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Abstract

This paper presents the spectral analysis of 1-dimensional Schrödinger operator
on the half-line whose potential is a linear combination of the Coulomb term 1/r and
the centrifugal term 1/r2. The coupling constants are allowed to be complex, and
all possible boundary conditions at 0 are considered. The resulting closed operators
are organized in three holomorphic families. These operators are closely related to
the Whittaker equation. Solutions of this equation are thoroughly studied in a large
appendix to this paper. Various special cases of this equation are analyzed, namely
the degenerate, the Laguerre and the doubly degenerate cases. A new solution to the
Whittaker equation in the doubly degenerate case is also introduced.
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1 Introduction

This paper is devoted to 1-dimensional Schrödinger operators with Coulomb and cen-
trifugal potentials. These operators are given by the differential expressions

Lβ,α := −∂2
x +

(
α− 1

4

) 1

x2
− β

x
. (1.1)

The parameters α and β are allowed to be complex valued. We shall study realizations
of Lβ,α as closed operators on L2(R+), and consider general boundary conditions.

The operator given in (1.1) is one of the most famous and useful exactly solvable
models of Quantum Mechanics. It describes the radial part of the Hydrogen Hamiltonian.
In the mathematical literature, this operator goes back to Whittaker, who studied its
eigenvalue equation in [33]. For this reason, we call (1.1) the Whittaker operator.
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This paper is a continuation of a series of papers [2, 6, 7] devoted to an analysis of
exactly solvable 1-dimensional Schrödinger operators. We follow the same philosophy as
in [6]. We start from a formal differential expression depending on complex parameters.
Then we look for closed realizations of this operator on L2(R+). We do not restrict
ourselves to self-adjoint realizations – we look for realizations that are well-posed, that is,
possess non-empty resolvent sets. This implies that they satisfy an appropriate boundary
condition at 0, depending on an additional complex parameter. We organize those
operators in holomorphic families.

Before describing the holomorphic families introduced in this paper, let us recall the
main constructions from the previous papers of this series. In [2, 6] we considered the
operator

Lα := −∂2
x +

(
α− 1

4

) 1

x2
. (1.2)

As is known, it is useful to set α = m2. In [2] the following holomorphic family of closed
realizations of (1.2) was introduced:

Hm, with − 1 < Re(m),

defined by Lm2 with boundary conditions ∼ x
1
2

+m.

It was proved that for Re(m) ≥ 1 the operator Hm is the only closed realization of Lm2 .
In the region −1 < Re(m) < 1 there exist realizations of Lm2 with mixed boundary
conditions. As described in [6], it is natural to organize them into two holomorphic
families:

Hm,κ, with − 1 < Re(m) < 1, m 6= 0, κ ∈ C ∪ {∞},

defined by Lm2 with boundary conditions ∼ x
1
2

+m + κx
1
2
−m,

and

Hν
0 , with ν ∈ C ∪ {∞},

defined by L0 with boundary conditions ∼ x
1
2
(
ν + ln(x)

)
.

Note that related investigations about these operators have also been performed in [31,
32].

In [7] and in the present paper we study closed realizations of the differential operator
(1.1) on L2(R+). Again, it is useful to set α = m2. In [7] we introduced the family

Hβ,m, with β ∈ C, −1 < Re(m),

defined by Lβ,m2 with boundary conditions ∼ x
1
2

+m
(

1− β

1 + 2m
x
)
.

It was noted in this reference that this family is holomorphic except for a singularity at
(β,m) =

(
0,−1

2

)
, which corresponds to the Neumann Laplacian.

For Re(m) ≥ 1 the operator Hβ,m is also the only closed realization of Lβ,m2 . In the
region −1 < Re(m) < 1 there exist other closed realizations of Lβ,m2 . The boundary
conditions corresponding to Hβ,m are distinguished—we will call them pure. The goal of
the present paper is to describe the most general well-posed realizations of Lβ,m2 , with
all possible boundary conditions, including the mixed ones.
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We shall show that it is natural to organize all well-posed realizations of Lβ,m2 for
−1 < Re(m) < 1 in three holomorphic families: The generic family

Hβ,m,κ, with β ∈ C, −1 < Re(m) < 1, m 6∈
{
− 1

2 , 0,
1
2

}
, κ ∈ C ∪ {∞},

defined by Lβ,m2 with boundary conditions

∼ x
1
2

+m
(

1− β

1 + 2m
x
)

+ κx
1
2
−m
(

1− β

1− 2m
x
)
,

the family for m = 1
2

Hν
β, 1

2

, with β ∈ C, ν ∈ C ∪ {∞}

defined by Lβ, 1
4

with boundary conditions ∼ 1− βx ln(x) + νx,

and the family for m = 0

Hν
β,0, with β ∈ C, ν ∈ C ∪ {∞},

defined by Lβ,0 with boundary conditions ∼ x
1
2
(
ν + ln(x)

)
.

The above holomorphic families include all possible well-posed realizations of Lβ,m2 in
the region |Re(m)| < 1 with one exception: the special case (β,m, κ) =

(
0,−1

2 , 0
)

which
corresponds to the Neumann Laplacian H− 1

2
= H− 1

2
,0 = H 1

2
,∞, and which is already

covered by the families Hm and Hm,κ.
After having introduced these families and describing a few general results, we provide

the spectral analysis of these operators and give the formulas for their resolvents. We
also describe the eigenprojections onto the eigenfunctions of these operators. They can
be organized into a single family of bounded 1-dimensional projections Pβ,m(λ), where
λ satisfies Lmax

β,mPβ,m(λ) = λPβ,m(λ). Here Lmax
β,m denotes the maximal operator which is

introduced in Section 2.3.
There exists a vast literature devoted to Schrödinger operators with Coulomb po-

tentials, including various boundary conditions. Let us mention, for instance, an inter-
esting dispute in Journal of Physics A [22, 10, 23] about self-adjoint extensions of the
1-dimensional Schrödinger operator on the real line with a Coulomb potential (without
the centrifugal term). Papers [21, 11, 24] discuss generalized Nevanlinna functions nat-
urally appearing in the context of such operators, especially in the range of parameters
|Re(m)| ≥ 1. See also [4, 9, 12, 13, 14, 15, 17, 18, 19, 25, 26, 27, 28, 29] and references
therein. However, essentially all these references are devoted to real parameters β,m and
self-adjoint realizations of Whittaker operators. The philosophy of using holomorphic
families of closed operators, which we believe should be one of the standard approaches
to the study of special functions, seems to be confined to the series of paper [2, 6, 7],
which we discussed above.

The main reason why we are able to analyze the operator (1.1) so precisely is the fact
that it is closely related to an exactly solvable equation, the so-called Whittaker equation(

− ∂2
z +

(
m2 − 1

4

) 1

z2
− β

z
+

1

4

)
f(z) = 0.

Its solutions are called Whittaker functions, which can be expressed in terms of Kummer’s
confluent functions. The theory of the Whittaker equation is the second subject of the
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paper. It is extensively developed in a large appendix to this paper. It can be viewed
as an extension of the theory of Bessel and Whittaker equation presented in [6, 7].
We discuss in detail various special cases: the degenerate, the Laguerre and the doubly
degenerate cases. Besides the well-known Whittaker functions Iβ,m and Kβ,m, described
for example in [7], we introduce a new kind of Whittaker functions, denoted Xβ,m. It is
needed to fully describe the doubly degenerate case.

The Whittaker equation and its close cousin, the confluent equation, are discussed
in many standard monographs, including [1, 3, 30]. Nevertheless, it seems that our
treatment contains a number of facts about the Whittaker equation, which could not be
found in the literature. For example, we have never seen a satisfactory detailed treatment
of the doubly degenerate case. The function Xβ,m seems to be our invention. Without
this function it would be difficult to analyze the doubly degenerate case. Figures 1
and 2, which illustrate the intricate structure of the degenerate, Laguerre and doubly
degenerate cases, apparently appear for the first time in the literature. Another result
that seems to be new is a set of explicit formulas for integrals involving products of
solutions of the Whittaker equation. These formulas are related to the eigenprojections
of the Whittaker operator.

2 The Whittaker operator

In this section we define the main objects of our paper: the Whittaker operators Hβ,m,κ,
Hν
β, 1

2

and Hν
β,0 on the Hilbert space L2

(
]0,∞[

)
.

2.1 Notations

We shall use the notations R+ =]0,∞[, N = {0, 1, 2, . . . } and N× = {1, 2, . . . }. Likewise,
we set C× = C \ {0} and R× = R \ {0}.

The Hilbert space L2(R+) is endowed with the scalar product

(h1|h2) =

∫ ∞
0

h1(x)h2(x)dx.

We will also use the bilinear form defined by

〈h1|h2〉 =

∫ ∞
0

h1(x)h2(x)dx.

The Hermitian conjugate of an operator A is denoted by A∗. Its transpose is denoted
by A#. If A is bounded, then A∗ and A# are defined by the relations

(h1|Ah2) = (A∗h1|h2),

〈h1|Ah2〉 = 〈A#h1|h2〉.

The definition of A∗ has the well-known generalization to the unbounded case. The
definition of A# in the unbounded case is analogous.

The following holomorphic functions are understood as their principal branches, that
is, their domain is C\] −∞, 0] and on ]0,∞[ they coincide with their usual definitions
from real analysis: ln(z),

√
z, zλ. We set arg(z) := Im

(
ln(z)

)
. The extensions of these

functions to ]−∞, 0] or to ]−∞, 0[ are from the upper half-plane.
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The Wronskian of two continuously differentiable functions f and g on R+ is denoted
by W (f, g; ·) and is defined for x ∈ R+ by

W (f, g;x) := f(x)g′(x)− f ′(x)g(x). (2.1)

2.2 Zero-energy eigenfunctions of the Whittaker operator

In order to study the realizations of the Whittaker operator Lβ,α one first needs to
find out what are the possible boundary conditions at zero. The general theory of 1-
dimensional Schrödinger operators says that there are two possibilities:

(i) there is a 1-parameter family of boundary conditions at zero,

(ii) there is no need to fix a boundary condition at zero.

One can show that (i)⇔(i’) and (ii)⇔(ii’), where

(i’) for any λ ∈ C the space of solutions of (Lβ,α−λ)f = 0 which are square integrable
around zero is 2-dimensional,

(ii’) for any λ ∈ C the space of solutions of (Lβ,α−λ)f = 0 which are square integrable
around zero is at most 1-dimensional.

We refer to [5] and references therein for more details.
In the above criterion one can choose a convenient λ. In our case the simplest

choice corresponds to λ = 0. Therefore, we first discuss solutions of the zero eigenvalue
Whittaker equation (

− ∂2
x +

(
m2 − 1

4

) 1

x2
− β

x

)
f = 0 (2.2)

for m and β in C. As analyzed in more details in Section B.5, solutions of (2.2) can
be constructed from solutions of the Bessel equation. More precisely, for β 6= 0, let us
define the following function for x ∈ R+ :

jβ,m(x) :=
Γ(1 + 2m)√

π
β−

1
4
−mx1/4J2m

(
2
√
βx
)
,

where Jm is defined in Section B.4. For β = 0 we set

j0,m(x) := xm+ 1
2 .

Then, the equation (2.2) is solved by the functions jβ,m, see [7, Sec. 2.8] and Section
B.5. For 2m 6∈ Z, jβ,m and jβ,−m span the space of solutions of (2.2). They are square
integrable around zero if and only if |Re(m)| < 1.

We still need to consider the special cases m ∈
{
− 1

2 , 0,
1
2

}
. In fact, we shall not

consider separately m = −1
2 because Equation (2.2) with m = −1

2 coincides with the
case m = 1

2 . As companions to jβ,0 and jβ, 1
2

for β 6= 0 we introduce

yβ,0(x) := β−
1
4x1/4

[√
πY0

(
2
√
βx
)
− (ln(β) + 2γ)√

π
J0

(
2
√
βx
)]
,

yβ, 1
2
(x) := β

1
4x1/4

[
−
√
πY1

(
2
√
βx
)

+
(ln(β) + 2γ − 1)√

π
J1

(
2
√
βx
)]
,
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where γ is Euler’s constant and Ym is defined in Section B.4. For β = 0 we set

y0,0(x) := x
1
2 ln(x) and y0, 1

2
(x) := 1.

Then jβ,0, yβ,0 and jβ, 1
2
, yβ, 1

2
span the space of solutions of (2.2) for m = 0 and for m = 1

2

respectively. Indeed, a short computation leads to

W (jβ,0, yβ,0;x) = 1 and W (jβ, 1
2
, yβ, 1

2
;x) = −1.

Since the solutions jβ,0, yβ,0 and jβ, 1
2
, yβ, 1

2
are also square integrable around zero, for any

m ∈ C with |Re(m)| < 1 the space of solutions of Lβ,αf = 0 is 2-dimensional.
Let us describe the asymptotics of these solutions near zero. The following results

can be computed based on the expressions provided in the appendix of [6]. For any
m ∈ C with −2m 6∈ N× one has

jβ,m(x) = x
1
2

+m
(

1− β

1 + 2m
x+O

(
x2
))
. (2.3)

In the exceptional cases one has

jβ,0(x) = x
1
2
(
1− βx

)
+O

(
x

5
2
)
,

jβ, 1
2
(x) = x

(
1− β

2
x
)

+O
(
x3
)
,

together with

yβ,0(x) = x
1
2 ln(x)

(
1− βx

)
+O

(
x

3
2
)
,

yβ, 1
2
(x) = 1− βx ln(x) +O

(
x2| ln(x)|

)
.

2.3 Maximal and minimal operators

For any α and β ∈ C we consider the differential expression

Lβ,α := −∂2
x +

(
α− 1

4

) 1

x2
− β

x

acting on distributions on R+. The corresponding maximal and minimal operators in
L2(R+) are denoted by Lmax

β,α and Lmin
β,α , see [7, Sec. 3.2] for the details. The domain of

Lmax
β,α is given by

D(Lmax
β,α ) =

{
f ∈ L2(R+) | Lβ,αf ∈ L2(R+)

}
,

while Lmin
β,α is the closure of the restriction of Lβ,α to C∞c

(
]0,∞[

)
, the set of smooth

functions with compact supports in R+. The operators Lmin
β,α and Lmax

β,α are closed and
we have (

Lmin
β,α

)∗
= Lmax

β̄,ᾱ and
(
Lmin
β,α

)#
= Lmax

β,α .

We say that f ∈ D(Lmin
β,α ) around 0, (or, by an abuse of notation, f(x) ∈ D(Lmin

β,α )

around 0) if there exists ζ ∈ C∞c
(
[0,∞[

)
with ζ = 1 around 0 such that fζ ∈ D(Lmin

β,α ).
The following result follows from the theory of one-dimensional Schrödinger operators.
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Proposition 2.1. Let α, β,m ∈ C.

(i) If f ∈ D(Lmax
β,α ), then f and f ′ are continuous functions on R+ and converge to 0

at infinity.

(ii) If f ∈ D(Lmin
β,α ), then near 0 one has:

(a) f(x) = o
(
x

3
2 | ln(x)|

)
and f ′(x) = o

(
x

1
2 | ln(x)|

)
if α = 0,

(b) f(x) = o
(
x

3
2

)
and f ′(x) = o

(
x

1
2

)
if α 6= 0.

(iii.a) If |Re(m)| < 1 with m 6∈
{
− 1

2 , 0,
1
2

}
, then for any f ∈ D(Lmax

β,m2) there exists a
unique pair a, b ∈ C such that

f − ajβ,m − bjβ,−m ∈ D(Lmin
β,m2) around 0.

(iii.b) If f ∈ D(Lmax
β,0 ), then there exists a unique pair a, b ∈ C such that

f − ajβ,0 − byβ,0 ∈ D(Lmin
β,0 ) around 0.

(iii.c) If f ∈ D(Lmax
β, 1

4

), then there exists a unique pair a, b ∈ C such that

f − ajβ, 1
2
− byβ, 1

2
∈ D(Lmin

β, 1
4

) around 0.

