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TORUS-LIKE SOLUTIONS FOR THE LANDAU-DE GENNES MODEL.

PART I: THE LYUKSYUTOV REGIME

FEDERICO DIPASQUALE, VINCENT MILLOT, AND ADRIANO PISANTE

Abstract. We study global minimizers of a continuum Landau-De Gennes energy functional
for nematic liquid crystals, in three-dimensional domains. Assuming smooth and uniaxial (e.g.

homeotropic) boundary conditions and a corresponding physically relevant norm constraint

(Lyuksyutov constraint), we prove full regularity up to the boundary for the (constrained) mini-
mizers. As a consequence, in a relevant range of parameters (which we call Lyuksyutov regime),

we show that unconstrained minimizers do not exhibit isotropic melting. In the case of a nematic

droplet, the radial hedgehog is even shown to be an unstable equilibrium. Finally, we describe a
class of boundary data including radial anchoring for which constrained or unconstrained min-

imizers are smooth configurations whose biaxiality level sets carry nontrivial topology. Results
of this paper will be largely employed and refined in the next of our series. In particular in

[16], where we prove that biaxiality level sets are generically finite unions of tori for smooth

equilibrium configurations minimizing the energy in a restricted axially symmetric class.
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1. Introduction

Nematic liquid crystals are mesophases of matter between the liquid and the solid phases. Ne-
matic molecules typically have elongated shape, approximately rod-like, and can flow freely, like in
a liquid, which forces their long axes to align locally along some common direction. This feature
is the key for the extreme responsivity of nematics to external stimuli, which in turn is the reason
why they are so useful in technological applications. Macroscopic configurations of nematics are
usually described by continuum theories, the most successful being the phenomenological Landau-
de Gennes (LdG) theory ([61, 13, 2, 45]) which accounts for the most convincing description of the
experimentally observed optical defects [31, 35]. In the present paper, we study minimizers of the
Landau-de Gennes energy functional in three dimensional domains under topologically nontrivial
boundary conditions (e.g. radial anchoring). The goal here is to shed some light on the emergence
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of topological structure in the so-called biaxial surfaces associated to energy minimizing configu-
rations, proving some mathematically rigorous results on the nature of the defects which, at least
in model geometries, is expected to be of torus type [49, 32, 19, 33].

According to the (LdG) theory, we let M3×3(R) be the real vector space made of 3×3-matrices,
and we consider its 5-dimensional subspace

S0 :=
{
Q = (Qij) ∈M3×3(R) : Q = Qt , tr(Q) = 0

}
,

where Qt denotes the transpose of Q, and tr(Q) the trace of Q. The space S0 is endowed with
the Hilbertian structure given by the usual (Frobenius) inner product. Since the matrices under
consideration are symmetric, the inner product and the induced norm are given by

P : Q :=

3∑
i,j=1

PijQij = tr(PQ) and |Q|2 = tr(Q2) .

Upon the choice of an orthonormal basis, S0 can be identified with the Euclidean space R5. In
particular, {

Q ∈ S0 : |Q| = 1
}

= S4 .

Let Ω ⊆ R3 a bounded domain with (at least) C1-smooth boundary, and Q : Ω→ S0 a configuration
in the Sobolev space W 1,2(Ω;S0). We consider the Landau-de Gennes energy functional of the form

FLG(Q) =

∫
Ω

L

2
|∇Q|2 + FB(Q) dx , (1.1)

i.e., with the one-constant approximation for the elastic energy density with parameter L > 0 and
quartic polynomial bulk potential

FB(Q) := −a
2

2
tr(Q2)− b2

3
tr(Q3) +

c2

4

(
tr(Q2)

)2
, (1.2)

where a, b and c are material-dependent strictly positive constants. It is convenient to subtract-off
an additive constant and introduce

F̃B(Q) := FB(Q)−min
S0

FB , (1.3)

so that the potential becomes nonnegative.
In order to discuss the qualitative properties of energy minimizing configurations (such as

isotropic/nematic phase transition, biaxial escape), we find convenient to modify the usual defini-
tion of biaxiality parameter as follows.

Definition 1.1. For any Q ∈ S0 \ {0}, we define the signed biaxiality parameter of Q as

β̃(Q) :=
√

6
tr(Q3)

|Q|3
∈ [−1, 1] . (1.4)

Observe that if the matrix Q has a spectrum σ(Q) = {λ1, λ2, λ3} ⊆ R, and we order the eigen-

values increasingly, then β̃(Q) = ±1 iff the minimal/maximal eigenvalue is double (purely posi-

tive/negative uniaxial phase), β̃(Q) = 0 iff λ2 = 0 and λ1 = −λ3 (maximal biaxial phase), and
Q = 0 iff λ1 = λ2 = λ3 (isotropic phase).

It turns out that the potential is minimal when the signed biaxiality is maximal, and F̃B(Q) = 0
iff Q ∈ Qmin, i.e., if Q is in the vacuum-manifold of positive uniaxial matrices

Qmin :=

{
Q ∈ S0 : Q = s+

(
n⊗ n− 1

3
I

)
, n ∈ S2

}
, (1.5)

where

s+ :=
b2 +

√
b4 + 24a2c2

4c2
(1.6)

is the positive root of the characteristic equation

2c2t2 − b2t− 3a2 = 0 . (1.7)

Notice that, up to a multiplicative constant, Qmin ∼ RP 2, therefore it has nontrivial topology.
In particular, there are nontrivial homotopy groups π2(Qmin) = Z and π1(Qmin) = Z2, which are
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relevant for the presence of topological defects. The corresponding energy functional is

F̃LG(Q) :=

∫
Ω

L

2
|∇Q|2 + F̃B(Q) dx , (1.8)

which is the sum of two nonnegative term, penalizing respectively spatial variations and deviations
from the vacuum manifold Qmin.

We rescale a tensor by setting

Q =: s+

√
2

3
Q .

In this way, the vacuum manifold becomes exactly the real projective plane RP 2 = S2/{±1}, where
RP 2 ⊆ S4 is embedded as in (1.5), i.e., through the so-called Veronese immersion. We rewrite the
energy functional as

F̃LG(Q) =
2

3
s2

+LFλ,µ(Q) , (1.9)

with

Fλ,µ(Q) :=

∫
Ω

1

2
|∇Q|2 + λW (Q) +

µ

4
(1− |Q|2)2 dx . (1.10)

The reduced parameters λ and µ are given by

λ :=

√
2

3

b2s+

L
> 0 , µ :=

a2

L
> 0 ,

and the reduced smooth potential W : S0 → R is nonnegative and vanishes exactly on RP 2. More
precisely, in view of (1.6)-(1.7), the potential W is explicitely given by

W (Q) =
1

3
√

6

(
|Q|3 −

√
6tr(Q3)

)
+

1

12
√

6

(
3|Q|2 + 2|Q|+ 1

)(
|Q| − 1

)2
, (1.11)

or equivalently,

W (Q) =
1

4
√

6
|Q|4 − 1

3
tr(Q3) +

1

12
√

6
. (1.12)

The structure relations (1.10) and (1.11) suggests that, in a regime where µ is large, the energy
Fλ,µ favours rescaled configurations of approximatively unit norm.

In this paper, we first make the fundamental assumption that the norm of any admissible
configuration is given by the constant value proper of the vacuum manifold [41], i.e.,

|Q(x)| ≡
√

2

3
s+ (Lyuksyutov constraint) . (1.13)

Under the Lyuksyutov constraint, the energy functional takes the form

F̃LG(Q) =
2

3
s2

+LEλ(Q)

for rescaled tensors Q ∈W 1,2(Ω; S4), where

Eλ(Q) :=

∫
Ω

1

2
|∇Q|2 + λW (Q) dx . (1.14)

The restriction of the potential W : S0 → R to S4 is given by

W (Q) =
1

3
√

6

(
1− β̃(Q)

)
∀Q ∈ S4 . (1.15)

In particular, W is nonnegative on S4, {W = 0}∩S4 = RP 2 and ∇tanW (Q) = 0 for any Q ∈ RP 2.
As a consequence, when further restricted to the subspace of uniaxial configurations W 1,2(Ω;RP 2),
the energy functional (1.14) reduces to the Dirichlet integral, i.e., the Frank-Oseen energy in the
one-constant approximation. For an account on the qualitative properties of defects in the Frank-
Oseen model, we refer the interested reader to e.g. [1, 8].

A critical point Qλ ∈W 1,2(Ω;S4) of Eλ among S4-valued maps satisfies in the sense of distribu-
tions in Ω the Euler-Lagrange equation

∆Qλ + |∇Qλ|2Qλ = λ∇tanW (Qλ) , (1.16)

with the tangential gradient of W along S4 ⊆ S0 given by

∇tanW (Q) = −
(
Q2 − 1

3
I − tr(Q3)Q

)
.
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Notice that the left hand side of (1.16) is the so-called tension field of Q, a tangent field along Q
in S4, and equation (1.16) is nothing but the harmonic map equation for S4-valued map with the
extra term λ∇tanW (Q) as a source term. Any tensor field Q which is weakly harmonic among
S4-valued maps and lying in the subspace W 1,2(Ω;RP 2) is also weakly harmonic among maps in
W 1,2(Ω;RP 2)1, and provides a solution to (1.16). Since everywhere discontinuous weakly harmonic
maps among maps in W 1,2(Ω;RP 2) do exist (see [51]), we expect smoothness of solutions to (1.16)
to fail in general, and to prove regularity we shall rely in an essential way on energy minimality.

We consider the minimization of the energy functional Eλ among maps in W 1,2(Ω; S4) satisfying
a Dirichlet boundary condition (strong anchoring) in the sense of traces. We fix a Lipschitz (at
least) boundary trace Qb ∈ Lip(∂Ω;S4), and we consider the set of admissible configurations

AQb
(Ω) :=

{
Q ∈W 1,2(Ω;S0) : Q|∂Ω = Qb , |Q| = 1 a.e. in Ω

}
⊆W 1,2(Ω;S4) , (1.17)

which is nonempty by [28]. Hence, one can fix a reference extension Q̄b ∈ AQb
(Ω), which, as

a matter of fact, can be chosen in C0(Ω;S4), or even smooth in the interior since π2(S4) = 0
(so that density of smooth maps in AQb

(Ω) holds). By the direct method in the Calculus of
Variations, it is routine to show that there exist minimizers Qλ ∈ AQb

(Ω) of Eλ. Requiring the
boundary condition to be at least C1,1-regular allows some smoothness up to the boundary for the
corresponding minimizers. Indeed, the first result of our paper is the following regularity theorem.

