

Bleaching forces coral's heterotrophy on diazotrophs and Synechococcus

Valentine Meunier, Sophie Bonnet, Mathieu Pernice, Mar Benavides, Anne Lorrain, Olivier Grosso, Christophe Lambert, Fanny Houlbreque

To cite this version:

Valentine Meunier, Sophie Bonnet, Mathieu Pernice, Mar Benavides, Anne Lorrain, et al.. Bleaching forces coral's heterotrophy on diazotrophs and Synechococcus. The International Society of Microbiologial Ecology Journal, 2019, 13 (11), pp.2882-2886. 10.1038/s41396-019-0456-2. hal-02458908

HAL Id: hal-02458908 <https://hal.science/hal-02458908v1>

Submitted on 29 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

² Bleaching forces coral's heterotrophy on diazotrophs and ³ Synechococcus

4 Valentine <mark>Meunier¹ • Sophie Bonnet² • Mathieu Pernice D^{[3](http://orcid.org/0000-0002-3431-2104)} • Mar Benavides D^{[2](http://orcid.org/0000-0001-9502-108X)} • A[n](http://orcid.org/0000-0002-1289-2072)ne Lorrain D^{[4](http://orcid.org/0000-0002-1289-2072)} • Olivier Grosso² •</mark> [5](http://orcid.org/0000-0002-5885-467X) Christophe Lambert^{o5} · Fanny Houlbrèqueⁿ

6 Received: 9 December 2018 / Revised: 20 May 2019 / Accepted: 2 June 2019

7 © International Society for Microbial Ecology 2019

⁸ Abstract

1

Q1 ⁹ Coral reefs are threatened by global warming, which disrupts the symbiosis between corals and their photosynthetic 10 symbionts (Symbiodiniaceae), leading to mass coral bleaching. Planktonic diazotrophs or dinitrogen (N₂)-fixing prokaryotes 11 are abundant in coral lagoon waters and could be an alternative nutrient source for corals. Here we incubated untreated and 12 bleached coral colonies of *Stylophora pistillata* with a ¹⁵N₂-pre-labelled natural plankton assemblage containing diazotrophs. ¹⁵N₂ assimilation rates in Symbiodiniaceae cells and tissues of bleached corals were 5- and 30-fold higher, respectively, than ¹⁴ those measured in untreated corals, demonstrating that corals incorporate more nitrogen derived from planktonic diazotrophs ¹⁵ under bleaching conditions. Bleached corals also preferentially fed on Synechococcus, nitrogen-rich picophytoplanktonic 16 cells, instead of *Prochlorococcus* and picoeukaryotes, which have a lower cellular nitrogen content. By providing an ¹⁷ alternative source of bioavailable nitrogen, both the incorporation of nitrogen derived from planktonic diazotrophs and the ¹⁸ ingestion of Synechococcus may have profound consequences for coral bleaching recovery, especially for the many coral ¹⁹ reef ecosystems characterized by high abundance and activity of planktonic diazotrophs.

²⁰ Introduction/materials & methods/results ²¹ and discussion

²² Coral reefs are currently under threat from global warming, Q223 which disrupts the symbiosis between corals and their

> Supplementary information The online version of this article (https:// [doi.org/10.1038/s41396-019-0456-2\)](https://doi.org/10.1038/s41396-019-0456-2) contains supplementary material, which is available to authorized users.

