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Abstract

This paper presents the spectral analysis of 1-dimensional Schrédinger operator
on the half-line whose potential is a linear combination of the Coulomb term 1/r and
the centrifugal term 1/r%. The coupling constants are allowed to be complex, and
all possible boundary conditions at 0 are considered. The resulting closed operators
are organized in three holomorphic families. These operators are closely related to
the Whittaker equation. Solutions of this equation are thoroughly studied in a large
appendix to this paper. Various special cases of this equation are analyzed, namely
the degenerate, the Laguerre and the doubly degenerate cases. A new solution to the
Whittaker equation in the doubly degenerate case is also introduced.
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1 Introduction

This paper is devoted to 1-dimensional Schrodinger operators with Coulomb and cen-
trifugal potentials. These operators are given by the differential expressions
1\ 1
Lgo = —02+ (a - 7)7 _5 (1.1)
The parameters o and S are allowed to be complex valued. We shall study realizations
of Lg as closed operators on L?(R. ), and consider general boundary conditions.

The operator given in (1.1) is one of the most famous and useful exactly solvable
models of Quantum Mechanics. It describes the radial part of the Hydrogen Hamiltonian.

In the mathematical literature, this operator goes back to Whittaker, who studied its
eigenvalue equation in [33]. For this reason, we call (1.1) the Whittaker operator.



This paper is a continuation of a series of papers [2, 6, 7] devoted to an analysis of
exactly solvable 1-dimensional Schrodinger operators. We follow the same philosophy as
in [6]. We start from a formal differential expression depending on complex parameters.
Then we look for closed realizations of this operator on L*(R.). We do not restrict
ourselves to self-adjoint realizations — we look for realizations that are well-posed, that is,
possess non-empty resolvent sets. This implies that they satisfy an appropriate boundary
condition at 0, depending on an additional complex parameter. We organize those
operators in holomorphic families.

Before describing the holomorphic families introduced in this paper, let us recall the
main constructions from the previous papers of this series. In [2, 6] we considered the
operator

9 1\ 1
Lo:=—0%+ (a - Z)?' (1.2)
As is known, it is useful to set a = m?. In [2] the following holomorphic family of closed
realizations of (1.2) was introduced:

H,,, with —1 < Re(m),

defined by L,,2 with boundary conditions ~ zztm,

It was proved that for Re(m) > 1 the operator H,, is the only closed realization of L,,2.
In the region —1 < Re(m) < 1 there exist realizations of L,,> with mixed boundary
conditions. As described in [6], it is natural to organize them into two holomorphic
families:

H, ., with —1<Re(m)<1, m#0, k€ CU{oo},

m

1 1_
2+m—|—/{,x2 ,

defined by L,,2 with boundary conditions ~ x
and
Hy, with v € CU{o0},
defined by Ly with boundary conditions ~ 22 (v + In(z)).

Note that related investigations about these operators have also been performed in [31,
32].

In [7] and in the present paper we study closed realizations of the differential operator
(1.1) on L?(Ry). Again, it is useful to set a = m?. In [7] we introduced the family

Hg,,, with g€ C, —1 < Re(m),

defined by Lg,,2 with boundary conditions ~ x%+m<1 — 3 p 1:)
+ 2m
It was noted in this reference that this family is holomorphic except for a singularity at
(B,m) = (0, —%), which corresponds to the Neumann Laplacian.

For Re(m) > 1 the operator Hg,y, is also the only closed realization of Lg 2. In the
region —1 < Re(m) < 1 there exist other closed realizations of Lg,,2. The boundary
conditions corresponding to Hpg ,, are distinguished—we will call them pure. The goal of
the present paper is to describe the most general well-posed realizations of Lg ,,2, with
all possible boundary conditions, including the mized ones.



We shall show that it is natural to organize all well-posed realizations of Lg 2 for
—1 < Re(m) < 1 in three holomorphic families: The generic family
Hg e, with e C, —1 <Re(m) <1, m¢ { — %,0, %}, k € CU{o0},
defined by Lg > with boundary conditions

~ x%"'m(l I x) + K:E%_m(l I x),
14 2m 1—-2m

the family for m = %

v
Hg 1

defined by Lg 1 with boundary conditions ~ 1 — Sz In(z) + v,
4

with g € C, v € CU {0}

and the family for m =0

Hpy, with g€ C, v e CU{oo},
defined by Lg with boundary conditions ~ 22 (v + In(z)).

The above holomorphic families include all possible well-posed realizations of Lg,,2 in
the region |Re(m)| < 1 with one exception: the special case (5, m, k) = (0, 1 0) which

-1,
corresponds to the Neumann Laplacian H_1 = H_1, = Hi , and which is already
27

1
covered by the families H,, and H,, . ’ ’

After having introduced these families and describing a few general results, we provide
the spectral analysis of these operators and give the formulas for their resolvents. We
also describe the eigenprojections onto the eigenfunctions of these operators. They can
be organized into a single family of bounded 1-dimensional projections Pg,,()), where
A satisfies L7 Pgm(A) = AP, (A). Here LETF denotes the maximal operator which is
introduced in Section 2.3.

There exists a vast literature devoted to Schrodinger operators with Coulomb po-
tentials, including various boundary conditions. Let us mention, for instance, an inter-
esting dispute in Journal of Physics A [22, 10, 23] about self-adjoint extensions of the
1-dimensional Schrédinger operator on the real line with a Coulomb potential (without
the centrifugal term). Papers [21, 11, 24] discuss generalized Nevanlinna functions nat-
urally appearing in the context of such operators, especially in the range of parameters
|Re(m)| > 1. See also [4, 9, 12, 13, 14, 15, 17, 18, 19, 25, 26, 27, 28, 29] and references
therein. However, essentially all these references are devoted to real parameters 3, m and
self-adjoint realizations of Whittaker operators. The philosophy of using holomorphic
families of closed operators, which we believe should be one of the standard approaches
to the study of special functions, seems to be confined to the series of paper [2, 6, 7],
which we discussed above.

The main reason why we are able to analyze the operator (1.1) so precisely is the fact
that it is closely related to an exactly solvable equation, the so-called Whittaker equation

N1 B 1
(—8§+(m2—4)Z2—Z+4)f(z):O

Its solutions are called Whittaker functions, which can be expressed in terms of Kummer’s
confluent functions. The theory of the Whittaker equation is the second subject of the



paper. It is extensively developed in a large appendix to this paper. It can be viewed
as an extension of the theory of Bessel and Whittaker equation presented in [6, 7).
We discuss in detail various special cases: the degenerate, the Laguerre and the doubly
degenerate cases. Besides the well-known Whittaker functions Zg ,, and Kg,,, described
for example in [7], we introduce a new kind of Whittaker functions, denoted Xg . It is
needed to fully describe the doubly degenerate case.

The Whittaker equation and its close cousin, the confluent equation, are discussed
in many standard monographs, including [1, 3, 30]. Nevertheless, it seems that our
treatment contains a number of facts about the Whittaker equation, which could not be
found in the literature. For example, we have never seen a satisfactory detailed treatment
of the doubly degenerate case. The function Xj,, seems to be our invention. Without
this function it would be difficult to analyze the doubly degenerate case. Figures 1
and 2, which illustrate the intricate structure of the degenerate, Laguerre and doubly
degenerate cases, apparently appear for the first time in the literature. Another result
that seems to be new is a set of explicit formulas for integrals involving products of
solutions of the Whittaker equation. These formulas are related to the eigenprojections
of the Whittaker operator.

2 The Whittaker operator

In this section we define the main objects of our paper: the Whittaker operators Hg ,, .,

HE 1 and Hf ; on the Hilbert space L?(]0, 00]).
i) ’

2.1 Notations

We shall use the notations Ry =|0,00[, N={0,1,2,...} and N* = {1,2,... }. Likewise,
we set C* =C\ {0} and R* =R\ {0}.
The Hilbert space L?(R) is endowed with the scalar product

(hl‘hg) = /Ooo h1<$) hg(x) dz.

We will also use the bilinear form defined by

o0

<h1‘h2> = / hl(x) hg(a}) dx.
0

The Hermitian conjugate of an operator A is denoted by A*. Its transpose is denoted

by A#. If A is bounded, then A* and A# are defined by the relations

(h1|Ah2) = (A™h1|h2),
(1| Ahg) = (A#hy|hs).

The definition of A* has the well-known generalization to the unbounded case. The
definition of A% in the unbounded case is analogous.

The following holomorphic functions are understood as their principal branches, that
is, their domain is C\| — 0o, 0] and on ]0, co[ they coincide with their usual definitions
from real analysis: In(z), /z, 2*. We set arg(z) := Im(In(z)). The extensions of these
functions to | — oo, 0] or to | — 0o, 0] are from the upper half-plane.



The Wronskian of two continuously differentiable functions f and g on R, is denoted
by # (f,g;-) and is defined for z € Ry by

Y (f,g:2) = f()g'(z) - f'(z)g(x). (2.1)

2.2 Zero-energy eigenfunctions of the Whittaker operator

In order to study the realizations of the Whittaker operator Lg, one first needs to
find out what are the possible boundary conditions at zero. The general theory of 1-
dimensional Schrodinger operators says that there are two possibilities:

(i) there is a 1-parameter family of boundary conditions at zero,
(ii) there is no need to fix a boundary condition at zero.
One can show that (i)<(i’) and (ii)<(ii’), where

(i’) for any A € C the space of solutions of (Lg , —A)f = 0 which are square integrable
around zero is 2-dimensional,

(ii’) for any A € C the space of solutions of (Lg o —A)f = 0 which are square integrable
around zero is at most 1-dimensional.

We refer to [5] and references therein for more details.
In the above criterion one can choose a convenient A. In our case the simplest
choice corresponds to A = 0. Therefore, we first discuss solutions of the zero eigenvalue

Whittaker equation
N1 g
— 2 2 —_— ) - — =
( 0y + (m 4) )f 0 (2.2)

for m and § in C. As analyzed in more details in Section B.5, solutions of (2.2) can
be constructed from solutions of the Bessel equation. More precisely, for 5 # 0, let us
define the following function for x € R :
) I'(1+2m)
JjBm () = T

where 7, is defined in Section B.4. For 5 = 0 we set

B Ty, (24/Ba),

Jom(z) == ™t
Then, the equation (2.2) is solved by the functions jg ., see [7, Sec. 2.8] and Section
B.5. For 2m & 7Z, jg.m and jg _,, span the space of solutions of (2.2). They are square
integrable around zero if and only if |[Re(m)| < 1.

We still need to consider the special cases m € { - %,O, %} In fact, we shall not

consider separately m = —% because Equation (2.2) with m = —% coincides with the
case m = % As companions to jg o and Jg, 1 for B # 0 we introduce
)2
_1 In(B) + 2
ygo(x) = - 1z!/t [\/77370(2 ) — (()\/;rwjo(Q 5»”3)],

s y(o) = Bt = v (2v/Bw) + OB =0 g0 ).



where « is Euler’s constant and ), is defined in Section B.4. For 5 = 0 we set
yo,0(x) := 22 In(z) and y,1(z):=1.
2

Then jg o, Yz, and jﬁ,%’yﬁ,% span the space of solutions of (2.2) for m = 0 and for m = %

respectively. Indeed, a short computation leads to
Y (js0:yposx) =1 and #(jg1,ys132) = —1.

Since the solutions jg0,¥3,0 and j 5,1:Yp 1 are also square integrable around zero, for any
m € C with |Re(m)| < 1 the space of solutions of Lg o f = 0 is 2-dimensional.

Let us describe the asymptotics of these solutions near zero. The following results
can be computed based on the expressions provided in the appendix of [6]. For any
m € C with —2m ¢ N* one has

B
14 2m

Jpm(z) = 23 tm (1 - T+ O(wz)). (2.3)

In the exceptional cases one has

together with

ygo(z) = 2 In(z)(1 - Bz) + O(x%),
yﬁ%(:v) =1-—Bzln(x) + O(l‘2| In(z)]).