Theorem 1.2. Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω;S4). If Qλ is a minimizer
of Eλ in the class AQb

(Ω), then Qλ ∈ Cω(Ω) ∩ C1,α(Ω) for every α ∈ (0, 1). If in addition,

Qb ∈ C2,δ(∂Ω;S4) for some δ > 0, then Qλ ∈ C2(Ω;S4), and, finally, if Ω is a domain with
analytic boundary and Qb ∈ Cω(∂Ω;S4), then Qλ ∈ Cω(Ω;S4).

The proof of this theorem is based on ideas and techniques from the regularity theory of harmonic
maps, starting from the pioneering papers [55, 56, 57], as summarized in the books [58, 47, 38].
The crucial point is to obtain Lipschitz continuity, while higher order regularity follows from
standard Calderon-Zygmund and Schauder theories and the analyticity results in [46]. Both for the
interior and for the boundary regularity, the main steps are : 1) monotonicity formulae; 2) strong
compactness of blow-ups; 3) constancy of blow-up limits (Liouville property); 4) continuity under
smallness of the scaled energy (ε-regularity); 5) Lipschitz continuity. Within this general scheme,
our proof presents some differences and simplifications we want to comment on. The monotonicity
formula here is not obtained by inner variations but instead by a penalty approximation which is,
to our knowledge, new. More precisely, we relax the norm constraint, and passing to the limit in
monotonicity formulae for approximated problems, we obtain interior and boundary monotonicity
formulae. The validity of the latter requires the Lipschitz assumption on Qb as in the harmonic
map case (see e.g. [11]). Strong compactness of blow-ups is obtained by construction of comparison
maps arguing as in [58] for harmonic maps again. Indeed, the perturbed Dirichlet energy Eλ is
treated as in [48] with techniques based on the Luckhaus interpolation lemma [40], both in the
interior and near the boundary. As strong limits of blow-ups are degree-zero homogeneous and
minimizing harmonic maps into S4, i.e, Q∗(x) = ω (x/|x|) for some harmonic sphere ω : S2 → S4,
their constancy in the interior case directly follows from [57]. At a boundary point, limits of
blow-ups are of the form Q∗(x) = ω+ (x/|x|) with x3 > 0 (up to rotations in the domain), for
some harmonic half-sphere ω+ : S2

+ → S4 with constant trace on ∂S2
+. The constancy of those ω+

is derived in a way similar to [56]. We emphasize that boundary regularity is not deduced from
minimality, but instead by a reflection argument and the 2d-interior regularity result for weakly
harmonic maps from [26], and constancy of ω+ follows from [36] as in [56]. Since our argument for
boundary regularity does not rely on energy minimality, it will be possible to apply it also in the
symmetric case we consider in our companion papers [15, 16]. Our approach to ε-reguarity treats
in a unified way the interior and the boundary case, adapting for the latter the clever reflection
argument devised in [53] for harmonic maps (under the same regularity assumptions on ∂Ω and
Qb). Moreover, Hölder-continuity under smallness of the scaled energy is not deduced as usual
from Hardy-BMO duality as in [17], or using the integrability by compensation due to the hidden

1Observe that the converse implication is not true in general, because the Veronese immersion is minimal but it

is not totally geodesic, and the tension field of Q in S4 could be purely orthogonal to RP 2 but nonzero. Thus, if
Q is weakly harmonic among map in the space W 1,2(Ω;RP 2), i.e., it is a critical point of the Frank-Oseen energy,

then it does not solve (1.16) in general. Hence it is not a critical point of the Landau-de Gennes energy under norm

constraint.
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antisymmetric structure of the quadratic gradient term in (1.16) as in [52] for harmonic maps. In
the present paper, we adapt to our context the elementary iteration approach introduced in [10],
based on the divergence structure of the quadratic gradient term and the decay properties of the
BMO seminorm together with the integral characterization of Hölder-continuous functions due to
Campanato. Finally, Lipschitz continuity is obtained using the harmonic replacement argument of
[54] for harmonic maps.

With Theorem 1.2 at hand, we now remove the norm constraint (1.13), and we consider the full
energy functional (1.10). We minimize Fλ,µ over maps in W 1,2(Ω;S0) still satisfying a Dirichlet
boundary condition (strong anchoring) in the sense of traces. Given a Lipschitz boundary trace
Qb ∈ Lip(∂Ω;S0), existence of minimizers Qµλ ∈W 1,2(Ω;S0) follows again from the direct method
in the Calculus of Variations. In addition, applying usual interior and boundary regularity for
semilinear elliptic equations to the Euler-Lagrange equation satisfied by critical points of Fλ,µ (see

(4.1)), we can infer that Qµλ ∈ Cα(Ω;S0) ∩ Cω(Ω;S0) for some α ∈ (0, 1). At this stage, we are
interested in the asymptotic behaviour of minimizers Qµλ in the range of parameters (that we call
Lyuksyutov regime)

λ =

√
2

3

b2s+

L
≡ const , µ =

a2

L
→ +∞ . (1.18)

Particular cases are given by a2 →∞ , b2 ∼ |a|−1 or L→ 0 , b2 ∼ L. These regimes resemble the
low-temperature limit and the small elastic constant limit, respectively. For further discussions on
this aspect and related asymptotic limits, we refer to Remark 4.11 and [18].

Under these restrictions on the parameters, the last term in Fλ,µ acts as a penalty approximation
of the norm constraint (1.13), and it is natural to expect convergence of the family {Fλ,µ}µ to the
functional Eλ (in the sense of Γ-convergence, see e.g. [7]), and that minimizers of Fλ,µ converge to
minimizers of Eλ.

Theorem 1.3. Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω;S4). There exist minimizers Qµλ
of Fλ,µ in the class W 1,2

Qb
(Ω;S0), and any such Qµλ belongs to Cω(Ω)∩C1,α(Ω) for every α ∈ (0, 1).

In addition, as µ→∞ with λ constant (Lyuksyutov regime), the following holds:

(1) there exists Qλ ∈ W 1,2(Ω; S4) minimizing Eλ in the class AQb
(Ω) such that, up to a

subsequence, Qµλ → Qλ strongly in W 1,2(Ω;S0);

(2) Fλ,µ(Qµλ)→ Eλ(Qλ) and µ
∫

Ω
(1− |Qµλ|2)2 dx→ 0;

(3) |Qµλ| → 1 uniformly in Ω.

In particular, for each λ > 0, there exists a value µλ = µλ(λ,Ω, Qb) > 0 such that for µ > µλ, any
minimizer Qµλ of Fλ,µ satisfies |Qµλ| > 0 in Ω, i.e., minimizers do not exibit the isotropic phase.

In this theorem, existence and regularity properties of minimizers Qµλ have already been recalled
in the discussion above. Claim (1) and (2) can be seen as a standard consequence of the Γ-
convergence of the family {Fλ,µ}µ to Eλ, although for the reader’s convenience such notion is
not explicitly used in the proof (but just mentioned here for readers familiar with it). As a
matter of fact, the claims rely on a sharp two-sided bound on the energies {Fλ,µ(Qµλ)}µ, the lower
semicontinuity property of the energy functionals (i.e., the Γ-liminf inequality), the construction
of trial sequences (i.e., the recovery sequences for the Γ-limsup inequality), and the standard weak
compactness in W 1,2 coming from the equicoercivity of the energies (i.e., the compactness in Γ-
convergence). As a consequence, minimum points strongly converge to minimum points in W 1,2,
and the two claims follow as the upper and the lower bound mentioned above coincide. The second
claim tells us in particular that the limiting map must be S4-valued as a direct consequence of
Fatou’s Lemma. Finally, claim (3) is by far the most interesting as it guarantees that the isotropic
phase is avoided by energy minimizing configurations Qµλ in the Lyuksyutov regime (as already
proved in [9] and [12, 27] in the low-temperature limit in 2D and 3D, respectively). Our proof
of this property is based in a crucial way on Theorem 1.2. Indeed, smoothness of the limiting
minimizer Qλ and the strong W 1,2-convergence yield smallness of the scaled energy of Qµλ at a
sufficiently small scale. Combining monotonicity formulae with elliptic regularity in a way similar
to [44], we are then able to show that |Qµλ| has to converge to one uniformly as µ→∞.

To illustrate our results so far, let us now consider the model case of a nematic droplet, i.e.,

Ω = {|x| < 1} is the unit ball. The outer unit normal to the boundary is
→
n(x) = x/|x|, and a
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natural boundary datum is the so called radial anchoring, namely

Qb(x) =

√
3

2

(
x

|x|
⊗ x

|x|
− 1

3
I

)
. (1.19)

Since
→
n : ∂Ω→ S2 is harmonic, the homogeneous extension H̄(x) = Qb (x/|x|) (the constant-norm

hedgehog) is a weakly harmonic map from Ω into RP 2, and it is an energy minimizer of Eλ for its
own boundary value in W 1,2(Ω;RP 2) by the lifting property of W 1,2-maps in RP 2 in [3] and the
celebrated result in [8]. Moreover, a direct computation shows that H̄ is also a weak solution to
(1.16), i.e., a critical point of Eλ. As H̄ is singular at the origin, Theorem 1.2 tells us that H̄ is
not minimizing Eλ in the class AQb

(Ω). We shall prove in Proposition 4.7 that H̄ is in fact strictly
unstable, employing an argument similar to [57], an explicit computation of the second variation
of energy, and a perturbation localized near the origin.

Still in the case of a nematic droplet subject to radial anchoring, the energy functional Fλ,µ has
an O(3)-equivariant (radial) critical point commonly known as radial hedgehog

Hµ
λ (x) := sµλ(|x|)

(
x

|x|
⊗ x

|x|
− 1

3
I

)
, 0 < |x| < 1 . (1.20)

This solution is obtained from a unique function sλµ(|x|) increasing from 0 to
√

3/2 solving an ODE
with the prescribed values at |x| = 0 and |x| = 1, see e.g. [43, 30] and the references therein. It
turns out to be the unique uniaxial critical point of Fλ,µ w.r.to arbitrary (not necessarily uniaxial)
perturbations, see [34]. As the origin is an isotropic point, Theorem 1.3 shows that Hµ

λ does not

minimize Fλ,µ in the class W 1,2
Qb

(Ω;S0), at least for µ large enough. Thus, biaxial escape must

occur for minimizers. Using the strong convergence of Hµ
λ to H̄ as µ → ∞, we are able to pass

to the limit in the second variation of Fλ,µ at Hµ
λ , and we infer in Theorem 4.8 the instability of

Hµ
λ w.r.to biaxial perturbations for µ large enough. Both properties are the counterpart in the

Lyuksyutov regime of the instability of the radial hedgehog in the low-temperature limit (essentially
a2 →∞) already proved in [29] (see also [20, 43]) together with the (infinitesimal) biaxial escape
phenomenon obtained there.

