D0 ./ · · · ./SDn∩Y Dn) (1)

If Y 7→ S0 ( non-ambiguous merge condition), then

Q m(T0, T ) = T ′0 ∪ T com (2)

is a complete merge of T0 and T with respect to T .

In the above proposition, Table Tmiss identifies the tu-
ples of T cand that are missing in T ′0 to get a complete
merge. Expression 1 augments Tmiss with all dimension
attributes and values that exist in T0 but not in T . This
step avoids generating null values for these attributes and
can be skipped if Y already contains all the dimension at-
tributes in T0. The non-ambiguous merge condition for
Expression 2 checks if Y contains an identifier of T0. If
this condition is true and T0 is not ambiguous, the merge
result is also not ambiguous.

We can apply Proposition 7 to compute the aggregable
property of the completed merge Q m(T0, T ). However,
when the merge T ′0 of T0 with T is not complete, for all
aggregable attributes A where aggA(F, V ) holds in T (A

is an attribute obtained from T ) the aggregable property
aggA(F, ∅) holds in T ′0 (A is not aggregable in T ′0).
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Example 28. Resuming Example 25, we obtain Tmiss =

T cand − T ct = {t1, t4}. Thus, using the notations of Defi-
nition 16, T com = {t1, t4} and Q m returns tuple t5, t6 aug-
mented with M = null and A3 = null completed by tuples t1
and t4 from T . Q m is a complete merge with respect to T .

5. Architecture Overview in SAP HANA

The contributions presented in this paper have been
implemented and published within the SAP HANA plat-
form [15] as a REST application service. The extended
HANA architecture is depicted in Figure 9. White boxes
are new components that implement the algorithms de-
scribed in Section 6 whereas grey boxes are existing HANA
components that have been extended.

Figure 9: Architecture overview

Analytic tables are defined in SAP HANA as non-
recursive information views [16] over non-analytic tables
and other information views using a set of relational op-
erators (e.g ., union, join, projection, aggregate). For ex-
ample, all dimension and fact tables in Section 3.1 can
be expressed as information views. Dimension tables can
be either defined as arbitrary views over non-analytic ta-
bles or as project-union views over other dimension tables.
Dimension attribute hierarchies are part of the dimension
table definitions. The schemas of these information views,
including the role played by dimension attributes or mea-
sure attributes as defined in Sections 2.1 and 2.2, are stored
in the Metadata Catalog. We extended the metadata of
information views by enabling a user to declare the aggre-
gable properties of measure attributes and the attribute
graphs of dimension tables. Default values are used for

missing aggregable properties (see Section 2.3). All these
metadata are also stored in the Metadata Catalog (Agg
Measures and Attribute Graph).

The SAP HANA platform provides a framework of
schedulable metadata crawlers that asynchronously ex-
tract metadata from the definition of tables and infor-
mation views [17]. Extracted metadata are periodically
stored by the Metadata Loader in the Metadata Catalog.
We extended the Metadata Loader as follows. When a
new or updated dimension table is crawled, the Metadata
Loader calls the Identifier Builder which uses its attribute
graph to compute and store its dimension identifier. Sim-
ilarly, the Identifier Builder is called to compute and store
the fact identifier of new fact tables from the attribute
graphs of their dimensions. In both cases, the Metadata
Loader stores the attribute mapping and join relation-
ships extracted from the information views. When new
non-analytic tables are crawled, primary and foreign keys
(PK/FK) are extracted from the Table schemas and new
relationships are created by the Metadata Loader. The
Metadata Loader also recursively composes the relation-
ships and adds them to the set of relationships. If new
relationships are derived for a pair of tables, they are re-
cursively fused, removed from the set of relationships, and
kept separately for maintenance. New relationships are
passed to the SC Graph Builder that updates a Schema
Complement (SC) Graph.

Our new service offers four main REST APIs. The De-
clare Metadata API enables designers to declare relation-
ships between tables which are passed to the SC Graph
Builder. It also supports the declaration of all metadata
(attribute graph, aggregable attributes, and relationships)
generated during the merge of an analytic table with a
schema complement, which are then passed to the Identi-
fier Builder and the SC Graph Builder accordingly. The
Get Schema Augmentation API takes as input a start ta-
ble name T0 and returns a list of schema complements and
augmentations T ′ with their relationships from T0 to T ′.
The Schema Complement Finder component processes a
Get Schema Augmentation request using the SC Graph
and the Table schemas (see Section 6.2). The Reduction
Query Generator API takes an input a target schema aug-
mentation table, and a set of user actions to reduce the
identifier of the target table. It returns a reduction query
and a description of aggregated attributes in the query.
Heterogeneous units and currencies of aggregate reduction
queries are managed using existing core functionalities of
SAP HANA. Finally, the Merge Schema Augmentation
API takes as input a start table and a target schema aug-
mentation table, or a reduction query, and returns as out-
put a final merge query with a list of computed metadata
properties (see Section 6.4). The Schema Complement
(SC) Manager uses a Reduction Query sub-manager to
create a reduction query. In case of aggregate reduction, it
guarantees that heterogeneous units and currencies are not
aggregated together or alternatively converts all units and
currencies to a common one before performing an aggrega-
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Table 8: A tuple from hierarchy table HT

Attribute Value

NODE [North America].[United States].[Ohio].[Dublin]
PRED NODE [North America].[United States].[Ohio]
NODE VALUE Dublin
ATT NAME CITY
IS LEAF 0
LEVEL NUM 4

tion. The SC Manager uses a Natural Query sub-manager
to compute a query for a path of natural schema comple-
ments, detect ambiguous results and create a complement
query if needed. The Merge Query Generator is responsi-
ble for producing the final merge query. It calls the Natural
Query component and the Metadata Propagator to com-
pute the list of metadata properties associated with the
augmented table using metadata propagation techniques
presented earlier in Section 6.4.

6. Algorithms and REST Service Implementation

6.1. Dimension and fact identifiers

In this section we describe how to compute and main-
tain dimension and fact identifiers which play a central
role in our work. We encode attribute graphs into two ta-
bles ATtribute Graph Node (ATGN) and ATtribute Graph
Edge (ATGE). Their schema are respectively:

ATGN (DT ID, ATT NAME, LEVEL NUM, OPTIONAL)

ATGE (DT ID, ATT NAME, PARENT ATT NAME, LABEL)

Each hierarchy in a dimension table is identified by a
distinct DT ID value. Table ATGN stores attribute nodes,
with their level in the hierarchy and whether they can
take null values (OPTIONAL = 1). Table ATGE stores all
edges in attribute graphs where LABEL can take values:
‘+’, ‘1’, ‘f’. In both tables, attribute names with value
‘ bot’ or ‘ top’ represent the two special attributes ⊥ or
> respectively.

Example 29. Table 9 shows tuples that encode the at-
tribute graph of dimension WAREHOUSE in ATGN and
ATGE.

When an attribute graph has not been defined by a
user over the hierarchy of a dimension table, Algorithm 1
provides the option to efficiently compute it from a sam-
ple of the dimension table using the indexing scheme of
SAP HANA, called Hierarchy Table (HT) [18], which en-
codes the nodes of a hierarchy instance represented in a
dimension or a fact table.

Example 30. Node ‘Dublin’ of ‘Ohio’ in the hierarchy
of REGION in Figure 3 is encoded as one tuple in HT
(attribute names are on the left) shown in Table 8. It
contains information about its path from the top-level node,
its parent node, its attribute name, whether it is a leaf
node, and its level number in the hierarchy.

Algorithm 1 Attribute Graph Generation (ATG)

input: HT hierarchy table
output: attribute graph

1. Initialization. All attributes in ATGN are ini-
tialized with OPTIONAL = 0; edges having
PARENT ATT NAME = > are initialized with LABEL =

f ; edges having ATT NAME = ⊥ are initialized with
LABEL = +.

2. Find all attributes (except bottom level attributes ⊥)
in HT that have ‘IS LEAF = 0’ and add an additional
edge from ⊥.

3. Update ATGN by marking all attributes that are
nullable with OPTIONAL = 1.

4. For each (ATT NAME, PARENT ATT NAME) pair in
ATGE, if for a NODE VALUE value for the same
attribute ATT NAME, there are more than one
PRED NODE values for PARENT ATT NAME, then mark
the edge with label +. If there is only one single value
in PARENT ATT NAME then mark the edge with label
f .

5. For each + labeled edge (ATT NAME,

PARENT ATT NAME) in ATGE where ATT NAME

is optional in ATGN, if for all non-null NODE VALUE

values for the same attribute ATT NAME, there is
only one PRED NODE value for PARENT ATT NAME

then update the edge with label 1.

Given an attribute graph over some attribute hierar-
chy, a dimension identifier for all valid tables with respect
to that attribute graph, is computed using the CDI algo-
rithm. The worst-case time complexity of this algorithm is
linear in the size (number of nodes and edges) of attribute
graph D.

Example 31. We apply function CDI on the attribute
graph of REGION in Figure 4. dimId is initialized with
all attributes of REGION . Only CONTINENT is removed,
because it has a label f in-edge. In Line 16, the result
dimension identifier dimId is {CITY, STATE, COUNTRY}.

By Proposition 2, the union of the identifiers of each
group of dimension attributes occurring in the fact table
defines a fact identifier of a fact table. However, this iden-
tifier might not be minimal. For example, when the fact
table is defined as a view from a non-analytic table for
which we know a key, if all attributes of this key have an
attribute mapping relationship into a (strict) subset of the
fact identifier attribute, this subset is also a fact identifier.

Example 32. Recall the fact table INVENTORY of Ex-
ample 6. Suppose that this table is defined as a view
over non-analytic table INVENTORY ct with primary key
K ={PROD SKU, YEAR, WH ID, COUNTRY}.
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Table 9: Attribute graph for dimension WAREHOUSE

(a) ATGN

DT ID ATT NAME LEVEL NUM OPTIONAL

1 bot 0 0
1 WH ID 1 0
1 CITY 2 0
1 STATE 3 1
1 COUNTRY 4 0
1 top 5 0

(b) ATGE

DT ID ATT NAME PARENT ATT NAME LABEL

1 bot WH ID ‘+’
1 WH ID CITY ‘f’
1 CITY STATE ‘+’
1 WH ID STATE ‘f’
1 STATE COUNTRY ‘1’
1 CITY COUNTRY ‘+’
1 COUNTRY top ‘f’

Algorithm 2 Compute Dimension Identifier (CDI)

1: input:
2: D: Attribute graph of dimension table with
3: schema S
4: X: A subset of S
5: output:
6: dimId: Dimension identifier for S
7: begin
8: Initialize: dimId← X

9: for Attribute A in dimId do
10: if (A has one label f in-edge from X in D) or
11: (A only has label 1 in-edges from X in D)
12: then
13: dimId← dimId− {A}
14: end if
15: end for
16: return dimId

17: end

INVENTORY ct(PROD SKU, YEAR, WH ID, COUNTRY,
TAX NO, QTY ON HAND, TAX AMT)

Each attribute of the primary key has a correspond-
ing attribute mapping relationship with one attribute of
the initial fact identifier K′ ={PROD SKU, YEAR, WH ID,
COUNTRY, TAX NO } computed by function CDI as given
in Example 6. K is strictly included in K′ and can be used
instead of K. It implicitly follows that dimension TAX

depends on the other dimensions of that fact table.