(iv) If |Re(m)| < 1, then

D(Lmin
β,m2) =

{
f ∈ D(Lmax

β,m2) | W (f, g; 0) = 0 for all g ∈ D(Lmax
β,m2)

}
=
{
f ∈ D(Lmax

β,m2) | f(x) = o
(
x

1
2

+|Re(m)|) near 0
}
.

(v) If |Re(m)| > 1, then D(Lmin
β,m2) = D(Lmax

β,m2).

Proof. The statements (i)–(iii) and (v) are a reformulation of [7, Prop. 3.1] with the
current notations. Only (iv) requires elaboration. The first equality in (iv) follows from
[5, Thm. 3.4], given that W (f, g;∞) = 0 for all f, g ∈ D(Lmax

β,m2) by (i).

The inclusion D(Lmin
β,m2) ⊂

{
f ∈ D(Lmax

β,m2) | f(x) = o
(
x

1
2

+|Re(m)|) near 0
}

is a conse-

quence of (ii). To prove the converse inclusion, let f ∈ D(Lmax
β,m2). Assuming for instance

that m /∈
{
− 1

2 , 0,
1
2

}
and applying (iii.a), one can write

fζ = ajβ,mζ + bjβ,−mζ + fmin,

for some ζ ∈ C∞c
(
[0,∞[

)
such that ζ = 1 around 0, a, b ∈ C and fmin ∈ D(Lmin

β,m2). From

(2.3) and (ii), we deduce that if f(x) = o
(
x

1
2

+|Re(m)|) near 0 then, necessarily, a = b = 0.

Hence we have proved that
{
f ∈ D(Lmax

β,m2) | f(x) = o
(
x

1
2

+|Re(m)|) near 0
}
⊂ D(Lmin

β,m2)

in the case where m /∈
{
− 1

2 , 0,
1
2

}
. The same argument applies if m = ±1

2 or m = 0,
using (iii.b) or (iii.c) instead of (iii.a).
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2.4 Families of Whittaker operators

We can now provide the definition of three families of Whittaker operators. The first
family covers the generic case. The Whittaker operator Hβ,m,κ is defined for any β ∈ C,
for any m ∈ C with |Re(m)| < 1 and m 6∈

{
− 1

2 , 0,
1
2

}
, and for any κ ∈ C ∪ {∞}:

D(Hβ,m,κ) =
{
f ∈ D(Lmax

β,m2) | for some c ∈ C,

f − c
(
jβ,m + κjβ,−m

)
∈ D(Lmin

β,m2) around 0
}
, κ 6=∞,

D(Hβ,m,∞) =
{
f ∈ D(Lmax

β,m2) | for some c ∈ C,

f − cjβ,−m ∈ D(Lmin
β,m2) around 0

}
.

The second family corresponds to m = 0:

D(Hν
β,0) =

{
f ∈ D(Lmax

β,0 ) | for some c ∈ C,

f − c
(
yβ,0 + ν jβ,0

)
∈ D(Lmin

β,0 ) around 0
}
, ν ∈ C,

D(H∞β,0) =
{
f ∈ D(Lmax

β,0 ) | for some c ∈ C,

f − cjβ,0 ∈ D(Lmin
β,0 ) around 0

}
.

Finally, in the special case m = 1
2 we have the third family:

D(Hν
β, 1

2

) =
{
f ∈ D(Lmax

β, 1
4

) | for some c ∈ C,

f − c
(
yβ, 1

2
+ ν jβ, 1

2

)
∈ D(Lmin

β, 1
4

) around 0
}
, ν ∈ C,

D(H∞
β, 1

2

) =
{
f ∈ D(Lmax

β, 1
4

) | for some c ∈ C,

f − cjβ, 1
2
∈ D(Lmin

β, 1
4

) around 0
}
.

Remark 2.2. Observe that the above boundary conditions could be described with the
help of simpler functions. For example, in the above definitions we can replace

jβ,m(x) with x
1
2

+m
(

1− β

1 + 2m
x
)

if − 1 < Re(m) ≤ −1

2
,

jβ,m(x) with x
1
2

+m if − 1

2
< Re(m) < 1,

yβ, 1
2
(x) with 1− βx ln(x),

yβ,0(x) with x
1
2 ln(x).

The three families Hβ,m,κ, Hν
β, 1

2

and Hν
β,0 cover all possible well-posed extensions of

Lβ,m2 with |Re(m)| < 1. As already mentioned, we do not introduce a special family for
m = −1

2 , since it is covered by the family corresponding to m = 1
2 . For convenience, we

also extend the definition of the first family to the exceptional cases by setting for β ∈ C
and any κ ∈ C ∪ {∞}

Hβ,− 1
2
,κ := H∞

β, 1
2

, Hβ,0,κ := H∞β,0, and Hβ, 1
2
,κ := H∞

β, 1
2

.

An invariance property follows directly from the definition:
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Proposition 2.3. For any β ∈ C, |Re(m)| < 1 and κ ∈ C ∪ {∞} the following relation
holds

Hβ,m,κ = Hβ,−m,κ−1

with the convention that 1
0 =∞ and 1

∞ = 0.

It is also convenient to introduce another two-parameter family of operators, which
cover only special boundary conditions, which we call pure:

Hβ,m := Hβ,m,0 = Hβ,−m,∞. (2.4)

With this notation, for any β ∈ C, one has

Hβ,− 1
2

= H∞
β, 1

2

, Hβ,0 = H∞β,0, and Hβ, 1
2

= H∞
β, 1

2

.

Remark 2.4. The family Hβ,m is essentially identical to the family denoted by the same
symbol introduced and studied in [7]. The only difference with that reference is that the
operator corresponding to (β,m) =

(
0,−1

2

)
was left undefined, since it corresponds to a

singularity. In the current paper we have decided to set H0,− 1
2

:= H0, 1
2
.

Here is a comparison of the above families with the families Hm,κ, Hν
0 introduced in

[6] when β = 0. In the first column we put one of the newly introduced family, in the
second column we put the families from [6, 7].

H0,m,κ = Hm,κ |Re(m)| < 1, m 6∈
{
− 1

2 ,
1
2

}
, κ ∈ C ∪ {∞},

Hν
0, 1

2

= H− 1
2
,ν = H 1

2
, 1
ν

ν ∈ C ∪ {∞},

Hν
0,0 = Hν

0 ν ∈ C ∪ {∞},

with the convention that 1
0 = ∞ and 1

∞ = 0. For completeness, let us also mention
two special operators which are included in these families (for clarity, the indices are
emphasized). The Dirichlet Laplacian on R+ is given by

Hβ=0,m=− 1
2

= Hβ=0,m= 1
2

= H∞
0, 1

2

= Hm= 1
2
,κ=0 = Hm=− 1

2
,κ=∞

while the Neumann Laplacian is given by

H0
0, 1

2

= Hm=− 1
2
,κ=0 = Hm= 1

2
,κ=∞.

Note that the former operator was also described in [6] by Hm= 1
2

while the latter operator

was described by Hm=− 1
2
.

We now gather some easy properties of the operators Hβ,m,κ.

Proposition 2.5. For m ∈ C with |Re(m)| < 1 one has(
Hβ,m,κ

)∗
= Hβ̄,m̄,κ̄

(
Hβ,m,κ

)#
= Hβ,m,κ κ ∈ C ∪ {∞},(

Hν
β, 1

2

)∗
= H ν̄

β̄, 1
2

(
Hν
β, 1

2

)#
= Hν

β, 1
2

ν ∈ C ∪ {∞},(
Hν
β,0

)∗
= H ν̄

β̄,0

(
Hν
β,0

)#
= Hν

β,0, ν ∈ C ∪ {∞}.
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Proof. Let us prove the first statement, the other ones can be obtained similarly. Re-
call from Proposition 2.1 (see also [2, Prop. A.2]) that for any f ∈ D(Lmax

β,m2) and

g ∈ D(Lmax
β̄,m̄2), the functions f, f ′, g, g′ are continuous on R+. In addition, the Wron-

skian of f̄ and g, as introduced in (2.1), possesses a limit at zero, and we have the
equality

(Lmax
β,m2f |g)− (f |Lmax

β̄,m̄2g) = −W (f̄ , g; 0).

In particular, if f ∈ D(Hβ,m,κ) one infers that

(Hβ,m,κf |g) = (f |Lmax
β̄,m̄2g)−W (f̄ , g; 0).

Thus, g ∈ D
(
(Hβ,m,κ)∗

)
if and only if W (f̄ , g; 0) = 0, and then (Hβ,m,κ)∗g = Lmax

β̄,m̄2g.

By taking into account the explicit description of D(Hβ,m,κ), straightforward computa-
tions show that W (f̄ , g; 0) = 0 if and only if g ∈ D(Hβ̄,m̄,κ̄). One then deduces that
(Hβ,m,κ)∗ = Hβ̄,m̄,κ̄. The property for the transpose of Hβ,m,κ can be proved simi-
larly.

By combining Propositions 2.3 and 2.5 one easily deduces the following characteri-
zation of self-adjoint operators contained in our families:

Corollary 2.6. The operator Hβ,m,κ is self-adjoint if and only if one of the following
sets of conditions is satisfied:

(i) β ∈ R, m ∈]− 1, 1[ and κ ∈ R ∪ {∞},

(ii) β ∈ R, m ∈ iR× and |κ| = 1.

The operators Hν
β, 1

2

and Hν
β,0 are self-adjoint if and only if β ∈ R and ν ∈ R ∪ {∞}.

Let us finally mention some equalities about the action of the dilation group. For
that purpose, we recall that the unitary group {Uτ}τ∈R of dilations acts on f ∈ L2(R+)
as
(
Uτf

)
(x) = eτ/2f(eτx). The proof of the following lemma consists in an easy compu-

tation.

Proposition 2.7. For m ∈ C with |Re(m)| < 1 one has

UτHβ,m,κU−τ = e−2τHeτβ,m,e−2τmκ κ ∈ C ∪ {∞},

UτH
ν
β, 1

2

U−τ = e−2τH
eτ (ν−βτ)

eτβ, 1
2

ν ∈ C ∪ {∞},

UτH
ν
β,0U−τ = e−2τHν+τ

eτβ,0 ν ∈ C ∪ {∞},

with the conventions α∞ =∞ for any α ∈ C \ {0} and ∞+ τ =∞.

3 Spectral theory

In this section we investigate the spectral properties of the Whittaker operators.
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3.1 Point spectrum

The point spectrum is obtained by looking at general solutions of the equation

Lβ,m2f = −k2f

for k ∈ C with Re(k) ≥ 0, and by considering only the solutions which are in the domain
of the operators Hβ,m,κ, Hν

β, 1
2

, or Hν
β,0.

In the following statement, the convention 1
0 =∞ and 1

∞ = 0 is still used, Γ stands
for the usual gamma function, ψ is the digamma function defined by ψ(z) = Γ′(z)/Γ(z)
and γ = −ψ(1). Since the special case β = 0 has already been considered in [6], we
assume that β 6= 0 in the following statement, and recall in Theorem 3.4 the results
obtained for β = 0. It is also useful to note that the condition β 6∈ [0,∞[ guarantees
that either +Im(

√
β) > 0 or −Im(

√
β) > 0, due to our definition of the square root.

Theorem 3.1. 1. Let β ∈ C×, |Re(m)| < 1 with m 6∈
{
− 1

2 , 0,
1
2

}
, and let κ ∈

C∪{∞}. Then the operator Hβ,m,κ possesses an eigenvalue λ ∈ C in the following
cases:

(i) λ = −k2, Re(k) > 0, β
2k +m− 1

2 /∈ N and

κ = (2k)−2m Γ(2m)

Γ(−2m)

Γ
(

1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2k

) , (3.1)

(ii) λ = µ2, 0 < µ < ±Im(β) and

κ = e±iπm(2µ)−2m Γ(2m)

Γ(−2m)

Γ
(

1
2 −m∓ i β2µ

)
Γ
(

1
2 +m∓ i β2µ

) ,
(iii) λ = 0, β 6∈ [0,∞[, and

κ =
Γ(2m)

Γ(−2m)(−β)2m
.

2. Let β ∈ C× and ν ∈ C∪{∞}. Then Hν
β, 1

2

possesses an eigenvalue λ in the following
cases:

(i) λ = −k2, Re(k) > 0, β
2k /∈ N and

ν = −β
(
ψ
(
− β

2k

)
+ 2γ − 1− k

β
+ ln(2k)

)
,

(ii) λ = µ2, 0 < µ < ±Im(β), and

ν = −β
(
ψ
(
∓ i

β

2µ

)
+ 2γ − 1∓ i

π

2
± i

µ

β
+ ln(2µ)

)
,

(iii) λ = 0, ±Im(
√
β) > 0, and

ν = −β
(

ln(β) + 2γ − 1∓ iπ
)
.
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3. Let β ∈ C× and ν ∈ C∪{∞}. Then Hν
β,0 possesses an eigenvalue λ in the following

cases:

(i) λ = −k2, Re(k) > 0, β
2k −

1
2 /∈ N and

ν = ψ
(1

2
− β

2k

)
+ 2γ + ln(2k),

(ii) λ = µ2, 0 < µ < ±Im(β), and

ν = ψ
(1

2
∓ i

β

2µ

)
∓ i

π

2
+ 2γ + ln(2µ),

(iii) λ = 0, ±Im(
√
β) > 0, and

ν = ln(β) + 2γ + 2 ln(2)∓ iπ.

Proof. We start with the special case λ = −k2 = 0. The two solutions of the equation
Lβ,m2f = 0 are provided by the functions

x 7→ h±β,m(x) := x1/4H±2m
(
2
√
βx
)
, (3.2)

with H±m the Hankel function for dimension 1, see [6, App. A.5]. We then infer from [6,
App. A.5] that for any z with −π < arg(z) ≤ π, one has as z → 0

H±m(z) =


±i
√

2√
π
z

1
2

(
ln(z) + γ ∓ iπ2

)
+O

(
|z|

5
2 ln(|z|)

)
if m = 0,

∓i 1√
π

(
z
2

)− 1
2 ± i 2√

π

(
ln
(
z
2

)
+ γ − 1

2 ∓ iπ2

)(
z
2

) 3
2 +O

(
|z|

7
2 ln(|z|)

)
if m = 1,

∓i
√
π

sin(πm)

(
z
2

) 1
2

(
1

Γ(1−m)

(
z
2

)−m − e∓iπm

Γ(1+m)

(
z
2

)m)
+O(|z|

5
2
−|Re(m)|) if m 6∈ Z.

For |Re(m)| < 1, this implies that the two functions h±β,m belong to L2(R+) near 0. On
the other hand, for large z and | arg(∓iz)| < π − ε, ε > 0, one has

H±m(z) = e±i(z− 1
2
πm− 1

4
π)
(
1 +O(|z|−1)

)
.

Since | arg(2
√
βx)| ≤ π/2, it follows that for ±Im(

√
β) > 0 one has

h±β,m(x) = x1/4e±i(2
√
βx−πm− 1

4
π)
(
1 +O(|x|−

1
2 )
)
,

and h±β,m belongs to L2 near infinity. Note that for ±Im(
√
β) > 0 one and only one of the

two solutions of (3.2) is square integrable at infinity. It only remains to check in which
domain of the operators Hβ,m,κ, Hν

β, 1
2

, or Hν
β,0 does h±β,m belong to. This can easily be

deduced from the expansion provided above, and yields to the statements 1.(iii), 2.(iii)
and 3.(iii).

Let us now prove the statements 1.(ii), 2.(ii) and 3.(ii). We consider the equation
Lβ,m2f = µ2f for some µ > 0. Two linearly independent solutions are provided by
the functions x 7→ H±β

2µ
,m

(2µx) introduced in [7, Sec. 2.7], see also (A.29). From the

asymptotic expansion near infinity given by

H±β
2µ
,m

(2µx) = e∓iπ
2 ( 1

2
+m)e

πβ
4µ (2µx)

±i β
2µ e±iµx

(
1 +O(x−1)

)
, (3.3)
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one infers that at most one of these functions is in L2 near infinity, depending on the
sign of Im(β). More precisely, for Im(β) > 0, the map x 7→ H+

β
2µ
,m

(2µx) belongs to L2

near infinity if µ < Im(β) and does not belong to L2 near infinity otherwise. Under
the same condition Im(β) > 0, the map x 7→ H−β

2µ
,m

(2µx) never belongs to L2 near

infinity. Conversely, for Im(β) < 0, the map x 7→ H−β
2µ
,m

(2µx) belongs to L2 near

infinity if µ < −Im(β) and does not belong to L2 near infinity otherwise. Under the
same condition Im(β) < 0, the map x 7→ H+

β
2µ
,m

(2µx) never belongs to L2 near infinity.