Once the smoothness of Qλ and the absence of isotropic phase for Qµλ are established, we can
discuss for both cases the topological properties related to the presence of biaxial phase, and the
way they are connected with the topology of the vacuum manifold. The starting point is that,
under the assumption Qb ∈ C1,1(∂Ω;S4), Qλ and Qµλ are configurations satisfying the hypothesis

(HP0) Q ∈ C1(Ω;S0 \ {0}) ∩ Cω(Ω;S0) .

The first assumption at the boundary that we impose on a configuration Q : Ω → S0 \ {0} is the
following

(HP1) β̄ := min
x∈∂Ω

β̃ ◦Q(x) > −1 .

The case β̄ = 1 occurs for the main and most natural example of boundary condition, which is (in
view of the embedding RP 2 ⊆ S4)

Qb(x) =

√
3

2

(
v(x)⊗ v(x)− 1

3
I

)
for all x ∈ ∂Ω , v ∈ C1(∂Ω;S2) . (1.21)

In particular, if ∂Ω is of class C2, the choice v(x) =
→
n(x) (the outer unit normal to the bound-

ary ∂Ω) corresponds to the so-called homeotropic boundary condition (or radial anchoring).
If Ω ⊆ R3 is a bounded open set with boundary of class at least C1, we know that ∂Ω is a finite

union of embedded C1-surfaces. More precisely, ∂Ω = ∪Ni=1Si where the surfaces Si are of class (at
least) C1, disjoint, embedded, connected, orientable, and boundaryless. The second assumption
we make on (the boundary of) Ω is

(HP2) Ω is connected and simply connected.

Under this assumption, each surface Si has zero genus, so it is an embedded sphere (see Lemma 5.1).
The domain Ω is thus a topological ball with finitely many disjoint closed balls removed from its
interior. By assumption (HP1), the maximal eigenvalue λmax(x) of Q(x) is simple for every x ∈ ∂Ω.
Hence there exists a corresponding well defined C1-smooth eigenspace map Vmax ∈ C1(∂Ω;RP 2),
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and this map has a (nonunique) lifting vmax ∈ C1(∂Ω;S2) since each surface Si has zero genus. To
enforce the emergence of topology in the minimizers, we finally make a third assumption

(HP3) deg(vmax, ∂Ω) =

N∑
i=1

deg(vmax, Si) is odd .

Notice that this property depends only on the map Vmax, it does not depend on the choice of the

lifting vmax. In case of radial anchoring (i.e., Qb of the form (1.21) with v =
→
n = vmax), it is

satisfied whenever N is odd, that is whenever ∂Ω has an odd number of connected components
(or, equivalently, if the domain Ω is a topological ball with an even number of disjoint closed ball
removed from its interior).

In order to emphasize the consequence of assumptions (HP0)-(HP3) on a configuration Q satis-
fying Q = Qb on ∂Ω, let us assume for a moment that Qb takes values into the vacuum manifold,
i.e., Qb ∈ C1(∂Ω;RP 2). First, observe that Qb has a lifting by (HP2), i.e., Qb is of the form (1.21).
Moreover, any lifting v ∈ C1(∂Ω;S2) of Qb admits a finite energy extension v̄ ∈ W 1,2(Ω;S2) (see
e.g. [28]), but no continuous extension because of assumption (HP3). As a consequence, Qb admits
an extension Q̄b ∈W 1,2(Ω;RP 2) of the form

Q̄b(x) =

√
3

2

(
v̄(x)⊗ v̄(x)− 1

3
I

)
. (1.22)

In view of [3] and (HP3), any extension Q̄b ∈ W 1,2(Ω;RP 2) of Qb is in fact of the form (1.22)
for a suitable (necessarily) discontinuous map v̄ ∈W 1,2(Ω;S2). The configuration Q being smooth
and without isotropic phase by assumption (HP0), it cannot be purely uniaxial (i.e., RP 2-valued)
and biaxial escape must occur for purely topological reasons.

To describe the way a configuration Q encodes some topological information, we shall make use
of the biaxiality function as follows.

Definition 1.4. For a configuration Q ∈ C0(Ω;S0\{0}) we define its biaxiality function β := β̃◦Q
and for each t ∈ [−1, 1] the associated biaxiality regions as the closed subsets of Ω given by

{β 6 t} :=
{
x ∈ Ω : β̃ ◦Q(x) 6 t

}
and {β > t} :=

{
x ∈ Ω : β̃ ◦Q(x) > t

}
, (1.23)

where β̃ is the signed biaxiality parameter (1.4). The corresponding biaxial surfaces are defined as

{β = t} :=
{
x ∈ Ω : β̃ ◦Q(x) = t

}
.

Observe that if t ∈ (−1, 1) is a regular value of β, then biaxial surfaces are smooth surfaces
inside Ω, possibly with boundary which is anyway smooth and contained in ∂Ω. Moreover, the
regions in (1.23) are homotopically equivalent to their interior {β < t} and {β > t}, since the
biaxial surfaces are actually smooth and serve as their common boundary.

We now introduce a notion of “mutual linking”, a property that will (partially) encode the
topological nontriviality of the biaxiality regions.

Definition 1.5. Let A,B ⊆ Ω be two compact subset. The sets A and B are said to be mutually
linked 2 if A is not contractible in Ω \B and B is not contractible in Ω \A.

To illustrate this definition, let us discuss again the case of a nematic droplet. If Ω is the unit
ball and Qb is the hedgehog boundary data (1.19), we expect the minimizers Qλ or Qµλ to be
axially symmetric around a fixed axis (in a sense made precise below). In particular, we expect
their biaxiality regions (1.23) to be axially symmetric as well. More precisely, {β < t} with
t ∈ (−1, 1) should be an increasing family of axially symmetric solid tori, and the complementary
regions {β > t} should be kind of distance neighborhoods from the boundary ∂Ω with cylindrical
neighborhoods of the symmetry axis added. In the extreme case t = ±1, we expect {β = −1} to
be a circle with axial symmetry, and {β = 1} to be the sphere ∂Ω with the segment connecting
the two antipodal points lying on the symmetry axis added. Clearly sub and superlevel of the
biaxiality function should be mutually linked in the sense of Definition 1.5 above. This conjectural
picture is supported by numerical simulations as already detailed in [49, 32, 19, 33], where authors

2As an example, if Ω is the unit ball, A is an unknotted embedded copy of S1 into Ω, and B = Ω \ Aδ with Aδ
a sufficiently small tubular neighborhood of A, then A and B are mutually linked.
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refer to it as the “torus solution” of the Landau-de Gennes model. For the nematic droplet with
radial anchoring, the situation clearly reminds the one corresponding to the Hopf fibration

C× C ⊇ S3 Φ−→ S2 ⊆ C× R , Φ(z1, z2) = (2z1z2, |z1|2 − |z2|2) ,

where the subsets {|z1|2 − |z2|2 > t} and {|z1|2 − |z2|2 < t} with t ∈ (−1, 1) form a decomposition
of S3 into two disjoint mutually linked solid tori (a so-called Heegaard splitting).

The weak counterpart of the conjectural picture described in the example above is the main
topological result of the paper.

Theorem 1.6. Let Ω ⊆ R3 be a bounded connected open set with boundary of class C3, and assume
that either Q = Qλ is a minimizer of Eλ as in Theorem 1.2 or Q = Qµλ is a minimizer of Fλ,µ as
in Theorem 1.3, so that (HP0) holds. If assumptions (HP1)-(HP3) also hold (e.g., suppose that
Ω is connected and simply connected, ∂Ω has an odd number of connected components, and that

Qb(x) =
√

3/2(
→
n(x) ⊗→n(x) − 1

3I) is the radial anchoring), then the biaxiality regions associated
to the configuration Q satisfy:

1) the set of singular values of β = β̃◦Q in [−1, β̄] is at most countable, and it can accumulate
only at β̄; moreover, for any regular value −1 < t < β̄ of β the set {β = t} ⊆ Ω is a smooth
surface with a connected component of positive genus;

2) for any −1 6 t1 < t2 < β̄, the sets {β 6 t1} ⊆ Ω and {β > t2} ⊆ Ω are nonempty,
compact, and not simply connected;

3) if in addition Q ∈ Cω(Ω) and β̄ = 1, then the set of critical values is finite and {β = 1} ⊆ Ω
is nonempty, compact, and not simply connected; in particular {β = 1} ∩ Ω is not empty;

4) for any −1 6 t1 < t2 < β̄, if the interval (t1, t2) contains no critical value, then {β 6 t1}
and {β > t2} are mutually linked.

Claim 1) on discreteness of the set of singular values is a consequence of the analytic Morse-Sard
theorem from [59]. The rest of the claim together with claim 2) is proved by contradiction using a
degree-counting argument. The key observation is that on each spherical component of a biaxial
surface {β = t}, the pull back bundle E = vmax

∗F of the tangent bundle F = TS2 → S2 under the
lifting vmax of the eigenspace map Vmax must be trivial (hence its Euler number vanishes). Then
the contradiction coming essentially from (HP3) ensures that some Si has positive genus. The
argument for 2) and 3) above holds for regular values t ∈ (−1, β̄), and the extension to arbitrary
values is based on the analytic regularity of Q and the  Lojasiewicz retraction theorem [39] (it is
the only instance where this property is used). Finally, the linking property in 4) follows easily by
contradiction using a deformation of the biaxial regions along the positive/negative gradient flow
of β. We expect analogous properties to hold also for t ∈ (β̄, 1), but this case seems to be more
subtle since the biaxial surfaces meet the boundary ∂Ω, and we do not have rigorous result in this
direction at present.

As the conclusions of the theorem are weak counterparts of the properties conjectured for the
torus solution on a nematic droplet, we refer to such solutions on a general domain as “torus-like
solutions”. It is a very challenging open problem to obtain a precise estimate on the genus of
the surfaces Si, if any. Any control on it should depend on a subtle role of the genus in giving a
possible lower order correction term in the energy expansion of the minimizing configurations.