 \boxtimes Valentine Meunier valentine.meunier@ird.fr

Laboratoire d'Excellence CORAIL, ENTROPIE (UMR9220), IRD, 98848 Nouméa cedex, New Caledonia

- ² Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM 110, 13288 Marseille, France
- Faculty of Science, Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW 2007, Australia
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
- ⁵ Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS UBO IRD IFREMER, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France

Leaching modulions. Bleached cotats, durinosia and total subspect in the example of *Prochlorococcus* and pioeukaryotes, which have a lower cellular nitrogen

sixted of *Prochlorococcus* and pioeukaryotes, which have a low endosymbiotic dinoflagellates of the family Symbiodiniaceae ²⁴ [1], leading to mass coral bleaching [2]. When corals bleach, ²⁵ they lose part of their photosynthetic symbionts that provide ²⁶ them with nitrogen $\lceil 3 \rceil$ and seawater warming also decreases 27 coral nitrogen acquisition capacity [4]. Several studies have ²⁸ reported an increase in the consumption of mesoplankton and ²⁹ macroplankton by corals when exposed to thermal stress, ³⁰ potentially sustaining a critical supply of nutrients needed for ³¹ recovery following bleaching [5–7]. The ability of corals to 32 feed on smaller planktonic fractions, i.e., picoplankton ³³ $(0.2-2 \,\mu\text{m})$ and nanoplankton $(2-20 \,\mu\text{m})$ has also been docu- 34 mented [8], but the increase in the ingestion of bacteria and 35 picoflagellates by bleached corals has only been observed in ³⁶ one study [9]. Among these size fractions, planktonic dinitro- ³⁷ gen (N_2) -fixing prokaryotes (subsequently referred to as 38 planktonic diazotrophs) are very abundant in coral lagoon ³⁹ waters $[10, 11]$. They reduce atmospheric N₂ into bioavailable 40 ammonium (NH_4^+) , providing sufficient nitrogen stocks for the 41 development of the planktonic food web in oligotrophic waters 42 [12]. The assimilation of nitrogen derived from planktonic 43 diazotrophs has been recently demonstrated in corals [13]. 44 According to $[13]$, ¹⁵N-enrichment in corals after their incubation with ${}^{15}N_2$ -labelled natural diazotrophic assemblages 46 could be due to three different processes: (1) direct feeding on 47

Fig. 1 Nitrogen assimilation rates (µg N cm⁻² h⁻¹) in Symbiodiniaceae (a) and coral tissue (b) in untreated and bleached corals after 12 h of exposure to ${}^{15}N_2$ -enriched natural plankton assemblage (mean \pm SD; $n = 5$ for each treatment). Horizontal line in each boxplot indicates the median and black dots represent the outlier samples. Asterisks indicate statistically significant differences

of ¹⁵N-dissolved nitrogen compounds fixed by the in *Symbiodiniaceae* tissue from the diazotroph and released extractellating, and (3) by 5 -fold (6.6512 ±0.3 cm of nondiazotrophic plankton enticled in ¹⁵N as a Mann– planktonic diazotrophs digested within the coelenteron, (2) 49 uptake of $15N$ -dissolved nitrogen compounds fixed by the planktonic diazotrophs and released extracellularly, and (3) 51 ingestion of nondiazotrophic plankton enriched in ¹⁵N as a result of diazotroph-derived nitrogen transfer [14]. While some 53 studies have demonstrated that N_2 fixation by coral symbiotic diazotroph communities increases in bleached corals [15, 16], the acquisition of nitrogen derived from planktonic diazo- trophic activity has never been investigated in corals facing thermal stress. To determine if bleached corals also benefit from planktonic diazotrophs, we incubated five colonies of the 59 branching coral S. *pistillata* with a $^{15}N_2$ -pre-labelled (24 h) natural plankton assemblage containing planktonic diazotrophs (prefiltered through a 100 µm mesh to exclude larger cells) as 62 described in [13]. In parallel, N_2 fixation within endosymbiotic diazotrophs in colonies of the same species was measured by incubating five untreated and five bleached colonies in 15 N- enriched filtered seawater. Coral colonies collected in the New Caledonian lagoon were acclimated to experimental conditions for 3 weeks. They were progressively bleached over 18 days 68 (by a gradual temperature increase up to 31° C) or left at ambient temperature (28 °C) as a control (subsequently referred to as untreated corals, see supplementary information for 71 details, Supplementary Fig. S1). The $\delta^{15}N$ isotopic values were measured in symbionts, coral tissues, and plankton before and after incubation (12 h). Nitrogen assimilation rates were cal- culated as previously described [17]. The contribution of endosymbiotic N₂ fixation was minor (see results in the sup- plementary information). Conversely, after the incubation with 15 N₂-labelled natural planktonic assemblage significant 15 N- enrichments were measured in the Symbiodiniaceae of both untreated and bleached corals. This suggests that Symbiodi-niaceae used nitrogen originating from the planktonic