Finally, for Im(β) = 0, none of these functions belongs to L2 near infinity.
For the asymptotic expansion near 0, the information onH±δ,m provided in [7, Eq. (2.31)]

is not sufficient. However, the appendix of the current paper contains all the necessary
information on these special functions. By taking into account the Taylor expansion of
Iδ,m near 0 provided in (A.3) and the equality Γ(α)Γ(1−α) = π

sin(πα) one infers that for

|Re(m)| < 1 and m 6∈
{
− 1

2 , 0,
1
2

}
one has

Iδ,m(z) =
z

1
2

+m

Γ(1 + 2m)

(
1− δ

1 + 2m
z +O(z2)

)
(3.4)

and

H±δ,m(z) =∓ ie∓iπm
Γ(−2m)

Γ
(

1
2 −m∓ iδ

)z 1
2

+m
(

1− δ

1 + 2m
z
)

∓ i
Γ(2m)

Γ
(

1
2 +m∓ iδ

)z 1
2
−m
(

1− δ

1− 2m
z
)

+ o
(
z

3
2
)
.

For 2m ∈ Z one has to consider the expression for Kδ, 1
2

and Kδ,0 provided in (A.18)

and (A.19) respectively. Then, by considering the Taylor expansion near 0 of these
functions one gets

Kδ, 1
2
(z) =

1

Γ(1− δ)
+

1

Γ(−δ)
z ln(z) +

1

Γ(−δ)

(
ψ(−δ) + 2γ − 1− 1

2δ

)
z + o

(
z

3
2
)
, (3.5)

and

Kδ,0(z) = − 1

Γ
(

1
2 − δ

)[z 1
2 ln(z) +

(
ψ
(1

2
− δ
)

+ 2γ
)
z

1
2 − δz

3
2 ln(z)

]
+O

(
z

3
2
)
. (3.6)

From Equation (A.29) one finally deduces the relations

H±
δ, 1

2

(z) =∓ i
1

Γ(1∓ iδ)
− 1

Γ(∓iδ)
z ln(z)

− 1

Γ(∓iδ)

(
ψ(∓iδ) + 2γ − 1∓ i

π

2
± i

1

2δ

)
z + o

(
z

3
2
)

and

H±δ,0(z) = ±i
1

Γ
(

1
2 ∓ iδ

)[z 1
2 ln(z) +

(
ψ
(1

2
∓ iδ

)
∓ i

π

2
+ 2γ

)
z

1
2 − δz

3
2 ln(z)

]
+O

(
z

3
2
)
.
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To show 1.(ii) we consider the function x 7→ H+
β
2µ
,m

(2µx) if Im(β) > 0 and x 7→

H−β
2µ
,m

(2µx) if Im(β) < 0, and check for which κ these functions belong to D(Hβ,mκ).

For |Re(m)| < 1 and m 6∈
{
− 1

2 , 0,
1
2

}
one has

H±β
2µ
,m

(2µx) =∓ ie∓iπm Γ(−2m)

Γ
(

1
2 −m∓ i β2µ

)(2µx)
1
2

+m
(

1− β

1 + 2m
x
)

∓ i
Γ(2m)

Γ
(

1
2 +m∓ i β2µ

)(2µx)
1
2
−m
(

1− β

1− 2m
x
)

+ o
(
x

3
2
)

=∓ ic
(
jβ,m + κjβ,−m(x)

)
+ o
(
x

3
2
)

with c := e∓iπm Γ(−2m)

Γ( 1
2
−m∓i β

2µ
)
(2µ)

1
2

+m and

κ :=
1

c

Γ(2m)

Γ
(

1
2 +m∓ i β2µ

)(2µ)
1
2
−m = e±iπm(2µ)−2m Γ(2m)

Γ(−2m)

Γ
(

1
2 −m∓ i β2µ

)
Γ
(

1
2 +m∓ i β2µ

) .
Note that the conditions ±Im(β) > 0, |Re(m)| < 1, and µ < ±Im(β) imply that ±i β2µ +

m− 1
2 6∈ N.

The proof of 2.(ii) and 3.(ii) can be obtained similarly once the following expressions
are taken into account:

H±β
2µ
, 1
2

(2µx) =
2µ

β

1

Γ
(
∓ i β2µ

)(1− βx ln(x)
)

− 2µ

Γ
(
∓ i β2µ

)[ψ(∓ i
β

2µ

)
+ 2γ − 1∓ i

π

2
± i

µ

β
+ ln(2µ)

]
x+ o

(
x

3
2
)

and

H±β
2µ
,0

(2µx) =± i
(2µ)

1
2

Γ
(

1
2 ∓ i β2µ

)(x 1
2 ln(x)

+
[
ψ
(1

2
∓ i

β

2µ

)
∓ i

π

2
+ 2γ + ln(2µ)

)
x

1
2 − βx

3
2 ln(x)

]
+O

(
x

3
2
)
.

We shall now turn to the generic case (statements 1.(i), 2.(i) and 3.(i)), namely the
equation Lβ,m2f = −k2f for some k ∈ C with Re(k) > 0. In the non-degenerate case,
solutions of this equation are provided by the functions

x 7→ K β
2k
,m

(2kx) and x 7→ I β
2k
,±m(2kx). (3.7)

We refer again to the appendix for an introduction to these functions. The behaviour
for large z of the function Kδ,m(z) has been provided in (A.7), from which one infers
that the first function in (3.7) is always in L2 near infinity. On the other hand, since for
| arg(z)| < π

2 one has

Iδ,±m(z) =
1

Γ
(

1
2 ±m− δ

)z−δ e
z
2
(
1 +O(z−1)

)
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it follows that the remaining two functions in (3.7) do not belong to L2 near infinity
as long as β

2k ∓ m −
1
2 6∈ N. Still in the non-degenerate case and when the condition

β
2k + m − 1

2 ∈ N holds, it follows from relation (A.8) that the functions K β
2k
,m

(2k·)
and I β

2k
,−m(2k·) are linearly dependent, but still I β

2k
,m

(2k·) does not belong to L2 near

infinity. Similarly, when β
2k −m −

1
2 ∈ N it is the function I β

2k
,−m(2k·) which does not

belong to L2 near infinity.
Let us now turn to the degenerate case, when m ∈

{
− 1

2 , 0,
1
2

}
. In this situation

the two functions Iδ,m and Iδ,−m are no longer independent, as a consequence of (A.4).
In the non-doubly degenerate case (see the appendix for more details), which means for( β

2k ,m
)
6∈
(
Z,±1

2

)
or for

( β
2k ,m

)
6∈
(
Z + 1

2 , 0
)
, the above arguments can be mimicked,

and one gets that only the function K β
2k
,m

(2k·) belongs to L2 near infinity. In the doubly

degenerate case, the function Xδ,m, introduced in (A.9), has to be used. This function is
independent of the function Kδ,m, as shown in (A.24). However, this function explodes
exponentially near infinity, which means that X β

2k
,m

(2k·) does not belong to L2 near

infinity. Once again, only the function K β
2k
,m

(2k·) plays a role.

As a consequence of these observations, it will be sufficient to concentrate on the
function K β

2k
,m

(2k·) and to check for which κ or ν does this function belong to the

domain of the operators Hβ,m,κ, Hν
β, 1

2

, or Hν
β,0 respectively. For the behavior of this

function near 0 one infers from (A.6) and (3.4) that for m 6∈
{
− 1

2 , 0,
1
2

}
K β

2k
,m

(2kx) =− π

sin(2πm)

( I β
2k
,m

(2kx)

Γ
(

1
2 −m−

β
2k

) − I β
2k
,−m(2kx)

Γ
(

1
2 +m− β

2k

))

=(2k)
1
2

+m Γ(−2m)

Γ
(

1
2 −m−

β
2k

)x 1
2

+m
(

1− β

1 + 2m
x
)

+ (2k)
1
2
−m Γ(2m)

Γ
(

1
2 +m− β

2k

)x 1
2
−m
(

1− β

1− 2m
x
)

+ o(x
3
2 ).

Similarly, it follows from (A.18) that

K β
2k
, 1
2
(2kx) =− 1

β

2k

Γ
(
− β

2k

)(1− βx ln(x)
)

+
2k

Γ
(
− β

2k

)[ψ(− β

2k

)
+ 2γ − 1− k

β
+ ln(2k)

]
x+ o

(
x

3
2
)
, (3.8)

while for m = 0 one infers from (A.19) that

K β
2k
,0

(2kx) = − (2k)
1
2

Γ
(

1
2 −

β
2k

)[x 1
2 ln(x)+

(
ψ
(1

2
− β

2k

)
+2γ+ln(2k)

)
x

1
2−βx

3
2 ln(x)

]
+O

(
x

3
2
)
.

(3.9)
The statements 1.(i), 2.(i), and 3.(i) follow then straightforwardly.

Remark 3.2. A special feature of positive eigenvalues described in Theorem 3.1 is that
the corresponding eigenfunctions have an inverse polynomial decay at infinity, and not
an exponential decay at infinity, as it is often expected. This property can be directly
inferred from the asymptotic expansion provided in (3.3).
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Remark 3.3. Self-adjoint operators that are included in the families Hβ,m,κ, Hν
β, 1

2

and

Hν
β,0 do not have eigenvalues in ]0,∞[. Indeed, in Theorem 3.1 a necessary condition

for the existence of strictly positive eigenvalues is that Im(β) 6= 0. This automatically
prevents these operators to be self-adjoint, as a consequence of Corollary 2.6.

For completeness let us recall the results already obtained in [6, Sec. 5] for β = 0.

Theorem 3.4. (i) If |Re(m)| < 1, m 6∈
{
− 1

2 , 0,
1
2

}
and κ ∈ C∪{∞}, the eigenvalues

of the operator H0,m,κ are of the form −k2 with Re(k) > 0, where

κ =
(k

2

)−2m Γ(m)

Γ(−m)
,

(ii) If ν ∈ C ∪ {∞}, the eigenvalues of the operator Hν
0, 1

2

are of the form −k2 with

Re(k) > 0, where ν = −k,

(iii) If ν ∈ C ∪ {∞}, the eigenvalues of the operator Hν
0,0 are of the form −k2 with

Re(k) > 0, where

ν = γ + ln
(k

2

)
.

Remark 3.5. Note that Theorem 3.4 can be derived from Theorem 3.1. Indeed, for
m 6∈

{
− 1

2 , 0,
1
2

}
we infer from the Legendre duplication formula

Γ(z)Γ
(1

2
+ z
)

= 21−2z√πΓ(2z),

that

(2k)−2m Γ(2m)

Γ(−2m)

Γ
(

1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2k

)∣∣∣
β=0

=
(k

2

)−2m Γ(m)

Γ(−m)
.

For m = 1
2 , we first note that Γ

(
1
2

)
=
√
π and Γ

(
− 1

2

)
= −2

√
π. Then we use the

relations ψ(1 + z) = ψ(z) + 1
z and ψ(1) = −γ, and infer that

lim
β→0
−β
(
ψ
(
− β

2k

)
+ 2γ − 1− k

β
+ ln(2k)

)
=
(k

2

)Γ
(
− 1

2

)
Γ
(

1
2

) = −k.

Finally for m = 0, from the equality ψ
(

1
2

)
= −2 ln(2)− γ one gets

ψ
(1

2
− β

2k

)
+ 2γ + ln(2k)

∣∣∣
β=0

= γ + ln
(k

2

)
.

As a consequence of the expressions provided in Theorem 3.1, the discreteness of the
spectra of all operators can be inferred in C \ [0,∞[.

3.2 Green’s functions

Let us now turn our attention to the continuous spectrum. We shall first look for an
expression for Green’s function. We will use the well-known theory of 1-dimensional
Schrödinger operators, as presented for example in the appendix of [2] or in [5]. We
begin by recalling a result on which we shall rely.
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Let AC(R+) denote the set of absolutely continuous functions from R+ to C, that
is functions whose distributional derivative belongs to L1

loc(R+). Let also AC1(R+) be
the set of functions from R+ to C whose distributional derivatives belong to AC(R+). If
V ∈ L1

loc(R+), it is not difficult to check that the operator −∂2
x+V can be interpreted as

a linear map from AC1(R+) to L1
loc(R+). The maximal operator associated to −∂2

x + V
is then defined as

D(Lmax) :=
{
f ∈ L2(R+) ∩ AC1(R+) |

(
− ∂2

x + V
)
f ∈ L2(R+)

}
Lmaxf :=

(
− ∂2

x + V
)
f, f ∈ D(Lmax).

The minimal operator Lmin is the closure of Lmax restricted to compactly supported
functions. Note that Lmax = (Lmin)#.

As before, we say that a function f : R+ → C belongs to L2 around 0 (respectively
around ∞) if there exists ζ ∈ C∞c

(
[0,∞[

)
with ζ = 1 around 0 such that fζ ∈ L2(R+)

(respectively f(1− ζ) ∈ L2(R+)).
The following statement contains several results proved in [5].

Proposition 3.6. Let V ∈ L1
loc(R+). Let k ∈ C and suppose that u(k, ·), v(k, ·) ∈

AC1(R+) solve (
− ∂2

x + V
)
u(k, ·) = −k2u(k, ·),(

− ∂2
x + V

)
v(k, ·) = −k2v(k, ·).

Assume that u(k, ·), v(k, ·) are linearly independent and that u(k, ·) ∈ L2 around 0,
v(k, ·) ∈ L2 around ∞. Let W (k) := W

(
u(k, ·), v(k, ·);x

)
be the Wronskian of these two

solutions. Set

R(−k2;x, y) :=
1

W (k)

{
u(k, x)v(k, y) for 0 < x < y,
u(k, y)v(k, x) for 0 < y < x,

and assume that R(−k2;x, y) is the integral kernel of a bounded operator R(−k2). Then
there exists a unique closed realization H of −∂2

x + V with the boundary condition at 0
given by u(k, ·) and at ∞ given by v(k, ·) in the sense that

D(H) =
{
f ∈ D(Lmax), f − u(k, ·) ∈ D(Lmin) around 0

}
,

=
{
f ∈ D(Lmax), f − v(k, ·) ∈ D(Lmin) around ∞

}
,

Hf =
(
− ∂2

x + V
)
f, f ∈ D(H).

Moreover −k2 belongs to the resolvent set of H and R(−k2) = (H + k2)−1.

By using such a statement, it has been proved in [7] that, for k ∈ C such that Re(k) >
0 and β

2k −
1
2 −m /∈ N, we have that −k2 /∈ σ(Hβ,m) and Rβ,m(−k2) := (k2 + Hβ,m)−1

has the integral kernel

Rβ,m(−k2;x, y)

= 1
2kΓ

(
1
2 +m− β

2k

)I β2k ,m(2kx)K β
2k
,m

(2ky) for 0 < x < y,

I β
2k
,m

(2ky)K β
2k
,m

(2kx) for 0 < y < x.
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Let us now describe the integral kernel of the resolvent of all operators under inves-
tigation. We recall that our parameters are β ∈ C, κ ∈ C ∪ {∞}, ν ∈ C ∪ {∞}, and
m ∈ C satisfying −1 < Re(m) < 1. Note also that the convention 1

0 =∞ and 1
∞ = 0 is

still used.

Theorem 3.7. Let k ∈ C with Re(k) > 0. We have the following properties.