An update of a dimension table may violate the at-
tribute graph constraints defined for that table, and hence
the dimension identifier generated from that attribute
graph. Thus, when a non-analytic table is updated, we
must check if the attribute graph is still satisfied and the
dimension identifier is still valid in T . If the uniqueness
test fails, the update must be rejected. Since dimension
tables are not frequently updated, the uniqueness test en-
tails a small overhead in the transaction processing work-
load. In addition, the uniqueness test can be efficiently
implemented using Hierarchy Tables.

6.2. Computing schema augmentations and complements

The Metadata Catalog contains the native relation-
ships that are extracted from the definition of analytic
tables or explicitly declared by the user, and the derived
relationships obtained using composition and fusion. From
these relationships, schema augmentations and comple-
ments are discovered by exploring a Schema Complement
graph defined as follows.

Definition 17 (Schema Complement graph). Let T =

{T0, T, · · · , Tn} be a set of tables and R = {R jk, · · · ,R nm}
be a set of relationships between tables in T , where R jk ∈
R is a relationship between Tj and Tk. A Schema Com-
plement (SC ) graph for T and R is a directed property
graph SC = (T ,E) connecting the tables in T by a set of
labeled edges E where:

1. for each R jk ∈ R there exist two edges E(Tj , Tk) and
E(Tk, Tj).

2. each edge E(Tj , Tk) is labeled by a complement type
E .CT : if the common attributes of R jk contain the
identifier of Tk then, E .CT = ‘NAT’ (natural edge)
else E .CT = ‘AUG’ (augmentation edge).

Figure 10: SC graph example for Figure 8

Example 33. Figure 10 shows a partial SC graph for the
relationships of Figure 8. Each edge is labelled with a ref-
erence to a relationship and its CT label. Nodes represent
tables with their identifiers (ID).

The Get Schema Augmentation API is implemented
by the function CSA in Algorithm 3. Given a table T0,
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Algorithm 3 Compute Schema Augmentation (CSA)

1: input:
2: T0: start node (table)
3: SC : schema complement graph

4: output:
5: result: [(T,CT, newAttrsrs, rid)] :
6: – T : destination table
7: – CT : complement type
8: – newAttrs: new attributes
9: – rid: relationship with destination T

10: altEdges: [(T,CT, rid)] : list of optional paths

11: begin
12: result and altEdges are empty
13: mark T0 as visited
14: for all edges e(T0, Ti) in SC do
15: if Ti is not visited then
16: mark Ti as visited
17: newAttrs← new attributes in Ti w.r.t. T0
18: add (Ti, e.CT, newAttrs, e.rid) to result

19: if e.CT = ‘NAT’ then
20: add CSA(Ti, SC ) to (result, altEdges)

21: end if
22: else
23: add (Ti, e.CT, e.rid) to altEdges

24: end if
25: end for
26: return (result, altEdges)

27: end

the function CSA explores a possibly cyclic SC graph and
returns an array of schema augmentations for T0. Lines 13
and 16 avoid infinite loops during traversal by marking
visited nodes. Also, if multiple paths exist between T0
and a schema complement T , a single edge from T0 to
T is added to result and alternative edges are added to
altEdges. Thus, a single path of relationships from T0 to
T is built in result, which depends on the edge E(T0, T )

selected at the first iteration. Line 20 recursively con-
tinues the exploration for ‘NAT ’ edges, possibly adding
new arcs to result. Line 17 compares the attributes of T0
and T as follows. If T0 has never been augmented with
schema augmentations before, any attribute of T that is
not in common with T0 is considered to be new. Other-
wise, the attributes of T0 that come from previous schema
augmentations with T have metadata that indicate their
provenance from T and newAttrs is empty. In both cases,
a new entry is added to result to construct the full path
from T0 to a subsequent schema augmentation T .

Our implementation of the CSA algorithm leverages
the SAP HANA graph engine [19] which supports vari-
ous graph algorithms over graph data stored in a colum-
nar table storage (using a table of nodes and a table of
edges). First, we use the GET NEIGHBORHOOD algo-
rithm of the graph engine to compute the set Reachable of
all tables that are reachable from T0 through a sequence

of natural ‘NAT ’ edges followed by at most one augmen-
tation ‘AUG ’ edge. We use the term connected for nodes
which are connected by any path without taking account of
this restriction. The GET NEIGHBORHOOD performs a
breadth-first search and returns all reachable tables. Sec-
ond, we select all edges whose start node and end node are
in: T0∪Reachable and order them by respecting the ascend-
ing depth with respect to T0. These edges are then anno-
tated with their set of new attributes which is retrieved
using SQL queries over the table schemas in the Meta-
data Catalog. Finally, the resulting SC graph is built and
traversed in the main-memory of the application server
engine. Given the edge ordering in the SC graph accord-
ing to their depth with respect to T0, algorithm CSA al-
ways returns the shortest path to a given table in Result.
The use of a clever exploration strategy is left open for fu-
ture work. However, in Result, schema augmentations and
complements are returned sorted according to the depth-
first search exploration of the SC graph.

Example 34. We illustrate our iterative implementation
of algorithm CSA with input T1 on Figure 10. First,
CSA computes all tables which are reachable from T1 in
SC by a sequence of NAT edges and followed by at most
one AUG edge. We obtain, Reachable = {T2, T4, T3}.
The next step retrieves the list of edges connecting nodes
in T0 ∪ Reachable, ordered by their distance from T1 :
Edges = [E(T1, T2),E(T1, T4),E(T1, T3),E(T3, T2)]. The al-
gorithm then processes each edge E(Tk, Ti) in Edges as fol-
lows. If the target table Ti has not been visited yet, the set
of new attributes newAttrsi is computed for Ti and the edge
is added to Result. All other edges are added to altEdges.
In our example, this produces (T2, AUG, newAttrs2,R 12)

for edge E(T1, T2), (T4, AUG, newAttrs4,R 14) for edge
E(T1, T4) and (T3, NAT, newAttrs3,R 13) for edge E(T1, T3).
For edge E(T3, T2), table T2 is marked as visited and
(T2, AUG,R 23) is added to altEdges.

Suppose now that (T2, AUG, newAttrs,R 12) is selected
for augmenting the schema of table T1, resulting in a new
table T ′1. Then there might appear new tables that are
reachable from T ′1 in the graph of Figure 10, which were
not reachable from the original table T1. For example T6
is only accessible through two AUG edges from T1, but by
a single AUG edge from T ′1. However, we can show that
T ′1 will never connect to more tables than to those that
are already connected to T1 and T2 in SC . In other terms,
all schema augmentations reachable from a schema merge
table T ′1 in SC are also connected to the original table T1
in SC .

6.3. Creating a reduction query

The Compute Schema Augmentation (CSA) API re-
turns a set of schema augmentations for some source table
T0. Assume that a user selects a schema augmentation ta-
ble T with complement type ‘AUG’ and relationship path
R 1(T0, T1), · · · ,R n(Tn−1, T ), n >= 1 as a schema augmen-
tation for T0. Let Yn be the set of common attributes of
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Tn−1 and T , and K be the identifier of T . Then, a natu-
ral schema complement to T0 can be obtained by reducing
all attributes in K − Yn through one or several reduction
queries. Table 10 shows the reduction actions that a user
can express on each attribute A of K−Yn and their impact
in terms of reduction queries. Without loss of generality,
we consider here that each user action reduces a single
attribute of K−Yn.

Table 10: User actions to create a reduction query

User action Impact on reduction query

Filter defines a set FilP of filter predicates Ai =
vi, vi ∈ dom(Ai); yields a filter reduction;

Pivot defines a set of attributes PivA that are pivoted
as columns; yields a pivot reduction;

Remove defines a set of attributes RemA which are re-
moved from the result of the reduction query;
yields an aggregate reduction;

Aggregate defines a set AggA of aggregated attributes
Fi(Ai); yields an aggregate reduction

We now introduce the Reduction Query Generation
(RQG) API which takes five inputs: (T , FilP , PivA,
RemA, AggA), and returns two outputs as described below:

Algorithm 4 Reduction Query Generation (RQG)

input:
T : destination schema augmentation table

FilP : a set of equality predicates of the form A = v

for filtered attributes A ∈ K

PivA: a set of pivoted attributes
RemA: a set of attributes removed from K

AggA: a set of aggregated attributes of the form
F (A) where A ∈ S

output:
Q : reduction query

AggA′: aggregated attributes of the form F (A) in Q

Verify inputs and order reduction operations. The reduc-
tion process is separated into three optional reduction
steps whose execution depends on the user input. Fil-
ter and Pivot are executed, respectively, when FilP and
PivA are not empty. Aggregate is executed when RemA

or AggA is not empty. The default ordering of reduction
operations is: 1) Filter, 2) Pivot, 3) Aggregate.

Step 1: Apply filter reductions. A filter reduction query
Q Fil = FilterT (FilP ) on the target schema augmentation
table T is created and executed.

Step 2: Apply pivot reductions. A pivot reduction query
Q Piv is generated over the result of query Q Fil. It is of
the form Pivot Q Fil

(Xval | PivA), where Xval is the set of
aggregable attributes in T .

Step 3: Apply aggregate reductions and detect if the re-
sult is ambiguous. First, each aggregate Fi(Ai) in AggA

is checked for correctness with respect to the aggregable
properties of the attribute Ai and attributes RemA. Then,
an aggregate query Q Agg is generated over the result of
query Q generated in the previous Filter and Pivot reduc-
tion steps. It is of the form: Agg

Q
(Fi(Ai), . . . | X), where

each Fi(Ai) belongs to AggA or to the new attributes whose
values were pivoted in Q , and X = K−RemA− PivA.

Generate reduction query. The output reduction query
Q is generated by the previous Filter, Pivot and Aggre-
gate reduction steps. AggA′ is the set of aggregable at-
tributes containing attributes from input AggA and at-
tributes whose values were pivoted in the pivot reduc-
tion query step (i.e., the Xval attributes). This set is
needed for the propagation of aggregable properties (see
Section 4.1). The identifier K′ of the result of Q (T ) is
K′ = K − FilA − RemA − PivA where K is the identifier
of T , RemA and AggA are defined in Table 10 and FilA

corresponds to the attributes in the filter predicates FilP .

Example 35. Consider T1 = SALES is a schema
augmentation to T2 = INVENTORY in the SC graph
of Figure 10. When augmenting the schema of
T1 with T2, a reduction query can be expressed as
an RQG call: RQG(T1, ∅, ∅, RemA, {SUM(AMOUNT)},
where RemA = {MONTH, STATE}. Because PivA and
FilP are empty, a single aggregate reduction is ex-
ecuted: Q Agg = Agg

T1
(SUM(AMOUNT) | X), X =

{PROD SKU,YEAR,CITY,COUNTRY}. Indeed, X is a subset
of the identifier of T1 and attributes MONTH and STATE

have been reduced. Thus, the RQG call finally returns a
reduction query Q Agg and {SUM(AMOUNT)} as a single
aggregated attribute.