diazotrophs [13, 15, 18]. Nitrogen assimilation rates 81 in Symbiodiniaceae tissue from bleached corals increased ⁸² by 5-fold $(0.6512 \pm 0.3890 \,\text{µg N cm}^{-2} \text{ h}^{-1}; \quad n = 5;$ 83 $n = 5$; Mann–Whitney–Wilcoxon test, $P < 0.05$ and 30-fold 84 $(0.0057 \pm 0.0028 \,\mu g^{-2} \,h^{-1};\ n = 5; \text{ Mann}-\text{Whitney}-\text{Wilcoxon}$ 85 test, $P < 0.01$), respectively, compared to those measured in the 86 untreated corals (0.1330 ± 0.2465) and $0.0002 \pm 0.0004 \,\mu g \, N$ 87 $\text{cm}^{-2} \text{h}^{-1}$) (Fig. 1, Supplementary Table 1). This demonstrates 88 that corals could incorporate more nitrogen coming from ⁸⁹ planktonic diazotrophs under bleaching conditions than ⁹⁰ untreated corals. By providing an alternative source of bioa- ⁹¹ vailable nitrogen, this increased incorporation of nitrogen 92 derived from planktonic diazotrophs may have profound con-
93 sequences for coral bleaching recovery, particularly in coral 94 reef ecosystems characterized by high planktonic diazotroph ⁹⁵ abundance and activity. These reefs are very widespread in the ⁹⁶ western South Pacific (e.g., New Caledonia, Papua New Gui- ⁹⁷ nea, and Australian Great Barrier Reef) [10, 11, 19, 20], but ⁹⁸ also in Hawaii, in the Caribbean and the Red Sea [21–23]. ⁹⁹ After 12 h of incubation, the assimilation rates were 100 times 100 greater in Symbiodiniaceae than in coral tissues, regardless 101 of the treatment $(n = 10$ for each compartment; 102 Mann–Whitney–Wilcoxon test, $P = 0.019$). This observation is 103 consistent with the results obtained by several authors (e.g., ¹⁰⁴ [24], [13], [25], [15, 26], [16]) who demonstrated that sym-
105 bionts can immediately take up and store nitrogen-derived 106 compounds that are then transferred to the host's tissue. We 107 conducted quantitative PCR assays to determine planktonic 108 diazotroph abundances (UCYN-A1, UCYN-C, and Tricho- ¹⁰⁹ desmium, i.e., the most important phylotypes in the lagoon 110 $[10, 27]$ in the incubation medium at the beginning and at the 111 end of incubation by targeting the niH gene, a common bio- 112 marker for diazotrophs. These assays revealed (1) a significant 113

Example 12
 Example 12
 Example 12
 Example 12
 Example 12
 Universited
 Example 12
 **UNCORPA A1, UCYN-A1, UCYN-CT, and Tri-