In our subsequent papers [15] and [16] of the series, we continue this analysis focusing on axially
symmetric configurations. Letting S1 act by rotation around the vertical axis on an S1-invariant
domain Ω ⊆ R3, and on S0 by the induced action S0 3 A 7→ RtAR ∈ S0, R ∈ S1, we consider
Sobolev maps Q ∈W 1,2(Ω;S0) satisfying the equivariance property

Q(Rx) = RtQ(x)R ∀R ∈ S1 . (1.24)

Minimizing the energy functional (1.14) or (1.10) in the appropriate class of equivariant configu-
rations will provide minimizers which are either smooth and nowhere vanishing or with singulari-
ties/isotropic points, depending on the geometry of the domain and on the chosen boundary data.
In case such defects are not present, we will be able to show that the level sets of the signed bi-
axiality parameter are generically finite union of axially symmetric tori. On the other hand, when
singularieties/isotropic points occur, the regularity/absence of isotropic phase results of the present
paper will show that axial symmetry of minimizers is not inherited from the boundary condition,
and axial symmetry breaking and nonuniqueness phenomena must occur. Such phenomena were
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already proved in [1] for minimizers of the Frank-Oseen energy, and our results are the natural
counterpart for the Landau-de Gennes model, in agreement with the numerical simulations in [14].

Acknowledgements. We would like to thank Eugene Gartland for having pointed out to us the
reference [18] and suggested to discuss the validity of our results for non-dimensionalized forms of
the Landau-de Gennes energy.

2. Small energy regularity theory: a tool box

The aim of this section is to provide several regularity estimates, both in the interior and at the
boundary, for weak solutions of (1.16) under certain general conditions. We emphasize that the
material developed here is not restricted to minimizers of the energy functional Eλ, but it applies to
rather general critical points satisfying suitable energy monotonicity formulae. With this respect,
we shall make a crucial use of the results of this section in our companion papers [15, 16] where
we considered solutions obtained by minimization of Eλ in restricted (symmetric) classes.

Before going further, let us precise for completeness the (usual) notion of critical point of Eλ
over the nonlinear space W 1,2(Ω; S4), and show that critical points are exactly the distributional
solutions of (1.16) belonging to W 1,2(Ω;S4).

Definition 2.1. A map Qλ ∈W 1,2(Ω;S4) is said to be a critical point of Eλ if[
d

dt
Eλ
(
Qλ + tΦ

|Qλ + tΦ|

)]
t=0

= 0

for every Φ ∈ C1
c (Ω;S0).

The Euler-Lagrange equation for critical points of Eλ reads as follows.

Proposition 2.2. A map Qλ ∈W 1,2(Ω; S4) is a critical point of Eλ if and only if∫
Ω

∇Qλ : ∇Φ dx = λ

∫
Ω

Q2
λ : Φ dx (2.1)

for every Φ ∈ W 1,2(Ω;Qλ
∗TS4) compactly supported in Ω (i.e., for every Φ ∈ W 1,2(Ω;S0) com-

pactly supported in Ω and satisfying Φ(x) ∈ TQλ(x)S4 for a.e. x ∈ Ω), or equivalently, if and only
if

−∆Qλ = |∇Qλ|2Qλ + λ
(
Q2
λ −

1

3
I − tr(Q3

λ)Qλ

)
in D ′(Ω) . (2.2)

Proof. Step 1. Given Q ∈W 1,2(Ω;S4), let us consider Φ ∈ C1
c (Ω;S0), and set for t small enough,

Qt :=
Q+ tΦ

|Q+ tΦ|
∈W 1,2(Ω;S0) .

Classically (see e.g. [58, Section 2.2]), we have[
d

dt

∫
Ω

1

2
|∇Qt|2 dx

]
t=0

=

∫
Ω

(
∇Q : ∇Φ− |∇Q|2Q : Φ

)
dx .

On the other hand, a straightforward computations yields[
d

dt

∫
Ω

W (Qt) dx

]
t=0

= −
∫

Ω

(
Q2 : Φ− tr(Q3)Q : Φ

)
dx ,

and thus[
d

dt
Eλ
(
Q+ tΦ

|Q+ tΦ|

)]
t=0

=

∫
Ω

∇Q : ∇Φ dx−
∫

Ω

|∇Q|2Q : Φ dx

− λ
∫

Ω

(
Q2 : Φ− tr(Q3)Q : Φ

)
dx . (2.3)

Step 2. Assume that Qλ ∈W 1,2(Ω;S4) is a critical point of Eλ. We consider Φ ∈W 1,2(Ω;Qλ
∗TS4)

compactly supported in Ω, and prove that (2.1) holds. By a standard truncation argument, we
can assume that Φ ∈ L∞(Ω). By a usual approximation argument, we can find a sequence {Φk} ⊆
C1
c (Ω;S0) such that Φk → Φ a.e. in Ω and strongly in W 1,2(Ω), and satisfying ‖Φk‖L∞(Ω) 6
‖Φ‖L∞(Ω). Then we deduce from Step 1 and the criticality of Qλ that∫

Ω

∇Qλ : ∇Φk dx =

∫
Ω

|∇Qλ|2Qλ : Φk dx+ λ

∫
Ω

(
Q2
λ : Φk − tr(Q3

λ)Qλ : Φk
)
dx . (2.4)
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Since Qλ : Φ = 0 a.e. in Ω, we deduce by dominated convergence that |∇Qλ|2Qλ : Φk → 0 and
(Q2

λ : Φk − tr(Q3
λ)Qλ : Φk)→ Q2

λ : Φ in L1(Ω). Hence, letting k →∞ in (2.4) leads to (2.1).

Step 3. Assume that Qλ ∈ W 1,2(Ω; S4) satisfies (2.1), and fix an arbitrary Φ ∈ C1
c (Ω; M sym

3×3 (R)).

Define Φ0 := Φ− 1
3 (Φ : I)I ∈ C1

c (Ω;S0). Noticing that

Φ0 − (Qλ : Φ0)Qλ ∈W 1,2
0 (Ω;Qλ

∗TS4) ,

we infer from (2.1) that∫
Ω

∇Qλ : ∇Φ0 dx =

∫
Ω

|∇Qλ|2Qλ : Φ0 dx+ λ

∫
Ω

(
Q2
λ : Φ0 − tr(Q3

λ)Qλ : Φ0

)
dx . (2.5)

Since Qλ : I = tr(Qλ) = 0 and |Qλ|2 = tr(Q2
λ) = 1, this last identity leads to∫

Ω

∇Qλ : ∇Φ dx =

∫
Ω

|∇Qλ|2Qλ : Φ dx+ λ

∫
Ω

(
Q2
λ −

1

3
I − tr(Q3

λ)Qλ

)
: Φ dx ,

and (2.2) follows.

Step 4. Finally, if Qλ ∈ W 1,2(Ω;S4) satisfies (2.2), then (2.5) holds for every Φ0 ∈ C1
c (Ω;S0). In

view of (2.3), it implies that Qλ is indeed a critical point of Eλ. �

Remark 2.3. If a map Qλ ∈ W 1,2(Ω;S4) is a minimizer of Eλ among all Q ∈ W 1,2(Ω;S4) such
that Q − Qλ is compactly supported in Ω, then Qλ is a critical point of Eλ by the first order
condition for minimality. In particular, if Qλ is minimizing Eλ over AQb

(Ω), then Qλ satisfies (2.2)
(or equivalently (2.1)).

2.1. Monotonicity formulae. In this subsection, our goal is (essentially) to derive the afore
mentioned monotonicity formulae for certain critical points of Eλ. Concerning minimizers, such
formulae can be classically obtained by inner variations of the energy. However this argument can
not be used when considering energy minimizers over symmetric classes as we do in [15, 16]. To
circumvent this difficulty, we consider critical points of Eλ which can be (strongly) approximated
by critical points of a suitable Ginzburg-Landau functional in which the constraint to be S4-valued
is relaxed. In this way, the approximate solution is smooth enough to derive the monotonicity
formulae from the Euler-Lagrange equation, and we conclude by taking the limit in the approxi-
mation parameter. This procedure applies of course to minimizers (as we shall see in Section 3),
but also to the symmetric solutions of (1.16) considered in [15, 16]. Let us now describe it in
details.

Given a bounded open set Ω ⊆ R3, a reference map Qref ∈ AQb
(Ω) and a small parameter

ε ∈ (0, λ−1/2), we consider the energy functional GLε(Qref ; ·) defined over W 1,2(Ω;S0) by

GLε(Qref ;Q) := Eλ(Q) +
1

4ε2

∫
Ω

(1− |Q|2)2 dx+
1

2

∫
Ω

|Q−Qref |2 dx . (2.6)

If Qref can be achieved as a (strong) limit of critical points of GLε(Qref ; ·) when ε→ 0, then Qref

satisfies the monotonicity formulae stated in the following proposition.

Proposition 2.4. Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω;S4). Let Qref ∈ AQb
(Ω).

For each ε > 0, let Qε ∈W 1,2
Qb

(Ω;S0) be a critical point of the functional GLε(Qref ; ·). If

Qε−→
ε→0

Qref in L2(Ω) , and GLε(Qref ;Qε)−→
ε→0
Eλ(Qref) , (2.7)

then Qref satisfies

1) the Interior Monotonicity Formula:

1

r
Eλ(Qref , Br(x0))− 1

ρ
Eλ(Qref , Bρ(x0)) =∫

Br(x0)\Bρ(x0)

1

|x− x0|

∣∣∣∣ ∂Qref

∂|x− x0|

∣∣∣∣2 dx+ 2λ

∫ r

ρ

(
1

t2

∫
Bt(x0)

W (Qref) dx

)
dt (2.8)

for every x0 ∈ Ω and every 0 < ρ < r 6 dist(x0, ∂Ω);
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2) the Boundary Monotonicity Inequality: there exist two constants CΩ > 0 and rΩ > 0
(depending only on Ω) such that

1

r
Eλ(Qref , Br(x0) ∩ Ω)− 1

ρ
Eλ(Qref , Bρ(x0) ∩ Ω) > −(r − ρ)Kλ(Qb, Qref)

+

∫(
Br(x0)\Bρ(x0)

)
∩Ω

1

|x− x0|

∣∣∣∣ ∂Qref

∂|x− x0|

∣∣∣∣2 dx+ 2λ

∫ r

ρ

(
1

t2

∫
Bt(x0)∩Ω

W (Qref) dx

)
dt (2.9)

for every x0 ∈ ∂Ω and every 0 < ρ < r < rΩ, where

Kλ(Qb, Qref) := CΩ

(
‖∇tanQb‖2L∞(∂Ω) + λ‖W (Qb)‖L1(∂Ω) + ‖∇Qref‖2L2(Ω)

)
.