(i) For m 6∈
{
− 1

2 , 0,
1
2

}
and κ 6=∞ set

ωβ,m,κ(k) :=
(2k)−m

Γ
(

1
2 +m− β

2k

)
Γ(1− 2m)

+ κ
(2k)m

Γ
(

1
2 −m−

β
2k

)
Γ(1 + 2m)

. (3.10)

If ωβ,m,κ(k) 6= 0, then −k2 6∈ σ(Hβ,m,κ) and the integral kernel of Rβ,m,κ(−k2) :=
(Hβ,m,κ + k2)−1 is given by

Rβ,m,κ(−k2;x, y) =
1

ωβ,m,κ(k)

(
(2k)−m

Γ(1− 2m)Γ
(

1
2 +m− β

2k

)Rβ,m(−k2;x, y)

+ κ
(2k)m

Γ(1 + 2m)Γ
(

1
2 −m−

β
2k

)Rβ,−m(−k2;x, y)

)

= Rβ,m(−k2;x, y) +
κ(2k)mΓ

(
1
2 +m− β

2k

)
2kωβ,m,κ(k)Γ(1 + 2m)

K β
2k
,m

(2ky)K β
2k
,m

(2kx). (3.11)

If κ = ∞ and β
2k + m − 1

2 6∈ N, then −k2 6∈ σ(Hβ,m,∞) and Rβ,m,∞(−k2) =
Rβ,−m(−k2)

(ii) For m = 1
2 , ν 6=∞, and β

2k 6∈ N× set

ων
β, 1

2

(k) := βψ
(

1− β

2k

)
+ 2βγ + β ln(2k) + k − β + ν.

If ων
β, 1

2

(k) 6= 0, then −k2 6∈ σ(Hν
β, 1

2

) and the integral kernel of Rν
β, 1

2

(−k2) :=

(Hν
β, 1

2

+ k2)−1 is given by

Rν
β, 1

2

(−k2;x, y) = Rβ, 1
2
(−k2;x, y) +

Γ
(
1− β

2k

)2
ων
β, 1

2

(k)
K β

2k
, 1
2
(2kx)K β

2k
, 1
2
(2ky). (3.12)

If ν =∞ and β
2k 6∈ N×, then −k2 6∈ σ(H∞

β, 1
2

) and R∞
β, 1

2

(−k2) = Rβ, 1
2
(−k2).

(iii) For m = 0, ν 6=∞, and β
2k −

1
2 6∈ N set

ωνβ,0(k) := ψ
(1

2
− β

2k

)
+ 2γ + ln(2k)− ν.

If ωνβ,0(k) 6= 0, then −k2 6∈ σ(Hν
β,0) and the integral kernel of Rνβ,0(−k2) := (Hν

β,0 +

k2)−1 is given by

Rνβ,0(−k2;x, y) = Rβ,0(−k2;x, y) +
Γ
(

1
2 −

β
2k

)2
2kωνβ,0(k)

K β
2k
,0

(2kx)K β
2k
,0

(2ky). (3.13)

If ν =∞ and β
2k −

1
2 6∈ N, then −k2 /∈ σ(H∞β,0) and R∞β,0(−k2) = Rβ,0(−k2).
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For the proof of this theorem, we shall mainly rely on a similar statement which was
proved in [7, Sec. 3.4]. The context was less general, but some of the estimates turn out
to be still useful.

Proof of Theorem 3.7. The proof consists in checking that all conditions of Proposition
3.6 are satisfied.

For (i) we need to show that the integral kernel Rβ,m,κ(−k2;x, y) defines a bounded
operator on L2(R+). This follows from (3.11), because all numerical factors are harm-
less and because by [7, Thm. 3.5] Rβ,m(−k2;x, y) and Rβ,−m(−k2;x, y) are the kernels
defining bounded operators.

Moreover, we can write

Rβ,m,κ(−k2;x, y) =
1

2kωβ,m,κ(k)

×


(

(2k)−m

Γ(1−2m)I β
2k
,m

(2kx) + κ (2k)m

Γ(1+2m)I β
2k
,−m(2kx)

)
K β

2k
,m

(2ky) for 0 < x < y,(
(2k)−m

Γ(1−2m)I β
2k
,m

(2ky) + κ (2k)m

Γ(1+2m)I β
2k
,−m(2ky)

)
K β

2k
,m

(2kx) for 0 < y < x.
(3.14)

Since K β
2k
,m

(2k·) belongs to L2(R+), this solution is L2 around∞. For the other solution,

one verifies by (3.4) that

(2k)−m

Γ(1− 2m)
I β

2k
,m

(2kx) + κ
(2k)m

Γ(1 + 2m)
I β

2k
,−m(2kx)

=
(2k)

1
2

Γ(1 + 2m)Γ(1− 2m)

[
x

1
2

+m
(

1− β

1 + 2m
x
)

+ κx
1
2
−m
(

1− β

1− 2m
x
)]

+O
(
x

5
2
−|Re(m)|).

Therefore, this function belongs to L2 around 0 and satisfies the same boundary condition
at 0 as jβ,m, + κjβ,−m. By Proposition 3.6, this proves (i) when κ 6= ∞. Note that in
the special case κ =∞, it is enough to observe that Hβ,m,∞ = Hβ,−m,0 and to apply the
previous result.

To prove (ii), consider first ν 6=∞ and β
2k 6∈ N×. It has been proved in [7, Thm. 3.5]

that the first kernel of (3.12) defines a bounded operator. The second kernel corresponds
to a constant multiplied by a rank one operator defined by the function K β

2k
,m

(2k·) ∈
L2(R+) and therefore this operator is also bounded. Next we write

Rν
β, 1

2

(−k2;x, y) =
Γ
(
1− β

2k

)2
ων
β, 1

2

(k)
(3.15)

×


( ων

β, 12

(k)

2kΓ(1− β
2k

)
I β

2k
, 1
2
(2kx) +K β

2k
, 1
2
(2kx)

)
K β

2k
, 1
2
(2ky) for 0 < x < y,( ων

β, 12

(k)

2kΓ(1− β
2k

)
I β

2k
, 1
2
(2ky) +K β

2k
, 1
2
(2ky)

)
K β

2k
, 1
2
(2kx) for 0 < y < x.

We deduce from (3.4) and (3.8) that

ων
β, 1

2

(k)

2kΓ
(
1− β

2k

)I β
2k
, 1
2
(2kx) +K β

2k
, 1
2
(2kx) =

1

Γ
(
1− β

2k

)(1− βx ln(x) + νx
)

+ o
(
x

3
2
)
,

20



which belongs to L2 around 0 and corresponds to the boundary condition defining Hν
β, 1

2

.

The proof of (iii) is analogous. We use first (3.13) for the boundedness. Then we
rewrite Green’s function as

Rνβ,0(−k2;x, y) =
Γ
(

1
2 −

β
2k

)2
2kωνβ,0(k)

×


(

ωνβ,0(k)

Γ( 1
2
− β

2k
)
I β

2k
,0

(2kx) +K β
2k
,0

(2kx)
)
K β

2k
,0

(2ky) for 0 < x < y,(
ωνβ,0(k)

Γ( 1
2
− β

2k
)
I β

2k
,0

(2ky) +K β
2k
,0

(2ky)
)
K β

2k
,0

(2kx) for 0 < y < x.
(3.16)

We check that

ωνβ,0(k)

Γ
(

1
2 −

β
2k

)I β
2k
,0

(2kx) +K β
2k
,0

(2kx) = − (2k)
1
2

Γ
(

1
2 −

β
2k

)(x 1
2 ln(x) + νx

1
2
)

+ o
(
x

1
2
)
,

by (3.4) and (3.9).

Strictly speaking, the formulas of Thm 3.7 are not valid in doubly degenerate points,
where the functions Kβ,m and Iβ,m are proportional to one another. To obtain well
defined formulas one needs to use the function Xβ,m, as described in the following propo-
sition:

Proposition 3.8. Let k ∈ C with Re(k) > 0. We have the following properties.

(ii’) For m = 1
2 , ν 6=∞ and β

2k ∈ N×, set

ζν
β, 1

2

(k) :=
(−1)

β
2k

+1

2kΓ
( β

2k + 1
)[β( ln(2k) + ψ

(
1 +

β

2k

)
+ 2γ − 1

)
− k + ν

]
.

Then −k2 6∈ σ(Hν
β, 1

2

) and the integral kernel of Rν
β, 1

2

(−k2) is given by

Rν
β, 1

2

(−k2;x, y) =
(−1)1+ β

2k

2kΓ
(
1 + β

2k

)
×


(
− Γ

(
1 + β

2k

)
X β

2k
, 1
2
(2kx) + ζν

β, 1
2

(k)K β
2k
, 1
2
(2kx)

)
K β

2k
, 1
2
(2ky) for 0 < x < y,(

− Γ
(

1 + β
2k

)
X β

2k
, 1
2
(2ky) + ζν

β, 1
2

(k)K β
2k
, 1
2
(2ky)

)
K β

2k
, 1
2
(2kx) for 0 < y < x.

(iii’) For m = 0, ν 6=∞, and β
2k −

1
2 ∈ N, set

ζνβ,0(k) := (−1)
1
2

+ β
2k

[
ψ
(1

2
+

β

2k

)
+ 2γ +

ln(2k)− ν
Γ
(

1
2 + β

2k

)].
Then −k2 6∈ σ(Hν

β,0) and the integral kernel of Rνβ,0(−k2) is given by

Rνβ,0(−k2;x, y) =
(−1)

1
2

+ β
2k

2kΓ
(

1
2 + β

2k

)
×


(
− Γ

(
1
2 + β

2k

)
X β

2k
,0

(2kx) + ζνβ,0(k)K β
2k
,0

(2kx)
)
K β

2k
,0

(2ky) for 0 < x < y,(
− Γ

(
1
2 + β

2k

)
X β

2k
,0

(2ky) + ζνβ,0(k)K β
2k
,0

(2ky)
)
K β

2k
,0

(2kx) for 0 < y < x.
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Proof. (ii′) is proved similarly as (ii) of Theorem 3.7, by using for m = 1
2 , ν 6= ∞ and

β
2k ∈ N× that

−Γ
(

1 +
β

2k

)
X β

2k
, 1
2
(2kx) + ζν

β, 1
2

(k)K β
2k
, 1
2
(2kx) = 1− βx lnx+ νx+ o(x).

This follows from (A.24), (A.20), and (3.5).
(iii′) is proved similarly as (iii) of Theorem 3.7. In particular, using (A.24), (A.21),

and (3.6) one verifies that

−Γ
(1

2
+

β

2k

)
X β

2k
,0

(2kx) + ζνβ,0(k)K β
2k
,0

(2kx) = (2k)
1
2
(
x

1
2 ln(x) + νx

1
2
)

+ o
(
x

1
2
)
.

3.3 Holomorphic families of closed operators

In this section we show that the families of operators introduced before are holomorphic
for suitable values of the parameters. A general definition of a holomorphic family of
closed operators can be found in [20], see also [8]. Actually, we will not need its most
general definition. For us it is enough to recall this concept in the special case where the
operators possess a nonempty resolvent set.

Let H be a complex Banach space. Let {H(z)}z∈Θ be a family of closed operators
on H with nonempty resolvent set, where Θ is an open subset of Cd. {H(z)}z∈Θ is
called holomorphic on Θ if for any z0 ∈ Θ, there exist λ ∈ C and a neighborhood
Θ0 ⊂ Θ of z0 such that, for all z ∈ Θ0, λ belongs to the resolvent set of H(z) and the
map Θ0 3 z 7→ (H(z) − λ)−1 ∈ B(H) is holomorphic on Θ0. Note that if Θ0 3 z 7→
(H(z)− λ)−1 ∈ B(H) is locally bounded on Θ0 and if there exists a dense subset D ⊂ H
such that, for all f, g ∈ D, the map Θ0 3 z 7→ (f |(H(z) − λ)−1g) is holomorphic on
Θ0, then Θ0 3 z 7→ (H(z) − λ)−1 ∈ B(H) is holomorphic on Θ0. Besides, by Hartog’s
theorem, z 7→ (f |(H(z)− λ)−1g) is holomorphic if and only if it is separately analytic in
each variable.

This definition naturally generalizes to families of operators defined on (C ∪ {∞})d
instead of Cd, recalling that a map ϕ : C ∪ {∞} → C is called holomorphic in a neigh-
borhood of∞ if the map ψ : C→ C defined by ψ(z) = φ(1/z) if z 6= 0 and ψ(0) = φ(∞)
is holomorphic in a neighborhood of 0.

Recall that the family Hβ,m has been defined on C× {m ∈ C | Re(m) > −1} in [7],
see also (2.4). However, it is not holomorphic on the whole domain. The following has
been proved in [7].

Theorem 3.9. The family of closed operators (β,m) 7→ Hβ,m is holomorphic on

C× {m ∈ C | Re(m) > −1}\
{(

0,−1
2

)}
.

However, it cannot be extended by continuity to include the point
(
0,−1

2

)
.

Let us sketch what happens at
(
0,−1

2

)
. Recall that in [2, 6] a holomorphic family{

m ∈ C | Re(m) > −1
}
3 m 7→ Hm has been introduced, and satisfies Hm = H0,m for

m 6= −1
2 . Note also that for any β we have Hβ,− 1

2
= Hβ, 1

2
. It then turns out that

lim
β→0

Hβ,− 1
2

= H 1
2
6= H− 1

2
= lim

m→− 1
2

H0,m,
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where these limits have to be understood as weak resolvent limits. Note that in the
sequel and in particular in (3.18), (3.19), and (3.20), the limits should be understood in
such a sense.

Let us consider now the families of operators involving mixed boundary conditions.
To this end, it will be convenient to introduce the notation

Π := {m ∈ C | −1 < Re(m) < 1}.

Recall that (β,m, κ) 7→ {Hβ,m,κ} has been defined on C × Π × (C ∪ {∞}). However, it
is not holomorphic on this whole set:

Theorem 3.10. (i) The family of closed operators {Hβ,m,κ} is holomorphic on C ×
Π×

(
C ∪ {∞}

)
except for(

0,−1
2

)
×
(
C ∪ {∞}

)
∪
(
0, 1

2

)
×
(
C ∪ {∞}

)
∪ C× (0,−1). (3.17)

(ii) The family of closed operators {Hν
β,0} is holomorphic on C×

(
C ∪ {∞}

)
.

(iii) The family of closed operators
{
Hν
β, 1

2

}
is holomorphic on C×

(
C ∪ {∞}

)
.

Proof. (i) Let (β0,m0, κ0) belong to the domain C×Π×
(
C ∪ {∞}

)
. First assume that

m0 /∈
{
− 1

2 , 0,
1
2

}
and that κ0 ∈ C. Let k ∈ C with Re(k) > 0 such that ωβ0,m0,κ0(k) 6= 0,

where ωβ,m,κ(k) is defined in (3.10). By continuity of the map (β,m, κ) 7→ ωβ,m,κ(k),
there exists a neighborhood U0 of (β0,m0, κ0) such that for all (β,m, κ) in this neighbor-
hood, we have ωβ,m,κ(k) 6= 0. Hence, by Theorem 3.7, we infer that−k2 /∈ σ(Hβ,m,κ), and
the resolvent (Hβ,m,κ+k2)−1 ∈ B

(
L2(R+)

)
is the operator whose kernel is given by (3.14).

It then easily follows from the analyticity properties of the maps (β,m, κ) 7→ I β
2k
,±m(2kx)

and (β,m, κ) 7→ K β
2k
,m

(2kx) (for fixed x > 0 and k) that, for all f, g ∈ L2(R+), the map

(β,m, κ) 7→ (f, (Hβ,m,κ + k2)−1g) is holomorphic on U0. Hence {Hβ,m,κ} is holomorphic
on U0.

If m0 /∈
{
− 1

2 , 0,
1
2

}
and κ0 = ∞, the statement directly follows from the equality

Hβ,m,∞ = Hβ,−m,0.
Suppose now that m0 = 0 and that κ0 ∈ C \ {−1}. We extend by continuity the

definition of ωβ,m,κ(k) in (3.10) for m = 0 by setting

ωβ,0,κ(k) :=
1 + κ

Γ
(

1
2 −

β
2k

) .
We also choose k ∈ C with Re(k) > 0 such that β0

2k −
1
2 6∈ N. This latter requirement

implies that ωβ0,m0,κ0(k) 6= 0, and by continuity of the map (β,m, κ) 7→ ωβ,m,κ(k), there
exists a neighborhood U0 of (β0, 0, κ0) such that for all (β,m, κ) in this neighborhood,
ωβ,m,κ(k) 6= 0. In particular, by Theorem 3.7, one verifies that, for all f, g ∈ L2(R+), the
map (β,m, κ) 7→ (f |(Hβ,m,κ + k2)−1g) is well-defined and holomorphic on U0 provided
that (3.14) is extended to U0 ∩ {(β, 0, κ) | β ∈ C, κ ∈ C} by

Rβ,0,κ(−k2;x, y) =
Γ
(

1
2 −

β
2k

)
2k


I β

2k
,0

(2kx)K β
2k
,0

(2ky) for 0 < x < y,

I β
2k
,0

(2ky)K β
2k
,0

(2kx) for 0 < y < x.
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Note that this corresponds to the integral kernel of (Hβ,0,0 +k2)−1 = (H∞β,0 +k2)−1. This
shows that {Hβ,m,κ} is holomorphic on U0 (provided that U0 is chosen small enough so
that (β, 0,−1) 6∈ U0).