Example 12**
 UNCORPA A1, 10 CYN-CT (17D)
 Example 12
 Example 12
 Example abundance of diazotrophs in the incubation medium at the beginning of the experiment (UCYN-A1, UCYN-C, and Tri-116 chodesmium abundances were, respectively, 4.14 ± 5.35 10^2 , 117 0.97 ± 1.26 10¹, and 8.63 ± 6.03 10² *nifH* gene copies L⁻¹), 118 and (2) a decrease in the abundance of UCYN-A1 $(1 \mu m)$ and 119 UCYN-C $(4-8 \mu m)$ in all tanks containing corals $(n=3)$ compared to the controls without corals, confirming that corals fed on these two types of preys (Supplementary Table 2). 122 While UCYN-A1 are ~1 µm in size, their association with a picoeukaryote host [28] could increase their size to 7–10 µm and thus improve their chances of being consumed by corals. Picoeukaryotes, nanoeukaryotes, and bacterial abundances were further assessed by flow cytometry at the start and end of incubations to quantify their ingestion by both bleached and untreated corals. During the 12 h of incubation, Pro- chlorococcus was quantitatively the major prey ingested, fol- lowed by Synechococcus and picoeukaryotes in both treatments confirming the ability of corals to feed on pico- plankton [e.g., [9, 29]; Supplementary Table 3]. One of the most notable results of this study is that the ingestion rates of Synechococcus were 1.6 times higher in bleached corals 135 (3.79 ± 0.64 10⁴ cell cm⁻² h⁻¹) than in untreated corals (2.38 ± 136 0.24 10⁴ cell cm⁻² h⁻¹, Mann–Whitney–Wilcoxon test, $P =$

0.028; Fig.2). Until now, studies have shown that corals can ¹³⁷ regulate their heterotrophic feeding capacities on zooplankton ¹³⁸ $(550 \,\mu m)$ [6] and on picoflagellates and bacteria [9] in response 139 to bleaching. For the first time, our results show that thermally 140 stressed corals are able to increase not only their consumption 141 of planktonic diazotrophs and plankton that likely benefited ¹⁴² from N_2 fixation, but also more specifically their ingestion of a 143 very specific taxonomic group of picoplankton: the ubiquitous ¹⁴⁴ marine cyanobacterium Synechoccoccus. Surprisingly, 145 bleached colonies of S. *pistillata* preferentially selected Syne-
146 chococcus cells, which were not the most abundant in the ¹⁴⁷ medium during our incubation, but are known to be rich in 148 nitrogen [30, 31; Supplementary Table 4] and also to benefit 149 from nitrogen released by surrounding diazotrophs in the nat- ¹⁵⁰ ural environment $[12, 32]$. So far, this type of selective feeding 151 on Synechococcus cells has only been shown under controlled 152 conditions in colonies of *Porites astreoides* [33]. Additional 153 experiments are needed to determine which chemosensory cues ¹⁵⁴ are at the origin of this selection $[34]$. $\frac{155}{156}$

Without their symbionts supplying them with nutrients [3], corals thriving within an oligotrophic environment have 157 an urgent need for nitrogen. Our results demonstrate that, ¹⁵⁸ unlike in a previous study $[15]$, bleached corals do not meet 159

coral holobionts holds great potential to improve our

ert S. Jeeman-Frank I, et al.

and resilience in the context of climate change.

In any distingue of unitrivial interactions driving conditions are allowing mone

and this nitrogen requirement through the activity of their endosymbiotic diazotrophs but through an external source coming from planktonic diazotrophs and plankton that 163 benefited from N_2 fixation. The amount of nitrogen coming from planktonic diazotrophs and Synechococcus for bleached corals, compared to the other nitrogen sources can be estimated (Supplementary Tables 4 and 5). S. pistillata is able to take up inorganic nitrogen (ammonium and nitrate at 168 in situ concentrations) at a rate of $2 \text{ ng cm}^{-2} \text{ h}^{-1}$ [35–37] and also estimated that the uptake of organic nitrogen in the form of dissolved free amino acids was ca. 60 ng N cm⁻² h⁻¹ leading to a maximal uptake of total dissolved 172 nitrogen of ca. 0.062 μg N cm⁻² h⁻¹. In our study we esti- mate that for the bleached corals, nitrogen coming from diazotrophic plankton and Synechococcus (0.658 µg $N \text{ cm}^{-2} \text{ h}^{-1}$) brings ten times more nitrogen than what corals take up in the dissolved nitrogen pool when they still contain Symbiodiniaceae. This specific feeding also repre- sents a nonnegligible source of carbon for corals devoid of Symbiodiniaceae (Supplementary Tables 4 and 5). Studying the fate of nitrogen derived from planktonic diazotrophs within coral holobionts holds great potential to improve our understanding of nutritional interactions driving coral function and resilience in the context of climate change. 184 Benefiting from N_2 fixation could become a common strategy for coral recovery facing bleaching, as both the activity and geographical distribution of diazotrophs will likely increase with future rising sea surface temperature [38, 39].