Proof. Step 1: Euler-Lagrange equation, regularity, and convergence. Since Qε is a critical point
of GLε(Qref ; ·) over W 1,2

Qb
(Ω;S0), it satisfies the Euler-Lagrange equation−∆Qε = λ

(
Q2
ε −

1

3
|Qε|2I −

1√
6
|Qε|2Qε

)
+

1

ε2
(1− |Qε|2)Qε − (Qε −Qref) in Ω ,

Qε = Qb on ∂Ω .
(2.10)

This equation can be easily derived from outer variations noticing that the term 1
3 |Qε|

2I corre-
sponds to the Lagrange multiplier associated to the traceless constraint and using the expression
(1.12) for the potential W . By the Sobolev embedding W 1,2(Ω) ↪→ L6(Ω), we have Qε ∈ L6(Ω),
which implies that ∆Qε ∈ L2(Ω). Note that the regularity assumption on Qb and ∂Ω ensures
that Qb admits a C1,1 extension (with values in S0) to the whole domain Ω (see the material in
Subsection 2.2). By elliptic regularity, we thus have Qε ∈W 2,2(Ω), see e.g. [22, Theorem 8.12]. In
particular, Qε ∈ W 1,6(Ω) and thus Qε ∈ L∞(Ω) by the Sobolev embedding W 1,6(Ω) ↪→ L∞(Ω).
Hence, ∆Qε ∈ L∞(Ω), and by elliptic regularity again, we have Qε ∈ C1,α(Ω) for every α ∈ (0, 1),
see e.g. [22, Theorem 8.34].

We now claim that assumption (2.7) implies that

Qε−→
ε→0

Qref strongly in W 1,2(Ω) , and
1

ε2

∫
Ω

(1− |Qε|2)2 dx−→
ε→0

0 .

Indeed, we first infer from (2.7) that {Qε}ε>0 remains bounded in W 1,2(Ω) as ε → 0. Therefore,
given an arbitrary sequence εn → 0, we have Qεn ⇀ Qref weakly in W 1,2(Ω). In particular,
Qεn → Qref in L4(Ω) by the compact Sobolev embedding W 1,2(Ω) ↪→ L4(Ω). As a consequence,∫

Ω
W (Qεn) dx →

∫
Ω
W (Qref) dx. On the other hand, by (2.7) and lower semi-continuity of the

Dirichlet integral, we have

Eλ(Qref) 6 lim inf
n→∞

Eλ(Qεn) 6 lim sup
n→∞

Eλ(Qεn)

6 lim
n→∞

(
Eλ(Qεn) +

1

4ε2
n

∫
Ω

(1− |Qεn |2)2 dx
)

= Eλ(Qref) .

Hence 1
ε2n

∫
Ω

(1 − |Qεn |2)2 dx → 0, and ‖∇Qεn‖L2(Ω) → ‖∇Qref‖L2(Ω). This latter fact, combined

with the W 1,2-weak convergence, implies the W 1,2-strong convergence of Qεn toward Qref .

Step 2: Interior Monotonicity Formula. Without loss of generality, we may assume that x0 = 0.
Let us take the inner product of (2.10) with (x · ∇)Qε, and integrate by parts over the ball Bt of
radius t ∈ (ρ, r). It yields

− 1

2

∫
Bt

|∇Qε|2 dx+
t

2

∫
∂Bt

|∇Qε|2 dH2 − λ
∫
Bt

W (Qε) dx+ λt

∫
∂Bt

W (Qε) dH2

− 1

4ε2

∫
Bt

(1−|Qε|2)2 dx+
t

4ε2

∫
∂Bt

(1−|Qε|2)2 dH2− 1

2

∫
Bt

|Qε−Qref |2 dx+
t

2

∫
∂Bt

|Qε−Qref |2 dH2

= t

∫
∂Bt

∣∣∣∂Qε
∂|x|

∣∣∣2 dH2 + 2λ

∫
Bt

W (Qε) dx+
1

2ε2

∫
Bt

(1− |Qε|2)2 dx

+

∫
Bt

|Qε −Qref |2 dx−
∫
Bt

(Qε −Qref) :
(
(x · ∇)Qref

)
dx .
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Dividing both sides by t2, we obtain

d

dt

(
1

t
GLε(Qref ;Qε, Bt)

)
=

1

t

∫
∂Bt

∣∣∣∂Qε
∂|x|

∣∣∣2 dH2 +
2λ

t2

∫
Bt

W (Qε) dx

+
1

2ε2t2

∫
Bt

(1− |Qε|2)2 dx+
1

t2

∫
Bt

|Qε −Qref |2 dx−
1

t2

∫
Bt

(Qε −Qref) :
(
(x · ∇)Qref

)
dx .

Integrating this identity between ρ and r yields

1

r
GLε(Qref ;Qε, Br)−

1

ρ
GLε(Qref ;Qε, Bρ) =

∫
Br\Bρ

1

|x|

∣∣∣∂Qε
∂|x|

∣∣∣2 dx
+ 2λ

∫ r

ρ

(
1

t2

∫
Bt

W (Qε) dx

)
dt+

1

2ε2

∫ r

ρ

(
1

t2

∫
Bt

(1− |Qε|2)2 dx

)
dt

+

∫ r

ρ

(
1

t2

∫
Bt

|Qε −Qref |2 dx
)
dt−

∫ r

ρ

(
1

t2

∫
Bt

(Qε −Qref) :
(
(x · ∇)Qref

)
dx

)
dt .

In view of the convergences established in Step 1, letting ε→ 0 in this last identity leads to (2.8).

Step 3: Boundary Monotonicity Inequality. We first claim that there exists a constant CΩ > 0
depending only on Ω such that∫

∂Ω

∣∣∣∂Qε
∂ν

∣∣∣2 dH2 6 CΩ

(
‖∇tanQb‖2L2(∂Ω) + λ‖W (Qb)‖L1(∂Ω)

+ ‖∇Qε‖2L2(Ω) + ‖∇Qref‖2L2(Ω) + ‖Qε −Qref‖2L2(Ω)

)
. (2.11)

To prove this estimate, let us introduce ΦΩ ∈ C2,α(Ω) the unique solution of{
−∆ΦΩ = 1 in Ω ,

ΦΩ = 0 on ∂Ω ,

see e.g. [22, Theorem 6.14]. We consider V : Ω→ R3 the C1,α-vector field given by V := −∇ΦΩ.
Note that V = (V · ν)ν on ∂Ω (since ΦΩ is constant on ∂Ω), where ν is outer unit normal on ∂Ω.
Taking the inner product of (2.10) with (V · ∇)Qε, and integrating by parts over Ω leads to

1

2

∫
∂Ω

∣∣∣∂Qε
∂ν

∣∣∣2(V · ν) dH2

+

∫
Ω

(1

2
|∇Qε|2 + λW (Qε) +

1

4ε2
(1− |Qε|2)2 +

1

2
|Qε −Qref |2

)
div(V ) dx

=
1

2

∫
∂Ω

|∇tanQb|2(V · ν) dH2 + λ

∫
∂Ω

W (Qb)(V · ν) dH2

+

∫
Ω

3∑
i,j=1

(∂iQε : ∂jQε)∂jVi dx+

∫
Ω

(Qε −Qref) : (V · ∇)Qref dx ,

since Qε = Qref = Qb on ∂Ω and |Qb| = 1. Using div(V ) = 1 in Ω, we deduce that∫
∂Ω

∣∣∣∂Qε
∂ν

∣∣∣2(V · ν) dH2 6 C‖V ‖C1(Ω)

(
‖∇tanQb‖2L2(∂Ω) + λ‖W (Qb)‖L1(∂Ω) + ‖∇Qε‖2L2(Ω)

+ ‖∇Qref‖2L2(Ω) + ‖Qε −Qref‖2L2(Ω)

)
,

for some universal constant C > 0. On the other hand, by the Hopf lemma, there is a constant
c0

Ω > 0 depending only on Ω such that V · ν > c0
Ω on ∂Ω, and (2.11) follows.

We now fix x0 ∈ ∂Ω. By the smoothness assumption on ∂Ω, there are two constants rΩ > 0
and c1

Ω > 0 (depending only Ω) such that for every t ∈ (0, rΩ),

H2
(
Bt(x0) ∩ ∂Ω

)
6 c1

Ωt
2 , and

∣∣(x− x0) · ν(x)
∣∣ 6 c1

Ωt
2 on Bt(x0) ∩ ∂Ω . (2.12)

In what follows, we assume without loss of generality that x0 = 0. Let us fix 0 < ρ < r < rΩ.
Taking once again the inner product of (2.10) with (x · ∇)Qε, we integrate the result by parts in
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Bt ∩ Ω with t ∈ (ρ, r). Similarly to Step 2, it yields (after dividing by t2)

d

dt

(
1

t
GLε(Qref ;Qε, Bt ∩ Ω)

)
=

1

t

∫
Ω∩∂Bt

∣∣∣∂Qε
∂|x|

∣∣∣2 dH2 +
2λ

t2

∫
Ω∩Bt

W (Qε) dx

+
1

2ε2t2

∫
Bt

(1− |Qε|2)2 dx+
1

t2

∫
Ω∩Bt

|Qε −Qref |2 dx−
1

t2

∫
Ω∩Bt

(Qε −Qref) :
(
(x · ∇)Qref

)
dx

− 1

2t2

∫
Bt∩∂Ω

|∇Qε|2(x · ν) dH2 +
1

t2

∫
Bt∩∂Ω

∂Qε
∂ν

:
(
(x · ∇)Qε

)
dH2

− λ

t2

∫
Bt∩∂Ω

W (Qb)(x · ν) dH2 . (2.13)

Note that we used once again Qε = Qref = Qb on ∂Ω, and |Qb| = 1. Next, if we denote by (τ1, τ2)
an orthonormal basis of the tangent space of ∂Ω at x, we have

− 1

2

∫
Bt∩∂Ω

|∇Qε|2(x · ν) dH2 +

∫
Bt∩∂Ω

∂Qε
∂ν

:
(
(x · ∇)Qε

)
dH2 =

1

2

∫
Bt∩∂Ω

∣∣∣∂Qε
∂ν

∣∣∣2(x · ν) dH2

− 1

2

∫
Bt∩∂Ω

∣∣∣∂Qb

∂τ1

∣∣∣2(x · ν) dH2 − 1

2

∫
Bt∩∂Ω

∣∣∣∂Qb

∂τ2

∣∣∣2(x · ν) dH2

+

∫
Bt∩∂Ω

∂Qε
∂ν

:
∂Qb

∂τ1
(x · τ1) dH2 +

∫
Bt∩∂Ω

∂Qε
∂ν

:
∂Qb

∂τ2
(x · τ2) dH2 .