2.3 Maximal and minimal operators

For any o and 8 € C we consider the differential expression

Lpo:i=—02+ (a - 1) L _P5

X

acting on distributions on R;. The corresponding maximal and minimal operators in
L?(Ry) are denoted by Ly and Lgtiorj, see [7, Sec. 3.2] for the details. The domain of
LEZ" is given by

D) = {f € I2(Ry) | Lgof € LA(R4)

while Lg“orj is the closure of the restriction of Lg, to C°(]0,00[), the set of smooth

functions with compact supports in R;.. The operators Lglc? and Lg% are closed and
we have . o
(Lgm)’ =Ly and  (2g)* = Iy
We say that f € D(Lg“;}) around 0, (or, by an abuse of notation, f(z) € D(Lglo?)
around 0) if there exists ¢ € C¢°([0,00[) with ¢ = 1 around 0 such that f¢ € D(L?‘O‘j)
The following result follows from the theory of one-dimensional Schrodinger operators.



Proposition 2.1. Let a, 5, m € C.

(i) If f € D(Lg“;x), then f and f' are continuous functions on Ry and converge to 0
at infinity.

(i) If f € D(Lgio?), then near 0 one has:

(a) f(z)= o(:ng| In(z)|) and f'(z) = o(wélln(:n)D if a =0,
(b) f(z)= o(x%) and f'(z) = 0(:):%) if a # 0.

(iii.a) If |[Re(m)| < 1 with m ¢ { —1,0,1}, then for any f € D(ng‘;;) there exists a
unique pair a,b € C such that

f—ajsgm—bjg—m € D( gnnr;z) around 0.
(i3i.b) If f € D(Lg‘?)x), then there exists a unique pair a,b € C such that

min

f—ajso—byso € D(Ly') around 0.

(iii.c) If f € D(Lglaf), then there exists a unique pair a,b € C such that
1
1 min
f= ajg i~ byﬁé € D(Lﬁ’i) around 0.

() If |Re(m)| < 1, then

{f € D(Lge) | #(f,9:0) =0 for all g € D( rﬁn?;g)}

1

= {f € D(Lghe) | f(z) = 0(:):2+‘Re(m)‘) near 0}.

D(Lyi:)

(v) If [Re(m)| > 1, then D(LE,) = D(LE2,).

B,m?

Proof. The statements (i)—(iii) and (v) are a reformulation of [7, Prop. 3.1] with the
current notations. Only (iv) requires elaboration. The first equality in (iv) follows from
[5, Thm. 3.4], given that # (f,g;00) = 0 for all f,g € D(L%?%,) by (7).

ﬁ7m2
The inclusion D(Lgﬁnrig) c{fe D(Lgie) | f(@) = o(x%HRe(m”) near 0} is a conse-

ax

2%, ). Assuming for instance

quence of (ii). To prove the converse inclusion, let f € D(Lg

that m ¢ { — %, 0, %} and applying (iii.a), one can write

fc: = ajﬁ,mC + bjﬁ,—mC + fmin’

for some ¢ € C2°([0, oof) such that ¢ =1 around 0, a,b € C and frin € D(Lg’li??bg)- From
(2.3) and (i7), we deduce that if f(z) = o(a:%HRe(m)') near 0 then, necessarily, a = b = 0.
Hence we have proved that {f € D(LEYs) | f(z) = o(x%HRe(m)') near 0} C D(Lg‘zz)
in the case where m ¢ { — %, 0, %} The same argument applies if m = i% or m =0,
using (#4i.b) or (iii.c) instead of (iii.a). O



2.4 Families of Whittaker operators

We can now provide the definition of three families of Whittaker operators. The first
family covers the generic case. The Whittaker operator Hg,, . is defined for any 8 € C,
for any m € C with [Re(m)| <1 and m & { —1,0,1}, and for any x € CU {oo}:

D(Hgmk) = {f € D(L352) | for some c € C,
/- c(jf;,m + Iijﬁy_m) € D(Lgiiz) around 0}, K # 00,
D(Hgm,o0) = {f € D(Lghy2) | for some c € C,
f—cjg—m € D(Lgl,inr;) around 0}.
The second family corresponds to m = 0:
D(Hf ) = {f € D(Lg5") | for some c € C,
f— C(y@o + l/j570) € D(Lgfion) around O}, veC,
D(HE,) = {f € D(Lgg5") | for some c € C,

f—cjpo € D( ré“’ion) around 0}.

Finally, in the special case m = % we have the third family:

D( g%) = {f € D(LEIEX) | for some ¢ € C,

f- c(yﬁé + I/jﬁ’%) € D(Lglél) around 0}, v eC,

D(H:%) = {f € D(LYF") | for some ¢ € C,
675 ﬁ71

f—cig1 € D(Lgﬁf) around O}.
’2 4

Remark 2.2. Observe that the above boundary conditions could be described with the
help of simpler functions. For example, in the above definitions we can replace

i th 23t (1 ) f -1 < L

Jgm(x) with x2 Trom”® if < Re(m) < 5
1

Jem(x) with gatm if — 5 < Re(m) < 1,

Yga(z) with 1—pBrin(x),

2

ygo(x) with 22 In(x).
The three families Hg ,, .., H E , and H 570 cover all possible well-posed extensions of
Lg 2 with [Re(m)| < 1. As already mentioned, we do not introduce a special family for
m = —%, since it is covered by the family corresponding to m = % For convenience, we

also extend the definition of the first family to the exceptional cases by setting for g € C

and any k € CU {0}
HBV_%W = E?%? Hﬁ,O,H = Hg?(], and Hﬁ»%ﬂf = Hgo

1-
’2

An invariance property follows directly from the definition:



Proposition 2.3. For any 8 € C, |[Re(m)| <1 and k € CU {0} the following relation

holds
Hgmx = Hg 1

with the convention that % = o0 and é =0.

It is also convenient to introduce another two-parameter family of operators, which
cover only special boundary conditions, which we call pure:

Hﬁam = Hﬁ’m’o - H/ﬁ’f’n’L’oo' (2'4)
With this notation, for any g € C, one has

Remark 2.4. The family Hg p, is essentially identical to the family denoted by the same
symbol introduced and studied in [7]. The only difference with that reference is that the
operator corresponding to (8,m) = (0, —%) was left undefined, since it corresponds to a
singularity. In the current paper we have decided to set Hy 1 := H 1.
’2 ’2

Here is a comparison of the above families with the families H,, ., Hj introduced in
[6] when 8 = 0. In the first column we put one of the newly introduced family, in the
second column we put the families from [6, 7].

Home = Hp i [Re(m)| <1, m ¢ { — %, %}, k € CU{o0},
&%:H_;V:H%% v e CU{oo},
Hg o= Hy v e CU{oo},

with the convention that % = oo and é = 0. For completeness, let us also mention
two special operators which are included in these families (for clarity, the indices are
emphasized). The Dirichlet Laplacian on Ry is given by

Hﬁ:07m:_% — H,B:llm:l — HOO — H

5 0, m:l k=0 — m=—s,Kk=00

[NIE
N

while the Neumann Laplacian is given by

H

0, = Hm*—%,n:() = Hm:%,n:oo'

SIS

Note that the former operator was also described in [6] by H,, 1 while the latter operator

—1
-2

was described by H _ 1.
We now gather some easy properties of the operators Hg , .

Proposition 2.5. For m € C with |[Re(m)| < 1 one has

(Homn) = Himu  (Homs)” = Ha k€ CU {oo},
( g%)*:HEé Z%)#:HE% v e CU{o0},
(Hg,o)* = Hg,o (HE,O)# = Hj,, v e CU{oo}.

10



Proof. Let us prove the first statement, the other ones can be obtained similarly. Re-
call from Proposition 2.1 (see also [2, Prop. A.2]) that for any f € D(LF7Y,) and
g € D(L%ﬁ%’;), the functions f, f’,g,¢’ are continuous on Ry. In addition, the Wron-
skian of f and g, as introduced in (2.1), possesses a limit at zero, and we have the
equality

(L2 fl9) = (fILGm29) = =7 (f, 9;0).

In particular, if f € D(Hg ) one infers that
(Hp,mwfl9) = (fILGm29) = # (. g;0).

Thus, g € D((Hgmx)*) if and only if #/(f,g;0) = 0, and then (Hgmx)*g = Lgli‘%gg.
By taking into account the explicit description of D(Hpg ), straightforward comf)uta—
tions show that #/(f,g;0) = 0 if and only if g € D(Hp 7, 7). One then deduces that
(Hgmux)" = Hp s - The property for the transpose of Hg,, , can be proved simi-

larly. O

By combining Propositions 2.3 and 2.5 one easily deduces the following characteri-
zation of self-adjoint operators contained in our families:

Corollary 2.6. The operator Hg,, . is self-adjoint if and only if one of the following
sets of conditions is satisfied:

(i) BeR, me]—1,1] and k € RU {0},
(i) B € R, me€iR* and |k| = 1.
The operators HE 1 and Hp  are self-adjoint if and only if 5 € R and v € RU {occ}.
1) ’

Let us finally mention some equalities about the action of the dilation group. For
that purpose, we recall that the unitary group {U, },cr of dilations acts on f € L?(R;)
as (U-f)(z) = e™/2f(e"z). The proof of the following lemma consists in an easy compu-
tation.

Proposition 2.7. For m € C with |[Re(m)| < 1 one has

UTHB,m,HU_T fnd 6727-_lye.,-ﬁ,,rn’ef%'mIl,i K E C U {OO},

UHY U_r = o 2T {797 v e CU{o},
B3 €785

UTHEyonT = e_QTHé/TETO vV E (C U {oo},

with the conventions coo = oo for any o € C\ {0} and co + 7 = oo.

3 Spectral theory

In this section we investigate the spectral properties of the Whittaker operators.

11



3.1 Point spectrum

The point spectrum is obtained by looking at general solutions of the equation

Ly f =—kf

for k € C with Re(k) > 0, and by considering only the solutions which are in the domain
of the operators Hg , i, Hg%, or Hf .

In the following statement, the convention % = 0o and é = 0 is still used, I' stands
for the usual gamma function, 1 is the digamma function defined by ¢ (z) = I'(2)/T'(z)
and v = —1(1). Since the special case § = 0 has already been considered in [6], we
assume that § # 0 in the following statement, and recall in Theorem 3.4 the results
obtained for f = 0. It is also useful to note that the condition 5 ¢ [0, 00| guarantees

that either +Im(y/B) > 0 or —Im(y/B) > 0, due to our definition of the square root.

Theorem 3.1. 1. Let B € C*, [Re(m)| < 1 with m & { — 3,0,3}, and let k €
CU{oo}. Then the operator Hg,y, . possesses an eigenvalue A € C in the following
cases:

(i) A= —k* Re(k) >0, & +m— 1 ¢N and

—2m F(Qm) F(
T(—2m) 1 (

Kk = (2k)

[N

%)
5 (3.1)
2k
(i) A= p?, 0 < pu < £Im(B) and
r(2m) T(3 —mTFis;)
1

L(=2m)T (L +m ¥ 1%) ’

K — e:l:iwm(Q )72m

(iti)) A =0, f &[0,00[, and
B I'(2m)

- I(=2m) (=)’

2. Let 8 € C* andv € CU{oco}. Then HE 1, possesses an eigenvalue X in the following
’2
cases:

(i) A= —k? Re(k) >0, & ¢ N and

y-—ﬂ(@b(—5{)4—27—1—24—111(2/{)),

(ii) A= p%, 0 < p < £Im(B3), and

v=-—p <z/1<:F12i)+27—1:F172riig+ln(2u)>,

(iii) A =0, £Im(y/B) > 0, and

v=—3(In(B) + 2y —1Fim).

12



3. Let f € C* andv € CU{o0}. Then HEO possesses an etgenvalue A in the following
cases:

(i) A= —k2, Re(k) >0, & & — 5 ¢ N and

= @D(* - ﬁ) + 2y + In(2k),

(ii) A = p?, 0 < u < +Im(B), and

y—w( :F1£> $1—+2’y+ln(2u)

(11i) X =0, +Im(/B) > 0, and

v =1In(f) + 2y +2In(2) Fin.