 Acknowledgements VM was the beneficiary of a PhD grant from LabEx-Corail (MACADAM project). This work was also funded by the LabEx-Corail FLAMENCO project and the EC2CO/BIOHEFECT program (TOUCAN project). We wish to thank the technical staff of the Aquarium des Lagons (Nouméa, New Caledonia) for their wel- come and assistance in tank maintenance. We are especially grateful to three anonymous reviewers for critical reading and valuable comments on this manuscript.

197 Compliance with ethical standards

198 **Conflict of interest** The authors declare that they have no conflict of 199 interest.

200 Publisher's note: Springer Nature remains neutral with regard to ²⁰¹ jurisdictional claims in published maps and institutional affiliations.

²⁰² References

- 203 1. LaJeunesse TC, Parkinson JE, Gabrielson PW, Jeong HJ, Reimer 204 JD, Voolstra CR, et al. Systematic revision of symbiodiniaceae 205 highlights the antiquity and diversity of coral endosymbionts. Curr 206 Biol. 2018;28:2570–80.
- 207 2. Hoegh-Guldberg O. Climate change coral bleaching and the future 208 of the world's coral reefs. Mar Freshw Res. 1999;50:839–66.
- 209 3. Muscatine L, CF D'Elia. The uptake, retention, and release of Q7 210 ammonium by reef corals. 1978;23: 725-34.
- 4. Godinot C, Houlbrèque F, Grover R, Ferrier-Pagès C. Coral 211 uptake of inorganic phosphorus and nitrogen negatively affected 212 by simultaneous changes in temperature and pH. PLoS ONE 213 2011;6:1–10. 214
- 5. Palardy JE, Rodrigues LJ, Grottoli AG. The importance of zoo- 215 plankton to the daily metabolic carbon requirements of healthy 216 and bleached corals at two depths. J Exp Mar Bio Ecol. 217 2008;367:180–8. 218
- 6. Grottoli AG, Rodrigues LJ, Palardy JE. Heterotrophic plasticity 219 and resilience in bleached corals. Nature. 2006;440:1186–9. 220
- 7. Goldberg WM. Coral food, feeding, nutrition, and secretion: a 221 review. 2018. 222 Q8
- 8. Houlbrèque F, Ferrier-Pagès C. Heterotrophy in tropical scler- 223 actinian corals. Biol Rev. $2009:1-17$ 224 Q9
- 9. Tremblay P, Naumann MS, Sikorski S, Grover R, Ferrier-Pagès C. 225 Experimental assessment of organic carbon fluxes in the scler- ²²⁶ actinian coral Stylophora pistillata during a thermal and photo 227 stress event. Mar Ecol Prog Ser. 2012;453:63–77. 228
- 10. Turk-Kubo KA, Frank IE, Hogan ME, Desnues A, Bonnet S, Zehr 229 JP. Diazotroph community succession during the VAHINE 230 mesocosm experiment (New Caledonia lagoon). Biogeosciences. 231 2015. 2015.