If m0 = 0 and κ0 =∞, the argument is similar once it is observed that

(Hβ,0,∞ + k2)−1 = (H∞β,0 + k2)−1 = (Hβ,0,0 + k2)−1.

It remains to consider the cases m0 = ±1
2 and β0 6= 0. Assume for instance that

m0 = −1
2 , β0 6= 0, and κ0 ∈ C. We extend by continuity the definition of ωβ,m,κ(k) in

(3.10) for m = −1
2 by setting

ωβ,− 1
2
,κ(k) :=

(2k)
1
2

Γ
(
− β

2k

) .
We also choose k ∈ C with Re(k) > 0 such that β0

2k /∈ N. Then we have ωβ0,− 1
2
,κ0

(k) 6= 0,

and by continuity of (β,m, κ) 7→ ωβ,m,κ(k) there exists a neighborhood U0 of (β0,−1
2 , κ0)

such that ωβ,m,κ(k) 6= 0 for all (β,m, κ) in U0. By Theorem 3.7, one then verifies that
for all f, g ∈ L2(R+), the map (β,m, κ) 7→ (f |(Hβ,m,κ + k2)−1g) is well-defined and
holomorphic on U0 provided that (3.14) is extended to U0 ∩

{(
β,−1

2 , κ
)
| β ∈ C, κ ∈ C

}
by

Rβ,− 1
2
,κ(−k2;x, y) =

1

2kωβ,− 1
2
,κ(k)


(2k)

1
2I β

2k
,− 1

2
(2kx)K β

2k
,− 1

2
(2ky) for 0 < x < y,

(2k)
1
2I β

2k
,− 1

2
(2ky)K β

2k
,− 1

2
(2kx) for 0 < y < x,

=
Γ
(
1− β

2k

)
2k


I β

2k
, 1
2
(2kx)K β

2k
, 1
2
(2ky) for 0 < x < y,

I β
2k
, 1
2
(2ky)K β

2k
, 1
2
(2kx) for 0 < y < x.

Note that this corresponds to the integral kernel of
(
Hβ, 1

2
,0 + k2

)−1
=
(
H∞
β, 1

2

+ k2
)−1

.

This shows that {Hβ,m,κ} is holomorphic on U0. The argument easily adapts to the case
m0 = 1

2 and β0 6= 0.
As before, if m0 = ±1

2 , β0 6= 0, and κ0 =∞, the statement follows from the equalities(
Hβ,± 1

2
,∞ + k2

)−1
=
(
H∞
β, 1

2

+ k2
)−1

=
(
Hβ,± 1

2
,0 + k2

)−1
.

The second part of the statement (i) follows directly from [7, Thm. 3.5]. To prove (ii)
and (iii), the argument is analogous and simpler: it suffices to use the formulas (3.15)
to prove (ii) and (3.16) to prove (iii).

The following statement shows that the domains of holomorphy obtained in Theorem
3.10 are maximal for m ∈ Π. In particular, we will prove that (3.17) are sets of non-
removable singularities of the family (β,m, κ) 7→ {Hβ,m,κ}.

Proposition 3.11. (i) For any fixed κ ∈ C×, the family of closed operators (β,m) 7→
Hβ,m,κ defined on C × Π \ {(0,−1

2), (0, 1
2)} cannot be extended by continuity at

(0,−1
2) and (0, 1

2). If κ = 0, the family (β,m) 7→ Hβ,m,0 defined on C×Π\{(0,−1
2)}

cannot be extended by continuity at (0,−1
2), and for κ = ∞ the family (β,m) 7→

Hβ,m,∞ defined on C×Π \ {(0, 1
2)} cannot be extended by continuity at (0, 1

2).
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(ii) For any fixed β ∈ C, the family (m,κ) 7→ Hβ,m,κ defined on Π×
(
C∪{∞}

)
\{(0,−1)}

cannot be extended by continuity at (0,−1).

Proof. (i) Let us first consider β = 0. Recall that in [6] the family of closed operators
Π×(C∪{∞}) 3 (m,κ) 7→ Hm,κ has been introduced, and that this family is holomorphic
on Π × (C ∪ {∞}) \ {0} × (C ∪ {∞}). Here is its relationship to the families from the
present article:

Hm,κ :=


H0,m,κ if m /∈ {−1

2 ,
1
2}

Hκ−1

0, 1
2

if m = 1
2

Hκ
0, 1

2

if m = −1
2

Let us now focus on m = −1
2 and on m = 1

2 . We have for any κ ∈ C ∪ {∞}

Hβ,− 1
2
,κ = Hβ, 1

2
,κ = Hβ, 1

2
= H∞

β, 1
2

.

Therefore, for κ 6= 0,

lim
β→0

Hβ, 1
2
,κ = H∞

0, 1
2

6= Hκ−1

0, 1
2

= lim
m→ 1

2

H0,m,κ. (3.18)

Similarly, for κ 6=∞,

lim
β→0

Hβ,− 1
2
,κ = H∞

0, 1
2

6= Hκ
0, 1

2

= lim
m→− 1

2

H0,m,κ. (3.19)

This proves (i) when κ 6∈ {0,∞}. The proof in these special cases is similar.
(ii) Let us first consider a fixed parameter β ∈ C and m = 0. By definition we have

Hβ,0,κ = Hβ,0 = H∞β,0,

independently of κ ∈ C ∪ {∞}. We now consider a fixed parameter β ∈ C and κ = −1.
Choosing k ∈ C with Re(k) > 0 such that β

2k −
1
2 6∈ N, it follows from (3.14) that for any

m 6= 0 in a complex neighborhood of 0, the integral kernel of the resolvent of Hβ,m,−1 is
given by

Rβ,m,−1(−k2;x, y) =
1

2kωβ,m,−1(k)

×


(

(2k)−m

Γ(1−2m)I β
2k
,m

(2kx)− (2k)m

Γ(1+2m)I β
2k
,−m(2kx)

)
K β

2k
,m

(2ky) for 0 < x < y,(
(2k)−m

Γ(1−2m)I β
2k
,m

(2ky)− (2k)m

Γ(1+2m)I β
2k
,−m(2ky)

)
K β

2k
,m

(2kx) for 0 < y < x,

where ωβ,m,−1(k) is defined in (3.10). One then infers that

gβ,k,x(m) :=
1

ωβ,m,−1(k)

( (2k)−m

Γ(1− 2m)
I β

2k
,m

(2kx)− (2k)m

Γ(1 + 2m)
I β

2k
,−m(2kx)

)

=

(2k)
1
2

Γ(1−2m)Γ(1+2m)

(
x

1
2

+m − x
1
2
−m)

(2k)−m

Γ( 1
2

+m− β
2k

)Γ(1−2m)
− (2k)m

Γ( 1
2
−m− β

2k
)Γ(1+2m)

+O(x
3
2
−|m|), x→ 0.
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By using this expression, one can verify that the map m 7→ gβ,k,x(m), defined in a
punctured complex neighborhood of 0, can be analytically extended at 0 with

gβ,k,x(0) = −
(2k)

1
2 Γ
(

1
2 −

β
2k

)
ln(2k) + ψ

(
1
2 −

β
2k

)
+ 2γ

x
1
2 ln(x) + o(x

1
2 ), x→ 0.

Thus, the family of operators {H̃β,m,−1} defined by

H̃β,m,−1 =

{
Hβ,m,−1 if m 6= 0
H0
β,0 if m = 0,

is holomorphic for m ∈ Π. It thus follows that

lim
κ→−1

Hβ,0,κ = H∞β,0 6= H0
β,0 = lim

m→0
Hβ,m,−1, (3.20)

which concludes the proof.

3.4 Eigenprojections

Let us now describe a family of projections {Pβ,m(λ)}, which is closely related to the
Whittaker operator. We shall define it by specifying its integral kernel Pβ,m(λ;x, y).

We first define the projections for λ ∈ C\[0,∞[. As usual, we write λ = −k2 with
Re(k) > 0. We define:

(i) For −1 < Re(m) < 1, m 6∈
{
− 1

2 , 0,
1
2

}
,

Pβ,m(−k2;x, y)

:=
k sin(2πm)Γ

(
1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)
π
[
2m+ β

2kψ
(

1
2 +m− β

2k

)
− β

2kψ
(

1
2 −m−

β
2k

)]K β
2k
,m

(2kx)K β
2k
,m

(2ky).

(ii) For m = 0,

Pβ,0(−k2;x, y) :=
kΓ
(

1
2 −

β
2k

)2
1 + β

2kψ
′
(

1
2 −

β
2k

)K β
2k
,0

(2kx)K β
2k
,0

(2ky).

(iii) For m = 1
2 ,

Pβ, 1
2
(−k2;x, y) := −

kΓ
(
− β

2k

)
Γ
(
1− β

2k

)
1 + k

β + β
2kψ

′
(

1− β
2k

)K β
2k
, 1
2
(2kx)K β

2k
, 1
2
(2ky).

(iv) For m = −1
2 ,

Pβ,− 1
2
(−k2;x, y) := Pβ, 1

2
(−k2;x, y).

Then we consider λ ∈]0,∞[. We shall distinguish between points coming from the
upper and lower half-plane by writing λ ± i0 = −(∓iµ)2, where µ > 0. Let 0 < µ <
±Im(β). We define:
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(i) For −1 < Re(m) < 1, m 6∈
{
− 1

2 , 0,
1
2

}
Pβ,m(µ2 ± i0;x, y)

:=
µ sin(2πm)Γ

(
1
2 +m∓ i β2µ

)
Γ
(

1
2 −m∓ i β2µ

)
e∓iπmπ

[
2m± i β2µψ

(
1
2 +m∓ i β2µ

)
∓ i β2kψ

(
1
2 −m∓ i β2µ

)]H±β
2µ
,m

(2µx)H±β
2µ
,m

(2µy).

(ii) For m = 0,

Pβ,0(µ2 ± i0;x, y) :=
µΓ
(

1
2 ∓ i β2µ

)2
1± i β2µψ

′
(

1
2 ∓ i β2µ

)H±β
2µ
,0

(2µx)H±β
2µ
,0

(2µy).

(iii) For m = 1
2 ,

Pβ, 1
2
(µ2 ± i0;x, y) :=

µΓ
(
∓ i β2µ

)
Γ
(
1∓ i β2µ

)
±i + µ

β −
β
2µψ

′
(
1∓ i β2µ

)H±β
2µ
, 1
2

(2µx)H±β
2µ
, 1
2

(2µy).

(iv) For m = −1
2 ,

Pβ,− 1
2
(µ2 ± i0;x, y) := Pβ, 1

2
(µ2 ± i0;x, y).

Finally, if λ = 0, we set, for any −1 < Re(m) < 1 and ±Im(
√
β) > 0,

Pβ,m(0;x, y) =
3β sin(2πm)

me∓iπ2m(4m2 − 1)
(βx)

1
4H±2m(2

√
βx)(βy)

1
4H±2m(2

√
βy).

Note that for m ∈
{
− 1

2 , 0,
1
2

}
the extension by continuity gives

Pβ,0(0;x, y) = −6πβ(βx)
1
4H±0 (2

√
βx)(βy)

1
4H±0 (2

√
βy).

and
Pβ, 1

2
(0;x, y) = Pβ,− 1

2
(0;x, y) = 3πβ(βx)

1
4H±1 (2

√
βx)(βy)

1
4H±1 (2

√
βy).

In the next proposition, we study the regularity of the map (β,m, k) 7→ Pβ,m(−k2)
in a suitable region.

Proposition 3.12. The function (β,m, k) 7→ Pβ,m(−k2), defined on the set

C×Π× {k ∈ C | Re(k) > 0}
∪ {(β,m,∓iµ) | β ∈ C, m ∈ Π, 0 < µ < ±Im(β)}

∪ {(β,m, 0) | β ∈ C, m ∈ Π, 0 < ±Im(
√
β)},

(3.21)

has values in bounded projections. Moreover, it is continuous on

C×Π× {k ∈ C | Re(k) > 0}
∪ {(β,m,∓iµ) | β ∈ C, m ∈ Π, 0 < µ < ±Im(β)},

(3.22)

and holomorphic in C×Π× {Re(k) > 0}. It satisfies

Pβ,m(−k2) = Pβ,−m(−k2), (3.23)

Pβ,m(−k2)# = Pβ,m(−k2), (3.24)

Pβ,m(−k2)∗ = Pβ̄,m̄(−k2), (3.25)

for all (β,m, k) in the set (3.21).

27



Proof. The fact that Pβ,m(−k2) are rank-one projections follows directly from their ex-
pressions together with Corollaries A.3 and A.5 and Proposition B.4. Continuity on the
domain (3.22) and holomorphy on C×Π× {Re(k) > 0}, as well as the relations (3.23)–
(3.25), follow again from the expressions involved in the definitions of Pβ,m(−k2).

We recall from Proposition 2.5 that the operators Hβ,m,κ, Hν
β,0 and Hν

β, 1
2

are self-

transposed. Moreover, it follows from Theorem 3.1 and its proof that all eigenvalues
of these operators are simple. If λ is a simple eigenvalue of a self-transposed operator
H associated to an eigenvector u such that 〈u|u〉 = 1, we define the self-transposed
eigenprojection associated to λ as

P = 〈u|·〉u.

In the case where λ is in addition an isolated point of the spectrum, it is then easy to
see that the self-transposed eigenprojection P coincides with the usual Riesz projection
corresponding to λ.

Theorem 3.13. Let β ∈ C, m ∈ Π \
{
− 1

2 , 0,
1
2

}
, κ ∈ C ∪ {∞} and ν ∈ C ∪ {∞}. Let

λ ∈ C be an eigenvalue of Hβ,m,κ, Hν
β,0 or Hν

β, 1
2

respectively. Then the corresponding

self-transposed eigenprojection is Pβ,m(λ), Pβ,0(λ) or Pβ, 1
2
(λ) respectively.

Proof. We prove the theorem in the case where λ = −k2 with Re(k) > 0 and m /∈{
− 1

2 , 0,
1
2

}
. The other cases are similar.

From the proof of Theorem 3.1, we know that if λ is an eigenvalue of Hβ,m,κ, then a
corresponding eigenstate is given by x 7→ K β

2k
,m

(2kx). Corollary A.3 shows that

〈
K β

2k
,m

(2k·) | K β
2k
,m

(2k·)
〉

=
π

sin(2πm)

2m+ β
2kψ

(
1
2 +m− β

2k

)
− β

2kψ
(

1
2 −m−

β
2k

)
kΓ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

) .

This proves that Pβ,m(−k2) is the self-transposed eigenprojection corresponding to λ, as
claimed.

In the next proposition, we show that the family Pβ,m(−k2) is not continuous at
k = 0.

Proposition 3.14. Let m ∈ Π and β ∈ C such that ±Im(
√
β) > 0. Then the map

k 7→ Pβ,m(−k2) is not continuous at k = 0.

Proof. Let us first consider the case m /∈ {−1
2 , 0,

1
2}. We claim that, for all continuous

and compactly supported function f ,

lim
k→0

〈
f |Pβ,m(−k2)f

〉
=
〈
f |Pβ,m(0)f

〉
,

where k ∈ C is chosen such that Re(k) > 0 and ±
(

arg(β) − arg(k)
)
∈]ε, π − ε[ with

ε > 0. To shorten the expressions below, we set in this proof

gβ,m,k(x) := ∓i
Γ
(

1
2 +m− β

2k

)
√
π

( β
2k

) 1
2
−m
K β

2k
,m

(2kx),
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and
gβ,m,0(x) := (βx)

1
4H±2m(2

√
βx).