Proof. We start with the special case A = —k? = 0. The two solutions of the equation
Lg 2 f = 0 are provided by the functions

T h;m(aj) = x1/4”}-[§tm (2 ﬁx), (3.2)

with H; the Hankel function for dimension 1, see [6, App. A.5]. We then infer from [6,
App. A.5] that for any z with —7 < arg(z) < 7, one has as z — 0

ii%z%(ln(2)+7$ig)+O(|z\2ln(]z\)) if m =0,
_1 3
Hi(z)={ FL(3) T ik (m(3) +r—1Fi3)(5)7 + (\zmn(\z\)) it m=1,
1 —m irm elm .
Fisly (3)? (e (3) 7 — Sy (9)™) + Ozl it m gz,

For |Re(m)| < 1, this implies that the two functions hﬂ belong to L?(R;) near 0. On
the other hand, for large z and |arg(Fiz)| < m — e, € > 0, one has

M (2) = HE2™ =37 (14 0(|2]7Y)).
Since |arg(2y/Bx)| < 7/2, it follows that for +Im(y/3) > 0 one has
h?;m(a:) _ xl/4eii(2 ﬁl—ﬂm—%ﬂ)(l + O(]ac]_%)),

and h . belongs to L? near infinity. Note that for £Im(y/B) > 0 one and only one of the
two solutlons of (3.2) is square integrable at infinity. It only remains to check in which
domain of the operators Hg ,, x, HB,%’ or Hﬁ,o does h Bm belong to. This can easily be
deduced from the expansion provided above, and yields to the statements 1.(ii4), 2.(ii)
and 3. ().

Let us now prove the statements 1.(i7), 2.(ii) and 3.(ii). We consider the equation
Lgpm2f = p2f for some p > 0. Two linearly independent solutions are provided by
the functions = ~— H% (2/m) introduced in [7, Sec. 2.7], see also (A.29). From the

2u
asymptotic expansion near infinity given by

H, m(2,u:c) = e¢i%(%+m)e%(2ua:)ii% (1 4+ 0(x7)), (3.3)

2p?

13



one infers that at most one of these functions is in L? near infinity, depending on the
sign of Im(3). More precisely, for Im(5) > 0, the map = — HE (2ux) belongs to L2

2n 1T
near infinity if 4 < Im(3) and does not belong to L? near infinity otherwise. Under
the same condition Im(8) > 0, the map = — H7, m(2uaz) never belongs to L? near
ﬁv

infinity. Conversely, for Im(5) < 0, the map =z — H7, m(2,u:):) belongs to L? near
ﬂ7

infinity if 4 < —Im(B) and does not belong to L? near infinity otherwise. Under the

same condition Im(3) < 0, the map z — M7, m(2,u:1:) never belongs to L? near infinity.
200

Finally, for Im(3) = 0, none of these functions belongs to L? near infinity.

For the asymptotic expansion near 0, the information on ’chm provided in [7, Eq. (2.31)]
is not sufficient. However, the appendix of the current paper contains all the necessary
information on these special functions. By taking into account the Taylor expansion of
Zsm near 0 provided in (A.3) and the equality I'(«)I'(1 — @) = =—7— one infers that for

sin(mra)
[Re(m)| <1and m ¢ { — 3,0,3} one has

T, i 1 0(z2 3.4
() = T gy (L~ T3 3 +O) (34
and
- I'(—2m) 1 )
+ — Fimm +m _
Hyn(2) =Fie —F(%—mq:ié)zz ( 1+2mz)

I'(2m) 1.
1F(%+m$i§)22 <_1—2mz)+0(/z

(NI

).

For 2m € 7Z one has to consider the expression for K51 and s provided in (A.18)
2

and (A.19) respectively. Then, by considering the Taylor expansion near 0 of these
functions one gets
1 1 1

K332) = Fr =5 + progy? ) + e ((-0) 42— 1 - %)z +o(z%), (35)

and

Kso(z) = _F(%l—é) [2% In(z) + (1&(% - 5) + 27)2'% — 522 ln(z)} + O(z%). (3.6)

From Equation (A.29) one finally deduces the relations

N
P51 =Fira 55y ~ Tre) )
. . .1 3
~ Ty (V0 + 21— 15 i5 2igs) s +o(s)

Njw
~—

Hg‘fo(z) = ii* [25 In(z) + (1!)(% F 15) ¥ ig + 2’y>z% — 522 111(2)} +0(z

14



To show 1.(ii) we consider the function z — H% (2ux) if Im(8) > 0 and z —

21 1

H, m(2,ux) if Im(8) < 0, and check for which s these functions belong to D(Hg ).
ﬂ?
For |[Re(m)| <1and m ¢ { — 3,0, 3} one has

e I'(—2m)
HE  (2ux) = FieT™™
%’m( ) F(%—mi[:iﬁ)
(

2%
'(2m) 1 3

2 2 m(l— )+ 2
r(%+mq:i%)(w) =2 ®) o)

)

(2/¢x)%+m<1 __F :c)

Fi

Njw

=TFic(jam+ Kjs—m(x)) + oz

1

_ i B

K= 1 F(2m) 9 )5 m _ eiiwm(Q )72m F(2m) F(§ m:FlQN)
cT(d By '(—2m) (1 By
(2+m:':12,u) (2+m:!:12,u)

Note that the conditions +Im(8) > 0, |[Re(m)| < 1, and p < +Im(53) imply that :l:i% +
m — % ¢ N.

The proof of 2.(i7) and 3.(ii) can be obtained similarly once the following expressions
are taken into account:

21 1
HE  (2ue) = (1- Bal
%,5( px) 5 F(:Fif#)( Bz In(z))
21 . B T ,
_ F(]Fi;l)[w<$l2“) +2y-1 3F1§ i? +1n(2u)}x+o(a:2)
and
(20)2 1
H:} ,0(2:“37) ==+ 1@ (x2 In(x)
1 ) \ i
+ [¢(§ :Fiflu) :Fig + 27+1n(2u))a:§ — Bz ln(x)] n O($5),

We shall now turn to the generic case (statements 1.(7), 2.(z) and 3.(7)), namely the
equation Lg 2 f = —k2f for some k € C with Re(k) > 0. In the non-degenerate case,
solutions of this equation are provided by the functions

x ,C%WL(Q/C.T) and T I%7im(2kx). (3.7)
We refer again to the appendix for an introduction to these functions. The behaviour
for large z of the function /Cs,,(2) has been provided in (A.7), from which one infers
that the first function in (3.7) is always in L? near infinity. On the other hand, since for
|arg(z)| < 5 one has

1

mz*‘seﬁ (1+0(z"h)

Ié,:l:m(z) =

15



it follows that the remaining two functions in (3.7) do not belong to L? near infinity
as long as % Fm — % ¢ N. Still in the non-degenerate case and when the condition
% +m — 3 € N holds, it follows from relation (A.8) that the functions K s o (2K)
2k’
and Z _ (2k-) are linearly dependent, but still Zs (2k-) does not belong to L? near
2k’ 2%k
infinity. Similarly, when % —m — % € N it is the function Zs _ (2k-) which does not
2k’

belong to L? near infinity.

Let us now turn to the degenerate case, when m € { — %,O, %} In this situation
the two functions Zs,, and Zs _,, are no longer independent, as a consequence of (A.4).
In the non-doubly degenerate case (see the appendix for more details), which means for
(z—i,m) ¢ (Z,j:%) or for (Q%,m) ¢ (Z + %,0), the above arguments can be mimicked,
and one gets that only the function K 5 _(2k-) belongs to L? near infinity. In the doubly

2k
degenerate case, the function Xj,,, introduced in (A.9), has to be used. This function is
independent of the function KCs,,, as shown in (A.24). However, this function explodes
exponentially near infinity, which means that X's (2k-) does not belong to L? near
infinity. Once again, only the function K s (2k-) plays a role.
2k’
As a consequence of these observations, it will be sufficient to concentrate on the
function K s (2k-) and to check for which x or v does this function belong to the
2k’
domain of the operators Hg,y, ., Hg 1,
2
. . 11
function near 0 one infers from (A.6) and (3.4) that for m & { — 3,0, 3}

T ( Ts , (2kx) I%ﬁm(Qk:x)
)

or Hf , respectively. For the behavior of this

2k’ _

MG-m-5) G+m—%

Kes  (2kz)=—
2k’

sin(27m)

_(opysm_L(E2m) %+m(1— p a:)

T
r(A-m-£) 14 2m
1_ '(2m) 1 I} 3
+(2k)z ™ m(]— 2) +o(z?).
Similarly, it follows from (A.18) that
1 2k
/C%é@kx) =— Bm(l — Bz In(z))
2k 8 k 3
‘f’F(_Qi)[?/J(—Qk>+2’Y—1—ﬁ+ln(2k)}x+o(:r2), (3.8)

while for m = 0 one infers from (A.19) that

Ko o(2kz) = _r(%)éﬁ [x In(z)+ (w(%—%) +2’y+ln(2k)>x% —Bat m(x)} +0(a3).

(3.9)
The statements 1.(7), 2.(7), and 3.(7) follow then straightforwardly. O

Remark 3.2. A special feature of positive eigenvalues described in Theorem 3.1 is that
the corresponding eigenfunctions have an inverse polynomial decay at infinity, and not
an exponential decay at infinity, as it is often expected. This property can be directly
inferred from the asymptotic expansion provided in (3.3).
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Remark 3.3. Self-adjoint operators that are included in the families Hg 1, HE . and
’2

Hp, do not have eigenvalues in 10,00[. Indeed, in Theorem 3.1 a necessary condition
for the existence of strictly positive eigenvalues is that Im(B) # 0. This automatically
prevents these operators to be self-adjoint, as a consequence of Corollary 2.6.

For completeness let us recall the results already obtained in [6, Sec. 5] for 5 = 0.

Theorem 3.4. (i) If[Re(m)| <1, m & {—13,0,3} and k € CU{occ}, the eigenvalues
of the operator Hy m . are of the form —k* with Re(k) > 0, where

. (k)ﬂm '(m)

2 L'(—m)’

(ii) If v € CU {0}, the eigenvalues of the operator Hy, are of the form —k? with
2
Re(k) > 0, where v = —k,

(i1i) If v € CU {oo}, the eigenvalues of the operator Hg are of the form —k? with
Re(k) > 0, where

V:’y—i-ln(g).

Remark 3.5. Note that Theorem 3.4 can be derived from Theorem 3.1. Indeed, for
m ¢ { — %,0, %} we infer from the Legendre duplication formula

r(@r(% ) =22 VAT (),

that
(k-2 LCm) LG mfw‘ _ by L
I(=2m)T(L +m— &)ls=0 2 T(—m)
For m = %, we first note that I'(3) = /7 and I'( — 3) = —2y/7. Then we use the

1+2)=(2)+ L and ¥(1) = —v, and infer that

z

lim —,3(¢< /8>+27—1—E—Hn(2k)) - (k)r(_}) — k.

relations

—~

Finally for m =0, from the equality 1/)(%) = —21In(2) — v one gets
1 B k
¢(§ - %) + 27+ ln(2k)‘5:0 =v+In (§>

As a consequence of the expressions provided in Theorem 3.1, the discreteness of the
spectra of all operators can be inferred in C \ [0, cof.

3.2 Green’s functions

Let us now turn our attention to the continuous spectrum. We shall first look for an
expression for Green’s function. We will use the well-known theory of 1-dimensional
Schrodinger operators, as presented for example in the appendix of [2] or in [5]. We
begin by recalling a result on which we shall rely.
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Let AC(R4) denote the set of absolutely continuous functions from Ry to C, that
is functions whose distributional derivative belongs to L{ (R.). Let also AC'(R.) be
the set of functions from Ry to C whose distributional derivatives belong to AC(R). If
Ve Llloc(R+), it is not difficult to check that the operator —92 4+ V can be interpreted as
a linear map from AC'(Ry) to L{ (R;). The maximal operator associated to —92 + V

loc
is then defined as

D(L™%) = {f € LX(Ry) NACY(Ry) | (- 2+ V)f e L2(R+)}
L f = (—92+V)f, feDL™).
The minimal operator L™ is the closure of L™* restricted to compactly supported
functions. Note that L™ = (Lmin)#,
As before, we say that a function f : R, — C belongs to L? around 0 (respectively
around oo) if there exists ¢ € C2°([0, 00[) with ¢ = 1 around 0 such that f¢ € L*(Ry)

(respectively f(1 — () € L2(R4)).
The following statement contains several results proved in [5].