Example 36. An alternative way to reduce SALES

when augmenting the schema of INVENTORY is to use
an RQG call: RQG(T1, {STATE =‘Ohio’}, {MONTH}, ∅, ∅)
on the SC graph of Figure 10. Because AggA and
RemA are empty, only filter and pivot reductions are ap-
plied. A filter reduction is created in step 1 as Q Fil =

FilterT1
({STATE =‘Ohio’}). In step 2, the pivot re-

duction is applied on the result of Q Fil as Q Piv =

Pivot Q Fil
({AMOUNT} | {MONTH}). Thus, the RQG call

returns a query Q Piv, and an empty set of aggregated at-
tributes.

6.4. Computing an augmented schema

Suppose that a user selects a table Tdest returned by the
Compute Schema Augmentation API call as a schema aug-
mentation to a table T0 with respect to a path of relation-
ships R 1(T0, T1), · · · ,R n(Tn−1, T ), n >= 1. We now intro-
duce the Merge Schema Augmentation (MSA) API, which
takes five inputs (T0, T , path, noamb, comp) and returns
one merge query Q as described below. The input table
T is defined as follows. When the chosen schema augmen-
tation Tdest has not been reduced, the input T is equal to
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Tdest with a set of new attributes Xnew and R n(Tn−1, T ) =

R n(Tn−1, Tdest) maps to an edge in the schema comple-
ment graph SC . Otherwise, T = Q red(Tdest) represents
the reduction query Q red over Tdest obtained as an out-
put of the Reduction Query Generation (RQG) API call,
and R n(Tn−1, T ) corresponds to a natural schema comple-
ment edge (CT = ‘NAT’). The Boolean parameter noamb
is true when no ambiguous value must appear in a merged
result and the Boolean parameter comp is true when the
merge must be complete.

Algorithm 5 Merge Schema Augmentation (MSA)

Inputs:
T0: starting table
T : destination table Tdest or a reduction query

Q red

Xnew: attributes in T that will be merged to T0
path: {R 1(T0, T1), · · · ,R n(Tn−1, T )}

noamb: true when result must be non-ambiguous
comp: true when merge must be complete

Output:
Q : final merge query

An MSA call is processed in three steps detailed there-
after.

Step 1: Create query Q a to update ambiguous tuples in
T . When flag noamb = false, this step does not check
for ambiguous results and returns Q a = T . When flag
noamb = true, we first check if T is non-ambiguous. When
T is not ambiguous for each dimension D in T w.r.t. Propo-
sition 8, then we return Q a = T . Otherwise, by Defini-
tion 14, detecting if T contains ambiguous values requires
computing for each dimension D used in T , the identi-
fier of the ancestors X∗(D) of all key attributes in T from
dimension D. This identifier is computed over the at-
tribute graph of dimension D restricted to the attributes
in X∗(D) and using Proposition 1. When T is detected
as possibly ambiguous with respect to a dimension D, we
build a query Q a which replaces the measure values of
all ambiguous tuples in T by null values. A tuple t in
T is detected as ambiguous if there exists a dimension D

and two tuples t1, t2 ∈ D such that t1.X
∗
D 6≡ t2.X

∗
D and

t1.XD ≡ t2.XD ≡ t.XD. For this, query Q a joins the result
of T with each dimension table D on their common at-
tributes XD to obtain all X∗D attribute values, and nullifies
(invalidates) all measure attributes of all tuples t where the
size of the partition corresponding to tXD

is greater than
1.

Step 2 (optional): Create a query Q c to compute a comple-
tion table for the merge of T0 with T . When flag comp =

true, the we apply the steps of Proposition 9 to build a
query Q c which computes a completion table T com. Let Y

be the set of common attributes between T0 and T (com-
mon attributes are obtained by composition of the rela-
tionships of path). If the LFD Y 7→ S0 holds in T0(S0),

then the non-ambiguous merge condition of Proposition 9
is satisfied and a query Q c is generated to create the com-
pletion table T com that completes the merge of T0 with
Q a of Step 1.

Step 3: Create the final query merging T0 with the re-
sults of Steps 1 and 2. First, a query Q path is cre-
ated to merge T0 with the sequence of natural schema
complements T1, · · · , Tn−1 represented by R 1(T0, T1), · · · ,
R n−1(Tn−2, Tn−1) in parameter path. Let Yi be the com-
mon attributes in relationship R i. Then, Q path = T0 ./Y1

T1 · · · ./Yn−1
Tn−1. Next, Q path is merged with Q a and we

obtain Q ′ = πS′0(Q path ./Yn
Q a), where S′0 is the schema

of T0 augmented with the new attributes Xnew coming
from Q a. Finally, if comp = true, then Q c (obtained from
Step 2) will be added to the previous result Q ′ and the
final result is Q = Q ′ ∪ Q c. Otherwise the final result is
Q = Q ′.

Example 37. Consider a merge schema augmentation
MSA(T2,Q (T1), {SUM(AMOUNT)}, {R 12}, true, true) on the
SC graph of Figure 10 (T1=SALES is a schema augmen-
tation to T2=INVENTORY), and Q (T1) is the output of
the RQG call in Example 35. Since Q (T1) is a reduc-
tion query, we add a natural complement edge R(T2,Q (T1)

(with CT = ‘NAT’) to the schema complement graph.
– Step 1: The destination table Q (T1) is a reduction

query and may contain ambiguous values. We must com-
pute all ambiguities over attribute PROD SKU from dimen-
sion PROD, attributes CITY and COUNTRY from dimen-
sion STORE and attribute YEAR from dimension TIME.
This step generates a query Q a which joins Q with di-
mension table STORE and sets all aggregated measure at-
tributes of ambiguous tuples t ∈ Q (T1) to null. For ex-
ample, suppose that STORE contains two tuples t1 and t2
with the same values for attributes CITY and STATE and
different REGION values, e.g. (Dublin,Ohio, UnitedStates)

and (Dublin, California, UnitedStates). Query Q aggre-
gates these tuples into a single ambiguous tuple t, and Q a

sets the aggregated SUM(AMOUNT ) value in t to null

– Step 2: The set of common attributes between T2
and Q (T1) is Y = {PROD SKU,YEAR,CITY,COUNTRY}. The
non-ambiguous merge condition Y 7→ A in Proposition 9
holds for all attributes of T2 and a completion query Q c =

T com, as defined in Proposition 9, is created to generate
tuples that complete the merge of T2 with Q (T1).

– Step 3: Table T2 is connected to Q a by a natu-
ral schema complement edge R(T2,Q a) and Q path = T2.
Then Q = πS′(T2 ./Y Q a))) is a natural merge, where
S′ contains the schema of T2 augmented with attribute
SUM(AMOUNT), and the final result is Q ∪ Q c.

The following proposition states that the RQG and
MSA API compute a correct merge result.

Proposition 10. Let query Q be the result of a MSA(T0,
T , path, true, true) call with a start table T0(S0), a tar-
get schema augmentation table T (S) and a path of rela-
tionships: path = R 1(T0, T1), · · · ,R n(Tn−1,Q a), n >= 1. If
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R n(Tn−1,Q a) maps to an augmentation schema comple-
ment edge (CT = ‘AUG’), then Q computes a augmented
merge of T0 with Q a (without ambiguous values). Other-
wise, R n(Tn−1,Q a) maps to a natural schema complement
edge (CT = ‘NAT’) and Q computes a natural merge T0
with Q a.

7. Related Work

The notion of natural schema complement was first
proposed by [8] for web tables (tables extracted from web
page) where join relationships between tables are discov-
ered by computing schema matching similarities [20] using
a combination of similarity in attribute names, data types,
and values (through a variant of Jaccard similarity). In
the context of web tables, [9] presents direct and holistic
schema matching techniques to discover natural schema
complements for a given web table and user-specified at-
tribute names. Similarly, Data civilizer [10] uses schema
matching techniques to build a linkage graph between arbi-
trary datasets for suggesting natural schema complements.
Our solution differs firstly by leveraging more “trusted”
relationships which are extracted from user defined ana-
lytic fact and dimension tables (views). Join relationships
are enriched by attribute mapping relationships to express
mappings extracted from view definitions relating view at-
tributes and their corresponding source table attributes.
However, regardless of these particular features, our frame-
work does not exclude the use of other schema matching
techniques, including recent ones like [21], to discover new
join relationships between heterogeneous dimensions (e.g.,
like between STORE and WAREHOUSE in the examples
of this paper). Secondly, we extend previous schema com-
plement models with the notion of reduction-based schema
complements which come with new data quality issues. We
formally define these issues and show how to check and
solve them.

Another notion similar to schema complements is
“drilling-across” fact tables related through “conformed
dimensions” [1, 2], i.e., through dimensions which are ei-
ther identical or where one is a subset of the other. Drill-
across queries perform left or full outer joins operations be-
tween fact tables on their common conformed attributes.
Our solution generalizes this notion by handling the more
general case of merge queries between dimension tables
and between fact and dimension tables. To support “drill-
across” queries through two related but non-conformed di-
mensions, [22] proposes to build the intersection or union
of these dimensions provided that they are “compatible”,
i.e., they can be related by a perfect matching that is co-
herent, sound, and consistent. Our model is more general
because it relaxes each of these constraints on dimensions.
Indeed, relaxation of coherence is managed by our defi-
nition of a merge query which accepts the duplication of
common attributes in a merge. Soundness and consis-
tency constraints are respectively handled by our defini-
tion of complete merge, and the detection of ambiguous

tuples in the merge results. Thus, our solution can find
a schema augmentation over incompatible dimensions to
a given fact table and compute a merge corresponding to
a drill-across query that would not be accepted by [22].
Finally, although the idea of using arbitrary relationships
between tables to express general drill-across queries has
early been introduced in [23], no well-defined and imple-
mented method to support such queries was published be-
fore. To the best of our knowledge, our solution is the first
implementation that addresses the use cases presented in
[23].

The quality of aggregate queries over fact tables has ex-
tensively been studied in the literature through the notion
of summarizability defined as the “correct computation of
aggregate values with a coarser level of detail from val-
ues with a finer level of detail” [13]. Summarizability was
introduced in [24] and various conditions to ensure summa-
rizability have been proposed [25, 26, 27, 28]. We adapt
these results to the context of schema complements and
the use of SQL semantics with nulls to characterize, for
example, ambiguous aggregable attributes in the presence
of non-strict hierarchies. We also leverage and extend pre-
vious work on additive measures [14, 2] to define applica-
ble aggregate functions before a merge, and propose tech-
niques to infer which aggregate functions are applicable
after a merge. This enables us to propagate metadata on
analytic tables across schema augmentations. Our results
go beyond summarizability because, as with the approach
suggested in [29, 25], we tolerate inaccurate measure val-
ues in a merge result, but clearly identify theses values and
control their usage through their aggregable properties or
the generation of null values. In addition, our method of
computing complete merges is novel and was not consid-
ered in previous works on summarizability.