We show that gβ,m,k is uniformly bounded, for k satisfying the conditions above, by a
locally integrable function. From the definition (A.3) of Iβ,m and proceeding as in the
proof of Proposition B.1, we obtain that, for k ∈ C such that Re(k) > 0, |k| < 1, and
±
(

arg(β)− arg(k)
)
∈]ε, π − ε[ with ε > 0,∣∣∣( β

2k

) 1
2

+m
I β

2k
,m

(2kx)
∣∣∣ =

∣∣∣(βx)
1
2

+me−kx
∞∑
j=0

(
1
2 +m− β

2k

)
j

Γ(1 + 2m+ j)

(2kx)j

j!

∣∣∣
≤ |βx|

1
2

+m
∞∑
j=0

cjxj

|Γ(1 + 2m+ j)|
,

for some constant c > 0 depending on β and m but independent of k and x. Using that

gβ,m,k(x) =
∓i
√
π

sin(2πm)

( β
2k

) 1
2
−m(

−
Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)I β
2k
,m

(2kx) + I β
2k
,−m(2kx)

)
,

together with Lemma B.2, one then deduces that∣∣gβ,m,k(x)
∣∣ ≤ c1ec2x,

for some positive constants c1, c2 independent of k and x.
The previous bound together with the dominated convergence theorem and Propo-

sition B.1 show that

lim
k→0

〈
gβ,m,k|f

〉
=
〈
gβ,m,0|f

〉
,

for all continuous and compactly supported function f , and for k satisfying the conditions
exhibited above. We then have that〈
f |Pβ,m(−k2)f

〉
=

k sin(2πm)Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)
π
[
2m+ β

2kψ
(

1
2 +m− β

2k

)
− β

2kψ
(

1
2 −m−

β
2k

)]〈K β
2k
,m

(2k·)|f
〉2

= − k sin(2πm)

2m+ β
2kψ

(
1
2 +m− β

2k

)
− β

2kψ
(

1
2 −m−

β
2k

) Γ
(

1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2k

)( β
2k

)2m−1〈
gβ,m,k|f

〉2

=
2k2 sin(2πm)

β
[ β

2k

(
2k
β

)3m
6 (−1 + 4m2) + o(1)

] Γ
(

1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2k

)( β
2k

)2m〈
gβ,m,k|f

〉2

→
k→0

3β sin(2πm)

m(4m2 − 1)
e±iπ2m

〈
gβ,m,0|f

〉2
=
〈
f |Pβ,m(0)f

〉
,

where we used Lemma B.6 in the third equality.
Now, we claim that Pβ,m(−k2) is not continuous at k = 0 for the strong operator

topology. Indeed, using that Pβ,m(−k2) is a self-transposed projection, we infer that, for
f continuous and compactly supported,〈(

Pβ,m(−k2)− Pβ,m(0)
)
f |
(
Pβ,m(−k2)− Pβ,m(0)

)
f
〉

=
〈
Pβ,m(−k2)f |f

〉
+
〈
Pβ,m(0)f |f

〉
− 2
〈
Pβ,m(0)f |Pβ,m(−k2)f

〉
.
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A similar computation as above gives〈
Pβ,m(0)f |Pβ,m(−k2)f

〉
=

3β sin(2πm)

me∓iπ2m
(
4m2 − 1

) 2k2 sin(2πm)

β
[ β

2k

(
2k
β

)3m
6 (−1 + 4m2) + o(1)

] Γ
(

1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2k

)( β
2k

)2m

× 〈f |gβ,m,k〉〈gβ,m,k|gβ,m,0〉〈gβ,m,0|f〉
→
k→0

0,

since lim
k→0
〈gβ,m,k|gβ,m,0〉 = 0 by Remark B.5, while the other terms converge. Therefore,

〈(
Pβ,m(−k2)− Pβ,m(0)

)
f |
(
Pβ,m(−k2)− Pβ,m(0)

)
f
〉
→
k→0

2
〈
Pβ,m(0)f |f

〉
6= 0,

for suitably chosen compactly supported functions f . By contradiction, this proves that
Pβ,m(−k2) is not strongly continuous at k = 0.

The cases m ∈
{
− 1

2 , 0,
1
2

}
can be treated similarly. The only difference is that

Lemma B.6 is no more necessary, but has to be replaced by the expansion

ψ′(z) =
1

z
+

1

2z2
+

1

6z3
+O(z−4)

as z →∞.

A The Whittaker equation

A.1 General theory

In this section we collect basic information about the Whittaker equation. This should
be considered as a supplement to [7, Sec. 2].

The Whittaker equation is represented by the equation(
Lβ,m2 +

1

4

)
f :=

(
− ∂2

z +
(
m2 − 1

4

) 1

z2
− β

z
+

1

4

)
f = 0. (A.1)

We observe that the equation does not change when we replace m with −m. It has also
another symmetry:(

Lβ,m2 +
1

4

)
f(z) = 0 ⇒

(
L−β,m2 +

1

4

)
f(−z) = 0. (A.2)

Solutions of (A.1) are provided by the functions z 7→ Iβ,±m(z) which are defined by

Iβ,m(z) = z
1
2

+me∓
z
2

1F1

(
1
2 +m∓ β; 1 + 2m;±z

)
Γ(1 + 2m)

= z
1
2

+me∓
z
2

∞∑
k=0

(
1
2 +m∓ β

)
k

Γ(1 + 2m+ k)

(±z)k

k!
, (A.3)
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where (a)k := a(a+ 1) · · · (a+ k− 1) and (a)0 = 1 are the usual Pochhammer’s symbols
and 1F1 is Kummer’s confluent hypergeometric function. For Re(m) > −1

2 and Re
(
m∓

β + 1
2

)
> 0 the function Iβ,m has also an integral representation given by

Iβ,m(z) =
z

1
2

+m

Γ
(

1
2 +m+ β

)
Γ
(

1
2 +m− β

) ∫ 1

0
e±z(s−

1
2

)sm∓β−
1
2 (1− s)m±β−

1
2 ds.

Based on (A.3) one easily gets

W
(
Iβ,m, Iβ,−m;x

)
= −sin(2πm)

π
(A.4)

as well as the following identity

Iβ,m(z) = e∓iπ( 1
2

+m)I−β,m
(
e±iπz

)
. (A.5)

Another solution of (A.1) is provided by the function z 7→ Kβ,m(z). For m 6∈ 1
2Z it

can be defined by the following relation:

Kβ,m =
π

sin(2πm)

(
−

Iβ,m
Γ
(

1
2 −m− β

) +
Iβ,−m

Γ
(

1
2 +m− β

)). (A.6)

For the remaining m we can extend the definition of Kβ,m by continuity, see Subsect. A.3.
Note that Kβ,−m = Kβ,m, and that the function Kβ,m can also be expressed in terms of
the function 2F0, namely:

Kβ,m(z) = zβe−
z
2 2F0

(
1
2 +m− β, 1

2 −m− β;−;−z−1
)
.

An alternative definition of Kβ,m can be provided by an integral representation valid for
Re
(
− β ∓m+ 1

2

)
> 0 and Re(z) > 0:

Kβ,m(z) =
z

1
2
∓me−

z
2

Γ
(

1
2 − β ∓m

) ∫ ∞
0

e−zss−
1
2
−β∓m(1 + s)−

1
2

+β∓mds.

Note that the function Kβ,m decays exponentially for large Re(z), more precisely, if ε > 0
and |arg(z)| < π − ε, then one has

Kβ,m(z) = zβ e−
z
2
(
1 +O(z−1)

)
. (A.7)

By using the relation (A.6) one also obtains that

W
(
Iβ,m,Kβ,m;x

)
= − 1

Γ
(

1
2 +m− β

) . (A.8)

We would like to treat Iβ,m, Iβ,−m and Kβ,m as the principal solutions of the Whit-
taker equation (A.1). There are however cases for which this is not sufficient. Therefore,
we introduce below a fourth solution, which we denote by Xβ,m. To the best of our
knowledge, this function has never appeared elsewhere in the literature.

The function Kβ,m is distinguished by the fact that it decays exponentially, while the
solutions Iβ,±m(z) explode exponentially, see [7, Eq. (2.14) & (2.22)]. This is also the
case for the analytic continuations of K−β,m by the angles ±π, which by the symmetry
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(A.2) are also solutions of (A.1). It will be convenient to introduce a name for a solution
constructed from these two analytic continuations. There is some arbitrariness for this
choice, but we have decided on:

Xβ,m(z) := 1
2

(
e−iπ( 1

2
+m)K−β,m

(
eiπz

)
+ eiπ( 1

2
+m)K−β,m

(
e−iπz

))
. (A.9)

As a consequence of this definition and of (A.5) one gets the relations

Xβ,m(z) = − π

sin(2πm)

(
Iβ,m(z)

Γ
(

1
2 −m+ β

) − cos(2πm)Iβ,−m(z)

Γ
(

1
2 +m+ β

) )
, (A.10)

and

e∓iπ( 1
2

+m)K−β,m
(
e±iπz

)
= Xβ,m(z)∓

iπIβ,−m(z)

Γ
(

1
2 +m+ β

) .
In addition, by using the equalities

cos
(
π(m− β)

)
= cos

(
2πm− π(m+ β)

)
= cos(2πm) cos

(
π(m+ β)

)
+ sin(2πm) sin

(
π(m+ β)

)
(A.11)

one infers from (A.6) and (A.10) that

cos(2πm)Kβ,m
Γ
(

1
2 +m+ β

) − Xβ,m
Γ
(

1
2 +m− β

)
=

1

sin(2πm)

(
cos
(
π(m− β)

)
− cos(2πm) cos

(
π(m+ β)

))
Iβ,m

= sin
(
π(m+ β)

)
Iβ,m,

which finally leads to the relation

Iβ,m =
1

sin(π(m+ β))

(
cos(2πm)

Γ
(

1
2 +m+ β

)Kβ,m − 1

Γ
(

1
2 +m− β

)Xβ,m). (A.12)

By taking formulas (A.6), (A.10), and (A.11) into account, one infers that the Wron-
skian is provided by

W (Kβ,m,Xβ,m;x) = − sin
(
π(m+ β)

)
.

Hence for m + β ∈ Z the solutions Kβ,m and Xβ,m are proportional to one another. In
fact, for such β,m, we have

Xβ,m(z) =
Γ
(

1
2 −m− β

)
Γ
(

1
2 −m+ β

)Kβ,m(z).

Note that this corresponds to the lines m+ β = n ∈ Z. However in our applications, we
need Xβ,m on the lines m+β− 1

2 = n ∈ Z, where Kβ,m and Xβ,m are linearly independent.
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A.2 The Laguerre cases

Let us now consider two special cases, namely when −1
2 −m + β := n ∈ N and when

−1
2 −m− β := n ∈ N. In the former case, observe that the Wronskian of Iβ,m and Kβ,m

vanishes, see (A.8). It means that in such a case these two functions are proportional
to one another. In order to deal with this situation we define, for p ∈ C and n ∈ N, the
Laguerre polynomials by the formulas

L(p)
n (z) =

z−pez

n!

dn

dzn
(
e−zzp+n

)
=

n∑
k=0

(p+ k + 1)n−k(−z)k

(n− k)!k!

=
(p+ 1)n

n!
1F1(−n; p+ 1; z)

=
(−1)n

n!
zn2F0(−n,−p− n;−;−z−1).

Then, by setting 2m = p, we get

I 1+p
2

+n, p
2

=
n!z

1+p
2 e−

z
2

Γ(1 + p+ n)
L(p)
n .

Note that this solution can also be expressed in terms of the Kβ,m function, namely

K 1+p
2

+n, p
2

= (−1)nn! z
1+p
2 e−

z
2L(p)

n . (A.13)

We shall call this situation the decaying Laguerre case. In this case the relation (A.12)
reduces to

I 1+p
2

+n, p
2

=
(−1)n

Γ(1 + p+ n)
K 1+p

2
+n, p

2
, (A.14)

and more generally for ` ∈ Z one has

I 1+p
2

+`, p
2

=
(−1)`

Γ(1 + p+ `)
K 1+p

2
+`, p

2
+

(−1)`+1

cos(πp)Γ(−`)
X 1+p

2
+`, p

2
.

In the special case −1
2 −m− β := n ∈ N a similar analysis with p = 2m leads to

I− 1+p
2
−n, p

2
(z) =

n!z
1+p
2 e

z
2

Γ(1 + p+ n)
L(p)
n (−z)

and to

X− 1+p
2
−n, p

2
(z) = e∓i 1+p

2
πK 1+p

2
+n, p

2

(
e±iπz

)
= (−1)nn!z

1+p
2 e

z
2L(p)

n (−z). (A.15)

We shall call this situation the exploding Laguerre case. In this case the relation (A.12)
reduces to

I− 1+p
2
−n, p

2
=

(−1)n

Γ(1 + p+ n)
X− 1+p

2
−n, p

2
, (A.16)

and more generally for ` ∈ Z one has

I− 1+p
2
−`, p

2
=

(−1)`+1 cos(πp)

Γ(−`)
K− 1+p

2
−`, p

2
+

(−1)`

Γ(1 + p+ `)
X− 1+p

2
−`, p

2
.
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A.3 The degenerate case

In this section we consider the special case m ∈ 1
2Z, which will be called the degenerate

case, see Figure 1. In this situation the Wronskian of Iβ,m and Iβ,−m vanishes, see (A.4).
More precisely, for any p ∈ N one has the identity

Iβ,− p
2

=
(
− β − p− 1

2

)
p
Iβ, p

2
,

or equivalently,
1

Γ
(1+p

2 − β
)Iβ,− p

2
=

1

Γ
(1−p

2 − β
)Iβ, p

2
.

Based on this equality and by a limiting procedure, an expression for the functions
Kβ, p

2
has been provided in [7, Thm. 2.2], namely

Kβ, p
2
(z) =

(−1)p+1 ln(z)Iβ, p
2
(z)

Γ
(1−p

2 − β
)

+
(−1)p+1e−

z
2 z

1+p
2

Γ
(1−p

2 − β
) ∞∑

k=0

(1+p
2 − β

)
k
zk

(p+ k)!k!

×
(
ψ
(1+p

2 − β + k
)
− ψ(p+ 1 + k)− ψ(1 + k)

)
+

(−1)p+1e−
z
2 z

1+p
2

Γ
(1−p

2 − β
) p∑

j=1

(1+p
2 − β

)
−j(−1)j−1(j − 1)!z−j

(p− j)!
,

(A.17)

where ψ is the digamma function defined by ψ(z) = Γ′(z)
Γ(z) . Note that the equality (or

definition) (a)j = Γ(a+j)
Γ(a) has also been used for arbitrary j ∈ Z. For our applications the

most important functions correspond to p = 1:

Kβ, 1
2
(z) =

ln(z)Iβ, 1
2
(z)

Γ
(
− β

) +
e−

z
2

Γ(1− β)

+
e−

z
2

Γ
(
− β

) ∞∑
k=0

(
1− β

)
k
z1+k

(1 + k)!k!

(
ψ
(
1− β + k

)
− ψ(2 + k)− ψ(1 + k)

)
,

(A.18)

and to p = 0:

Kβ,0(z) =−
ln(z)Iβ,0(z)

Γ
(

1
2 − β

)
− e−

z
2

Γ
(

1
2 − β

) ∞∑
k=0

(
1
2 − β

)
k
z

1
2

+k

(k!)2

(
ψ
(

1
2 − β + k

)
− 2ψ(1 + k)

)
.

(A.19)

Let us still provide the expression for the function Xβ, p
2
. Starting from its definition

in (A.9) and by using the expansion (A.17) as well as the identity provided in (A.5) one
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gets

Xβ, p
2
(z) =

(−1)p+1 ln(z)Iβ, p
2
(z)

Γ
(1−p

2 + β
)

+
(−1)p+1e

z
2 z

1+p
2

Γ
(1−p

2 + β
) ∞∑

k=0

(1+p
2 + β

)
k

(−1)kzk

(p+ k)!k!