Proposition 3.6. Let V € Ll (Ry). Let k € C and suppose that u(k,-),v(k,-) €
ACH(R,) solve

(= 2+ V)ulk, ) = —ku(k, ),
(= 2+ V)v(k,-) = —k*v(k, ).
Assume that u(k,-), v(k,-) are linearly independent and that u(k,-) € L? around 0,

v(k,-) € L* around co. Let # (k) := # (u(k,-),v(k,-);z) be the Wronskian of these two
solutions. Set

: __1 u(k,z)v(k,y) for0 <z <y,
R(-k*z,y) := W (k) { u(k,y)v(k,z) for0<y<uz,

and assume that R(—k?;x,y) is the integral kernel of a bounded operator R(—k?). Then
there exists a unique closed realization H of —0% +V with the boundary condition at 0
given by u(k,-) and at oo given by v(k,-) in the sense that

i) around 0},

D(H) = {f € D(L™), u(k,-) € D(
€ D(L™") around oo},

f—=ul
= {f e D(L™), f —v(k,-) € D(
Hf=(-92+V)f, feD(H).

L
L

Moreover —k? belongs to the resolvent set of H and R(—k?) = (H + k?)71,

By using such a statement, it has been proved in [7] that, for k£ € C such that Re(k) >
0and & — 1 —m ¢ N, we have that —k? ¢ o(Hp,,) and Rg,,(—k?) = (k* + Hp )"
has the integral kernel

Rgm(—k* 2,9)

Zs  (2kx)Kps  (2ky) for 0 <z <y,
—_1r(1 _ B 20" 2K
= g5l (2 +m Qk)
8 Ks .(2kz) for0<y<uw.
2k’



Let us now describe the integral kernel of the resolvent of all operators under inves-

tigation. We recall that our parameters are § € C, k € CU {o0}, v € CU {00}, and

m € C satisfying —1 < Re(m) < 1. Note also that the convention % = oo and é =0is

still used.
Theorem 3.7. Let k € C with Re(k) > 0. We have the following properties.
(i) Form ¢ {—13,0,1} and r # oo set

(2/~€)’m (2K)™
F(A+m—-2)r@-2m) T -m—L2)0(1+2m)

w,mk(k) = (3.10)

If wgm (k) # 0, then —k* & 0(Hpm ) and the integral kernel of Rg pm (—k?) =
(Hpmx + k)71 is given by

Rﬁ,m,n(_k2;$ay) = Rﬁ,m(_k2;$’y)

1 < (2k)~™
I(

wWg,m,x (k) 1— 2m)I‘(% +m— 2%)

) 2k iy
Faremr(—m— g o ’y)>

(Qk)mr( +m — 2%)
2 2kz). 11
kaﬁ,m,n(k)F(1+2m) 5 (kYK s | (2kr).  (3.11)

= R,B,m(_kz; z, y) +

Ifi =00 and 5 + m — 3 & N, then —k> & 0(Hgmoo) and Rgmoo(—k?) =
Rom(—2)

(ii) Form = 3, v # oo, and % Z N* set

w;%(k) = Bq/)(l— %) +28y+ BIn(2k) + k — B+ .

If w” ( ) # 0, then —k* € o (HE ) and the integral kernel of RY ,(—k?) =
2 ’2
(HV 1 + k%)=L is given by

B3
r(1—2)°
RY 1 (=K% 2,y) = Ry 1 (—k% 2, y) + K5 1 (2k2)K 5 1(2ky).  (3.12)
,3,2 ’8’2 w; l(k) 2k72 2k’2
’2
If v =00 and 5 ¢ N*, then —k* ¢ o(H%,) and R?;(—kQ) = R;1(—k%)
D) ’
(iii) For m =0, v # oo, and——ng set
v 1B
W o (k) = 1/;(5 - %) 42y + In(2k) — v,

If wj o(k) # 0, then —k2 ¢ o(Hp ) and the integral kernel of RE,O(_kQ) = (Hj o+
k%)=L is given by

Rgvo(—kQ; x,y) = ngﬁo(—k:Q; x,y) + O(Qkx)lC%p@kry). (3.13)
If v =00 and % — 2 &N, then —k* ¢ o(HZ%) and Rg?o(—kQ) = Rgo(—k?).
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For the proof of this theorem, we shall mainly rely on a similar statement which was
proved in [7, Sec. 3.4]. The context was less general, but some of the estimates turn out
to be still useful.

Proof of Theorem 3.7. The proof consists in checking that all conditions of Proposition
3.6 are satisfied.

For (i) we need to show that the integral kernel Rg , »(—k% z,y) defines a bounded
operator on L?(R,). This follows from (3.11), because all numerical factors are harm-
less and because by [7, Thm. 3.5] Rg . (—k?;2,y) and Rg . (—k?; x,y) are the kernels
defining bounded operators.

Moreover, we can write

1
Rgmu(—k* 2, y) = m
(12T s (2h2) + Kfiags o (2ka))K s (2ky)  for 0 <z <y, o1
X )
(1“((21k)2m)1ﬂ o (2ky) + K'F((ilf_)gm)zﬁ _ (Qky))lC%’m(Qk‘x) for 0 <y < x.

Since K s (2k-) belongs to L?(R), this solution is L? around oo. For the other solution,
one verifies by (3.4) that

(2k)™™
r(l-— 2m)I%

T QSf)zl —2m) [;c%+m<1 N 1—1—62mx> + ""x%_m@ 1 _52m$)]
4 O3~ Retml)

Therefore, this function belongs to L? around 0 and satisfies the same boundary condition
at 0 as jgm, + Kjg,—m. By Proposition 3.6, this proves (i) when s # co. Note that in
the special case k = 0o, it is enough to observe that Hg ,, oo = Hpg _m 0 and to apply the
previous result.

To prove (ii), consider first v # oo and 2% ¢ N*. It has been proved in [7, Thm. 3.5]
that the first kernel of (3.12) defines a bounded operator. The second kernel corresponds
to a constant multiplied by a rank one operator defined by the function I El m(2k) S

(2k)™

(2kx) + /ﬁlir(l o)

Iﬁ _m<2k}:(})
2k’

3

L?*(R4) and therefore this operator is also bounded. Next we write

r(i-24)°
v 2 2k
By) — 2R 1
Rﬁ’%( k 7xay) w”l(k‘) (3 5)
2
Wy (k)
( Y Ta 0 (2ke)+K s l(2ka:))lCﬁ L (2ky)  for0 <z <y,
» 2kF(17ﬁ) 2%°2 2k12 2k'2

w? (k)
<LBI[3 (2ky) + ]Cﬁ (Qky))lC% (2kx) for 0 <y < .

1
2

w\u

:).

Is 1(2kz)+Kp 1(2ka) = T(l — BzIn(z) + vz) + o(z
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which belongs to L? around 0 and corresponds to the boundary condition defining H g
’2

The proof of (iii) is analogous. We use first (3.13) for the boundedness. Then we
rewrite Green’s function as

r(l_ 8)2
Rig() =
5,0
(ke ®) T, (2kz)+Ks (2K2))K ; o(2ky) for0<z <y,
I(3—25) 2% 2570 0 (3.16)
Bo(k) ‘
(F(%f%) 5 o(2ky) +K s (2ky)>l€2€€70(2kaz) for 0 < y < .
We check that
v 1
wg (k) (2k)2 1 1 1
———=Ls (2kz) + K s (2kz) = —7(372 In(z) + Va:2) + 0( 2)
r(3-4) #0 T R T
by (3.4) and (3.9). O

Strictly speaking, the formulas of Thm 3.7 are not valid in doubly degenerate points,
where the functions Kg,, and Zg,, are proportional to one another. To obtain well
defined formulas one needs to use the function X ,,, as described in the following propo-
sition:

Proposition 3.8. Let k € C with Re(k) > 0. We have the following properties.

(ii’) Form = 3, v # 00 and% e N¥, set

(k) = (_Dﬁﬂ[ﬁ(ln(%)+w<l+ ﬁ)+2'y—1) —k:+u].
B3 2k (5 +1) 2k
Then —k? & o( ZQ) and the integral kernel of Rﬁ’z( k%) is given by
i
(Dt
RY (=K% z,y) =
537K ) 2T (1 + 2)
(~T(1+ %)% 1 (2k2) + ¢ (KK 5 1 (2K2))K g 1(2ky)  Jor0 <z <y,
2k’ 2 kD) 2k’2 2k’2
(~T(1+ %)% s 1 (2hy) + ¢4 (K 5 1 (2ky) )K s 1 (2k)  for 0 <y <a.
2k’2 12 2k72 2k’2
(iii’) For m =0, v # oo, and 41 — 5 € N, set
y SRS H-1 1 B In(2k) — v
Golh) 1= (DFE [ (54 gp) 20+ T 55|

Then —k* & O'(ng) and the integral kernel of Rg,o(—kQ) is given by
(—1)2F3F

2kT (3 + 1)

( - F(l + )XB 0(2/{::6) + CE’U(k)/Cz%’O(QkxDK%ﬁo@ky) for0 <z <y,

R o(—k*5a,y) =

[\

X
( - r(% + ﬁ)2(%70(%3/) n Cg,g(k)lC%Q(Zky))K%’O(Qkx) for0 <y < .
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Proof. (i) is proved similarly as (ii) of Theorem 3.7, by using for m = %, v # oo and
S € N* that

2V 4 (2ha) + 5 (MK

This follows from (A.24), (A.20), and (3.5).
(#41") is proved similarly as (iii) of Theorem 3.7. In particular, using (A.24), (A.21),
and (3.6) one verifies that

—F(l—i— (2kx) =1—- prlnz +vx + o(x).

1
2

K\J\»—'

)-

—I’(1 + 26]€>X5 o(2k) + (5 o(k )K%’O(Wm) = (2k‘)%(m% In(x) + I/CL‘%) +o(x

3.3 Holomorphic families of closed operators

In this section we show that the families of operators introduced before are holomorphic
for suitable values of the parameters. A general definition of a holomorphic family of
closed operators can be found in [20], see also [8]. Actually, we will not need its most
general definition. For us it is enough to recall this concept in the special case where the
operators possess a nonempty resolvent set.

Let H be a complex Banach space. Let {H(z)},co be a family of closed operators
on H with nonempty resolvent set, where © is an open subset of C?. {H(z)},co is
called holomorphic on © if for any zp € O, there exist A € C and a neighborhood
©p C O of zg such that, for all z € Oy, A\ belongs to the resolvent set of H(z) and the
map Oy > z — (H(z) — A\)~! € B(H) is holomorphic on ©g. Note that if Oy > z +
(H(z) — A\)~! € B(H) is locally bounded on ©g and if there exists a dense subset D C H
such that, for all f,g € D, the map ©¢ > z — (f|(H(z) — \)~!g) is holomorphic on
Oy, then ©¢ > z +— (H(z) — A\)~! € B(H) is holomorphic on ©g. Besides, by Hartog’s
theorem, z — (f|(H(z) — A\)~1g) is holomorphic if and only if it is separately analytic in
each variable.

This definition naturally generalizes to families of operators defined on (C U {occ})?
instead of C?, recalling that a map ¢ : C U {oo} — C is called holomorphic in a neigh-
borhood of oo if the map ¢ : C — C defined by ¢ (z) = ¢(1/z) if z # 0 and 1(0) = ¢(o0)
is holomorphic in a neighborhood of 0.

Recall that the family Hpg ., has been defined on C x {m € C | Re(m) > —1} in [7],
see also (2.4). However, it is not holomorphic on the whole domain. The following has
been proved in [7].

Theorem 3.9. The family of closed operators (5, m) — Hpg p, is holomorphic on

C x {m € C|Re(m) > —1}\{(0,—3)}.
However, it cannot be extended by continuity to include the point (0, —%)

Let us sketch what happens at (O %) Recall that in [2, 6] a holomorphic family
{m € C|Re(m) > —1} > m — H,, has been introduced, and satisfies Hy,, = Hpn, for
m # —%. Note also that for any 8 we have Hg 1 =Hg.. It then turns out that

b 2 72

hmH 1—H1 #+ H_

-1 = lim Hyp,

1
2 me-l
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where these limits have to be understood as weak resolvent limits. Note that in the
sequel and in particular in (3.18), (3.19), and (3.20), the limits should be understood in
such a sense.

Let us consider now the families of operators involving mixed boundary conditions.
To this end, it will be convenient to introduce the notation

M:={meC|—-1<Re(m)<1}.