Dimension identifiers are essential for checking the co-
herence of analytic operations, and especially for verify-
ing the semantic correctness of joins between analytic ta-
bles [1, 2, 22]. The work presented in [30] introduced the
constraint that the bottom-level dimension attributes de-
termine all other attributes in the dimension hierarchy. A
similar kind of user-defined dimension identifiers are surro-
gate keys [2], which correspond to “artificial” bottom-level
key attributes like CUSTOMER ID or TIME ID. An anal-
ogous approach has been introduced in [28] by enforcing
linear dimension hierarchies, where each attribute has at
most one parent attribute. On the one hand, the previous
constraints and definitions simplify the problem of deter-
mining the dimension identifiers and to avoid the defini-
tion and analysis of LFD dependencies between dimension
attributes. On the other hand, the trade-off of this simpli-
fication is the incapacity to infer new dimension identifiers
for the result of operations which reduce the number of
dimension attributes. This also restricts the set of com-
posable operations to those which preserve these surrogate
keys.

Example 38. Table SALES in Figure 8 contains attributes
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MONTH, YEAR from dimension TIME. Suppose that the
bottom-level attribute DAY is the surrogate key (dimension
identifier) of dimension TIME. Then, without additional
information, we cannot determine the new fact identifier
of SALES, as we do in Example 6 by using the correspond-
ing attribute graphs.

8. Experimental Evaluation

8.1. Attribute Graph and Dimension identifier Computa-
tion

All performance experiments for attribute graph gener-
ation (ATG) and dimension identifier computation (CDI)
are conducted on an SAP HANA instance with 250 GB of
main memory and 300 GB of disk space.

8.1.1. Computation of an attribute graph

Our first experiment consists in testing the perfor-
mance of Algorithm 1 (ATG) for the generation of at-
tribute graphs. We generate several hierarchies (dimen-
sion tables) and compare the performance of building at-
tribute graphs according to four parameters as shown in
Figures 11 and 12: (a) the size of the input dimension ta-
ble (rows); (b) the number of hierarchy nodes / dimension
attributes (without ⊥ and >); (c) the number of +-edges
in the resulting attribute graph; (d) the total number of
edges in the resulting attribute graph.

The first experiments concern the generation of at-
tribute graphs for linear strict hierarchies. The result-
ing attribute graphs for n level types then have exactly
n nodes and n − 1 f -edges (no + and 1-edges). To
achieve this, we generate for each dimension attribute a
random number in the interval [0, 9999], and concatenate
this value with its parent attribute value. For example,
some dimension table T1 with attributes L1 4 L2 4 L3 4
L4 4 L5 might contain a tuple (L1:‘63.789.266.7426.2629’,
L2:‘63.789.266.7426’, L3:‘63.789.266’, L4:‘63.789’, L5:‘63’).
The goal of this process is to produce only f -edges by en-
suring that L1 7→ L2 7→ L3 7→ L4 7→ L5. Figures 11a and 11b
show that computation time increases linearly with the in-
put table size (5 nodes/attributes) and with the number
of nodes / attributes (10k and 50k rows) for these linear
strict hierarchies.

The goal of the following experiments is to show the
performance evolution w.r.t. to the number of additional +

and 1-edges. These edges are created by ignoring the par-
ent attribute value and allowing null values during the gen-
eration of an attribute value (multiple parents). The di-
mension tables used in the experiments contain 10K rows.
Figure 12a shows the performance evolution in a hierarchy
over 10 attributes for additional +-edges generated by non-
strict hierarchies without null values. Figure 12b shows the
performance evolution for hierarchies with other additional
edges produced by allowing null values during the hierar-
chy generation process. We can see that the computation
time slightly decreases in both cases with the number of

additional edges. For hierarchies of less than 10 nodes
and samples of less than 50 K rows, which corresponds to
a large number of real use cases, the computation of an
attribute graph takes less than 20 seconds.

Finally, for a dimension table with a very large sample
size of 1.1M rows and 5 nodes, the computation of the
attribute graph takes 67 seconds, which is still acceptable
for an occasional system background call.

8.1.2. Computation of dimension identifiers

Algorithm 2 (CDI) takes an attribute graph D and a
set of attributes X as input for computing the dimension
identifier Y of X, such that Y 7→ X. If X is the set of all
attributes of a dimension table D, Y is the dimension iden-
tifier of D. We tested 20 different attribute graphs with
5 to 20 nodes and 4 to 28 edges. All dimension identi-
fiers of these attribute graphs are computed in less than 9

milliseconds with a maximal variation of 2 milliseconds.

8.1.3. Comparison with related work

Inferring functional dependencies (FD) from relations
is an old problem and many efficient algorithms have
been proposed in the literature (see [31] for a compari-
son of 7 representative FD detection algorithms). These
algorithms traditionally adopt NULL-NOT-EQ or NULL-
EQ [32] semantics for null values in the dependent at-
tribute A of a functional dependency X → A. A third
approach is to apply probabilistic semantics to generate
approximate FDs [32]. In our data model, we consider
NULL-EQ (literal equality) semantics and we also sup-
port null values in the determinant attribute set X. Under
NULL-EQ semantics, we then could apply an appropriate
skolemization function which transforms all null values a
dimension table into skolems by fully respecting the exist-
ing hierarchy. Then, any existing FD detection algorithm
could be used to detect all LFD dependencies with NULL-
EQ semantics.

However, there exists a second important difference be-
tween our setting and the standard relational setting. As
it can be seen in the definition of attribute graphs, we
only consider functional dependencies X→ A where X and
A appear in the same dimension table and all determinant
attributes in X are descendants of the depending attribute
A in the corresponding hierarchy type. This reduces the so-
lution space that has to be explored and enables high prun-
ing by leveraging the attribute hierarchy during the detec-
tion process. As our experiments show, the cost increases
linearly with the number of attributes opposed to expo-
nential increase for general FD algorithms [31, 33]. Thus,
our solution is more efficient than general purpose algo-
rithms for the discovery of identifiers in the limited case of
dimension tables. Finally, the representation of LFD de-
pendencies in the form of attribute graphs expresses known
properties of hierarchies and is more natural to understand
by a domain expert.
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8.2. Business intelligence scenario

Our second series of experiments checks the usage of
the schema augmentation REST service, including the
CSA, RQG, and MSA APIs described in Section 6, in a
business intelligence setting. For this, we chose a concrete
application of a worldwide clothing company which per-
forms stock analysis in retail stores and customer segmen-
tation. The application contains 281 non-analytic tables
used for defining 42 information views representing dimen-
sion tables, and 145 carefully optimized information views
representing fact tables. We classified th efact tables into
two main categories: (a) 22 first-level views defined by a
star-join between a non-analytic table storing facts (possi-
bly completed with left-outer joins with other tables pro-
viding details) and dimension tables, and (b) 72 join views
defined by a set of joins, aggregations and filters over fact,
dimension and non-analytic tables. The remaining fact ta-
bles are defined using union and simple aggregations over
other fact tables.

8.2.1. Experiments

In the first experiment, our goal is to select a join view,
also called Hand-Crafted View, denoted by HCV, as a tar-
get and verify if we can generate an equivalent view, de-
noted by GV for Generated View),by iteratively extend-
ing a first-level start view (table) through possibly several

schema augmentation steps, each of which consisting of a
sequence of CSA - RQG - MSA API calls.

At each iteration, we simulate a user who selects a sug-
gested target schema augmentation, defines optional filter
conditions on target table attributes and adds calculated
attributes after the merge.

Before running our experiment, we first create the at-
tribute graphs of all dimension tables. Some HCV views
directly access non-analytic tables. For being conform to
our model, which only extends analytic tables with other
analytic table, we then build all missing first-level views
over the non-analytic tables, which includes the definition
of the aggregable properties of all measure attributes. Fi-
nally, we crawl all first-level views and their underlying
non-analytic tables to extract all direct and derived rela-
tionships (including PK-FK relationships) and to compute
the dimension and fact identifiers, as explained in Section
5. An extract of the resulting SC graph is shown in Figure
13.

We illustrate our protocol with the example of an ex-
isting hand-crafted view HCV. The definition of this view
starts from a non-analytic table ct LINEITEM, performs a
sequence of left-outer joins and aggregates with five other
non-analytic tables storing different facts, followed by a
star-join with five dimension tables. The definition of HCV
is shown in Figure 14 which represents dimension tables by
bold rounded rectangles, fact tables by bold square rectan-
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Figure 13: Extract of the SC graph for analytic tables

gles, non-analytic tables by regular square rectangles, and
intermediate tables by dashed rectangles. Intermediate ta-
bles are created to store the intermediate results during the
view constructions (e.g. TEMP 1 represents the result of
the join between ct LINEITEM and ct TRANSACTION).

Figure 14: Construction of HCV

Figure 15 gives a partial view of the SC graph for
the analytic tables joined in the HCV example. The ta-
ble cardinalities range from 1.4M rows (WEB ORDER) to
23M rows (ITEM TAX and LINEITEM). All tables D1 to
D10 are dimension tables and all other tables are first-
level views defining fact tables. We use the notation
WEB ORDER(D5, D8) to state that the fact identifier of
table WEB ORDER only contains dimension attributes of
dimension D5 and D8. For clarity, the figure does not
show the edges corresponding to derived relationships. In
particular, all five fact tables are pairwise connected by de-
rived SC edges. The primary keys of non-analytic tables

are propagated to the corresponding fact tables (views) to
account for the dependencies between dimensions, e.g . in
WEB ORDER, {D5, D8} 7→ D7.

Figure 15: Partial SC graph for analytic tables

Using our REST service, we start from the first level
fact table LINEITEM built from table t LINEITEM and
construct a view GV that is equivalent to HCV by fol-
lowing the eight successive schema augmentation steps il-
lustrated in Figure 15. Each target table is connected
to the starting table LINEITEM by a path in the SC
graph and a bold arc labeled by the number of the aug-
mentation step. In step 1, the merge query adds at-
tributes of TRANSACTION from dimension D7, which
did not exist in LINEITEM. We correctly infer that
the SC edge from LINEITEM to TRANSACTION has la-
bel “NAT” by Definition 17. In step 2, we merge with
fact table ITEM DISCOUNT through an aggregate reduc-
tion using aggregate function SUM. In step 4, we merge
WEB ORDER with LINEITEM. These two tables share
attributes from dimensions D3 and D5 and there also ex-
ists a user-specified relationship (dotted line in Figure 15)
between dimension D4 (used in table LINEITEM) and di-
mension D8 (used in table WEB ORDER). This allows us
to merge WEB ORDER with LINEITEM through schema
augmentation with the common attributes between D4 and
D8. All other steps use similar natural and reduction-based
schema complements. After the assisted construction of
GV, the equivalence both views, GV and HCV, has been
verified by comparing the total number of rows and their
values.

Our second experimentation goal is to compare the per-
formance of SQL queries using the original view HCV and
the equivalent generated view GV. The performance mea-
sures are done on a server with 2 TB of main memory and
1 TB of disk space. First, by comparing the total mate-
rialization cost and we can observe that computing and
reading GV is 1.5 times slower than for HCV. We then
apply some aggregate queries with random combinations
of dimension attributes and aggregable attributes on HCV
and GV. The performance results are quite positive. For
17% of the queries, GV performs from 1.15 to 3.1 faster
than HCV, and for 74% of the queries, HCV performs
1.1 to 4.5 faster than GV. For the remaining queries, both
views have similar performance. To obtain a better under-
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standing of this behaviour, we compared several couples of
execution plans generated by the same query on GV and
HCV. We observed that the performance variations were
caused by the optimization strategy which allocated sim-
ilar query sub-plans to different execution engines. The
performance variations therefore are independent of the
view definitions and more related to the current HANA
architecture and query optimizer.