×
(
ψ
(1+p

2 + β + k
)
− ψ(p+ 1 + k)− ψ(1 + k)

)
− (−1)p+1e

z
2 z

p+1
2

Γ
(1−p

2 + β
) p∑

j=1

(1+p
2 + β

)
−j(j − 1)!z−j

(p− j)!
.

In particular, the following expansion will be useful:

Xβ, 1
2
(z) = − 1

Γ(1 + β)
+

1

Γ(β)
z ln(z) +

1

Γ(β)

(
ψ(1 + β) + 2γ − 1− 1

2β

)
z + o(z) (A.20)

and

Xβ,0(z) = − 1

Γ
(

1
2 + β

)z 1
2 ln(z)−

(
ψ
(

1
2 + β

)
+ 2γ

)
z

1
2 + o

(
z

1
2
)

(A.21)

Note also that the following identity holds:

Xβ,− p
2

= (−1)pXβ, p
2
,

as a consequence of (A.9).
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Figure 1: The vertical lines correspond to the degenerate cases, the lines with slope 1 to
the decaying Laguerre case, the lines with slope −1 with the exploding Laguerre case.
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A.4 The doubly degenerate case

We shall now consider the region{
(m,β) | β ∈ 1

2Z, m ∈
1
2Z, β +m+ 1

2 ∈ Z
}
. (A.22)

In other words, we consider m ∈ Z, β ∈ Z + 1
2 , or m ∈ Z + 1

2 , β ∈ Z. This situation will
be called the doubly degenerate case. We will again set m = p

2 with p ∈ Z. Note that for
(m,β) in (A.22) we have the identity

Iβ,m =
(−1)β+m+ 3

2
+p

Γ
(

1
2 +m+ β

)Kβ,m +
(−1)β+m+ 1

2

Γ
(

1
2 +m− β

)Xβ,m, (A.23)

which is a special case of (A.12). In this case we also have

W (Kβ,m,Xβ,m;x) = (−1)m+β+ 1
2 . (A.24)

Hence Kβ,m and Xβ,m always span the space of solutions in the doubly degenerate case.
In order to analyze the doubly degenerate case more precisely, let us divide (A.22)

into 4 distinct regions (see Figure 2).

Region I−. β +m ∈ −
(
N + 1

2

)
, −β +m ∈ −

(
N + 1

2

)
.

We have
Iβ,m = 0,

which follows for example from (A.23). By setting n1 := β − m − 1
2 ∈ N and n2 =

−β −m− 1
2 ∈ N, then Kβ,m = K 1+p

2
+n1,

p
2

is the decaying Laguerre solution, see (A.13),

and Xβ,m = X− 1+p
2
−n2,

p
2

is the exploding Laguerre solution, see (A.15).

Region I+. β +m ∈ N + 1
2 , −β +m ∈ N + 1

2 .

First note that (m,β) ∈ I− if and only if (−m,β) ∈ I+. By setting n1 := β +m− 1
2 ∈ N

and n2 := −β + m − 1
2 ∈ N, one has β = n1−n2

2 , m = n1+n2+1
2 , and the equality (A.23)

can be rewritten as

Iβ,m =
(−1)n2+1

n1!
Kβ,m +

(−1)n1+1

n2!
Xβ,m.

Note then that Kβ,m = K 1−p
2

+n1,
p
2

= K 1−p
2

+n1,
−p
2

corresponds to the decaying Laguerre

solution, while Xβ,m = X− 1−p
2
−n2,

p
2

= (−1)pX− 1−p
2
−n2,− p2

= (−1)pX− 1−p
2
−n2,

−p
2

corre-

sponds to the exploding Laguerre solution. In this region, the space of solutions can also
be spanned by the pair Kβ,m and Iβ,m, or by the pair Iβ,m and Xβ,m.

Region II−. β +m ∈ −
(
N + 1

2

)
, −β +m ∈ N + 1

2 .

By setting n := −β −m− 1
2 ∈ N, then the equality (A.16) reduces to

I− p+1
2
−n, p

2
=

(−1)n

(p+ n)!
X− p+1

2
−n, p

2
.

Thus Iβ,m is proportional to Xβ,m and corresponds to the exploding Laguerre case. The
second solution is Kβ,m. It decays exponentially and has a logarithmic singularity at
zero, therefore we call this function the decaying logarithmic solution.
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Region II+. β +m ∈ N + 1
2 , −β +m ∈ −

(
N + 1

2

)
.

By setting n := β −m− 1
2 ∈ N, then the equality (A.14) reduces to

I p+1
2

+n, p
2

=
(−1)n

(p+ n)!
K p+1

2
+n, p

2
.

Thus Iβ,m is proportional to Kβ,m and corresponds to the decaying Laguerre case. The
second solution is Xβ,m. It explodes exponentially and has a logarithmic singularity at
zero, therefore we call this function the exploding logarithmic solution.

The results of this section are summarized in Figure 2.

β

m

I− I+

II+

II−
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1 2 3 4

Figure 2: Solutions for the doubly degenerate case: Region I−: the decaying Laguerre
and the exploding Laguerre solutions. Region I+: any of the three solutions. Region
II+: the decaying Laguerre and the exploding logarithmic solutions. Region II−: the
exploding Laguerre and the decaying logarithmic solutions.

A.5 Recurrence relations

Solutions of the Whittaker equation satisfy interesting recurrence relations. These re-
lations can be checked by using the series provided in (A.3). The computations are
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straightforward, but rather lengthy. These relations read(√
z∂z +

−1
2 −m√
z
−
√
z

2

)
Iβ,m(z) =

(
− 1

2
−m− β

)
Iβ+ 1

2
,m+ 1

2
(z),(√

z∂z +
−1

2 +m
√
z

+

√
z

2

)
Iβ,m(z) = Iβ− 1

2
,m− 1

2
(z),(√

z∂z +
−1

2 +m
√
z
−
√
z

2

)
Iβ,m(z) = Iβ+ 1

2
,m− 1

2
(z),(√

z∂z +
−1

2 −m√
z

+

√
z

2

)
Iβ,m(z) =

(1

2
+m− β

)
Iβ− 1

2
,m+ 1

2
(z),(

z∂z + β − z

2

)
Iβ,m(z) =

(1

2
+m+ β

)
Iβ+1,m(z),(

z∂z − β +
z

2

)
Iβ,m(z) =

(1

2
+m− β

)
Iβ−1,m(z).

By using the relation between the functions Kβ,m and the functions Iβ,m provided in
(A.6), one infers from the above relations the following ones:(√

z∂z +
−1

2 −m√
z
−
√
z

2

)
Kβ,m(z) = −Kβ+ 1

2
,m+ 1

2
(z),(√

z∂z +
−1

2 +m
√
z

+

√
z

2

)
Kβ,m(z) =

(
− 1

2
+m+ β

)
Kβ− 1

2
,m− 1

2
(z),(√

z∂z +
−1

2 +m
√
z
−
√
z

2

)
Kβ,m(z) = −Kβ+ 1

2
,m− 1

2
(z),(√

z∂z +
−1

2 −m√
z

+

√
z

2

)
Kβ,m(z) =

(
− 1

2
−m+ β

)
Kβ− 1

2
,m+ 1

2
(z),(

z∂z + β − z

2

)
Kβ,m(z) = −Kβ+1,m(z),(

z∂z − β +
z

2

)
Kβ,m(z) =

(1

2
+m− β

)(1

2
−m− β

)
Kβ−1,m(z).

A.6 Integral identities

Let us start with a general fact about 1-dimensional Schrödinger operators, see for ex-
ample [5, Eq. (3.24)].

Lemma A.1. For i ∈ {1, 2}, suppose that vi ∈ D(Lmax
β,α ) satisfies Lβ,αvi = λivi for some

λi ∈ C. Then, for all a, b ∈]0,∞[,

(λ1 − λ2)

∫ b

a
v1(x)v2(x)dx = W (v1, v2; b)−W (v1, v2; a), (A.25)

where W is the Wronskian introduced in (2.1).

As a consequence of this lemma one has:

Proposition A.2. Let k, p ∈ C with Re(k) > 0 and Re(p) > 0.
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(i) If −1 < Re(m) < 1, m 6∈
{
− 1

2 , 0,
1
2

}
, then

(k2 − p2)

∫ ∞
0
K β

2k
,m

(2kx)K β
2p
,m

(2px)dx

=
π

sin(2πm)

√
4kp

(
kmp−m

Γ
(

1
2 +m− β

2p

)
Γ
(

1
2 −m−

β
2k

) − pmk−m

Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2p

)).
(ii) If m = 0, then

(k2 − p2)

∫ ∞
0
K β

2k
,0

(2kx)K β
2p
,0

(2px)dx

=
√

4kp
ψ
(

1
2 −

β
2k

)
− ψ

(
1
2 −

β
2p

)
+ ln(k)− ln(p)

Γ
(

1
2 −

β
2p

)
Γ
(

1
2 −

β
2k

) .

(iii) If m = ±1
2 , then

(k2 − p2)

∫ ∞
0
K β

2k
, 1
2
(2kx)K β

2p
, 1
2
(2px)dx

= β
ψ
(
1− β

2k

)
− ψ

(
1− β

2p

)
+ k

β −
p
β + ln(k)− ln(p)

Γ
(
1− β

2p

)
Γ
(
1− β

2k

) .

Proof. The proof consists in an application of Lemma A.1. Consider k, p ∈ C with
Re(k) > 0, Re(p) > 0 and set λ1 = −k2 and λ2 = −p2. As shown in the proof of
Theorem 3.1 the functions vi defined by

v1(x) = K β
2k
,m

(2kx) and v2(x) = K β
2p
,m

(2px)

belong to D(Lmax
β,m2) and are eigenfunctions of Lβ,m2 associated with the eigenvalues λi.

Let us then set W (v1, v2; 0) := lim
x↘0

W (v1, v2;x) and observe that lim
x→+∞

W (v1, v2;x) = 0,

as a consequence of Proposition 2.1. This yields directly to

(k2 − p2)

∫ ∞
0

v1(x)v2(x)dx = W (v1, v2; 0). (A.26)

Let us now set

u1,±(x) = I β
2k
,±m(2kx) and u2,±(x) = I β

2p
,±m(2px).

Then, the identity (A.6) leads to

v1(x) =
π

sin(2πm)

(
− u1,+(x)

Γ
(

1
2 −m−

β
2k

) +
u1,−(x)

Γ
(

1
2 +m− β

2k

)),
v2(x) =

π

sin(2πm)

(
− u2,+(x)

Γ
(

1
2 −m−

β
2p

) +
u2,−(x)

Γ
(

1
2 +m− β

2p

)),
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and with the expansion provided in A.3 one directly infers that

W (u1,+, u2,+; 0) = W (u1,−, u2,−; 0) = 0,

W (u1,+, u2,−; 0) = − 4mk
1
2

+mp
1
2
−m

Γ(1 + 2m)Γ(1− 2m)
= −2 sin(2πm)

π
k

1
2

+mp
1
2
−m,

W (u1,−, u2,+; 0) =
4mk

1
2
−mp

1
2

+m

Γ(1 + 2m)Γ(1− 2m)
=

2 sin(2πm)

π
k

1
2
−mp

1
2

+m.

As a consequence of these equalities one gets

W (v1, v2; 0)

=
π

sin(2πm)

(
2k

1
2

+mp
1
2
−m

Γ
(

1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2p

) − 2k
1
2
−mp

1
2

+m

Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2p

)).
This proves (i). The equalities (ii) and (iii) can be proved similarly by using (A.18) and
(A.19).

By using the L’Hospital’s rule one directly obtains:

Corollary A.3. Let Re(k) > 0.

(i) For −1 < Re(m) < 1, m 6∈
{
− 1

2 , 0,
1
2

}
one has∫ ∞

0
K β

2k
,m

(2kx)2dx =
π

sin(2πm)

2m+ β
2kψ

(
1
2 +m− β

2k

)
− β

2kψ
(

1
2 −m−

β
2k

)
kΓ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

) .

(ii) For m = 0, ∫ ∞
0
K β

2k
,0

(2kx)2dx =
1 + β

2kψ
′(1

2 −
β
2k

)
kΓ
(

1
2 −

β
2k

)2 .

(iii) For m = 1
2 , ∫ ∞

0
K β

2k
, 1
2
(2kx)2dx = −

1 + k
β + β

2kψ
′(1− β

2k

)
kΓ
(
− β

2k

)
Γ
(
1− β

2k

) .
A.7 The trigonometric type Whittaker equation

Along with the standard Whittaker equation (A.1), sometimes called hyperbolic type, it
is natural to consider the trigonometric type Whittaker equation(

Lβ,m2 −
1

4

)
f =

(
− ∂2

z +
(
m2 − 1

4

) 1

z2
− β

z
− 1

4

)
f = 0. (A.27)

In [7, Sec. 2.6 & 2.7] we introduced the functions

Jβ,m(z) = e∓iπ
2

( 1
2

+m)I∓iβ,m

(
e±iπ

2 z
)

(A.28)
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and

H±β,m(z) =e∓iπ
2 ( 1

2
+m)K±iβ,m(e∓iπ

2 z)

=
±iπ

sin(2πm)

( e∓iπmJβ,m(z)

Γ
(

1
2 −m∓ iβ

) − Jβ,−m(z)

Γ
(

1
2 +m∓ iβ

)), (A.29)

which solve (A.27). Note that the function H±β,m has been used in the proof of Theorem
3.1 when dealing with positive eigenvalues of the Whittaker operators.

A.8 Integral identities in the trigonometric case

Here are the analogues of Proposition A.2 and Corollary A.3 in the trigonometric case.
The approach can be mimicked from Section A.6 because of the identity

Lβ,m2H±β
2µ
,m

(2µx) = µ2H±β
2µ
,m

(2µx)

valid for any µ > 0.

Proposition A.4. Let µ, η > 0 with µ < ±Im
(
β) and η < ±Im

(
β).

(i) If −1 < Re(m) < 1, m 6∈
{
− 1

2 , 0,
1
2

}
, then

(µ2 − η2)

∫ ∞
0
H±β

2µ
,m

(2µx)H±β
2η
,m

(2ηx)dx

=
πe∓iπm

sin(2πm)

√
4µη

(
µmη−m

Γ
(

1
2 +m∓ i β2η

)
Γ
(

1
2 −m∓ i β2µ

) − ηmµ−m

Γ
(

1
2 +m∓ i β2µ

)
Γ
(

1
2 −m∓ i β2η

)).
(ii) If m = 0, then

(µ2 − η2)

∫ ∞
0
H±β

2µ
,0

(2µx)H±β
2η
,0

(2ηx)dx

=
√

4µη
ψ
(

1
2 ∓ i β2µ

)
− ψ

(
1
2 ∓ i β2η

)
+ ln(µ)− ln(η)

Γ
(

1
2 ∓ i β2µ

)
Γ
(

1
2 ∓ i β2η

) .

(iii) If m = 1
2 , then

(µ2 − η2)

∫ ∞
0
H±β

2µ
, 1
2

(2µx)H±β
2η
, 1
2

(2ηx)dx

= β
ψ
(
1∓ i β2µ

)
− ψ

(
1∓ i β2η

)
∓ iµβ ± i ηβ + ln(µ)− ln(η)

Γ
(
1∓ i β2η

)
Γ
(
1∓ i β2µ

) .

Corollary A.5. Let 0 < µ < ±Im(β).

(i) For −1 < Re(m) < 1, m 6∈
{
− 1

2 , 0,
1
2

}
one has∫ ∞

0
H±β

2µ
,m

(2µx)2dx =
πe∓iπm

sin(2πm)

(
2m± i β2µψ

(
1
2 +m∓ i β2µ

)
∓ i β2kψ

(
1
2 −m∓ i β2µ

)
µΓ
(

1
2 +m∓ i β2µ

)
Γ
(

1
2 −m∓ i β2µ

) )
.
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(ii) For m = 0, ∫ ∞
0
H±β

2µ
,0

(2µx)2dx =
1± i β2µψ

′(1
2 ∓ i β2µ

)
µΓ
(

1
2 ∓ i β2µ

)2 .