Recall that (8, m, k) — {Hgm«} has been defined on C x II x (C U {oo}). However, it
is not holomorphic on this whole set:

Theorem 3.10. (i) The family of closed operators {Hg , } ts holomorphic on C x
IT x (CU {oc}) except for

(0,—2)x(CU{oc}) U (0,2)x(CU{oec}) U C x (0,-1). (3.17)
(it) The family of closed operators {Hf ,} is holomorphic on C x (CU {o0}).
(iii) The family of closed operators {HY ,} is holomorphic on C x (CU {oo}).
’2

Proof. (i) Let (8o, mo, ko) belong to the domain C x II x (CU {oo}). First assume that
mo ¢ {—3,0,3} and that o € C. Let k € C with Re(k) > 0 such that wg, s, (k) # 0,
where wg (k) is defined in (3.10). By continuity of the map (8, m, k) — wgm«(k),
there exists a neighborhood Uy of (8o, mo, ko) such that for all (3, m, k) in this neighbor-
hood, we have wg m . (k) # 0. Hence, by Theorem 3.7, we infer that —k? ¢ o(Hg ), and
the resolvent (Hg . +k?) " € B(L?(R4)) is the operator whose kernel is given by (3.14).
It then easily follows from the analyticity properties of the maps (8, m, k) — Z 2 4 (2k)
and (B, m, k) — K%’m@ksv) (for fixed > 0 and k) that, for all f,g € L?(R ), the map
(B,m, k) = (f, (Hgmx + k*)"1g) is holomorphic on Uy. Hence {Hpg .} is holomorphic
on Z/fo.

If mg ¢ { — %, 0, %} and kg = oo, the statement directly follows from the equality
Hﬁ,m,oo = Hﬁ,fm,O-

Suppose now that my = 0 and that k9 € C\ {—1}. We extend by continuity the
definition of wg . (k) in (3.10) for m = 0 by setting

14+ kK
W670’H(k) = ﬂ

We also choose k € C with Re(k) > 0 such that ’g—,‘; — % ¢ N. This latter requirement
implies that wg, mg.k, (k) # 0, and by continuity of the map (5, m, k) — wg m «(k), there
exists a neighborhood Uy of (5,0, ko) such that for all (5, m, ) in this neighborhood,
wgm.x(k) # 0. In particular, by Theorem 3.7, one verifies that, for all f,g € L*(Ry), the
map (B8, m, k) = (f|(Hgmnr + k?)"1g) is well-defined and holomorphic on Uy provided

that (3.14) is extended to Uy N {(5,0,x) | B € C,k € C} by

. %) Is O(Qkx)K%’O(Qk‘y) for0 <z <y,

2k’

I(

D=

Ry on(—k2,y) = =3,
Tp ((2ky)K s ((2kz) for 0 <y <.

2k 2k
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Note that this corresponds to the integral kernel of (Hg oo+ k?)" = (H5% +k%)~L. This
shows that {Hpg, .} is holomorphic on Uy (provided that Uy is chosen small enough so

that (8,0,—1) & Up).

If mg = 0 and kg = oo, the argument is similar once it is observed that
(Hs 0,00 + k)71 = (H5o + K™ = (Hpoo + £~

It remains to consider the cases mg = :l:% and By # 0. Assume for instance that
mgy = —%, Bo # O and ko € C. We extend by continuity the definition of wg, (k) in
(3.10) for m = —3 by setting

(2k)3
(- %)
We also choose k € C with Re(k) > 0 such that g—g ¢ N. Then we have wg 1, (k ) #0,

and by continuity of (8, m, k) — wg m (k) there exists a neighborhood U of (Bo, , K0)
such that wg (k) # 0 for all (3, m, k) in Uy. By Theorem 3.7, one then verlﬁes that
for all f,g € L?*(Ry), the map (8,m,k) — (f|(Hgmn + k*)"1g) is well-defined and
holomorphic on Uy provided that (3.14) is extended to Uy N {(ﬂ, —%, /i) | BeC,k e (C}

wﬁ,fé,n(k) =

(2k)% oy (2ky) for 0 <z <y,

1 2% %(Qkx)lC% —3
Ry 1 (—kay)=—
B,—5,Kk )y
: 2]%},3,—%7&(@ (2k)%I£ _l(2ky)lC£ 1(2kz)  for 0 <y <uw,
2k’ 2 2k 2
_ 8y | Zp 1 Ra)K s 1 (2ky)  for 0 <w <y,
_ F(l Qk) 272 272
2k Ts 1(2ky)K s 1 (2kz) for 0 <y < a.
2k72 2k°2

-1 -1

Note that this corresponds to the integral kernel of (H 510t k2) = (Hgol + k2)
) 2 ’ 75
This shows that {Hg, .} is holomorphic on Uy. The argument easily adapts to the case
mozéandﬂo#O.
As before, if mg = :l:%, Bo # 0, and kg = oo, the statement follows from the equalities

-1 -1 -1

2 2 2

(Hyoy o+ = (3 + 1) = (Hy 4 1)
The second part of the statement () follows directly from [7, Thm. 3.5]. To prove (i7)
and (i77), the argument is analogous and simpler: it suffices to use the formulas (3.15)

to prove (i¢) and (3.16) to prove (ii). O

The following statement shows that the domains of holomorphy obtained in Theorem
3.10 are maximal for m € II. In particular, we will prove that (3.17) are sets of non-
removable singularities of the family (5, m, k) — {Hpg m x}-

Proposition 3.11. (i) For any fized k € C*, the family of closed operators (S, m)
Hg e defined on C x I1\ {(0,—3),(0,3)} cannot be extended by continuity at
(0, —%) and (0, %) If k = 0, the family (B, m) — Hpg o defined on CxII\{(0, —%)}
cannot be extended by continuity at (0, —%), and for k = oo the family (8, m) —
Hg 0o defined on C x I\ {(0, %)} cannot be extended by continuity at (0, %)
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(it) For any fized B € C, the family (m, k) = Hpg .. defined on IIx (CU{co})\{(0, —1)}
cannot be extended by continuity at (0,—1).

Proof. (i) Let us first consider § = 0. Recall that in [6] the family of closed operators
IIx (CU{o0}) 5 (m, k) — Hp, , has been introduced, and that this family is holomorphic
on II x (CU {o0}) \ {0} x (CU {oo}). Here is its relationship to the families from the
present article:

H,, , = H(’)il if m= %
) IR)
Hg% ifm= 7%
Let us now focus on m = —% and on m = 1. We have for any x € CU {oc}
o oo
H5977 K HB7%7’€ - HBaQ - HB,Q
Therefore, for k # 0,
lim H = 75 H 1= hrn Hom - (3.18)
B0 B m—3
Similarly, for k # oo,
/lﬁli&)H 7*%,/‘”» #H”l _m11>11_1§f‘.’0m,i (319)

This proves (i) when k ¢ {0,00}. The proof in these special cases is similar.
(7i) Let us first consider a fixed parameter 5 € C and m = 0. By definition we have

Ij[ﬁ707"6 = Hﬁvo = HE?O’

independently of k € CU {oco}. We now con51der a fixed parameter § € C and kK = —1.
Choosing k € C with Re(k) > 0 such that o — 2 N, it follows from (3.14) that for any
m # (0 in a complex neighborhood of 0, the mtegral kernel of the resolvent of Hpg ,, _1 is
given by

1
QkCUgmfl(k))
<r((21k)2m)15 o (2kz) — F((f_l% Iﬂ B (2kx))lC£ . (2ky)  for 0 < <y,

) 2k

(o T k) = sy T RY))K 5 (2Kk2)  for 0 <y <,

2k’ 2k’ 2k

Rﬁ,m,—l( k xy)

where wg , —1(k) is defined in (3.10). One then infers that

o 1 (2k)—™ (2k)™
9.ka (M) = (m — o) L4m 2R~ T zm)I%fm(%g”))
1
Qs (b ey
_ Ta—2m)i(i+2m) 3 _im
OET - R +O0(z27Imh 2 50
L(3+m—L)r(1-2m)  T(i-m—L2)r(1+2m)



By using this expression, one can verify that the map m — ggj.(m), defined in a
punctured complex neighborhood of 0, can be analytically extended at 0 with

9pa(0) = — 5

Thus, the family of operators { H 3,m,—1} defined by

~ { H,B,m,fl 1fm7é0

Hpm—1 = HYy  ifm=0,

is holomorphic for m € II. It thus follows that

. o ) T
Hl_1>n_11 Hpon=Hgo# Hpgo = 7}11310 Hg 1, (3.20)
which concludes the proof. O

3.4 Eigenprojections

Let us now describe a family of projections {Pg,(A)}, which is closely related to the
Whittaker operator. We shall define it by specifying its integral kernel Pg,,(A; z,y).

We first define the projections for A € C\[0,00[. As usual, we write A = —k? with
Re(k) > 0. We define:

(i) For =1 <Re(m) <1, m ¢ { - 3,0,3},

P (=K 2, y)
ksin(2rm)T(L +m — 203 —m— £
— (5 )1 (2 5 Qk)/j(Q - 2k)5 K%7m(2kw)lC%m(2ky).
m[2m+ gp(z+m— ) — (s —m—g)] 2 2
(ii) For m =0,
KD (L— 27
Pgo(—k*;2,y) = LB K s o (2ka)K 5 o (2ky).
Tr - ) s
(iif) For m = 3,
kT (—8)r(1— 2
PB’%(—kz;x,y) = — (k 2’;) /( 2’;) IC%é(ka)IC%éQky)

(iv) For m = —3,

Then we consider A €]0,00[. We shall distinguish between points coming from the
upper and lower half-plane by writing A £1i0 = —(Fix)?, where g > 0. Let 0 < p <
+Im(/5). We define:

26



(i) For —1 <Re(m)<1,m¢ {—3,0,1}

Py m(p* £10; 2, y)

,usin(?wm)f’(l +mF iﬁ)l“(l —-mF iﬁ)
- W5 Qua)Hy  (2uy).

o lam i (b m i) FiG(h - mEig)] A e

(ii) For m =0,

2 . MF(% :':1%)2 + +
Pgo(p” £i0;2,y) :== Hy (2uz)H5 0(2My)-
2u?

Lkigy! (3 Fig) wf
(iii) For m = 3,
» ur(q:iﬁ)r(lzpiﬁ)

2 : :t :t
+i0;2,y) := H 2ux)H 21y).
5.4 (1 v) Gk Zyp(iTid) 21 (2n) ié( 1Y)

: 1
(iv) For m = —3,

Pﬁ 1 (p? j:lO:cy)—Pﬁ L (U £ 105 2, y).

Finally, if A = 0, we set, for any —1 < Re(m) < 1 and £Im(y/3) > 0,

Pyn(0:,y) = —DSETM) g\ 3at (o /) (By)  HE (24/F).

meTim2m(4m?2 — 1)

Note that for m € { — %, 0, %} the extension by continuity gives

Pso(0;2,y) = —678(Bx) i1 (24/Br)(By) i Hg (24/By).
and

Py 1(0;,y) = By s (052, ) = 3m8(Bx) THE (24/Bz) (By) THE(2y/By).

In the next proposition, we study the regularity of the map (3,m,k) — Pg(—k?)
in a suitable region.

Proposition 3.12. The function (8,m,k) +— Pg,(—k?), defined on the set
CxII x {keC|Re(k)>0}
U{(B,m,Fip) | € C,mell, 0 < p< £Im(p)} (3.21)
U{(8,m,0)| B €C, mell 0< £Im(y/B)},

has values in bounded projections. Moreover, it is continuous on

C x I x {k € C|Re(k) > 0}

U{(B,m,Fip) | € C, mell, 0 < pu < +Im(B)}, (3.22)
and holomorphic in C x II x {Re(k) > 0}. It satisfies
Py (—k?) = Pg —m(—k7), (3.23)
Py (=k*) = Py m(—k?), (3.24)
Pym(—k*)* = P 5, (—k?), (3.25)

for all (B,m, k) in the set (3.21).
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Proof. The fact that ngm(—k2) are rank-one projections follows directly from their ex-
pressions together with Corollaries A.3 and A.5 and Proposition B.4. Continuity on the
domain (3.22) and holomorphy on C x II x {Re(k) > 0}, as well as the relations (3.23)—
(3.25), follow again from the expressions involved in the definitions of Pg,,(—k?). O

We recall from Proposition 2.5 that the operators Hpg , x, HEO and HE , are self-

transposed. Moreover, it follows from Theorem 3.1 and its proof that all e%genvalues
of these operators are simple. If A is a simple eigenvalue of a self-transposed operator
H associated to an eigenvector u such that (u|lu) = 1, we define the self-transposed
etgenprojection associated to A as

P = (u]")u.