Based on our two first experiments, we observed that
for hand-crafted join views (which represents half of the
fact tables of the application), an equivalent view could
be semi-automatically generated using our REST service
while achieving comparable execution performance. This
is a very positive result because our view generation pro-
cess is highly accessible to a business users who only can
manipulate high-level analytic views and meaningful an-
alytic attributes without any deep expertise about the
global analytic schema and table relationships. In contrast
to GV, the creation of HCV view requires a strong exper-
tise to manually optimize the sequence of operations in the
view, and a precise knowledge of the database schema to
express the join conditions, decide when a pre-aggregation
is necessary, identify measure attributes and choose which
aggregate functions are applicable to them. The prelimi-
nary price to pay for our approach is the creation of all the
necessary first-level views. However, this is rapidly amor-
tized with the number of join views in the application. In
addition, it is possible to capitalize on the SC graph for
the definition of future views.

Figure 16: Attribute graph satisfied by dimension dSTORE

As another substantial advantage, our REST service
provides formal quality guarantees that are difficult to
be verified and confirmed by the developer of a hand-
crafted HCV view. To illustrate this point, suppose that
a new aggregated view AGG WEB ORDER is created as:
Agg

WEB ORDER
(SUM(ORDER AMOUNT) | X ∪ A STORE)

where X = {DATE,CUSTOMER NO} and A STORE is the set
of the dimension attributes of dimension dSTORE whose
validated attribute graph is depicted on Figure 16. Now
suppose that an HCV view needs to perform a join with

AGG WEB ORDER on attributes X ∪ JA STORE, where
JA STORE is a subset of A STORE, to obtain a new mea-
sure attribute SUM(ORDER AMOUNT). Table 11 shows the
cases of ambiguous values for SUM(ORDER AMOUNT), de-
pending on the attributes contained in JA STORE, that
would be detected by our RQG API if AGG WEB ORDER

was selected as a target schema augmentation.

Table 11: Detection of ambiguous values

Attributes in JA STORE Amb Missing att

Q 1 PLANT, CCOUNTRY, N -
CENTITY

Q 2 CENTITY, CCLUSTER, N -
CSREGION, CREGION

Q 3 CCOUNTRY, CSREGION Y CCLUSTER

Q 4 CCLUSTER, CREGION Y CSREGION

8.2.2. Comparison with related work

We first assess previous works with respect to their
capability to generate GV through the steps marked in
Figure 15. The input is given by the set of analytic tables,
which are essentially tables with additional metadata, so
previous solutions formulated for relational databases can
be applied.

The schema complement approach proposed in [8] re-
lates tables depending on their schema similarity scores
using a combination of attribute name and domain simi-
larity measures. In our setting, we can assume that the
relationships shown in Figure 15 can be found using the
same schema similarity technique.

Next, the merges with natural schema complements ap-
plied in steps 1, 5, 6, 7 and 8 of Figure 15 can be suggested
and computed by the method described in [8]. However,
ITEM TAX, ITEM DISCOUNT and WEB ORDER are not
natural schema complements to LINEITEM, so steps 2, 3
and 4 cannot be handled. Operators Extend attribute [10]
and Extend using algorithm JoinTest [34] can also dis-
cover and merge natural schema complements. Although
[10] proposes a technique to discover PK-FK relationships,
their operator is limited to the detection of natural schema
complements without reduction queries. The ABA (Aug-
mentation By Attribute name) operator proposed in [9]
augments the schema of a start table with an attribute,
whose name is similar to a given name, coming from an-
other related table. The discovery of related tables is as
before based on a specific measure of schema similarity.
However, due to the limitation that the key of the start
table must be composed of a single attribute, the ABA op-
erator cannot be used in our example since the start table
LINEITEM has an identifier composed of five attributes.

Other related work support high-level operators over
OLAP cubes (similar to our analytic tables) that can ex-
press some of the merge queries that are automatically
generated by our framework. Drill-across queries [2] can
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merge the schemas of fact tables related through con-
formed dimensions, i.e., dimensions that are either iden-
tical or where one dimension is a subset of the other
dimension. In our example, fact tables LINEITEM and
TRANSACTION have dimensions D2, D3, D4 and D5 in
common, so the merge of step 1 could be expressed as a
drill-across operation. However, the remaining steps raise
several issues. First, only natural schema complements
can be handled due to the restriction of conformed di-
mensions, so the merges of steps 2, 3, and 4 cannot be
expressed using drill-across operations. Second, only op-
erations between fact tables are considered, so steps 5 to
9 would not be expressible using a drill-across operation.

Drill-across operations have been extended in [22] to
fact tables with common compatible dimensions. In short,
two dimensions are compatible if there exists a matching
between the dimensions which preserves the hierarchy lev-
els (coherency), level memberships (soundness) and roll-
up relationships between members of different levels (con-
sistency). We can show that dimension compatibility now
allows us to execute the steps 2 and 3, since in both steps
the common dimensions are compatible. However, step 4
is still not possible, since the common dimensions D4 and
D8 violate the soundness condition [22]: the domain values
of their common attributes, TRAN NO in D4 and ORDER NO

in D8, are overlapping but not identical.
We now compare our detection of ambiguous values in

aggregate queries with related works on summarizability.
To illustrate, we use the aggregate queries of our experi-
ment defined as: Agg

WEB ORDER
(SUM(ORDER AMOUNT) |

X ∪ JA STORE), where X = {DATE,CUSTOMER NO} and
attributes in JA STORE is specified in Table 11. In our
example, we assume that domain values of dimensional at-
tributes in WEB ORDER are complete. The work on sum-
marizability addresses the following question: “is it correct
to compute the above aggregate queries by summarizing
the result of another aggregate query (i.e.,WEB ORDER)
or should they be computed directly from the non-analytic
table ct WEB ORDER?”

In their pioneering work, [27] proposed three sufficient
conditions to guarantee summarizability of aggregation op-
erations: (a) category (i.e., group-by) attributes must form
disjoint subsets of facts, (b) these subsets completely cover
the entire set of facts, and (c) dimension attributes, mea-
sures and aggregate functions are compatible. Among the
four aggregate queries in Table 11, Q 1 and Q 2 satisfy
the summarizability conditions: the categorizations of the
domain values are disjoint and complete, and the measure
attribute ORDER AMOUNT is compatible with function SUM

and dimensions dSTORE, dTIME and dCUSTOMER. How-
ever, for query Q 3, the summarizability constraints are vi-
olated: there exists a +-edge R (CCOUNTRY,CSREGION) in
the attribute graph of dSTORE, which signifies that there
exists at least one CCOUNTRY value which has multiple
CSREGION parent values (violation of the disjointness con-
dition). Thus, Q 3 is not considered to be correct. For Q 4,
all summarizability constraints are satisfied. Because edge

R (CCLUSTER,CREGION) has label f , values in CCSLUSTER

have a unique value in CREGION, the categorization of their
domain values is disjoint. However, Q 4 generates ambigu-
ous results: since edge R (CCOUNTRY,CSREGION) is a +-
label edge, CSREGION should be included in the group-by
clause. Otherwise, tuples with same value of CCOUNTRY

and CREGION that belong to different CSREGION will be
combined together by this aggregation. Thus, the sum-
marizability conditions of [27] conclude that Q 4 is correct
while we detect that it is ambiguous.

The work of [35] extended the summarizability condi-
tions of [27] and showed that summarizability holds for ag-
gregate queries with distributive aggregate functions over
strict covering onto dimensions. In the above aggregate
queries, function SUM is distributive and the hierarchy of
dSTORE is onto, but not covering and strict. Therefore,
the dSTORE hierarchy needs to be modified by adding
intermediate artificial values for non-covering mappings
and adding concatenated parent values for non-strict map-
pings. After these data modifications, summarizability is
guaranteed for all aggregate queries Q 1,Q 2,Q 3,Q 4. By
contrast, our solution does not require any change to the
data in the dimension tables; we detect ambiguous queries
and can report ambiguous values.

Finally, the work of [28] only considers in their data
model linear, ordered and strict hierarchies, which does
not capture the cases of dimension tables in our scenario.
For example, dSTORE hierarchy is not linear, not ordered
nor strict.

8.3. Feature Engineering Scenario

The third series of experiments checks the usage of
our REST service in a predictive analytics application of
a retail bank. The decision task consists in predicting
whether a client without a credit card will obtain a card
in the 3 months following a given reference date. The
training and prediction process uses tables from a publicly
available database [36] related through PK-FK relation-
ships as shown in Figure 17. Each account is described
by static characteristics (e.g. date of creation, address of
the branch) given in table ACCOUNT and dynamic char-
acteristics (e.g. payments debited or credited, balances)
given in table TRANSACTION. The two tables CLIENT

and CREDIT CARD contain information about persons
and credit cards respectively. Clients and accounts are
linked by a many-to-many relationship stored in the asso-
ciative table DISPOSITION. Tables GEOCODE and TIME

provide detailed geographical and temporal information.
The development of the application includes a feature

engineering step to build a training dataset. Starting from
a table describing a CLIENT entity and from a reference
date, the developer augments this table through a sequence
of database queries with as many new features (attributes)
as possible. The goal is to obtain more detailed informa-
tion about the past behaviour of the clients like, for ex-
ample, the monthly amount and balance of their credit
cards during the past 12 months, the delivery of a new
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Figure 17: Relationships for the bank retail database

credit card during the past three months, etc. The fi-
nal feature dataset is denoted by FEAT. The individual
augmentation queries consist of joins, projections, filters,
aggregations and pivots and the whole SQL script used to
build the training dataset consists of about 1, 500 lines of
code comprising many sub-queries involving 16 joins and
132 functional expressions to compute measure attribute
values.

8.3.1. Experiments

The goal of our experiment is to verify if a data sci-
entist can semi-automatically generate an view GV that
is equivalent to FEAT by iteratively extending an initial
dimension table CLIENT through several schema augmen-
tation steps each of which consists of a sequence of CSA -
RQG - MSA API calls.

For running our experiment, we first created 6 dimen-
sion tables, denoted by dACCOUNT, dGEO, dCLIENT,
dCARD, dTIME and dTRANSACTION, and 3 fact tables,
denoted by TRANS, ACC DISPO, and CARD DISPO over
the bank retail database tables. TRANS is defined over
database table TRANSACTION and dimensions dTIME,
dACCOUNT and dTRANSACTION and has two measures
AMOUNT and BALANCE. ACC DISPO is defined over
database table DISPOSITION and dimensions dCLIENT

and dACCOUNT. Finally, CARD DISPO is defined as a
join of tables CREDIT CARD and DISPOSITION over di-
mensions dCLIENT, dTIME and dCARD. The attribute
graphs are defined for all dimension tables, as well as
the aggregable properties for all measure attributes of the
fact tables. Finally, all tables were crawled by the HANA
Crawlers to extract all direct and derived relationships (in-
cluding PK-FK relationships) and compute the dimension
and fact identifiers. The resulting SC graph among ana-
lytic tables is shown in Figure 18.