Then we infer from (2.12) that

− 1

2

∫
Bt∩∂Ω

|∇Qε|2(x · ν) dH2 +

∫
Bt∩∂Ω

∂Qε
∂ν

:
(
(x · ∇)Qε

)
dH2 >

− CΩt
2
(
‖∂νQε‖2L2(∂Ω) + ‖∇tanQb‖2L∞(∂Ω)

)
, (2.14)

for a constant CΩ > 0 depending only on the constants rΩ and c1
Ω. Still by (2.12), we have∫

Bt∩∂Ω

W (Qb)(x · ν) dH2 6 CΩt
2

∫
∂Ω

W (Qb) dH2 . (2.15)

Inserting (2.14), (2.15), and (2.11) in (2.13), and integrating the resulting inequality between ρ
and r yields

1

r
GLε(Qref ;Qε, Br ∩ Ω)− 1

ρ
GLε(Qref ;Qε, Bρ ∩ Ω) > −(r − ρ)K̃λ(Qb, Qref , Qε)

+

∫
(Br\Bρ)∩Ω

1

|x|

∣∣∣∂Qε
∂|x|

∣∣∣2 dx+ 2λ

∫ r

ρ

(
1

t2

∫
Bt∩Ω

W (Qε) dx

)
dt

+
1

2ε2

∫ r

ρ

(
1

t2

∫
Bt∩Ω

(1− |Qε|2)2 dx

)
dt+

∫ r

ρ

(
1

t2

∫
Bt∩Ω

|Qε −Qref |2 dx
)
dt

−
∫ r

ρ

(
1

t2

∫
Bt∩Ω

(Qε −Qref) :
(
(x · ∇)Qref

)
dx

)
dt ,

where

K̃λ(Qb, Qref , Qε) := CΩ

(
‖∇tanQb‖2L∞(∂Ω) + λ‖W (Qb)‖L1(∂Ω)

+ ‖∇Qε‖2L2(Ω) + ‖∇Qref‖2L2(Ω) + ‖Qε −Qref‖2L2(Ω)

)
,

and CΩ > 0 is a constant depending only on rΩ, c1
Ω, (c0

Ω)−1‖∇ΦΩ‖C1(Ω), and the (2-dimensional)
measure of ∂Ω. In view of the convergences established in Step 1, letting ε → 0 in this last
inequality leads to (2.9). �

Remark 2.5 (Specific geometry [16]). In our companion paper [16], we consider a domain Ω and
a boundary condition Qb for which the following situation occurs: 0 ∈ ∂Ω, B1∩Ω = B1∩{x3 > 0},
and Qb is constant on B1 ∩ ∂Ω = B1 ∩ {x3 = 0}. In this situation, the boundary monotonicity
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inequality (2.9) for points on B1 ∩ ∂Ω becomes an equality of the following form: for every point
x0 ∈ B1 ∩ ∂Ω and every 0 < ρ < r < 1− |x0|,

1

r
Eλ(Qref , Br(x0) ∩ Ω)− 1

ρ
Eλ(Qref , Bρ(x0) ∩ Ω) =∫(

Br(x0)\Bρ(x0)
)
∩Ω

1

|x− x0|

∣∣∣∣ ∂Qref

∂|x− x0|

∣∣∣∣2 dx+ 2λ

∫ r

ρ

(
1

t2

∫
Bt(x0)∩Ω

W (Qref) dx

)
dt .

Indeed, it suffices to notice that (x − x0) · ν = 0 and ∇tanQb = 0 on B1 ∩ ∂Ω, and then use this
facts in identity (2.13).

One of the main consequences of the monotonicity formulae in Proposition 2.4 is a uniform
control of the energy in small balls. Recalling that Q̄b ∈ AQb

(Ω) is a given S4-valued extension to
the domain Ω of the boundary condition Qb, we have

Lemma 2.6. Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω;S4). If Qref ∈ AQb
(Ω) satisfies

the monotonicity formulae (2.8) and (2.9) with

Kλ(Qb, Qref) 6 CΩ

(
‖∇tanQb‖2L∞(∂Ω) + λ‖W (Qb)‖L1(∂Ω) + Eλ(Q̄b)

)
for some constant CΩ > 0 depending only on Ω, then

(1) for every x0 ∈ Ω and r ∈
(
0,dist(x0, ∂Ω)

)
,

sup
Bρ(x)⊆Br/2(x0)

1

ρ
Eλ
(
Qref , Bρ(x)

)
6

2

r
Eλ
(
Qref , Br(x0)

)
;

(2) there exist two constants r
(1)
Ω > 0 (depending only on Ω) and CλQb

(depending only on Ω,

Qb, λ‖W (Qb)‖L1(∂Ω), and Eλ(Q̄b)) such that for every x0 ∈ ∂Ω and r ∈ (0, r
(1)
Ω ),

sup
Bρ(x)⊆Br/6(x0)

1

ρ
Eλ
(
Qref , Bρ(x) ∩ Ω

)
6

4

r
Eλ
(
Qref , Br(x0) ∩ Ω

)
+ CλQb

r . (2.16)

Proof. Step 1: proof of (1). We assume without loss of generality that x0 = 0, and we consider an
arbitrary ball Bρ(x) ⊆ Br/2. By the interior monotonicity formula (2.8), we have

1

ρ
Eλ
(
Qref , Bρ(x)

)
6

1

ρ+ |x|
Eλ
(
Qref , Bρ+|x|(x)

)
6

1

ρ+ |x|
Eλ
(
Qref , B2(ρ+|x|)

)
6

2

r
Eλ
(
Qref , Br

)
,

and the claim is proved.

Step 2: proof of (2). We choose r
(1)
Ω ∈ (0, rΩ) (where rΩ is given by Proposition 2.4) in such a

way that the nearest point projection πΩ on ∂Ω is well defined in the r
(1)
Ω -tubular neighborhood of

∂Ω. Once again, we may assume that x0 = 0, and we consider Bρ(x) ⊆ Br/6. We now distinguish
different cases.

Assume first that x ∈ ∂Ω. Then, we deduce from the boundary monotonicity inequality (2.9)
that

1

ρ
Eλ
(
Qref , Bρ(x) ∩ Ω

)
6

1

ρ+ |x|
Eλ
(
Qref , Bρ+|x|(x) ∩ Ω

)
+ CλQb

|x|

6
1

ρ+ |x|
Eλ
(
Qref , B2(ρ+|x|) ∩ Ω

)
+ CλQb

r 6
2

r
Eλ
(
Qref , Br ∩ Ω

)
+ CλQb

r .

Next, for x 6∈ ∂Ω and |x− πΩ(x)| 6 ρ, we have 2ρ+ |πΩ(x)| 6 r/2 so that

1

ρ
Eλ
(
Qref , Bρ(x) ∩ Ω

)
6

1

ρ
Eλ
(
Qref , B2ρ(πΩ(x)) ∩ Ω

)
6

4

r
Eλ
(
Qref , Br ∩ Ω

)
+ CλQb

r ,

by the previous inequality.
Finally, for x ∈ Ω and |x− πΩ(x)| > ρ, we have Bρ(x) ⊆ Ω and thus

1

ρ
Eλ
(
Qref , Bρ(x)

)
6

1

|x− πΩ(x)|
Eλ
(
Qref , B|x−πΩ(x)|(x)

)
6

4

r
Eλ
(
Qref , Br ∩ Ω

)
+ CλQb

r ,

where we have used again the previous inequality, |x− πΩ(x)| 6 r/6, and |πΩ(x)| 6 r/6. �



TORUS-LIKE SOLUTIONS FOR THE LDG MODEL 15

Remark 2.7 (Specific geometry [16]). As already mentioned in Remark 2.5, we consider in our
companion paper [16] a situation where 0 ∈ ∂Ω, B1 ∩ Ω = B1 ∩ {x3 > 0}, Qb is constant on
B1 ∩ ∂Ω = B1 ∩ {x3 = 0}. In this case, if Qref ∈ AQb

(Ω) satisfies the boundary monotonicity
formula in Remark 2.5, then we can repeat the argument in Lemma 2.6 above to obtain

sup
Bρ(x)⊆B1/6

1

ρ
Eλ
(
Qref , Bρ(x) ∩ Ω

)
6 4Eλ

(
Qref , B1 ∩ Ω

)
(2.17)

instead of (2.16) (with x0 = 0 and r = 1).

2.2. Reflection across the boundary. To obtain regularity estimates at the boundary for crit-
ical points of Eλ in the class AQb

(Ω), we rely on arguments developed by C. Scheven in [53]. The
main idea is to construct a suitable reflection across the boundary taking into account the pre-
scribed boundary condition Qb in such a way that the reflected critical point satisfies an equation
similar in nature to (2.2) in a larger domain. Boundary regularity can then be treated as an interior
regularity problem. The aim of this subsection is to construct such reflection and to derive the
resulting equation in the extended domain. We proceed as follows.

We still assume that the boundary of the bounded open set Ω ⊆ R3 is of class C3. In this way,
we can find a small number δΩ > 0 such that the nearest point projection πΩ on ∂Ω is well defined
and of class C2 in the (2δΩ)-tubular neighborhood of ∂Ω (see e.g. [58, Chapter 2, Section 2.12.3]).
We set for δ ∈ (0, 2δΩ],

Uδ :=
{
x ∈ R3 : dist(x, ∂Ω) < δ

}
,

U ex
δ :=

{
x ∈ Uδ : (x− πΩ(x)) · ν(πΩ(x)) > 0

}
,

U in
δ := Uδ \ U ex

δ ,

where ν denotes the outer unit normal vector field on ∂Ω. Choosing δΩ smaller if necessary, we
can assume that

Ω ∩B2δΩ(x) = U in
2δΩ ∩B2δΩ(x) ∀x ∈ ∂Ω .

The geodesic reflection across ∂Ω is the involutive C2-diffeomorphism σΩ : U2δΩ → U2δΩ given by

σΩ(x) := 2πΩ(x)− x .

It satisfies

σΩ(U in
δ ) = U ex

δ ∀δ ∈ (0, 2δΩ) , and σΩ(x) = x ∀x ∈ ∂Ω .

Being involutive, its (matrix) differential satisfies

DσΩ(σΩ(x))DσΩ(x) = I ∀x ∈ U2δΩ . (2.18)

Moreover, for every x ∈ ∂Ω we have

DσΩ(x)v = 2px(v)− v ∀v ∈ R3 ,

where px denotes the orthogonal projection of R3 onto the tangent plane Tx(∂Ω), i.e., in this case
DσΩ(x) is the (linear) reflection across the tangent plane Tx(∂Ω). In particular,

DσΩ(x)
(
DσΩ(x)

)t
= DσΩ(x)DσΩ(x) = I ∀x ∈ ∂Ω , (2.19)

where I is the identity matrix. We now extend the domain Ω to the domain

Ω̂ := Ω ∪ UδΩ = Ω ∪ U ex
δΩ , (2.20)

and we simplify the notation by setting

U := UδΩ , U ex := U ex
δΩ , U in := U in

δΩ .