In the case where ) is in addition an isolated point of the spectrum, it is then easy to
see that the self-transposed eigenprojection P coincides with the usual Riesz projection
corresponding to .

Theorem 3.13. Let € C,m € 1\ { —3,0,3}, Kk € CU {0} and v € CU {oo}. Let
A € C be an eigenvalue of Hg p, x, Hp, or H . respectively. Then the corresponding
b ,5

self-transposed eigenprojection is P (N), Pgo(A) or Py 1(X) respectively.
2

Proof. We prove the theorem in the case where A = —k? with Re(k) > 0 and m ¢
{ — %, 0, %} The other cases are similar.
From the proof of Theorem 3.1, we know that if A is an eigenvalue of Hg,, ., then a

corresponding eigenstate is given by x + K s (2kx). Corollary A.3 shows that
2k’

_ . m  2m+ kﬂ/’( k) ks (l m— 4)

This proves that P@m(—sz) is the self-transposed eigenprojection corresponding to A, as
claimed. O

In the next proposition, we show that the family Pgs,,(—k?) is not continuous at
k = 0.

Proposition 3.14. Let m € II and 8 € C such that +Im(y/B) > 0. Then the map
k — Pgm(—k?) is not continuous at k = 0.

Proof. Let us first consider the case m ¢ {—1,0,1}. We claim that, for all continuous
and compactly supported function f,

lim (f|Ps.m(=k2)f) = (f1P3.m(0)f),

where k € C is chosen such that Re(k) > 0 and +(arg(3) — arg(k)) €le,m — e[ with
€ > 0. To shorten the expressions below, we set in this proof

o PGam ) By
98mk () = :FIT<%> K%,m@km)a
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and )

98.mo(¥) = (Br)iHs,,(2v/Bx).
We show that gg,,  is uniformly bounded, for % satisfying the conditions above, by a
locally integrable function. From the definition (A.3) of Zg,, and proceeding as in the
proof of Proposition B.1, we obtain that, for k¥ € C such that Re(k) > 0, |k| < 1, and
+(arg(B) — arg(k)) €le,m — e[ with e > 0,

‘(5)%+mfﬁm(2kx)) ‘(Bx) m—kxz( +m =), (2]4::1:)‘

2k 2% = F(1+2m+]) j!
oo o
1 cdxd
< |Bax 3tm —,
<10 Y e )
for some constant ¢ > 0 depending on 8 and m but independent of k£ and x. Using that
; B
TFi/7 </B>§—m< L(5+m—3) )
= ——— | == -2 W7 2k zT 2k
98,m k() sin(2rm) \ 2k r(l—m-2) Lm(Pk2) + s, (2Kk2)),

together with Lemma B.2, one then deduces that

|98.mp(2)| < €17

for some positive constants cq, co independent of k and x.
The previous bound together with the dominated convergence theorem and Propo-
sition B.1 show that

]ili% <gﬁ,m,k|f> = <gB,m,0|f>7

for all continuous and compactly supported function f, and for k satisfying the conditions
exhibited above. We then have that

(F1Psm(=K)f)
ksin2rm)D (3 +m — 2)0(3 —m — 2)

(K g m(IF)’
R e
_ k sin(2mm) F(%—m—%) B \2m-1 9
QT e e ey e L
B 2k? sin(27m) NG m—%) B2 )
B4 (%) 2 (=1 +4m2) + o(1)] T (5 +m zi)(%) (epmlf?

36 sin(2mm
o DI 721 gm0l ) = {1 B30,

where we used Lemma B.6 in the third equality.

Now, we claim that Pg,,(—k?) is not continuous at k = 0 for the strong operator
topology. Indeed, using that P@m(—kz) is a self-transposed projection, we infer that, for
f continuous and compactly supported,

<(Pﬂ,m(_k2)_Pﬁm( ))f|(P,3m(_k2)_Pﬁm )f>
= (Pym(—k*) FIf) + (P3m(0) f|f) — 2{ P31 (0) f| Pgm(—k>) ).
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A similar computation as above gives

<Pﬁm )| Pgm(— kz)f>

_ 3Bsin(2rm) 2k? sin(27m) L(3 —m—4) (ﬁ)Qm

- meTT (dm? — 1) B[4 (%) (—1 + 4m?) + o(1)] T (3 +m — 4;) \2h
<f|gﬂ,m,k><gﬁ,m,k|gﬁ,m,0><gﬁ,m,0|f>

k_>0 0

since l}:ir% (98,m.k|98,m,0) = 0 by Remark B.5, while the other terms converge. Therefore,
%

((Pam(=k?) = Po.m(0)) F|(Pom(=k?) = Pom(0)) f) = 2{Psm(0)fIf) #0,

for suitably chosen compactly supported functions f. By contradiction, this proves that
Pgm(—k?) is not strongly continuous at k = 0.

The cases m € { — %,0, %} can be treated similarly. The only difference is that
Lemma B.6 is no more necessary, but has to be replaced by the expansion

1 1 1

/ _ —4
T/J(Z)*; g—i—@—i—O(z )

as z — 00. O

A The Whittaker equation

A.1 General theory

In this section we collect basic information about the Whittaker equation. This should
be considered as a supplement to [7, Sec. 2].
The Whittaker equation is represented by the equation

L5m2+ fi=(-0%+ m-1_B 1 f=0. (A1)
4 4

We observe that the equation does not change when we replace m with —m. It has also
another symmetry:

1 1
Solutions of (A.1) are provided by the functions z +— Zg 1,,,(2) which are defined by

z1F1( +m:|:[3;1+2m;iz)
I'(1+2m)

= (3 +mFB), ()
Z 14+2m+k) kI~ (A.3)

I,B,m( ) = 22+m T2

mm

1,
= 2




where (a); :==a(a+1)---(a+k—1) and (a)o = 1 are the usual Pochhammer’s symbols
and 1 F} is Kummer’s confluent hypergeometric function. For Re(m) > —% and Re (m F
B+ %) > 0 the function Z3,, has also an integral representation given by

z3tm

L(3+m+B)T(

1 1 1 1
Ipm(z) = / et 5 ) TR (1 — gy B2 g,
. 3 m=0) Jo

Based on (A.3) one easily gets

W Ly s Ty i ) = — ST (A1)
m
as well as the following identity
Igm(z) = e:Fi“(%er)I_/g,m (eiiwz). (A.5)

Another solution of (A.1) is provided by the function z — Kgm(2). For m ¢ 3Z it
can be defined by the following relation:

_ m . Iﬁ,m IB,—m
’Cﬁ’m_sin(Qﬂ'm)< F(%—m—ﬁ)—i_F(%—{—m—,@)). (A.6)

For the remaining m we can extend the definition of Kg ,, by continuity, see Subsect. A.3.
Note that Kg _,, = Kg,m, and that the function Kg,, can also be expressed in terms of
the function 9 Fy, namely:

Kpm(2) = Zﬂe*%zﬂ)(% +m—f,5—m—8;—; —zfl).

An alternative definition of Kg ,, can be provided by an integral representation valid for
Re( — BFm+ 1) >0 and Re(z) > 0:

1 z
z2TMe™3

o0
Kgm(z) = ] /0 efzss*%#ﬁm(l + 5)7%+5$mds.

Lz -BFm
Note that the function ICg ., decays exponentially for large Re(z), more precisely, if e > 0
and |arg(z)| < m — €, then one has

Kpm(z) =27 2(1+0(z"Y). (A7)
By using the relation (A.6) one also obtains that

1

I ) [ S—

(A.8)

We would like to treat Zg ,,, Zg _y, and Kg,, as the principal solutions of the Whit-
taker equation (A.1). There are however cases for which this is not sufficient. Therefore,
we introduce below a fourth solution, which we denote by Aj,,. To the best of our
knowledge, this function has never appeared elsewhere in the literature.

The function Kg ,, is distinguished by the fact that it decays exponentially, while the
solutions Zg 1,,(2) explode exponentially, see [7, Eq. (2.14) & (2.22)]. This is also the
case for the analytic continuations of K_g,, by the angles &7, which by the symmetry
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(A.2) are also solutions of (A.1). It will be convenient to introduce a name for a solution
constructed from these two analytic continuations. There is some arbitrariness for this
choice, but we have decided on:

X m(2) =3 (efiw(%wn)/c, s (e2) +TGHIK_, (e*i”z)) (A.9)
As a consequence of this definition and of (A.5) one gets the relations

Ko (2) = — T (F( Igm(2) cos(2wm)15,m(z)>’ (A.10)

sin(27rm) T—m+p) r(3+m+p)
and - )
e:':iﬂ(%—i_m),C, " eTI™o) — ¥ (2 ImLg,—m\% )
pm(e772) = Ap, O F 5Tt )
In addition, by using the equalities
cos (m(m — B)) = cos (2rm — w(m + 3))
= cos(2mm) cos (m(m + B)) + sin(2wm) sin (7(m + 3)) (A.11)

one infers from (A.6) and (A.10) that

cos(2mm)K g m X3.m

r(A+m+p) TE+m—p)

1

= m(cos (m(m — B)) — cos(2mwm) cos (m(m + ﬁ)))l’@m

= sin (7(m + 8))Zg,m,

which finally leads to the relation

_ 1 cos(2mm) R >
Igm = sn(x(m + B)) <F(é +m+ﬁ) Ka,m F(% P 5) Xgm |- (A.12)

By taking formulas (A.6), (A.10), and (A.11) into account, one infers that the Wron-
skian is provided by
W (Kgm, Xgm;x) = —sin (W(m + [3))

Hence for m + 8 € Z the solutions Kg,, and Xjp ,, are proportional to one another. In
fact, for such 8, m, we have

Xﬁ,m (Z) =

Note that this corresponds to the lines m + 5 = n € Z. However in our applications, we
need X3, on the lines m+ B—% =n € Z, where Kg ,,, and X3 ,,, are linearly independent.
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A.2 The Laguerre cases

Let us now consider two special cases, namely when —% —m+ S :=n € N and when
—% —m — 3 :=n € N. In the former case, observe that the Wronskian of Zg ,,, and Kg,
vanishes, see (A.8). It means that in such a case these two functions are proportional
to one another. In order to deal with this situation we define, for p € C and n € N, the

Laguerre polynomials by the formulas

zPer dn
L%p)(z): w @(e Zp+)
< +/~c+1 Jn—k(—2)"
_Z k)\k!
k=0
P ) S Fi(—nyp+1;2)
-1
_ ) 2"y Fo(—n, —p —n; — —27 ).
n!

Then, by setting 2m = p, we get

1+P z

nlz 2 e 2
T — " " o),
HE4ng 'l+p+n) "

Note that this solution can also be expressed in terms of the Kpg ,, function, namely
/CM_M p = (—1)"n! zHTpe*%Lgp). (A.13)
2 72

We shall call this situation the decaying Laguerre case. In this case the relation (A.12)
reduces to
(="

Toeing = T(i4prn)  Stng’ (A-14)
and more generally for ¢ € Z one has
B (_1)6 (_1)£+1
I#M’% CT(l+p+ K)K%va * cos(mp)['(—¥) XHTPH’%
In the special case —% —m — B :=n € N a similar analysis with p = 2m leads to
1275 s
nlz7z e
— 77
Ifl#fn,g(z) F(1+p+n>Ln ( Z)

and to

X 1 p(2) = eiiHTp“ICm (eF172) = (—1)”n!lepe%L7(lp)(—z). (A.15)
2

n,5 ) +n

(VS|

We shall call this situation the ezploding Laguerre case. In this case the relation (A.12)
reduces to

_ =
Iy pp = L(1+p+n) g (4.16)

and more generally for ¢ € Z one has
(=1)"*" cos(mp)
I'(=¢) 2 by T(l+p+d) 2 b




A.3 The degenerate case

In this section we consider the special case m &€ %Z, which will be called the degenerate
case, see Figure 1. In this situation the Wronskian of Zg ,,, and Zg _,,, vanishes, see (A.4).
More precisely, for any p € N one has the identity

p—1

or equivalently,
1 1

7.’[ _p 71 p.
P52 -p) " T

Based on this equality and by a limiting procedure, an expression for the functions
ICB’% has been provided in [7, Thm. 2.2], namely

(=1)P*In(2)Zg 2 (2)
Kgre(z)= 2
9T

(—1ptle 322" & (2 - B), 2

R & bR )
x (B2 = B+k) = vp+1+k) (1 +k)
(—1)Pt e it & (1# - /B)_j(_l)j_l(j —1)lzd
V= ; (r—))! !

where 1) is the digamma function defined by 1(z) = I;((j)). Note that the equality (or

definition) (a); = F{f&; ) has also been used for arbitrary j € Z. For our applications the

most important functions correspond to p = 1:

ln(z)l'ﬁé (2) o3

R A A ()
o3 X (1-p), 2 (A.18)
(=9 2 (1+kk)!k! (0(1 =B+ k) v+ k)~ v +h),
k=0
and to p =0:
Kpo(z) =~ lnp(z);zf’%()Z)
- ik (A.19)

e 2 Z(z_ﬁ?k,ﬂ (w(%_ﬁ+k)_21/;(l+k)).

