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8 Abstract
9 Coral reefs are threatened by global warming, which disrupts the symbiosis betweenQ1 corals and their photosynthetic
10 symbionts (Symbiodiniaceae), leading to mass coral bleaching. Planktonic diazotrophs or dinitrogen (N2)-fixing prokaryotes
11 are abundant in coral lagoon waters and could be an alternative nutrient source for corals. Here we incubated untreated and
12 bleached coral colonies of Stylophora pistillata with a 15N2-pre-labelled natural plankton assemblage containing diazotrophs.
13

15N2 assimilation rates in Symbiodiniaceae cells and tissues of bleached corals were 5- and 30-fold higher, respectively, than
14 those measured in untreated corals, demonstrating that corals incorporate more nitrogen derived from planktonic diazotrophs
15 under bleaching conditions. Bleached corals also preferentially fed on Synechococcus, nitrogen-rich picophytoplanktonic
16 cells, instead of Prochlorococcus and picoeukaryotes, which have a lower cellular nitrogen content. By providing an
17 alternative source of bioavailable nitrogen, both the incorporation of nitrogen derived from planktonic diazotrophs and the
18 ingestion of Synechococcus may have profound consequences for coral bleaching recovery, especially for the many coral
19 reef ecosystems characterized by high abundance and activity of planktonic diazotrophs.

20 Introduction/materials & methods/results
21 and discussion

22 Coral reefs are currently under threat from global warming,
23 which disrupts the symbiosis betweenQ2 corals and their

24endosymbiotic dinoflagellates of the family Symbiodiniaceae
25[1], leading to mass coral bleaching [2]. When corals bleach,
26they lose part of their photosynthetic symbionts that provide
27them with nitrogen [3] and seawater warming also decreases
28coral nitrogen acquisition capacity [4]. Several studies have
29reported an increase in the consumption of mesoplankton and
30macroplankton by corals when exposed to thermal stress,
31potentially sustaining a critical supply of nutrients needed for
32recovery following bleaching [5–7]. The ability of corals to
33feed on smaller planktonic fractions, i.e., picoplankton
34(0.2–2 µm) and nanoplankton (2–20 µm) has also been docu-
35mented [8], but the increase in the ingestion of bacteria and
36picoflagellates by bleached corals has only been observed in
37one study [9]. Among these size fractions, planktonic dinitro-
38gen (N2)-fixing prokaryotes (subsequently referred to as
39planktonic diazotrophs) are very abundant in coral lagoon
40waters [10, 11]. They reduce atmospheric N2 into bioavailable
41ammonium (NH4

+), providing sufficient nitrogen stocks for the
42development of the planktonic food web in oligotrophic waters
43[12]. The assimilation of nitrogen derived from planktonic
44diazotrophs has been recently demonstrated in corals [13].
45According to [13], 15N-enrichment in corals after their incu-
46bation with 15N2-labelled natural diazotrophic assemblages
47could be due to three different processes: (1) direct feeding on
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48 planktonic diazotrophs digested within the coelenteron, (2)
49 uptake of 15N-dissolved nitrogen compounds fixed by the
50 planktonic diazotrophs and released extracellularly, and (3)
51 ingestion of nondiazotrophic plankton enriched in 15N as a
52 result of diazotroph-derived nitrogen transfer [14]. While some
53 studies have demonstrated that N2 fixation by coral symbiotic
54 diazotroph communities increases in bleached corals [15, 16],
55 the acquisition of nitrogen derived from planktonic diazo-
56 trophic activity has never been investigated in corals facing
57 thermal stress. To determine if bleached corals also benefit
58 from planktonic diazotrophs, we incubated five colonies of the
59 branching coral S. pistillata with a 15N2-pre-labelled (24 h)
60 natural plankton assemblage containing planktonic diazotrophs
61 (prefiltered through a 100 µm mesh to exclude larger cells) as
62 described in [13]. In parallel, N2 fixation within endosymbiotic
63 diazotrophs in colonies of the same species was measured by
64 incubating five untreated and five bleached colonies in 15N-
65 enriched filtered seawater. Coral colonies collected in the New
66 Caledonian lagoon were acclimated to experimental conditions
67 for 3 weeks. They were progressively bleached over 18 days
68 (by a gradual temperature increase up to 31 °C) or left at
69 ambient temperature (28 °C) as a control (subsequently referred
70 to as untreated corals, see supplementary information for
71 details, Supplementary Fig. S1). The δ15N isotopic values were
72 measured in symbionts, coral tissues, and plankton before and
73 after incubation (12 h). Nitrogen assimilation rates were cal-
74 culated as previously described [17]. The contribution of
75 endosymbiotic N2 fixation was minor (see results in the sup-
76 plementary information). Conversely, after the incubation with
77