The view generation process starts from the dimension
table dCLIENT(CLIENT ID, GEO ID, BIRTH DATE, SEX, ...),
which identifies a client entity, and applies a sequence of
schema augmentation steps as indicated by the numbered
arrows in the SC graph of Figure 18.

In Step 1, detail attributes from dimension dGEO are
added to dCLIENT through a natural schema complement
using common attribute GEO ID. In step 2, dCLIENT

is augmented with attribute ACCOUNT ID from fact ta-
ble ACC DISPO through a schema augmentation using the

Figure 18: SC graph for the analytic tables

common attribute CLIENT ID (thus, rows in dCLIENT are
multiplied). In step 3, the resulting table is augmented
with detail attributes from dimension dACCOUNT through
a natural schema complement using common attribute
ACCOUNT ID. In step 4, table dCLIENT is augmented
with measures from fact table TRANS. The common
attribute between TRANS and dCLIENT is ACCOUNT ID,
that is, a subset of the fact identifier of TRANS which is:
{ACCOUNT ID, DATE, TRANS ID}. The following user ac-
tions are applied to fully reduce the fact identifier. A cal-
culated attribute MONTH(DATE) (i.e., transaction month)
is pivoted as a column with values coming from mea-
sures AMOUNT and BALANCE, and attribute TRANS ID is
removed. In addition, two user actions are provided: a fil-
ter on DATE pre-selects facts within the 12 months preced-
ing a user-given reference date, and attribute TRANS TYPE

is pivoted as a column with values coming from measures
AMOUNT and BALANCE. These two operations are injected
in the query reduction generation over TRANS and the
reduction query is merged with dCLIENT.

We now want to add a measure attribute storing
the number of credits cards for each client. In Step
5, attributes from CARD DISPO are added to dCLIENT

through a schema augmentation using common attributes
CLIENT ID. The identifier of CARD DISPO, consisting of
{CLIENT ID, CARD ID}, is fully reduced by computing an
aggregated CARD ID using function COUNT , and a reduc-
tion query is generated over CARD DISPO. The result is
then merged with dCLIENT using the remaining common
attribute CLIENT ID. We get a result table with 156 at-
tributes where 135 of them are measures. As in the BI
Scenario (Section 8.2), the correctness of GV with respect
to FEAT is done by comparing the number of tuples and
their values in both tables. We show in Figure 19 the
complete definition of GV where each temporary result
represents a step in the view generation process.

Our semi-automatic view generation process has sev-
eral advantages over the manual creation of table FEAT.
First, the schema augmentations required to build a FEAT
table are successfully suggested by our CSA API and the
order in which they are returned matches pretty well the
user needs. Second, simple user actions in steps 4 and
5 yield complex reduction queries involving filter, pivot,
and aggregate operations through the RQG API. Isolating
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Figure 19: Construction of GV

user reduction actions in the generation process provides
a great flexibility. For instance, in Step 4, filter conditions
could be changed to select facts within the 2 years preced-
ing the reference date, or pivot operations could changed
to WEEK(DATE). Third, the preparatory definition of for-
mal aggregable properties for all measures in fact table
TRANS help the expert to choose the correct aggregate
functions for measures AMOUNT and BALANCE in Step 4.
For instance, function SUM cannot be applied to BALANCE.
Finally, our method for propagating aggregable proper-
ties controls the dimensions with respect to which measure
COUNT(CARD ID) can be aggregated after Step 5 since the
measure only depends on CLIENT ID.

Note that our REST service could be directly applied
to an SC graph consisting only of the retail database ta-
bles (i.e., without creating any dimension or fact table)
and would still produce table FEAT as result. However,
working directly with database tables has two main draw-
backs. First, the user must understand the operational
data model of the database that carries many attributes
that are irrelevant for business data analysis. Second, the
benefits of metadata such as the separation of dimension
and measure attributes and the definition of aggregable
properties would be lost.

8.3.2. Comparison with related work

We can assess other related work with respect to their
ability to generate table FEAT. As we did in Section 8.2.2,
we first consider methods that find schema complements.
Starting from table dCLIENT, the previous works of [8],
[10] and [34] are only able to detect natural schema com-
plements and suggest the merge of step 1 in Figure 18.
The other steps require reduction queries which are not
supported by these methods. Note that the ABA operator
of [9] can be applied on dataset dCLIENT since its identi-
fier consists of a single attribute CLIENT ID. However, this
is again only useful for step 1.

Concerning the use of drill-across queries [2], we can
show that no step in Figure 18 can be defined by a drill-

across operation between two fact tables: steps 1 and 3
merge two dimension tables and steps 2, 4 and 5 merge a
dimension with a fact table.

9. Conclusions and Future Work

In this paper, we propose a solution to the problem of
discovering and merging schema augmentations for ana-
lytic datasets. We formally define efficient algorithms for
building reduction-based schema complements which gen-
eralize previously defined natural schema complements.
We discuss various quality issues and their solution for
generating semantically correct schema augmentations and
merged tables annotated with proper metadata enabling
their correct usage in future analytic queries. We also
present the implementation of our solution as a REST ser-
vice in SAP HANA which, to the best of our knowledge, is
the first implementation of that sort. This service assists
business users and data scientists to explore a large space
of possible schema augmentations and, as illustrated in
our experiments, to generate complex views in a controlled
way with formally defined quality guarantees concerning
attribute ambiguity and data completeness.

We envision several directions for future work. A first
direction concerns the selection of schema complements
based on user-specified criteria such as keywords and the
definition of strategies for ranking the schema comple-
ments returned by our algorithm based on user profile and
contextual user preferences. Another direction is to refine
our relationships to include more sophisticated temporal
conditions on time intervals, and the ability to deal with
look-up tables. In addition, we want to suggest ways of
selecting filter, pivot, and aggregate reduction operations
by taking inspiration from data preparation techniques de-
scribed for instance in [37]. We observed that these capa-
bilities are required in feature engineering scenarios. Fi-
nally, use case studies with a real corpus of analytic tables
defined in business verticals will be continued to assess and
improve the value of our method.
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Appendix A. Proofs for propositions

Proposition 1. Let D = (S, R, λR,⊥,>) be an attribute
graph. Then, the subset XD ⊆ S of all attributes in S with
at least one + labeled in-edge and no f labeled in-edge is
a dimension identifier for all valid dimension tables with
attributes S.

Proof. Literal functional dependencies correspond to func-
tional dependencies where null values are considered as
constants (t.A ≡ t′.A iff t.A = t′.A or t.A and t′.A are both
null) and, under this interpretation, the Armstrong’s ax-
ioms for functional dependencies also hold for literal func-
tional dependencies.

Let W = S − XD be the subset of S such that for all
A ∈W, A has no + in-edges or at least one f in-edge. We
first prove that the literal functional dependency S−W 7→
S holds for all valid dimension tables of D. For this, it is
sufficient to prove that (1) for all attributes Ai ∈W , there
exists a subset of attributes Si ⊆ S− {Ai} where Si 7→ Ai.
Since attribute graphs (and the corresponding attribute
dependencies) are acyclic, we can define a partial order
≤ over attributes in W such that each attribute Ai ∈ W

only depends on attributes Ak ≤ Ai. Then, from Sk ⊆ Si
and the transitivity of 7→ and if for all attributes Ai ∈ W ,
S − {Ai} 7→ Ai follows S −W 7→ S. For proving (1), we
distinguish two cases which separate the attributes in W

into two classes. Let Ai ∈W and Si = {Ak ∈ S | (Ak,Ai) ∈
R }. By the definition of W, for each Ai there exists at
least one Ak ∈ Si where R (Ak,Ai) = f (case one) or for all
Ak ∈ Si : R (Ak,Ai) = 1 (case two).

–Case one: Let Ai ∈W and Ak ∈ Si such that R (Ak,Ai) =

f . By the definition of attribute graph and label f edges,
R (Ak,Ai) = f is equivalent with Ak 7→ Ai.

–Case two: Let Ai ∈W and for all Ak ∈ Si : R (Ak,Ai) = 1.
For any two tuples t1, t2 ∈ T , there exists at least one
attribute in Ak ∈ Si where t1.Ak is not null. Then, if
t1.Si ≡ t2.Si, there exists at least one attribute Ak ∈ Si

such that t1.Ak = t2.Ak and since R (Ak,Ai) = 1, we get
t1.Ai ≡ t2.Ai.

We now prove by contradiction that S−W is minimal,
i.e. there exists no subset Y ⊂ S−W where Y 7→ S. Assume
that S −W 7→ S but S −W is not minimal. Then there
exists at least one attribute Ap ∈ S −W, such that (S −
W − Ap) 7→ S. By the definition of W and Ap /∈ W,Ap

has at least one ‘+’ in-edge and Ap doesn’t have ‘f’ in-
edges. Let Ak ∈ S such that R (Ak,Ap) = +. Then we can
build a valid dimension table (hierarchy) T where there
exists a couple of tuples t1, t2 ∈ T (paths in the hierarchy
T ) such that t1.(S − Ap) ≡ t2.(S − Ap), and t1.Ak 6≡ t2.Ak,
i.e. S − Ap 67→ Ak. Then, S −W − Ap 67→ Ak, which is in
contradiction with (S−W−Ap) 7→ S. S−W is the minimal
set such that S−W 7→ S.

Proposition 2. Let T (S) be a fact table defined over a set
of dimensions D1, · · · , Dn and K1, · · · ,Kn be the dimension
identifiers of D1 ∩ S, · · · , Dn ∩ S respectively. Then K =

K1 ∪ · · · ∪Kn is a fact identifier of T , and K is a minimal
identifier if all dimensions in T are mutually independent.

Proof. Let SD ⊂ S the set of dimension attributes in T

and S − SD be measure attributes. K1, . . . ,Kn are the
dimension identifiers of D1∩S, . . . , Dn∩S respectively, and
we have K1 7→ D1 ∩ S, . . . ,Kn 7→ Dn ∩ S. By Armstrong
union axiom for LFDs, we get (K1 ∪ . . . ∪ Kn) 7→ (D1 ∩
S) ∪ . . . ∪ (Dn ∩ S) = SD. By the definition of fact tables,
all measure measures depend on the dimension attributes,
i.e. SD 7→ S and by transitivity of LFD’s, we get (K1 ∪
. . .∪Kn) 7→ S. Two dimension identifiers Ki, Kj , i 6= j are
independent, if there exists no attribute A ∈ Kj such that
Ki 7→ A. Then, it is easy to show that if all Ki are minimal
and mutually independent, K1∪. . .∪Kn is a minimal a fact
identifier of T .

Proposition 3. Let T ′0(S′0) be a merge of table T0(S0) with
a target schema augmentation T (S). Let K be the identifier
of T0 and Snew ⊆ S′0−S0 be the set of dimension attributes
added to T0 in the merge. Then, for all minimal subsets
Knew ⊆ Snew where Knew 7→ Snew, K∪Knew is an identifier
of T ′0.