Let us still provide the expression for the function X5 L. Starting from its definition
in (A.9) and by using the expansion (A.17) as well as the identity provided in (A.5) one
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gets

(=1)P*!In(2) Iy p (2)
B S =)
(~1ptlerz 3 O (B 4 68), ()
r(52+8) =  (+k)E
X (w(l#ﬂﬁrk) —w(p+1+k:)—w(1+k))
(—1)1’“(3%2:pil u (# + /8)—j(j -l

TR il

J=1

NE

ol

In particular, the following expansion will be useful:

1 1 1 1
X = — | — 1 2v—-1—- — A.20
31060 = 555 * e O g (PO 2= 1= 55)s+o(e) (A20)
and
Xpo(z) = —+Z% In(z) — (%0(% +8) + 27>Z% +0(27) (A.21)
’ L(; +5)
Note also that the following identity holds:
XB7_§ = (_1) X5>g’
as a consequence of (A.9).
B
o4
03
02
ol
Ly L i o | 1] J2 [s| Ja| m

D

Figure 1: The vertical lines correspond to the degenerate cases, the lines with slope 1 to
the decaying Laguerre case, the lines with slope —1 with the exploding Laguerre case.
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A.4 The doubly degenerate case

We shall now consider the region
{(m,/ﬁ)\ﬁe%Z, m € 3Z, B+m+%eZ}. (A.22)

In other words, we consider m € Z, 8 € Z + %, orm € Z+ %, (B € Z. This situation will
be called the doubly degenerate case. We will again set m = 5 with p € Z. Note that for
(m, ) in (A.22) we have the identity

(_1)5+m+%+pl€ (_1)B+m+% (A )
Tom =t Kgm+ =Xy, 23
TG ems) TG m =)
which is a special case of (A.12). In this case we also have

W (K Xomi ) = (—1)™" 93, (A.24)

Hence Kg , and X3, always span the space of solutions in the doubly degenerate case.
In order to analyze the doubly degenerate case more precisely, let us divide (A.22)
into 4 distinct regions (see Figure 2).

Region [_. g+ m € —(N+ %), —B+me —(N+ %)
We have
Igm =0,
which follows for example from (A.23). By setting ny := 8 —m — 3 € N and ny =
—B—-—m— % €N, then Kg;n = Kisp, p is the decaying Laguerre solution, see (A.13),
2 ’2
and Xg , = X_HTp_nzjg is the exploding Laguerre solution, see (A.15).

Region 1. B+mEN+%, —B+mEN+%.

First note that (m, ) € I_ if and only if (—m, ) € 1. By setting ny := 8+ m — % eN
and ng == —f+m — % € N, one has 8 = M52, m = %"2“, and the equality (A.23)
can be rewritten as

_1)n2+1 (_1)n1+1

1 Kﬁﬂ’n +

T =
pim ni!

X3 m-

19!

Note then that Kg,, = Ki1-p 2= Kiyp —p corresponds to the decaying Laguerre
) 5 155 5T,

solution, while Xg,;, = X 1 » = (-1)PX 15 _» = (-1)PAX_ 15 _, —» corre-
’ 2 23 Tz "7 2 "7

sponds to the exploding Laguerre solution. In this region, the space of solutions can also

be spanned by the pair Kg,, and Zg ,,, or by the pair Zg ,, and X3 ,.

Region II_. §+m € —(N—I—%), —B+m EN—I—%.

By setting n:= -8 —m — % € N, then the equality (A.16) reduces to

Thus Zg ,, is proportional to X3, and corresponds to the exploding Laguerre case. The
second solution is Kg,,. It decays exponentially and has a logarithmic singularity at
zero, therefore we call this function the decaying logarithmic solution.
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Region II,. +meN+3, —B+me—(N+3).
By setting n:= 8 —m — % € N, then the equality (A.14) reduces to

7 - D"
Bt T (p+mn)! B n g
Thus Zg ,, is proportional to Kg ,, and corresponds to the decaying Laguerre case. The
second solution is Xg,,. It explodes exponentially and has a logarithmic singularity at
zero, therefore we call this function the exploding logarithmic solution.

The results of this section are summarized in Figure 2.

B Iy
° ) ° ° ° 4 e ° ° °
° ° ° ° ° 3 e ° °
° ° ° ° ° 2 e °
I ° ° ° ° ° I+
° ° ° ° ° 1 e

*_1
*_2
*_3
. T4

I

Figure 2: Solutions for the doubly degenerate case: Region I_: the decaying Laguerre
and the exploding Laguerre solutions. Region I;: any of the three solutions. Region
II;: the decaying Laguerre and the exploding logarithmic solutions. Region II_: the
exploding Laguerre and the decaying logarithmic solutions.

A.5 Recurrence relations

Solutions of the Whittaker equation satisfy interesting recurrence relations. These re-
lations can be checked by using the series provided in (A.3). The computations are
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straightforward, but rather lengthy. These relations read

(Veo + 2" - YV Lz = (= 5 = m = 6) Tyt s (2),
(vzo. + _5\;7” + ‘f)zg,m(z) =Ty 112,
(vzo. + _5\2”‘ VL) =Ty 1 s (2,
(ﬁc‘)z + _5\é + ‘f)lﬂ,m( ) = (% +m— 5)257%,77%%(2)7
(20: + 8~ 2)Zpm(z) = (5 +m+8)Tps1m(2)
.

20, — B+ = ) Igm(z) = 1 +m— B)Zs_1,m(2).
2 2

By using the relation between the functions Kg,, and the functions Zg,, provided in
(A.6), one infers from the above relations the following ones:

(vzo. + _‘{;m + ) Kom(2) = ( - % et B) Kyt 1 (2),
(vao-+ _5;;” - V;)/cﬁ,m(z) — Kppr s (2),
(vzo. + _5\/; + *f)/cﬁ,m(z) (=5 m+8)Ks s s (e,

(20: + 8= 2 ) Ksm(2) = ~Kssrm(2),

(-5 o= (s - 8) (- )6t

A.6 Integral identities

Let us start with a general fact about 1-dimensional Schrédinger operators, see for ex-
ample [5, Eq. (3.24)].

Lemma A.1. Fori € {1,2}, suppose that v; € D(Lglzx) satisfies Lg av; = \iv; for some
Ai € C. Then, for all a,b €]0, 00,

b
(A — )\2)/ vi(z)va(z)dz = # (v1,v2;0) — # (v1,v2;a), (A.25)

where W is the Wronskian introduced in (2.1).
As a consequence of this lemma one has:

Proposition A.2. Let k,p € C with Re(k) > 0 and Re(p) > 0.
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(i) If -1 <Re(m) <1, m¢ { —1,0,3}, then

(K> —p )/ Ks (2kx ICB m(2p7)da
2k

m
= seen) S pri e B TG oG- g

(ii) If m =0, then

(iii) If m = £3, then

(2 —12) [ Ky R0k, | (po)ds
0 2k°2 2p72
:B¢@—§J—¢U—£g+%—%+mwy4mm
L(1—4)T(1— %)

Proof. The proof consists in an application of Lemma A.1. Consider k,p € C with
Re(k) > 0, Re(p) > 0 and set \; = —k? and Ay = —p?. As shown in the proof of
Theorem 3.1 the functions v; defined by

vi(r) =Kp (2kr) and we(x)=Kp (2pz)

2k 57

belong to D(Lg“;’;) and are eigenfunctions of Lg,,2 associated with the eigenvalues \;.
Let us then set # (v1,v2;0) := lim # (v1, va; ) and observe that lim % (vi,ve;2) =0,
z\,0 T——+00

as a consequence of Proposition 2.1. This yields directly to

(k* — p2)/ vi(z)va(z)de = # (v1, v2;0). (A.26)
0
Let us now set

urt(x) =Zs j[m(2k:as) and  ug+(z) = Iz%im(pr).

2k’

Then, the identity (A.6) leads to

B m  uig (@) u1,—(2)
Ul(m)_sin(%rm)( I‘(%—m—%) +F(é+m_2ﬁk))
_ s B U2,+(l‘) U2f( )
va(z) = SiIl(Q?Tm)< F(%—m—%) +F(%+m_25p))
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and with the expansion provided in A.3 one directly infers that

W (ui4,u24;0) =# (u1,—,uz —;0) = 0,
1 1
katmpa—m 2sin(27m) 1 1
W —;0)=— = — Latmpys—m
(1,4 42,3 0) F(1+2m)r(1—2m) P
Amk2—mpatm _ 2sin(27m) 1
W (uy — ;0) = = k2 mpatm,
(1.~ 2,43 0) F(1+2m)F(1—2m) M
As a consequence of these equalities one gets
W (v1,v2;0)
™ ( 2/@%+ pz—m 2kz—mpztm >
T 1 T (L 1
@) \N(§—m -~ )N +m—5) T +m—fr(-m- )

This proves (i). The equalities (ii) and (iii) can be proved similarly by using (A.18) and
(A.19). O
By using the L’Hospital’s rule one directly obtains:

Corollary A.3. Let Re(k) > 0.

(i) For =1 <Re(m) <1, m¢&{—1%,0,1} one has

[T RS RS B RS
oz sin(27wm) O +m— (L —m— L2
(i1) For m =0,
Bor(l _ B
/ Ko ,(2kz)*de = + quf (25 22k)
2k7 ]{,‘F(E_%)
(iii) Form = %,
L5+ /(- %)

(2kx) 2de = — 2k
RO(— 56)T(1 = 55)

[ re
k?

A.7 The trigonometric type Whittaker equation

Along with the standard Whittaker equation (A.1), sometimes called hyperbolic type, it
is natural to consider the trigonometric type Whittaker equation

(Lﬁmﬁ—i)f:<—a§+(m2—1);—ﬁ—1>f=0. (A.27)

4
In [7, Sec. 2.6 & 2.7] we introduced the functions

l\:)\»—‘

Tom(z) = eFEGHMIT 0 (6515 ) (A.28)

)
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and

Hg[m(z) :e:Fig(%er)/Cii@m(quigz)
B +ir ( e$iﬂm‘75,m(2) B jﬁ,fm(z) ) (A.29)
- sin(27mm) F(%—m:Fiﬂ) I‘(%—i—m:Fiﬁ)

which solve (A.27). Note that the function Héﬁ has been used in the proof of Theorem
3.1 when dealing with positive eigenvalues of the Whittaker operators.

A.8 Integral identities in the trigonometric case

Here are the analogues of Proposition A.2 and Corollary A.3 in the trigonometric case.
The approach can be mimicked from Section A.6 because of the identity

Lg 2 ’Hig (2uz) = ’H? (2px)
!‘L’ ““’

valid for any p > 0.
Proposition A.4. Let p,n > 0 with p < £Im(8) and n < £Im(3).
(i) If =1 < Re(m) <1, m & { - %,0,%}, then

W2 — ) w%* (ua)s (2ne)da

0 o™
metimn pry "
— 4 —
sin(27m) M(F( —I—mqilﬂ)F(%—m:Fi%) F(%—{—mqii% F(%—mIFl

(ii) If m =0, then

(1* —n? / 7-[ Z;M’H (277x)da:

(iii) If m =%, then

(W*=n*) [ ML, (ue)H

0 2#’2 27
Ql)(liFiQi) (1$1 )$ “:i:l + In(p) — In(n)
r(1Fil )F(l 5) '

(2nz)dx

wh—t

Corollary A.5. Let 0 < p < £Im(p5).
(i) For —1 <Re(m) <1, m¢ {—10,3} one has

T (2ux)’d reFim (2m i (5 +m¢i%) Figd(3 —mFig,)
x)dr = —
0 25 : sin(27m) MF( +mFig. )F(%—miﬁ%)
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(ii) For m =0,
:tlQ,u%Z),( )
MF( Fig )

/ 7-[ Z;m: )2dx =

(iii) For m = 3,

i+ 5 - !
/ 7—[ L (2px)?dx = : ¢( )
2H72 ,LL]__‘(:FIE)F(].ZFIE)

B The Bessel equation

B.1 The modified Bessel equation
The modified (or hyperbolic type) Bessel equation for dimension 1

( o2 + (m—i)zlz+1>f:0, (B.1)

is up to a trivial rescaling, a special case of the Whittaker equation with 5 = 0. Its
theory was discussed at length in [6, App. A]. Nevertheless, we briefly discuss some of its
elements here, explaining the parallel elements to the theory of the Whittaker equation,
as well as the differences.