- 11. Messer LF, Brown MV, Furnas MJ, Carney RL, McKinnon AD, 233 Seymour JR. Diversity and activity of diazotrophs in great barrier 234 reef surface waters. Front Microbiol. 2017;8:1–16. 235
- 12. Bonnet S, Berthelot H, Turk-Kubo K, Cornet-Barthaux V, Faw- 236 cett S, Berman-Frank I, et al. Diazotroph derived nitrogen sup- 237 ports diatom growth in the South West Pacific: a quantitative ²³⁸ study using nanoSIMS. Limnol Oceanogr. 2016. 239
- 13. Benavides M, Houlbrèque F, Camps M, Lorrain A, Grosso O, 240 Bonnet S. Diazotrophs: a non-negligible source of nitrogen for the 241 tropical coral Stylophora pistillata. J Exp Biol. 2016. ²⁴²
- 14. Bonnet S, Berthelot H, Turk-Kubo K, Fawcett S, Rahav E, 243 L'Helguen S, et al. Dynamics of N2 fixation and fate of ²⁴⁴ diazotroph-derived nitrogen in a low-nutrient, low-chlorophyll 245 ecosystem: results from the VAHINE mesocosm experiment (New 246 Caledonia). Biogeosciences. 2016. 247
- 15. Bednarz VN, Grover R, Maguer J-FF, Fine M, Ferrier-Pagès C, 248 The M, et al. The assimilation of diazotroph-derived nitrogen by 249 scleractinian corals depends on their metabolic status. MBio. 250 2017;8:1–14. 251
- 16. Bednarz Vanessa N, Ferrier-Pagès C, Grover R, Bednarz, et al. 252 Community and associated dinitrogen fixation within the tempe- ²⁵³ rate coral Oculina patagonica. Environ Microbiol. ²⁵⁴ 2019;21:480–95. 255
- 17. Montoya JP, Voss M, Kahler P, Capone DG. A simple, high- 256 precision, high-sensitivity tracer assay for N2 fixation. Appl ²⁵⁷ Environ Microbiol. 1996;62:986–93. 258
- 18. Benavides M, Bednarz VN, Ferrier-Pagès C. Diazotrophs: over- 259 looked key players within the coral symbiosis and tropical reef 260 ecosystems? Front Mar Sci. 2017; 4. 261
- 19. Messer LF, Mahaffey C, Robinson CM, Jeffries TC, Baker KG, 262 Isaksson JB, et al. High levels of heterogeneity in diazotroph 263 diversity and activity within a putative hotspot for marine nitrogen 264 fixation. ISME J. 2016;10:1499–513. ²⁶⁵
- 20. Bonnet S, Caffin M, Berthelot H, Moutin T. Hot spot of N $_2$ 266 fixation in the western tropical South Pacific pleads for a spatial ²⁶⁷ decoupling between N_2 fixation and denitrification. Proc Natl 268 Acad Sci USA. 2017;114:E2800-1. 269
- 21. Luo Y-W, Doney SC, Anderson LA, Benavides M, Berman-Frank 270 I, Bode A, et al. Database of diazotrophs in global ocean: abun- 271 dance, biomass and nitrogen fixation rates. Earth Syst Sci Data. ²⁷² 2012;4:47–73. 273
- 22. Foster RA, Paytan A, Zehr JP. Seasonality of N_2 fixation and nifH 274 gene diversity in the Gulf of Aqaba (Red Sea). Limnol Oceanogr. 275 2009;54:219–33. 276