Proof. Let K′ = K ∪ Knew where Knew 6= ∅. We prove
K′ 7→ S′0 by contradiction. Assume that K′ is not the
identifier of T ′0. Then there exist two tuples t1, t2 ∈ T ′0 such
that t1.K

′ ≡ t2.K
′ but t1.B 6≡ t2.B,B ∈ S′0. We distinguish

between two cases:

– B ∈ S0: We know that K ⊂ K′ and K 7→ S0. Then by
t1.K

′ ≡ t2.K
′ we have t1.K ≡ t2.K and t1.B ≡ t2.B which

contradicts our assumption.

– B ∈ Snew: We know that Knew 7→ Snew. Then by t1.K
′ ≡

t2.K
′ we have t1.Knew ≡ t2.Knew and t1.Snew ≡ t2.Snew

which contradicts our assumption.
We conclude K′ 7→ S′0.

Proposition 4. Let T0(S0) and T (S) be two tables such
that T is a schema augmentation to T0 with common at-
tributes Y. Let K be an identifier of T . The result of a
reduction query Q (T ) on attributes K′ = K ∩Y, is a natu-
ral schema complement to T0.

Proof. We first show that (A) if K′ 7→ S′, then T ′(S′) is
a natural schema complement of T0(S0). By definition,
K′ = K∩Y. Then, from K ⊆ Y and K′ 7→ S′ follows Y 7→ S′,
i.e. K′ 7→ S′ is a sufficient condition for guaranteeing that
T ′(S′) is a natural schema complement of T0(S0).

We now show that (B) if Q(T ) is a reduction query on
K′, then K′ 7→ S′. We distinguish the case where Q (T )

only contains one reduction operation and the case where
Q (T ) is a sequence of at least two reduction operations.
Let T ′(S′) be the result of Q (T ).

– Case 1: Q (T ) only contains one reduction operation.
We prove for each reduction query by contradiction that
K′ 7→ S′ in T ′. Suppose that K′ 67→ S′. Then there exist two
tuples t1, t2 ∈ T ′ such that t1.K

′ ≡ t2.K′ but t1.S
′ 6≡ t2.S′:
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• When Q (T ) is a filter reduction on attributes K−Y,
by definition, S′ = S and t1.(K − Y) ≡ t2.(K − Y).
Then, since t1.K

′ ≡ t2.K
′ (assumption), K = K′ ∪

(K − Y), K 7→ S and S′ = S, we have t1.S
′ ≡ t2.S

′

which contradicts our assumption. Therefore we get
K′ 7→ S′.

• When Q (T ) is an aggregate reduction, we get S′ =

S − (K − Y) and K′ is the set of attributes in the
group-by clause Q (T ). Then, by definition of ag-
gregation queries, K′ is the identifier (key) of T ′, a
which contradicts our assumption K′ 67→ S′.

• When Q (T ) is a pivot reduction, then attributes in
K − Y are pivoted into new columns in T ′. Similar
to aggregation, by the definition of pivot queries, K′

is the identifier of T ′ and K′ 7→ S′ (which contradicts
our assumption).

Therefore, when Q (T ) only contains one reduction opera-
tion, we have K′ 7→ S′.

–Case 2: Q (T ) contains multiple reduction operations.
LetQ (T ) = Q 1(Q 2(. . . (Q n(T )) . . .)) be a sequence of
of n > 1 reduction queries on the sets of attributes
Y1,Y2, . . .Yn where Yi ⊂ Yi+1 and Y1 = Y. Let T ′i (S′i)

denote the result of reduction query Q i(T
′
i+1) on at-

tributes K′i = K′i+1 ∩ Y′i. Then, T ′(S′) = T1(S1) is the
result of reduction query Q (T ) = Q 1(T ′2) on attributes
K′1 = K′2 ∩ Y1 = K′2 ∩ Y. From Case 1, we then know that
K′1 → S′1.

From (A) and (B) follows that Q(T ) is a natural schema
complement of T0.

Proposition 5. Composition of relationships. Let
R 1(T1, T2) and R 2(T2, T3) be two well-formed relationships
between tables T1, T2 and T3 with respective common at-
tributes Y1 and Y2. If Y3 = Y1 ∩Y2 6= ∅, then there exists
a well-formed relationship R 3(T1, T3) that is a composition
of R 1(T1, T2) and R 2(T2, T3) with common attributes Y3.

Proof. We prove that there exists a relationship between
T1 and T3 and the relationship is well-formed. We dis-
tinguish four cases by the types of relationships between
R 1(T1, T2) and R 2(T2, T3) with common attributes Y1 and
Y2.

– Case 1: R 1(T1, T2) and R 2(T2, T3) are both join relation-
ships. By definition, for all attributes A ∈ Y3 = Y1 ∩ Y3,
T1.A = T2.A and T2.A = T3.A. Then by transitivity of equal-
ity, T1.A = T3.A, i.e., there R 3(T1, T3) is a join relationship
with common attributes Y3.

– Case 2: R 1(T1, T2) is a join relationship and R 2(T2, T3)

is an attribute mapping relationship. We first consider the
case where all attributes A ∈ Y3 = Y1 ∩ Y3, T1.A = T2.A

and T2.A � T3.A. By definition, T2.A � T3.A indicates
that there exists a query Q 23 and a set of tables such that
T3 = Q 23(T2, T

′
1, · · · , T ′n) and ∀y ∈ dom(A):

σA=y(Q 23(T2, T
′
1, · · · , T ′n))

= σA=y(Q 23(σA=y(T2), T ′1, · · · , T ′n))
(A.1)

We prove that T1.A � T3.A, i.e., there exists
a query Q 13 and a set of tables such that T3 =

Q 13(T1, T
′′
1 , · · · , T ′′m)) and ∀y ∈ dom(A):

σA=y(Q 13(T1, T
′′
1 , · · · , T ′′m))

= σA=y(Q 13(σA=x(T1), T ′′1 , · · · , T ′′m))
(A.2)

Since R 1(T1, T2) is a join relationship, there exists a
table T ′ such that T2 = πS2

(T1 ./ T
′). Then, by replacing

T2 in Equation A.1 and by T1.A = T2.A, we get:

σA=y(Q 23(πS2
(T1 ./ T

′), T ′1, · · · , T ′n))

= σA=y(Q 23(σA=y(πS2
(T1 ./ T

′)), T ′1, · · · , T ′n))
(A.3)

Assuming Q 13 = Q 23(πS2
(T1 ./ T

′), T ′1, · · · , T ′n), by re-
placement in Equation A.3, we get:

σA=y(Q 13(T1, T
′, T ′1, · · · , T ′n))

= σA=y(Q 23(σA=y(πS2
(T1 ./ T

′)), T ′1, · · · , T ′n))
(A.4)

Finally, by pushing all selections into the joins of the
right side of Equation A.3, we obtain:

σA=y(Q 23(πS2
(σA=y(T1) ./ T ′), T ′1, · · · , T ′n))

= σA=y(Q 13(σA=y(T1), T ′, T ′1, · · · , T ′n))
(A.5)

which corresponds to T1.A� T3.A.
We follow the same reasoning for proving that T1.A =

T2.A implies T3.A� T2.A, T3.A� T1.A.

– Case 3: R 1(T1, T2) is an attribute mapping relationship
and R 2(T2, T3) is a join relationship. We can follow a simi-
lar rewriting process as in Case 2 to prove for all attributes
A ∈ Y3 = Y1 ∩ Y3 that if T2.A = T3.A, then T1.A � T2.A

implies T1.A� T3.A and T2.A� T1.A implies T3.A� T1.A.

– Case 4. R 1(T1, T2), R 2(T2, T3) are both attribute mapping
relationships. We consider the case where for all attributes
A ∈ Y3 = Y1 ∩ Y2, T1.A � T2.A and T2.A � T3.A. Then
there exist two queries Q 12 and Q 23 over a set of tables
such that T2 = Q 12(T2, · · · , T ′m), T3 = Q 23(T2, T

′
1, · · · , T ′n)

and ∀y ∈ dom(A):

σA=y(Q 12(T1, · · · , T ′n))

= σA=y(Q 12(σA=y(T1), · · · , T ′n))
(A.6)

and

σA=y(Q 23(T2, · · · , T ′m))

= σA=y(Q 23(σA=y(T2), · · · , T ′m))
(A.7)

We prove that T1.A � T3.A, i.e., there exists a query
Q 13 and a set of tables T3 = Q 13(T1, · · · , T ′k) such that
∀y ∈ dom(A),

σA=y(Q 13(T1, · · · , T ′k))

= σA=y(Q 13(σA=y(T1), · · · , T ′k))
(A.8)

By replacing T2 by Q 12 in Equation A.7, we obtain:

σA=y(Q 23(T2, · · · , T ′m))

= σA=y(Q 23(Q 12(T1, · · · , T ′n), · · · , T ′m))
(A.9)
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By pushing the selection σA=y, we obtain:

σA=y(Q 23(Q 12(T1, · · · , T ′n), · · · , T ′m))

= Q 23(σA=y(Q 12(T1, · · · , T ′n), · · · , T ′m))
(A.10)

Then, by applying Equation A.6, we obtain:

σA=y(Q 23(Q 12(T1, · · · , T ′n), · · · , T ′m))

= Q 23(σA=y(Q 12(σA=y(T1), · · · , T ′n)), · · · , T ′m)
(A.11)

By pulling the first selection σA=y out from Q 23, we
obtain:

σA=y(Q 23(Q 12(T1, · · · , T ′n), · · · , T ′m))

= σA=y(Q 23(Q 12(σA=y(T1), · · · , T ′n)), · · · , T ′m)
(A.12)

Now let Q 13(T1, · · · , T ′n, · · · , T ′m) =

Q 23(Q 12(T1, · · · , T ′n)), · · · , T ′m). Then, we obtain from
Equation A.12:

σA=y(Q 13(T1, · · · , T ′n, · · · , T ′m))

= σA=y(Q 13(σA=y(T1), · · · , T ′n, · · · , T ′m))
(A.13)

Therefore, we have for all attributes in Y3 = Y1 ∩ Y2,
T1.A � T3.A, i.e. R − 3(T1, T3) is an attribute mapping
relationship with common attributes Y3.

Proposition 6. Fusion of relationships. Let R 1(T1, T2)

and R 2(T1, T2) be two well-formed relationships between
two tables T1 and T2 with respective common attributes
Y1 and Y2. If ∀A ∈ Y1 ∩ Y2, µR 1

(A) = µR 2
(A) then there

exists a well-formed relationship R 3(T1, T2) that is a fu-
sion of R 1(T1, T2) and R 2(T1, T2) with common attributes
Y3 = Y1 ∪Y2.

Proof. We can apply a similar case study as in the proof
of Proposition 5. Assume that R 1(T1, T2) and R2(T1, T2)

are two natural mapping relationships with common at-
tributes Y1 and Y2, i.e. ∀A ∈ Y1∩Y2,A = νR 1

(A) = νR 2
(A).

We prove that there exists a well-formed relationship R 3

between T1 and T2 with common attributes Y3 = Y1 ∪Y2.
We distinguish three cases by the types of both relation-
ships R 1(T1, T2) and R 2(T1, T2).