15N2-labelled natural planktonic assemblage significant 15N-
78 enrichments were measured in the Symbiodiniaceae of both
79 untreated and bleached corals. This suggests that Symbiodi-
80 niaceae used nitrogen originating from the planktonic

81diazotrophs [13, 15, 18]. Nitrogen assimilation rates
82in Symbiodiniaceae tissue from bleached corals increased
83by 5-fold (0.6512 ± 0.3890 µgN cm−2 h−1; n= 5;
84Mann–Whitney–Wilcoxon test, P < 0.05) and 30-fold
85(0.0057 ± 0.0028 µg −2 h−1; n= 5; Mann–Whitney–Wilcoxon
86test, P < 0.01), respectively, compared to those measured in the
87untreated corals (0.1330 ± 0.2465 and 0.0002 ± 0.0004 µgN
88cm−2 h−1) (Fig. 1, Supplementary Table 1). This demonstrates
89that corals could incorporate more nitrogen coming from
90planktonic diazotrophs under bleaching conditions than
91untreated corals. By providing an alternative source of bioa-
92vailable nitrogen, this increased incorporation of nitrogen
93derived from planktonic diazotrophs may have profound con-
94sequences for coral bleaching recovery, particularly in coral
95reef ecosystems characterized by high planktonic diazotroph
96abundance and activity. These reefs are very widespread in the
97western South Pacific (e.g., New Caledonia, Papua New Gui-
98nea, and Australian Great Barrier Reef) [10, 11, 19, 20], but
99also in Hawaii, in the Caribbean and the Red Sea [21–23].
100After 12 h of incubation, the assimilation rates were 100 times
101greater in Symbiodiniaceae than in coral tissues, regardless
102of the treatment (n= 10 for each compartment;
103Mann–Whitney–Wilcoxon test, P= 0.019). This observation is
104consistent with the results obtained by several authors (e.g.,
105[24], [13], [25], [15, 26],[16]) who demonstrated that sym-
106bionts can immediately take up and store nitrogen-derived
107compounds that are then transferred to the host’s tissue. We
108conducted quantitative PCR assays to determine planktonic
109diazotroph abundances (UCYN-A1, UCYN-C, and Tricho-
110desmium, i.e., the most important phylotypes in the lagoon
111[10, 27]) in the incubation medium at the beginning and at the
112end of incubation by targeting the nifH gene, a common bio-
113marker for diazotrophs. These assays revealed (1) a significant

Fig. 1 Nitrogen assimilation
rates (µg N cm−2 h−1) in
Symbiodiniaceae (a) and coral
tissue (b) in untreated and
bleached corals after 12 h of
exposure to 15N2-enriched
natural plankton assemblage
(mean ± SD; n= 5 for each
treatment). Horizontal line in
each boxplot indicates the
median and black dots represent
the outlier samples. Asterisks
indicate statistically significant
differences
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114 abundance of diazotrophs in the incubation medium at the
115 beginning of the experiment (UCYN-A1, UCYN-C, and Tri-
116 chodesmium abundances were, respectively, 4.14 ± 5.35 102,
117 0.97 ± 1.26 101, and 8.63 ± 6.03 102 nifH gene copies L−1),
118 and (2) a decrease in the abundance of UCYN-A1 (1 µm) and
119 UCYN-C (4–8 µm) in all tanks containing corals (n= 3)
120 compared to the controls without corals, confirming that corals
121 fed on these two types of preys (Supplementary Table 2).
122 While UCYN-A1 are ~1 µm in size, their association with a
123 picoeukaryote host [28] could increase their size to 7–10 µm
124 and thus improve their chances of being consumed by corals.
125 Picoeukaryotes, nanoeukaryotes, and bacterial abundances
126 were further assessed by flow cytometry at the start and end of
127 incubations to quantify their ingestion by both bleached and
128 untreated corals. During the 12 h of incubation, Pro-
129 chlorococcus was quantitatively the major prey ingested, fol-
130 lowed by Synechococcus and picoeukaryotes in both
131 treatments confirming the ability of corals to feed on pico-
132 plankton [e.g., [9, 29]; Supplementary Table 3]. One of the
133 most notable results of this study is that the ingestion rates of
134 Synechococcus were 1.6 times higher in bleached corals
135 (3.79 ± 0.64 104 cell cm−2 h−1) than in untreated corals (2.38 ±
136 0.24 104 cell cm−2 h−1, Mann–Whitney–Wilcoxon test, P=