Let the modified Bessel function for dimension 1 be

)2n+m+ 3

Z nll'(m+n+1)
v ()" o (me s 5))

T T(m+1)\2

(B.2)

The equation (B.1) is invariant with respect to m — —m. At the level of the function
(B.2) this property is reflected by

T(2) = eFTGTMT (47 2).
For the Wronskian we have
W (L, I—m;z) = —sin(mm).

The function KC,,, can be introduced for m ¢ Z by

Kn(2) = (= Ton(2) + Tom(2).

sin(mm)

For m € Z the definition is extended by continuity. Note that the relation K,,(z) =
K_m(z) holds, and that

W (K, L z) = 1.
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To make our presentation of the hyperbolic Bessel equation as much parallel to that
of the Whittaker equation as possible, we introduce the function

1, . . . .
X (2) == 3 (e_m(%+m)lCm (e”rz) + em(%"'m)lCm (e_”rz)).
Then the following relations hold:

1

X, = _W(Im — COS(QmW)I,m),
1
A m(cos(me)lCm — Xm). (B.3)

The precise relations between the Whittaker functions for 5 = 0 and Bessel-type func-
tions are of the form

Tom(z) = r(;i@zm(é) (B.4)
’Co,m(z) =Km (g);
Ko (2) = X (%)

B.2 The degenerate case

For m € Z the following relation holds:
I m(z) =ITn(2).
Assuming that m € N, we also have

2= ()5 ()"

and

Kon(2) = (f1)m+1% in () Zn(2)

R N

+(\F () Z 3_1)1(2) B

B.3 The half-integer case

The half-integer case of the hyperbolic Bessel equation is a special case of the doubly

degenerate case of the Whittaker equation. However, it is worthwhile to discuss it

separately. In particular, for n € N the function Z_1__ is not proportional to the
2

function 7, 1o which is identically 0 by (B.4).

—-n
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By analogy of the presentation of Section A.4 we can divide the half-integer case
into two regions, namely Region I_. m € —% — N, and Region [,.. m € % + N. The
following schematic diagram of various special cases for the Bessel equation is an analog
of Fig. 2.

—4 —3 —2 —1 0 1 2 3 4 m
—_—— —— —— —— ——

Figure 3: The two regions in the half-integer case

Note that unlike for the Whittaker equation, in both regions I_ and I the functions
I, I and K, are well defined and distinct, and any two of them form a basis of
solutions of (B.1). In this case all solutions are elementary functions: For n € N and
m = £(1 4 n) one has

Kiiin(2) = (—1)"nl(22) e *LE 2 (22),
X1y (2) = £(=1)"nl(22) " LT (—22),
T, () = —%n!(Zz)_" (e—ZL;—l—%)(zz) - eZLg;l—Q”)(—zz)), (B.5)
I, ()= %n!(zz)*n (L2 (22) 4 L) (-22)). (B.6)

Note also that (B.5) and (B.6) are special cases of (B.3), namely

_1\n+1
I%-‘rn(z) = (1;(’C§+n(z) - X%-‘rn(z))’
T ()= (—21)” (K1 () + X1, (2))

B.4 The standard Bessel equation

The standard (or trigonometric-type) Bessel equation for dimension 1

<—8§+(m2—i);—1>f:0, (B.7)

is up to a trivial rescaling, a special case of the trigonometric-type Whittaker equation
with # = 0. One can introduce the following functions which solve this equation (see [6,
App. A] for more information) :

00 n P 2n+m+%
_ 5y (o7 = 3 CDVT(5)
Jm(z2) =e Tn(e™'22) = 3 nIl(m +n+ 1)

n=

+ _ FiZ(m+d) FT o\ _ T T (2) = Tom(2)
Hio(z) =eT2VMT2C (eTl2z) = £i Sn () ,

9

and

cos(mm)Jm(z) — j—m(z).

sin(7m)

Vm(z) :=
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B.5 The zero eigenvalue Whittaker equation

The zero eigenvalue Whittaker equation is provided by the equation

L57m2f::<—6§+(m2—1>1—ﬁ>f: . (B.8)

It is easy to see that if v solves the trigonometric Bessel equation of dimension 1 (B.1)
with parameter 2m, then the function f defined by f(z) := (Ba:)iv(Q\/Bia:) solves the
equation (B.8).

One can also obtain solutions of (B.8) by rescaling solutions of the hyperbolic-type
or trigonometric-type Whittaker equation:

Proposition B.1. For any fired x € Ry, m € Il and 5 € C*, one has

1 1 %-i—m — 7m7% (ﬁ$)i
e (2k> Lg m(2kz) =P NG Jom(2V/B), (B.9)
1\ 5+m o 1
%_}0 (%) " \7%7”1(2]@9:) =/ (ﬁj% Tom(2V/ B). (B.10)

For any fized x € Ry, any m € Il and B € C*, one has

r s Iom ;
%{%ﬁW(i) ks, @k = (Bo)iod,0v/ED), (B
r(i+mTil 1om .
lim £ N ) (fﬂ) H |, (2u) = (B2) 1, (2B, (B.12)

where the first limit is taken such that +(arg(8) — arg(k)) €le,m — e[ with e > 0, and
the second limit is taken with p > 0 and is valid if Re(3) > 0.

Proof. Using the definition of Pochhammer’s symbol recalled in Section A.1, one infers
that

ili%(2 tmE 2k) (£2k)’ = (=B)"
In addition, for all k¥ € C with |k| < 1, one has
1 B j »
<yl
‘(2“”;%) (+2k) ‘—07]

for some constant ¢ independent of k and j. Hence, by an application of the version of
the Lebesgue dominated convergence theorem for series, one gets

( +mF 2k) (£2kx)’
lim Z ,
k=04 I'(1+2m+j5)j! I( 1+2m—|—j)3'

which leads directly to the equality (B.9). The equality (B.10) can then be deduced from
(B.9) by using the relation (A.28) between the functions Zg ,,, and J3 .
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For (B.11), by using successively (A.6), (B.13), (B.9), and [6, App. A.5] one gets

5 .
%W(B) F UK, (2k)
_ FiYT BNimy T(3+m—gp)
~ sin(27m) ﬂ) ( ﬁ1%7 (2kzx) —1—1'2[2’ (2k:v)>

- SIIZIFIQi;”L ( ijQm( )éerIfk,m(%ff) + <2%) %m1i7_m(2k$)> +o(1)
- sin( 27rm <_ T (Be) ‘72m(2 ) + (530)%\7—277@(2 5:16)) +o(1)

= (B2) i M, (2V/Br) + o(1),

where we have used that + arg ( +) €]0,7] and that |arg (— 2k) | <m—efore>0. The
equality (B.12) can then be deduced from (B.11) by using the relation (A.29) between
the functions Kg,, and HEE " O

The following lemma plays a key role in the above proof.

Lemma B.2. Let a,b € C. For |z| — oo with |arg(z)| < m —e and € > 0 one has

lim F(a + Z) b—a

Jim T =t (B.13)

Proof. Recall first the logarithmic version of Stirling formula [1, Eq. 6.1.41]:
1 1 1
In (T'(z)) = zIn(z) — 2z + 3 In(27) — 3 In(z) + O(—).
z

This readily implies that

In(T(a+2)) —In(T(b+2)) + (b—a)In(z) — 0.

Z—00

After exponentiation it leads to the statement. O

B.6 Integrals for zero eigenvalue solutions of the Whittaker equation

Based on the results of the previous sections and on Lemma A.1, one easily gets:

Proposition B.3. Let k € C with Re(k) > 0 and let 8 € C with £Im(y/B) > 0.

(i) If m € C with |[Re(m)| <1 and m & { —1,0,1}, one has

/ w(ﬁx)iﬁgim@ Br)K 5 (2kw)dw

0 2k’

= Fi (2”’“5)% ( 1(2516 - _ oFi2mm %)m )
(3 )

sin(27wm) —m— 2%) r(L+m- %
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(ii) If m =0, then

o1 (2]435)2)<¢(;_2ﬁk>+1n(2k)_1n(5)—ln(4)j:17r).

(iii) If m =%, then

/O T (Ba) i HE2 K 5, (2he)da
2% 3 k .
_ZFITI’( i)( ¢< 2k)+ln(ﬁ)+ﬁ—ln(2k)q:m>.

In the next proposition, we consider the integral of ((,Bx)i’H;Em(Z\/ Bz))? which cannot
be computed by the same means.

Proposition B.4. Let 8 € C with £Im(y/B) > 0. For all —1 < Re(m) < 1, one has

00 1 2 B m(4m2 _ 1)e:Fiﬂ'2m
/0 ((ﬁx)m;m@ m)) de = (B.14)

Proof. Let us consider for |Re(m)| < 2 the integral [;° *Kom(y)?dy. After a change of
variable and by taking into account the relation between the MacDonald function for

dimension 1 and the usual MacDonald function one infers from [16, Sec. 6.576, Eq. 4]
that

& 2
/ Y2 Kom(y)2dy = —T'(2 — 2m)T(2 + 2m)
0 3

‘;ma —2m)(1 + 2m)I(1 — 2m)T(2m)
4m
= m(l —4m?). (B.15)

By a contour integration with a vanishing contribution at infinity, one gets that for

+Im(/B) > 0,
| (o, ev6m) @

0
1

—2/ 2 ,6’3t7e:F”r(2mJr Kom (eqE 22\/537)
0

e:FiﬂQm 00
= Y Kam(y)*dy.

This leads to the statement of the proposition. O

Remark B.5. Curiously, a naive computation suggests incorrectly that

/OO ((Ba;)%HQim(Q ﬁx))de = 0.

0
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Indeed, for m & { — %,0,%} and k € C with Re(k) > 0, and such that i(arg(ﬁ) —
arg(k)) €le, ™ — e[ with e > 0, one has

o N1 T(F+m—2) B \sm

/O (Bx) 1ML, (2 ﬁx)[:plz’ﬁ%(%) Ingwm(Qkx)]d:x (B.16)
(i _ B8 lom [oo L

:*iW(fk) JRCE R AN R

i (F(%+mf)

~ sin@rm) \r(L —m— 2)

()" -e)

By taking a limit as k — 0, one obtains from Lemma B.2 that

Although by (B.11) the term in the square braket of (B.16) converges pointwise to
(ﬂa:)%chm(Q\/ﬁx), a limit limg_,o and the integral in (B.16) can certainly not be ex-
changed, since otherwise it would lead to a contradiction.

tm- )

T RG]
S\T( - m- )

To conclude, we give a lemma which was used in the proof of Proposition 3.14.
Lemma B.6. For |z| — oo with |arg(z)| < m —e and € > 0 one has

b—c (b—-c)(1—-b—c)
+ 222
b—c)[1—=3(b+c)+2(b*+bc+c? 1

I ] <+613+( +be+ >]+0( )

b+ 2) —plc+2) =

24
Proof. The asymptotic expansion of the ¢ function is provided in [1, Eq. 6.3.18] and
reads as |z| — oo with |arg(z)| < 7m—¢ and € > 0:

1 1 1
(@) =In(z) = =~ 55 +0<;4).

Hence

Y+ 2) —ple+2)

1 1 1 1 1
1) ot E ettt ez +0(5)
(1 1 1
=in +Z> C22(14 D) 12:2(1 4 )2

z

=In(b+z2)—

~tn (14 5) + L ! +O(i)
z 2z(1+ <) 12221+ £)2 24
b—c —=b24+b—c b—c—3b2+3c%+2b—23 1
=%y . 3 +0(=)
z 2z 6z

which leads directly to the statement. O
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