On the extended domain Ω̂, we consider the Lipschitz continuous field of symmetric 3×3-matrices

A(x) =
(
akl(x)

)3

k,l=1
:=

{∣∣J(σΩ(x))
∣∣DσΩ(σΩ(x))

(
DσΩ(σΩ(x))

)t
if x ∈ Ω̂ \ Ω ,

I otherwise ,
(2.21)

where J(σΩ) denotes the Jacobian determinant of σΩ. Note that the continuity of A across ∂Ω
follows from (2.19). In addition, (2.18) implies that A is uniformly elliptic, i.e.,

mΩI 6 A(x) 6MΩI ∀x ∈ Ω̂

in the sense of quadratic forms for some constants mΩ > 0 and MΩ > 0 depending only on Ω.



16 FEDERICO DIPASQUALE, VINCENT MILLOT, AND ADRIANO PISANTE

Let us now consider for any given (Q1, Q2) ∈ S0×S0 their tensor product Q1⊗Q2 as the linear
mapping Q1 ⊗Q2 : S0 → S0 defined by

(Q1 ⊗Q2)P := (P : Q2)Q1

for any P ∈ S0. The geodesic reflection on S4 ⊆ S0 with respect to a point N ∈ S4 is given by the
linear mapping (2N ⊗N − id), where id denotes the identity map on S0. Note that (2N ⊗N − id)
is simply the orthogonal symmetry with respect to 〈N〉 which is the identity along 〈N〉 and minus
the identity along any orthogonal direction to N . In particular, it is involutive, isometric, and
symmetric. Given a boundary data Qb ∈ C1,1(∂Ω;S4), we consider the mapping Σ : U → GL(S0)
of class C1,1 given by

Σ(x) := 2Qb

(
πΩ(x)

)
⊗Qb

(
πΩ(x)

)
− id .

Notice that by construction ∂νΣ ≡ 0 on ∂Ω, as ∂νπΩ(x) = 0 for any x ∈ ∂Ω.

With the help of Σ, we define the extension procedure of maps in AQb
(Ω) to the domain Ω̂ as

follows: to a map Q ∈ AQb
(Ω) we associate Q̂ ∈W 1,2(Ω̂;S4) given by

Q̂(x) :=

{
Q(x) if x ∈ Ω ,

Σ(x)Q(σΩ(x)) if x ∈ Ω̂ \ Ω .
(2.22)

Note that Q̂ indeed belongs to W 1,2(Ω̂) since ΣQ ◦ σΩ = ΣQ = ΣQb = Qb on ∂Ω.

B If no confusion arises, we shall simply write Q instead of Q̂ the extension of a map Q.

In what follows, we also denote for P,Q ∈W 1,2(Ω̂;S0),

〈∇P,∇Q〉A :=

3∑
i,j=1

(
A∇Pij

)
· ∇Qij =

3∑
k,l=1

akl∂kP : ∂lQ and |∇Q|2A := 〈∇Q,∇Q〉A ,

where A is the matrix field defined in (2.21).

We are now in position to present the equation satisfied by the extension to Ω̂ of a critical point
of Eλ in the class AQb

(Ω).

Proposition 2.8. Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω;S4). If Qλ ∈ AQb
(Ω) is a

critical point of Eλ, then

−div(A∇Qλ) = |∇Qλ|2AQλ +Gλ(x,Qλ,∇Qλ) in D ′(Ω̂) , (2.23)

where Gλ : Ω̂× S4 × (S0)3 → S0 is a Carathéodory3 map, and

|Gλ(x,Q, ξ)| 6 CQb

(
1 + λ+ |ξ|

)
∀(x,Q, ξ) ∈ Ω̂× S4 × (S0)3 , (2.24)

for a constant CQb
> 0 depending only on Ω and Qb.

The proof of Proposition 2.8 essentially rests on the following lemma.

Lemma 2.9. Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω;S4). If Qλ ∈ AQb
(Ω) is a critical

point of Eλ, then∫
Ω̂

〈∇Qλ,∇Φ〉A dx = λ

∫
Ω

Q2
λ : Φ dx

+ λ

∫
Uex

(
(QλΣQλ) : Φ

)
f(x) dx+

∫
Uex

F (x,Qλ,∇Qλ) : Φ dx (2.25)

for every Φ ∈ W 1,2(Ω̂;Qλ
∗TS4) compactly supported in Ω̂, where the function f : U ex → R is

continuous, the map F : U ex × S4 × (S0)3 → S0 is Carathéodory, and

0 6 f(x) 6 CΩ and
∣∣F (x,Q, ξ)

∣∣ 6 CQb
(1 + |ξ|) ∀(x,Q, ξ) ∈ U ex × S4 × (S0)3 ,

for some constants CΩ > 0 (depending only on Ω) and CQb
> 0 (depending only on Ω and Qb).

Proof. If Φ ∈ W 1,2(Ω̂;Qλ
∗TS4) is compactly supported in Ω, then (2.25) reduces to (2.1). There-

fore, it suffices to consider the case where Φ is compactly supported in U . Following the argument in
[53], we decompose Φ into its equivariant and anti-equivariant parts with respect to the involution
Φ(x)→ Σ(x)Φ(σΩ(x)), defined for x ∈ U by

Φe(x) :=
1

2

(
Φ(x) + Σ(x)Φ(σΩ(x))

)
and Φa(x) :=

1

2

(
Φ(x)−Σ(x)Φ(σΩ(x))

)
.

3G(·, Q, ξ) is measurable for every (Q, ξ) ∈ S4 × (S0)3, and G(x, ·, ·) is continuous for a.e. x ∈ Ω̂.
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Here equivariance is understood in terms of the joint reflections across the boundary and on S4.
Thus, one simply obtains

Φe(σΩ(x)) = Σ(x)Φe(x) and Φa(σΩ(x)) = −Σ(x)Φa(x) ∀x ∈ U .

We shall prove (2.25) for Φe and Φa separately, starting with Φa. To this purpose, we consider Qλ
as extended to the whole U as in (2.22) and we also introduce for x ∈ U ,

Q∗λ(x) := Qλ(σΩ(x)) = Σ(x)Qλ(x) .

We start from the identity

∫
Uex

〈∇Qλ,∇Φa〉A dx =

3∑
k,l=1

∫
Uex

akl∂k(ΣQ∗λ) : ∂lΦ
a dx

=

3∑
k,l=1

∫
Uex

akl(Σ∂kQ
∗
λ) : ∂lΦ

a dx+

3∑
k,l=1

∫
Uex

akl
(
(∂kΣ)Q∗λ

)
: ∂lΦ

a dx

=: I + II . (2.26)

To compute the II-term, we integrate by parts. Since A is the identity matrix on ∂Ω and ∂νΣ = 0
on ∂Ω, the boundary term vanishes, and we are left with

II = −
3∑

k,l=1

∫
Uex

∂l
[
akl(∂kΣ)Q∗λ

]
: Φa dx = −

3∑
k,l=1

∫
Uex

∂l
[
akl(∂kΣ)ΣQλ

]
: Φa dx

= −
3∑

k,l=1

∫
Uex

(∂lakl)
(
(∂kΣ)ΣQλ

)
: Φa dx−

3∑
k,l=1

∫
Uex

akl
(
(∂2
klΣ)ΣQλ

)
: Φa dx

−
3∑

k,l=1

∫
Uex

akl
(
(∂kΣ)(∂lΣ)Qλ

)
: Φa dx−

3∑
k,l=1

∫
Uex

akl
(
(∂kΣ)Σ∂lQλ

)
: Φa dx . (2.27)

Concerning the I-term, we use the anti-equivariance of Φa to derive

I =

3∑
k,l=1

∫
Uex

akl∂kQ
∗
λ : (Σ∂lΦ

a) dx

=

3∑
k,l=1

∫
Uex

akl∂kQ
∗
λ : ∂l(ΣΦa) dx−

3∑
k,l=1

∫
Uex

akl∂kQ
∗
λ :
(
(∂lΣ)Φa

)
dx

=−
3∑

k,l=1

∫
Uex

akl∂k(Qλ ◦ σΩ) : ∂l(Φ
a ◦ σΩ) dx−

3∑
k,l=1

∫
Uex

akl
(
(∂lΣ)∂k(ΣQλ)

)
: Φa dx

=−
3∑

k,l=1

∫
Uex

akl∂k(Qλ ◦ σΩ) : ∂l(Φ
a ◦ σΩ) dx−

3∑
k,l=1

∫
Uex

akl
(
(∂lΣ)(∂kΣ)Qλ

)
: Φa dx

−
3∑

k,l=1

∫
Uex

akl
(
(∂lΣ)Σ∂kQλ

)
: Φa dx . (2.28)
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Next we change variables in the first term of the last identity, and by (2.18) we obtain

−
3∑

k,l=1

∫
Uex

akl∂k(Qλ ◦ σΩ) : ∂l(Φ
a ◦ σΩ) dx = −

3∑
i,j=1

∫
Uex

A∇(Qλ,ij ◦ σΩ) · ∇(Φa
ij ◦ σΩ) dx

= −
3∑

i,j=1

∫
Uex

[
DσΩ(x)A(x)(DσΩ(x))t

]
∇Qλ,ij(σΩ(x)) · ∇Φa

ij(σΩ(x)) dx

= −
3∑

i,j=1

∫
Uex

∇Qλ,ij(σΩ(x)) · ∇Φa
ij(σΩ(x))

∣∣J(σΩ(x))
∣∣ dx

= −
3∑

i,j=1

∫
U in

∇Qλ,ij · ∇Φa
ij dx

= −
∫
U in

〈∇Qλ,∇Φa〉A dx . (2.29)

Since Σ2 = id, we have the identities everywhere (resp. a.e.) in U ,

(∂kΣ)Σ + Σ(∂kΣ) = 0 and (∂2
klΣ)Σ + (∂kΣ)(∂lΣ) + (∂lΣ)(∂kΣ) + Σ(∂2

klΣ) = 0 ,

so that gathering (2.26), (2.27), (2.28), and (2.29) yields∫
Uex

〈∇Qλ,∇Φa〉A dx = −
∫
U in

〈∇Qλ,∇Φa〉A dx

+

3∑
k,l=1

∫
Uex

Σ
((
akl∂

2
klΣ + ∂lakl∂kΣ

)
Qλ + 2akl(∂kΣ)∂lQλ

)
: Φa dx .