1370.028; Fig.2). Until now, studies have shown that corals can
138regulate their heterotrophic feeding capacities on zooplankton
139(>50 µm) [6] and on picoflagellates and bacteria [9] in response
140to bleaching. For the first time, our results show that thermally
141stressed corals are able to increase not only their consumption
142of planktonic diazotrophs and plankton that likely benefited
143from N2 fixation, but also more specifically their ingestion of a
144very specific taxonomic group of picoplankton: the ubiquitous
145marine cyanobacterium Synechoccoccus. Surprisingly,
146bleached colonies of S. pistillata preferentially selected Syne-
147chococcus cells, which were not the most abundant in the
148medium during our incubation, but are known to be rich in
149nitrogen [30, 31; Supplementary Table 4] and also to benefit
150from nitrogen released by surrounding diazotrophs in the nat-
151ural environment [12, 32]. So far, this type of selective feeding
152on Synechococcus cells has only been shown under controlled
153conditions in colonies of Porites astreoides [33]. Additional
154experiments are needed to determine which chemosensory cues
155are at the origin of this selection [34]. Q3
Q4Q5Q6
156Without their symbionts supplying them with nutrients
157[3], corals thriving within an oligotrophic environment have
158an urgent need for nitrogen. Our results demonstrate that,
159unlike in a previous study [15], bleached corals do not meet

Fig. 2 Ingestion rates
(cell cm−2 h−1) of
Prochlorococcus (a),
Synechococcus (b), and
picoeukaryotes (c) in untreated
and bleached corals (mean ± SD;
n= 5 for each treatment).
Horizontal line in each boxplot
indicates the median and black
dots represent the outlier
samples. Asterisks indicate
statistically significant
differences
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160 this nitrogen requirement through the activity of their
161 endosymbiotic diazotrophs but through an external source
162 coming from planktonic diazotrophs and plankton that
163 benefited from N2 fixation. The amount of nitrogen coming
164 from planktonic diazotrophs and Synechococcus for
165 bleached corals, compared to the other nitrogen sources can
166 be estimated (Supplementary Tables 4 and 5). S. pistillata is
167 able to take up inorganic nitrogen (ammonium and nitrate at
168 in situ concentrations) at a rate of 2 ng cm−2 h−1 [35–37]
169 and also estimated that the uptake of organic nitrogen
170 in the form of dissolved free amino acids was ca. 60 ng
171 N cm−2 h−1 leading to a maximal uptake of total dissolved
172 nitrogen of ca. 0.062 µg N cm−2 h−1. In our study we esti-
173 mate that for the bleached corals, nitrogen coming
174 from diazotrophic plankton and Synechococcus (0.658 µg
175 N cm−2 h−1) brings ten times more nitrogen than what
176 corals take up in the dissolved nitrogen pool when they still
177 contain Symbiodiniaceae. This specific feeding also repre-
178 sents a nonnegligible source of carbon for corals devoid of
179 Symbiodiniaceae (Supplementary Tables 4 and 5). Studying
180 the fate of nitrogen derived from planktonic diazotrophs
181 within coral holobionts holds great potential to improve our
182 understanding of nutritional interactions driving coral
183 function and resilience in the context of climate change.
184 Benefiting from N2 fixation could become a common
185 strategy for coral recovery facing bleaching, as both the
186 activity and geographical distribution of diazotrophs will
187 likely increase with future rising sea surface temperature
188 [38, 39].
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