(iii) For m = 1
2 , ∫ ∞

0
H±β

2µ
, 1
2

(2µx)2dx =
±i + µ

β −
β
2µψ

′(1∓ i β2µ
)

µΓ
(
∓ i β2µ

)
Γ
(
1∓ i β2µ

) .
B The Bessel equation

B.1 The modified Bessel equation

The modified (or hyperbolic type) Bessel equation for dimension 1(
− ∂2

z +
(
m2 − 1

4

) 1

z2
+ 1

)
f = 0, (B.1)

is up to a trivial rescaling, a special case of the Whittaker equation with β = 0. Its
theory was discussed at length in [6, App. A]. Nevertheless, we briefly discuss some of its
elements here, explaining the parallel elements to the theory of the Whittaker equation,
as well as the differences.

Let the modified Bessel function for dimension 1 be

Im(z) =
∞∑
n=0

√
π
(
z
2

)2n+m+ 1
2

n!Γ(m+ n+ 1)

=

√
π

Γ(m+ 1)

(z
2

)m+ 1
2

0F1

(
m+ 1;

(z
2

)2)
.

(B.2)

The equation (B.1) is invariant with respect to m → −m. At the level of the function
(B.2) this property is reflected by

Im(z) = e∓iπ( 1
2

+m)Im(e±iπz).

For the Wronskian we have

W (Im, I−m; z) = − sin(πm).

The function Km can be introduced for m 6∈ Z by

Km(z) =
1

sin(πm)

(
− Im(z) + I−m(z)

)
.

For m ∈ Z the definition is extended by continuity. Note that the relation Km(z) =
K−m(z) holds, and that

W (Km, Im; z) = 1.
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To make our presentation of the hyperbolic Bessel equation as much parallel to that
of the Whittaker equation as possible, we introduce the function

Xm(z) :=
1

2

(
e−iπ( 1

2
+m)Km

(
eiπz

)
+ eiπ( 1

2
+m)Km

(
e−iπz

))
.

Then the following relations hold:

Xm = − 1

sin(πm)

(
Im − cos(2mπ)I−m

)
,

Im =
1

2 sin(mπ)

(
cos(2mπ)Km −Xm

)
. (B.3)

The precise relations between the Whittaker functions for β = 0 and Bessel-type func-
tions are of the form

I0,m(z) =
2

Γ
(

1
2 +m

)Im(z
2

)
, (B.4)

K0,m(z) = Km
(z

2

)
,

X0,m(z) = Xm
(z

2

)
.

B.2 The degenerate case

For m ∈ Z the following relation holds:

I−m(z) = Im(z).

Assuming that m ∈ N, we also have

Im(z) =
(z

2

)m+ 1
2
∞∑
k=0

√
π

k!(m+ k)!

(z
2

)2k
,

and

Km(z) = (−1)m+1 2

π
ln
(z

2

)
Im(z)

+
(−1)m√

π

(z
2

)m+ 1
2
∞∑
k=0

ψ(k + 1) + ψ(m+ k + 1)

k!(m+ k)!

(z
2

)2k

+
(−1)m√

π

(z
2

)m+ 1
2

m∑
j=1

(−1)j
(j − 1)!

(m− j)!

(z
2

)−2j
.

B.3 The half-integer case

The half-integer case of the hyperbolic Bessel equation is a special case of the doubly
degenerate case of the Whittaker equation. However, it is worthwhile to discuss it
separately. In particular, for n ∈ N the function I− 1

2
−n is not proportional to the

function I0,− 1
2
−n, which is identically 0 by (B.4).
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By analogy of the presentation of Section A.4 we can divide the half-integer case
into two regions, namely Region I−. m ∈ −1

2 − N, and Region I+. m ∈ 1
2 + N. The

following schematic diagram of various special cases for the Bessel equation is an analog
of Fig. 2.

m−4 −3 −2 −1 0 1 2 3 41 2 3 4

Figure 3: The two regions in the half-integer case

Note that unlike for the Whittaker equation, in both regions I− and I+ the functions
Im, I−m and Km are well defined and distinct, and any two of them form a basis of
solutions of (B.1). In this case all solutions are elementary functions: For n ∈ N and
m = ±(1

2 + n) one has

K±( 1
2

+n)(z) = (−1)nn!(2z)−ne−zL(−1−2n)
n (2z),

X±( 1
2

+n)(z) = ±(−1)nn!(2z)−nezL(−1−2n)
n (−2z),

I 1
2

+n(z) = −1

2
n!(2z)−n

(
e−zL(−1−2n)

n (2z)− ezL(−1−2n)
n (−2z)

)
, (B.5)

I− 1
2
−n(z) =

1

2
n!(2z)−n

(
e−zL(−1−2n)

n (2z) + ezL(−1−2n)
n (−2z)

)
. (B.6)

Note also that (B.5) and (B.6) are special cases of (B.3), namely

I 1
2

+n(z) =
(−1)n+1

2

(
K 1

2
+n(z)−X 1

2
+n(z)

)
,

I− 1
2
−n(z) =

(−1)n

2

(
K 1

2
+n(z) + X 1

2
+n(z)

)
.

B.4 The standard Bessel equation

The standard (or trigonometric-type) Bessel equation for dimension 1(
− ∂2

z +
(
m2 − 1

4

) 1

z2
− 1

)
f = 0, (B.7)

is up to a trivial rescaling, a special case of the trigonometric-type Whittaker equation
with β = 0. One can introduce the following functions which solve this equation (see [6,
App. A] for more information) :

Jm(z) = e±iπ
2

(m+ 1
2

)Im(e∓iπ
2 z) =

∞∑
n=0

(−1)n
√
π
(
z
2

)2n+m+ 1
2

n!Γ(m+ n+ 1)
,

H±m(z) = e∓iπ
2

(m+ 1
2

)Km(e∓iπ
2 z) = ±i

e∓iπmJm(z)− J−m(z)

sin(πm)
,

and

Ym(z) :=
cos(πm)Jm(z)− J−m(z)

sin(πm)
.
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B.5 The zero eigenvalue Whittaker equation

The zero eigenvalue Whittaker equation is provided by the equation

Lβ,m2f :=

(
− ∂2

z +
(
m2 − 1

4

) 1

z2
− β

z

)
f = 0. (B.8)

It is easy to see that if v solves the trigonometric Bessel equation of dimension 1 (B.1)

with parameter 2m, then the function f defined by f(x) := (βx)
1
4 v(2
√
βx) solves the

equation (B.8).
One can also obtain solutions of (B.8) by rescaling solutions of the hyperbolic-type

or trigonometric-type Whittaker equation:

Proposition B.1. For any fixed x ∈ R+, m ∈ Π and β ∈ C×, one has

lim
k→0

( 1

2k

) 1
2

+m
I β

2k
,m

(2kx) = β−m−
1
2

(βx)
1
4

√
π
J2m(2

√
βx), (B.9)

lim
k→0

( 1

2k

) 1
2

+m
J β

2k
,m

(2kx) = β−m−
1
2

(βx)
1
4

√
π
J2m(2

√
βx). (B.10)

For any fixed x ∈ R+, any m ∈ Π and β ∈ C×, one has

lim
k→0
∓i

Γ
(

1
2 +m− β

2k

)
√
π

( β
2k

) 1
2
−m
K β

2k
,m

(2kx) = (βx)
1
4H±2m(2

√
βx), (B.11)

lim
µ→0

Γ
(

1
2 +m∓ i β2µ

)
√
π

( β
2µ

) 1
2
−m
H±β

2µ
,m

(2µx) = (βx)
1
4H±2m(2

√
βx). (B.12)

where the first limit is taken such that ±
(

arg(β) − arg(k)
)
∈]ε, π − ε[ with ε > 0, and

the second limit is taken with µ > 0 and is valid if Re(β) > 0.

Proof. Using the definition of Pochhammer’s symbol recalled in Section A.1, one infers
that

lim
k→0

(1

2
+m∓ β

2k

)
j
(±2k)j = (−β)j .

In addition, for all k ∈ C with |k| < 1, one has∣∣∣(1

2
+m∓ β

2k

)
j
(±2k)j

∣∣∣ ≤ cjj!
for some constant c independent of k and j. Hence, by an application of the version of
the Lebesgue dominated convergence theorem for series, one gets

lim
k→0

∞∑
j=0

(
1
2 +m∓ β

2k

)
j
(±2kx)j

Γ(1 + 2m+ j)j!
=

∞∑
j=0

(−βx)j

Γ(1 + 2m+ j)j!
,

which leads directly to the equality (B.9). The equality (B.10) can then be deduced from
(B.9) by using the relation (A.28) between the functions Iβ,m and Jβ,m.
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For (B.11), by using successively (A.6), (B.13), (B.9), and [6, App. A.5] one gets

∓ i
Γ
(

1
2 +m− β

2k

)
√
π

( β
2k

) 1
2
−m
K β

2k
,m

(2kx)

=
∓i
√
π

sin(2πm)

( β
2k

) 1
2
−m(

−
Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)I β
2k
,m

(2kx) + I β
2k
,−m(2kx)

)
=
∓i
√
π

sin(2πm)

(
− e∓iπ2m

( β
2k

) 1
2

+m
I β

2k
,m

(2kx) +
( β

2k

) 1
2
−m
I β

2k
,−m(2kx)

)
+ o(1)

=
∓i

sin(2πm)

(
− e∓iπ2m(βx)

1
4J2m(2

√
βx) + (βx)

1
4J−2m(2

√
βx)
)

+ o(1)

= (βx)
1
4H±2m(2

√
βx) + o(1),

where we have used that ± arg
( β

2k

)
∈]0, π] and that

∣∣ arg
(
− β

2k

)∣∣ < π− ε for ε > 0. The
equality (B.12) can then be deduced from (B.11) by using the relation (A.29) between
the functions Kβ,m and H±β,m.

The following lemma plays a key role in the above proof.

Lemma B.2. Let a, b ∈ C. For |z| → ∞ with | arg(z)| < π − ε and ε > 0 one has

lim
z→∞

Γ(a+ z)

Γ(b+ z)
zb−a = 1. (B.13)

Proof. Recall first the logarithmic version of Stirling formula [1, Eq. 6.1.41] :

ln
(
Γ(z)

)
= z ln(z)− z +

1

2
ln(2π)− 1

2
ln(z) +O

(1

z

)
.

This readily implies that

ln
(
Γ(a+ z)

)
− ln

(
Γ(b+ z)

)
+ (b− a) ln(z) →

z→∞
0.

After exponentiation it leads to the statement.

B.6 Integrals for zero eigenvalue solutions of the Whittaker equation

Based on the results of the previous sections and on Lemma A.1, one easily gets:

Proposition B.3. Let k ∈ C with Re(k) > 0 and let β ∈ C with ±Im(
√
β) > 0.

(i) If m ∈ C with |Re(m)| < 1 and m 6∈
{
− 1

2 , 0,
1
2

}
, one has∫ ∞

0
(βx)

1
4H±2m(2

√
βx)K β

2k
,m

(2kx)dx

= ∓i
(2πkβ)

1
2

sin(2πm)

( ( β
2k

)−m
Γ
(

1
2 −m−

β
2k

) − e∓i2πm

( β
2k

)m
Γ
(

1
2 +m− β

2k

)).
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(ii) If m = 0, then∫ ∞
0

(βx)
1
4H±0 (2

√
βx)K β

2k
,0

(2kx)dx

= ∓i
1√
π

(2kβ)
1
2

Γ
(

1
2 −

β
2k

)(ψ(1

2
− β

2k

)
+ ln(2k)− ln(β)− ln(4)± iπ

)
.

(iii) If m = 1
2 , then∫ ∞

0
(βx)

1
4H±1 (2

√
βx)K β

2k
, 1
2
(2kx)dx

= ∓i
1√
π

2k

Γ
(
− β

2k

)(− ψ(− β

2k

)
+ ln(β) +

k

β
− ln(2k)∓ iπ

)
.

In the next proposition, we consider the integral of ((βx)
1
4H±2m(2

√
βx))2 which cannot

be computed by the same means.

Proposition B.4. Let β ∈ C with ±Im(
√
β) > 0. For all −1 < Re(m) < 1, one has∫ ∞

0

(
(βx)

1
4H±2m(2

√
βx)
)2

dx =
m
(
4m2 − 1

)
e∓iπ2m

3β sin(2πm)
. (B.14)

Proof. Let us consider for |Re(m)| < 2 the integral
∫∞

0 y2K2m(y)2dy. After a change of
variable and by taking into account the relation between the MacDonald function for
dimension 1 and the usual MacDonald function one infers from [16, Sec. 6.576, Eq. 4]
that ∫ ∞

0
y2K2m(y)2dy =

2

3π
Γ(2− 2m)Γ(2 + 2m)

=
4m

3π
(1− 2m)(1 + 2m)Γ(1− 2m)Γ(2m)

=
4m

3 sin(2πm)

(
1− 4m2

)
. (B.15)

By a contour integration with a vanishing contribution at infinity, one gets that for
±Im(

√
β) > 0, ∫ ∞

0

(
(βx)

1
4H±2m(2

√
βx)
)2

dx

=
1

2

∫ ∞
0

2
√
βxe∓iπ(2m+ 1

2
)K2m

(
e∓iπ

2 2
√
βx
)2

dx

= −e∓iπ2m

4β

∫ ∞
0

y2K2m(y)2dy.

This leads to the statement of the proposition.

Remark B.5. Curiously, a naive computation suggests incorrectly that∫ ∞
0

(
(βx)

1
4H±2m(2

√
βx)
)2

dx = 0.
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Indeed, for m 6∈
{
− 1

2 , 0,
1
2

}
and k ∈ C with Re(k) > 0, and such that ±

(
arg(β) −

arg(k)
)
∈]ε, π − ε[ with ε > 0, one has∫ ∞
0

(βx)
1
4H±2m(2

√
βx)

[
∓ i

Γ
(

1
2 +m− β

2k

)
√
π

( β
2k

) 1
2
−m
K β

2k
,m

(2kx)

]
dx (B.16)

= ∓i
Γ
(

1
2 +m− β

2k

)
√
π

( β
2k

) 1
2
−m
∫ ∞

0
(βx)

1
4H±2m(2

√
βx)K β

2k
,m

(2kx)dx

= − β

sin(2πm)

(
Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)( β
2k

)−2m
− e∓iπ2m

)
.

By taking a limit as k → 0, one obtains from Lemma B.2 that

lim
k→0

(
Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)( β
2k

)−2m
− e∓iπ2m

)
= 0. (B.17)

Although by (B.11) the term in the square braket of (B.16) converges pointwise to

(βx)
1
4H±2m(2

√
βx), a limit limk→0 and the integral in (B.16) can certainly not be ex-

changed, since otherwise it would lead to a contradiction.

To conclude, we give a lemma which was used in the proof of Proposition 3.14.

Lemma B.6. For |z| → ∞ with | arg(z)| < π − ε and ε > 0 one has

ψ(b+ z)− ψ(c+ z) =
b− c
z

+
(b− c)(1− b− c)

2z2

+
(b− c)[1− 3(b+ c) + 2(b2 + bc+ c2)]

6z3
+O

( 1

z4

)
.

Proof. The asymptotic expansion of the ψ function is provided in [1, Eq. 6.3.18] and
reads as |z| → ∞ with | arg(z)| < π − ε and ε > 0:

ψ(z) = ln(z)− 1

2z
− 1

12z2
+O

( 1

z4

)
.

Hence

ψ(b+ z)− ψ(c+ z)

= ln(b+ z)− 1

2(b+ z)
− 1

12(b+ z)2
− ln(c+ z) +

1

2(c+ z)
+

1

12(c+ z)2
+O

( 1

z4

)
= ln

(
1 +

b

z

)
− 1

2z(1 + b
z )
− 1

12z2(1 + b
z )2

− ln
(

1 +
c

z

)
+

1

2z(1 + c
z )

+
1

12z2(1 + c
z )2

+O
( 1

z4

)
=
b− c
z

+
c2 − b2 + b− c

2z2
+
b− c− 3b2 + 3c2 + 2b3 − 2c3

6z3
+O

( 1

z4

)
which leads directly to the statement.
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