– Case 1: R 1(T1, T2) and R 2(T1, T2) are both join relation-
ships. By definition, for all attributes A ∈ Y3 = Y1 ∪ Y2,
T1.A = T2.A, i.e. there exists a join relationship R 3(T1, T3)

with common attributes Y3.

– Case 2. R 1(T1, T2), R 2(T1, T2) are both attribute mapping
relationships. By definition, for all attributes A ∈ Y3 =

Y1∪Y2, T1.A� T2.A, i.e. there exists an attribute mapping
relationship R 3(T1, T3) with common attributes Y3.

– Case 3: R 1(T1, T2) is a join relationship and R 2(T1, T2)

is an attribute mapping relationship. Then, by Case 2, for
showing that R 3(T1, T2) is an attribute mapping relation-
ship it is sufficient to show that R 1(T1, T2) is an attribute
mapping relationship. We show more generally that any

join relationship is also an attribute mapping relationship.
By definition, R1(T1, T2) is a join relationship with com-
mon attributes Y1, i.e., for all A ∈ Y1, T1.A = T2.A and
T2 = Q 12(T1, T2) = πS2

(T1 ./Y T2) where S2 is the schema
of T2 and Y ⊆ S2. Then, ∀y ∈ dom(A):

σA=y(Q 12(T1, T2))

= σA=y(πS2
(T1 ./Y1

T2))

= σA=y(πS2
(σA=y(T1) ./Y1

T2))

= σA=y(Q 12(σA=y(T1), T2))

(A.14)

Therefore, R is an attribute mapping relationship.

Proposition 7. Let T ′0(S′0) be a merge of table T0(S0) with
a target schema augmentation T (S). Then the following
aggregable properties hold for all aggregable attributes A ∈
S′0:

1. If aggA(F,V0) holds in T0 and A ∈ S′0 ∩ S0 then
aggA(F,V0) holds in T ′0.

2. If aggA(F,V) holds in T and A ∈ S′0 − S0 , then
aggA(F,V ∩ S′0) holds in T ′0.

Proof. Let aggA(F, V ′0) be the aggregable property of A in
T ′0, i.e. V ′0 ⊆ S′0 is the maximal set of dimension attributes
such that A can be aggregated along V′0 with function F

in T ′0.

1. Let U0 ⊆ S0 be a minimal subset of attributes where
U0 7→ A in T0 and V0 ⊆ U0. Since V0 ⊆ S0 ⊆ S′0 and
U0 ⊆ S′0 we conclude that U0 7→ A in T ′0 and V0 ⊆ V′0.
Since A is not an attribute in T , aggregation along
S−V is not meaningful and we obtain V = V′0

2. Since T is a natural schema complement of T0, S0 ∩
S 7→ S. Let U ⊆ S0 ∩ S be a minimal subset of
attributes where U 7→ A in T and V ⊆ U. Since U 7→ A

and V ∩ S′0 ⊆ V ⊆ U, we conclude that V ∩ S′0 ⊆ V′0.
Since A is not an attribute in T0, aggregation along
S0−V is not meaningful and we obtain V∩S′0 = V′0.

Proposition 8. Let T (S) be a non-ambiguous analytic ta-
ble w.r.t. a dimension D of schema SD. Let T ′(S′) = Q (T )

be a reduction of T . Let X = S ∩ SD and X′ = S′ ∩ SD. If
X′ 7→ X in D, then T ′ is non-ambiguous w.r.t. D.

Proof. Let X′ = S′ ∩ SD and X′∗ = {Aj ∈ SD | ∃Ai ∈
X′,Ai 4

∗ Aj}. To prove that T ′ is not ambiguous w.r.t. D,
we must show that X′ 7→ X′∗ holds in T ′ ./X′ D (Defini-
tion 14).

We first show that X′ 7→ X′∗ holds in T ./X D. Let
XD = S ∩ SD and X∗ = {Aj ∈ SD | ∃Ai ∈ X,Ai 4

∗ Aj}.
Since T is non-ambiguous, we know that (a) X 7→ X∗ holds
in T ./X D. Since X′ 7→ X holds in D, X′ ⊆ X and πX(T ./X
D) ⊆ πX(D), we also obtain (b) X′ 7→ X holds in T ./X D.
By transitivity of 7→ and (a) and (b), we obtain (c) X′ 7→ X∗
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holds in T ./X D, and since X′∗ ⊆ X∗, (d) X′ 7→ X′∗ holds
in T ./X D.

We now show that πSD
(T ′ ./X′ D) ⊆ πSD

(T ./X D).
Since X′ 7→ X holds in D and X′ ⊆ X ⊆ SD, we know that
πSD

(πX′(T ) ./X′ D) = πSD
(T ./X D) and since πX′(T

′) ⊆
πX′(T ), we obtain (e) πSD

(T ′ ./X′ D) ⊆ πSD
(T ./X D).

Then, from (d) and (e), we can conclude that X′ 7→ X′∗

holds in T ′ ./X′ D

Proposition 9. Let T0(S0) and T (S) be two analytic tables
with a relationship R and common dimension attributes
Y. Let T ′0(S′0) be the merge of T0 and T and Tmiss =

T cand − T ct be the set of all tuples in T lost in the merge
with T0. We can define a completion table T com(S′0) for
all dimensions Di of schema SDi

in T0, 0 ≤ i ≤ n, where
(SDi

∩ S) ⊂ (SDi
∩ S0):

T com = ΠS′0
(Tmiss ./SD0

∩Y D0 ./ · · · ./SDn∩Y Dn) (1)

If Y 7→ S0 ( non-ambiguous merge condition), then

Q m(T0, T ) = T ′0 ∪ T com (2)

is a complete merge of T0 and T with respect to T .

Proof. Let T ct and T cand be the completion table and can-
didate completion table of T and T ′0 as defined in Defini-
tion 15. We use Definition 16 to prove that T ′0 = Q m(T0, T )

is a complete merge w.r.t. to T :

T ct = T ./Y Q m(T0, T ) = T ./Ytop Q m(T0, T ) = T cand

We can replace Q m(T0, T ) with the right-hand side of
Equation (2) and then replace T com with the right-hand
side of Equation (2) to obtain:

T ct = T nY (T ′0 ∪ T com)

= T ct ∪ (T nY T com)
(A.15)

Equation A.15 uses T com which extends Tmiss with all
dimension attributes A in S′0 that don’t exist in the aug-
mentation schema S, i.e., A ∈ S′0−S. Then, since all these
attributes are not common attributes of T0 and T , i.e.,
Y ∩ (S′0 − S) = ∅, their values do not change the result of
the natural semi-join T nY T com. Therefore, since Y ⊆ S′0
we can safely remove the projection πS′0 and replace T com

by Tmiss in Equation A.15:

T ct = T ct ∪ (T nY Tmiss) (A.16)

When we replace Tmiss with Tmiss = T cand − T ct, we
obtain:

T ct = T ct ∪ (T nY (T cand − T ct))

= T ct ∪ ((T nY T cand)− (T nY T ct))

= (T ct ∪ (T nY T cand))− (T ct ∪ (T nY T ct))

(A.17)

By Definition 15, it is easy to show that T ct ⊆ T cand ⊆
T . We then obtain T nY T

ct = T ct and T nY T
cand = T cand

and continue with Equation A.17:

T ct = (T ct ∪ T cand) ∪ (T ct − T ct)

= T cand ∪ ∅ = T cand
(A.18)

By T ct = T cand, we can conclude that Q m is a complete
merge with respect to T .

Lemma 1 (Composition of natural schema complements).
Let T (S) be a natural schema complement to T0(S0) with
respect to relationship R 0(T0, T ) on attributes Y0, and
T1(S1) be a natural schema complement to T with respect
to relationship R 1(T, T1) on attributes Y1. Then T1 is also
a natural schema complement to the natural merge of T0
and T , i.e., T0 ./Y0

T .

Proof. Let T ′0(S′0) be the natural merge of T0 and T , T ′0 =

T0 ./Y0
T .

There exists an attribute mapping relationship
R ′(T ′0, T ) on common attributes Y′ = S′0 ∩S, and Y1 ⊆ Y′.
And there exists a well-formed relationship R ′1(T ′0, T1) on
attributes Y1 ∩ S′0 by the composition of relationships
R ′(T ′0, T ) and R 1(T, T1). Because T1 is a natural schema
complement to T , we have Y1 7→ S1 and Y′ 7→ S1. There-
fore, T1 is a natural schema complement to T ′0.

Lemma 2 (Composition of schema complement and
schema augmentation). Let T (S) be a natural schema com-
plement to T0(S0) with respect to relationship R 0(T0, T ) on
attributes Y0, and T1(S1) be a schema augmentation to
T with respect to relationship R 1(T, T1) on attributes Y1.
Then T1 is a schema augmentation to the natural merge
of T0 and T , i.e., T0 ./Y0

T .

Proof. Let T ′0(S′0) be the natural merge of T0 and T , T ′0 =

T0 ./Y0
T .

There exists an attribute mapping relationship
R ′(T ′0, T ) on common attributes Y′ = S′0 ∩ S, and
Y1 ⊆ Y′. By the composition of relationships R ′(T ′0, T )

and R 1(T, T1), there exists a well-formed relationship
R ′1(T ′0, T1) on attributes Y1∩S′0. Therefore, T1 is a schema
augmentation to T ′0.

Proposition 10. Let query Q be the result of a MSA(T0,
T , path, true, true) call with a start table T0(S0), a tar-
get schema augmentation table T (S) and a path of rela-
tionships: path = R 1(T0, T1), · · · ,R n(Tn−1,Q a), n >= 1. If
R n(Tn−1,Q a) maps to an augmentation schema comple-
ment edge (CT = ‘AUG’), then Q computes a augmented
merge of T0 with Q a (without ambiguous values). Other-
wise, R n(Tn−1,Q a) maps to a natural schema complement
edge (CT = ‘NAT’) and Q computes a natural merge T0
with Q a.

Proof. We can ignore steps 1 and 2 of MSA. Step 3 re-
turns merge query Q = πS′0(Q path ./Yn

Q a), where S′0 is
augmented S with attributes from Q a, Q path = T0 ./Y1

T1
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· · · ./Yn−1
Tn−1 and Yi is the common attributes in re-

lationship R i. By Algorithm 3, every relationship in
R 1(T0, T1), · · · ,R n−1(Tn−2, Tn−1) maps a SC edge with
CT = ‘NAT’ in SC . By Lemma 1, Q path is a natural merge
of T0 with its natural schema complements T1, · · · , Tn−1.
Also by Lemma 1, if R n(Tn−1, T ) maps a SC edge with
CT = ‘NAT’ in SC , then Q a is a natural schema comple-
ment to the result of Q path and Q computes the natural
merge of Q path and T . Finally, by the same lemma, since
Q path is a natural merge of T0, Q is a natural merge of T0
and Q a. By Lemma 2, if R a(Ta−1, T ) maps to an augmen-
tation SC edge with CT = ‘AUG’, then Q a is a schema
augmentation to the result of Q path and Q computes the
augmented merge of Q path and Q a (and an augmented
merge of T0 and Q a).
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