339

- 277 23. Rahav E, Bar-Zeev E, Ohayon S, Elifantz H, Belkin N, Herut B, ²⁷⁸ et al. Dinitrogen fixation in aphotic oxygenated marine environ-279 ments. Front Microbiol. 2013;4:1–11.
- 280 24. Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-281 Coulon I, Hoegh-Guldberg O. et al. A single-cell view of ²⁸² ammonium assimilation in coral-dinoflagellate symbiosis. ISME J. 283 2012;6:1314–24.
- 284 25. Krueger T, Bodin J, Horwitz N, Loussert-Fonta C, Sakr A, Escrig 285 S, et al. Temperature and feeding induce tissue level changes in 286 autotrophic and heterotrophic nutrient allocation in the coral 287 symbiosis—a NanoSIMS study. Sci Rep. 2018;8:12710.
- 288 26. Cardini U, van Hoytema N, Bednarz VN, Rix L, Foster RA, ²⁸⁹ Al-Rshaidat MMDD, et al. Microbial dinitrogen fixation in coral 290 holobionts exposed to thermal stress and bleaching. Environ 291 Microbiol. 2016;18:2620–33.
- 292 27. Henke BA, Turk-Kubo KA, Bonnet S, Zehr JP. Distributions and ²⁹³ abundances of sublineages of the N2-fixing cyanobacterium 294 Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New 295 Caledonian coral lagoon. Front Microbiol. 2018;9:1–14.
- 296 28. Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N, 297 Vaulot D, et al. Unicellular cyanobacterium symbiotic with a 298 single-celled eukaryotic alga. Science (80-). 2012;337:1546–50.
- 299 29. Houlbrèque Fanny, Tambutté Eric, Allemand D, Ferrier-Pagès P. 300 Interactions between zooplankton feeding, photosynthesis and ³⁰¹ skeletal growth in the scleractinian coral Stylophora pistillata. J 302 Exp Biol. 2004;207:1461–9.
- 303 30. Bertilsson S, Berglund O, Karl DM, Chisholm SW. Elemental ³⁰⁴ composition of marine Prochlorococcus and Synechococcus: 305 implications for the ecological stoichiometry of the sea. Limnol 306 Oceanogr. 2003;48:1721–31.
- **UNCORRECTED** 307 31. Jacquet S, Delesalle B, Torréton JP, Blanchot J. Response of ³⁰⁸ phytoplankton communities to increased anthropogenic influences

(southwestern lagoon, New Caledonia). Mar Ecol Prog Ser. 309 2006;320:65–78. 310

- 32. Berthelot H, Bonnet S, Grosso O, Cornet V, Barani A. Transfer of 311 diazotroph-derived nitrogen towards non-diazotrophic planktonic 312 communities: a comparative study between Trichodesmium ery- ³¹³ thraeum Crocosphaera watsonii and Cyanothece sp. Bio- ³¹⁴ geosciences. 2016;13:4005–21. 315
- 33. McNally SP, Parsons RJ, Santoro AE, Apprill A. Multifaceted 316 impacts of the stony coral Porites astreoides on picoplankton 317 abundance and community composition. Limnol Oceanogr. 318 2017;62:217–34. 319
- 34. Lenhoff M, Howard HW. Aquatic invertebrates: model systems 320 for study of receptor activation and evolution of receptor proteins. 321 Reproduction. 1977.
- 35. Grover R, Maguer JF, Reynaud-Vaganay S, Ferrier-Pagès C. 323 Uptake of ammonium by the scleractinian coral Stylophora pis- ³²⁴ tillata: effect of feeding, light, and ammonium concentrations. 325 Limnol Oceanogr. 2002;47:782–90. 326
- 36. Grover R, Maguer JF, Allemand D, Ferrier-Pagès C. Nitrate 327 uptake in the scleractinian coral Stylophora pistillata. Limnol ³²⁸ Oceanogr. 2003;48:2266–74. 329
- 37. Hoegh-Guldberg O, Williamson J. Availability of two forms of 330 dissolved nitrogen to the coral *Pocillopora* damicornis and its 331 symbiotic zooxanthellae. Mar Biol. 1999;133:561–70. 332
- 38. Boyd PW, Doney SC. Modelling regional responses by marine 333 pelagic ecosystems to global climate change. Geophys Res Lett. 334 $2002;29:53-53(1-4)$. 335
- 39. Breitbarth E, Oschlies A, Laroche J. Physiological constraints on 336 the global distribution of *Trichodesmium*—effect of temperature 337
on diazotrophy. 2007; 53–61. on diazotrophy. 2007; 53-61.

Journal : 41396 Article : 456

SPRINGER NATURE

Author Query Form

Please ensure you fill out your response to the queries raised below and return this form along with your corrections

Dear Author

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the 'Author's response' area provided below