Consequently, ∫
U

〈∇Qλ,∇Φa〉A dx =

∫
Uex

F (x,Qλ,∇Qλ) : Φa dx (2.30)

with

F (x,Qλ,∇Qλ) :=

3∑
k,l=1

Σ(x)
((
akl(x)∂2

klΣ(x) + ∂lakl(x)∂kΣ(x)
)
Qλ + 2akl(x)∂kΣ(x)∂lQλ

)
.

Clearly, F : U ex×S4×(S0)3 → S0 is Carathéodory and it is sublinear in its third argument because
Σ ∈ C1,1 and |Qλ| 6 1 in U .

It now remains to perform the computations with the equivariant part Φe. First, we observe
that Φe = 0 on ∂Ω. Indeed, since the function (Qλ : Φ) belongs to W 1,1(U), it has a trace on ∂Ω,
and this trace is equal to the inner product of the traces on ∂Ω. Since (Qλ : Φ) = 0 in U , and
Qλ = Qb on ∂Ω, we infer that (Qb : Φ) = 0 on ∂Ω. Hence ΣΦ = −Φ on ∂Ω, which yields Φe = 0

on ∂Ω. As a consequence, Φe ∈W 1,2
0 (U in;S0). Moreover, for a.e. x ∈ U in,

Φe(x) : Qλ(x) =
1

2
Φ
(
σΩ(x)

)
:
(
Σ(x)Qλ(x)

)
=

1

2
Φ
(
σΩ(x)

)
: Qλ

(
σΩ(x)

)
= 0 ,

and thus Φe ∈ W 1,2
0 (U in;Qλ

∗TS4). Thanks to the regularity of ∂Ω, (2.1) holds for every test

functions in W 1,2
0 (Ω;Qλ

∗TS4) by approximation. Therefore,∫
U in

〈∇Qλ,∇Φe〉A dx =

∫
U in

∇Qλ : ∇Φe dx = λ

∫
U in

Q2
λ : Φe dx . (2.31)

Next, from the definition of Q∗λ we have an identity analogous to (2.26), namely∫
Uex

〈∇Qλ,∇Φe〉A dx =
3∑

k,l=1

∫
Uex

akl(Σ∂kQ
∗
λ) : ∂lΦ

e dx+

3∑
k,l=1

∫
Uex

akl
(
(∂kΣ)Q∗λ

)
: ∂lΦ

e dx

=: III + IV . (2.32)

The computations of IV are identical to the ones of II in (2.27), with Φe instead of Φa. Similarly,
we can compute III in a way similar to (2.28), thus using the equivariance of Φe and the change
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of variable as in (2.29) we obtain

III =

3∑
k,l=1

∫
Uex

akl∂k(Qλ ◦ σΩ) : ∂l(Φ
e ◦ σΩ) dx−

3∑
k,l=1

∫
Uex

akl
(
(∂lΣ)(∂kΣ)Qλ

)
: Φe dx

−
3∑

k,l=1

∫
Uex

akl
(
(∂lΣ)Σ∂kQλ

)
: Φe dx

=

∫
U in

〈∇Qλ,∇Φe〉A dx −
3∑

k,l=1

∫
Uex

akl
(
(∂lΣ)(∂kΣ)Qλ

)
: Φe dx (2.33)

−
3∑

k,l=1

∫
Uex

akl
(
(∂lΣ)Σ∂kQλ

)
: Φe dx (2.34)

Summing up the contributions for III and IV , in view of the identities for Σ and its derivatives
we infer∫

Uex

〈∇Qλ,∇Φe〉A dx =

∫
U in

〈∇Qλ,∇Φe〉A dx+

∫
Uex

F (x,Qλ,∇Qλ) : Φe dx , (2.35)

with the same F as in (2.30).
Combining (2.31) and (2.35) leads to∫

U

〈∇Qλ,∇Φe〉A dx = 2λ

∫
U in

Q2
λ : Φe dx+

∫
Uex

F (x,Qλ,∇Qλ) : Φe dx . (2.36)

Finally, summing (2.30) with (2.36), we are led to∫
U

〈∇Qλ,∇Φ〉A dx = 2λ

∫
U in

Q2
λ : Φe dx+

∫
Uex

F (x,Qλ,∇Qλ) : Φ dx

= λ

∫
U in

Q2
λ : Φ dx+ λ

∫
U in

Q2
λ : (ΣΦ ◦ σΩ) dx

+

∫
Uex

F (x,Qλ,∇Qλ) : Φ dx . (2.37)

Changing variables once again, we derive∫
U in

Q2
λ : (ΣΦ ◦ σΩ) dx =

∫
U in

[
ΣQ2

λ(σΩ(x))
]

: Φ(σΩ(x)) dx

=

∫
Uex

(
(ΣQ2

λ) : Φ
)
f(x) dx , (2.38)

with f := |J(σΩ)|. Combining (2.37) and (2.38), the conclusion follows. �

Proof of Proposition 2.8. Starting from Lemma 2.9, we proceed as in the proof of Proposition 2.2.

Given Φ ∈ C∞c
(
Ω̂; M sym

3×3 (R)
)
, we consider Φ0 := Φ− 1

3 (Φ : I)I ∈ C∞c
(
Ω̂;S0

)
and

Φ∗ := Φ0 − (Qλ : Φ0)Qλ ∈W 1,2(Ω̂;Qλ
∗TS4) .

Since Φ∗ is compactly supported in Ω̂, (2.25) applies. On the other hand, direct computations
yield ∫

Ω̂

〈∇Qλ,∇Φ∗〉A dx =

∫
Ω̂

〈∇Qλ,∇Φ0〉A dx−
∫

Ω̂

|∇Qλ|2AQλ : Φ0 dx

=

∫
Ω̂

〈∇Qλ,∇Φ〉A dx−
∫

Ω̂

|∇Qλ|2AQλ : Φ dx , (2.39)

and

λ

∫
Ω

Q2
λ : Φ∗ dx+ λ

∫
Uex

(
(ΣQ2

λ) : Φ∗
)
f(x) dx+

∫
Uex

F (x,Qλ,∇Qλ) : Φ∗ dx

=

∫
Ω̂

Gλ(x,Qλ,∇Qλ) : Φ dx , (2.40)
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with

Gλ(x,Qλ,∇Qλ) := λχΩ(x)
[
Q2
λ −

1

3
I − tr(Q3

λ)Qλ

]
+ λχUex(x)f(x)

[
ΣQ2

λ −
1

3
tr(ΣQ2

λ)I − tr
(
ΣQ3

λ

)
Qλ

]
+ χUex(x)

[
F (x,Qλ,∇Qλ)− 1

3
tr
(
F (x,Qλ,∇Qλ)

)
I − tr

(
F (x,Qλ,∇Qλ)Qλ

)
Qλ

]
.

Combining (2.25), (2.39), and (2.40) leads to the conclusion. �

Before closing the subsection, we provide a counterpart to Lemma 2.6 for reflected maps.

Lemma 2.10. Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω;S4). Let Qref ∈ AQb
(Ω) satisfying

conclusion (2.16) in Lemma 2.6. There exist two constants r
(2)
Ω > 0 and κ = κΩ ∈ (0, 1) depending

only on Ω such that for every x0 ∈ ∂Ω and r ∈ (0, r
(2)
Ω ),

sup
Bρ(x)⊆Bκr(x0)

1

ρ

∫
Bρ(x)

|∇Q̂ref |2 dx 6
CΩ

r
Eλ
(
Qref , Br(x0) ∩ Ω

)
+ CλQb

r , (2.41)

where CΩ > 0 only depends on Ω, and CλQb
> 0 only depends on Ω, Qb, λ‖W (Qb)‖L1(∂Ω), and

Eλ(Q̄b).

Proof. Set κ := 1
6 min(‖DσΩ‖−1

L∞(U), 1), and r
(2)
Ω := min(r

(1)
Ω , δΩ), where r

(1)
Ω > 0 is given by

Lemma 2.6. Given a point x0 ∈ ∂Ω and a radius r ∈ (0, r
(2)
Ω ), we apply (2.16) to estimate in a ball

Bρ(x) ⊆ Bκr(x0),

1

ρ

∫
Bρ(x)

|∇Q̂ref |2 dx =
1

ρ

∫
Bρ(x)∩Ω

|∇Qref |2 dx+
1

ρ

∫
Bρ(x)∩Uex

|∇Q̂ref |2 dx

6
4

r
Eλ(Qref , Br(x0) ∩ Ω) +

1

ρ

∫
Bρ(x)∩Uex

|∇Q̂ref |2 dx+ CλQb
r . (2.42)

Using the facts that Σ(x) is isometric for every x ∈ U and |Qref | = 1, we estimate∫
Bρ(x)∩Uex

|∇Q̂ref |2 dx =

∫
Bρ(x)∩Uex

∣∣∇(ΣQref ◦ σΩ)
∣∣2 dx

6 2

∫
Bρ(x)∩Uex

∣∣∇(Qref ◦ σΩ)
∣∣2 dx+ CQb

ρ3 6 CΩ

∫
σΩ(Bρ(x))∩U in

|∇Qref |2 dx+ CQb
ρ3 ,

where the last inequality follows from a change of variables. Setting y := σΩ(x), we observe that
σΩ(Bρ(x)) ∩ U in ⊆ Bρ/(6κ)(y) ∩ U in and Bρ/(6κ)(y) ⊆ Br/6(x0), and consequently

1

ρ

∫
Bρ(x)∩Uex

|∇Q̂ref |2 dx 6
CΩ

ρ

∫
Bρ/(6κ)(y)∩Ω

|∇Qref |2 dx+ CQb
ρ2

6
CΩ

r
Eλ(Qref , Br(x0) ∩ Ω) + CλQb

r , (2.43)

thanks again to (2.16). The result now follows from (2.42) and (2.43). �

Remark 2.11 (Specific geometry [16]). Recall from Remark 2.7 that we shall consider in [16] the
following situation: 0 ∈ ∂Ω, B1∩Ω = B1∩{x3 > 0}, and Qb is constant on B1∩∂Ω = B1∩{x3 = 0}.
In this case, Σ is constant in B1, and σΩ(x) = (x1, x2,−x3) =: x̄ for every x = (x1, x1, x3) ∈ B1.

Hence |∇Q̂ref(x)|2 = |∇Qref(x̄)|2 for every x ∈ B1 ∩ {x3 < 0}. As a consequence, if Qref satisfies
conclusion (2.17) in Remark 2.7, then

sup
Bρ(x)⊆B1/6

1

ρ
Eλ
(
Q̂ref , Bρ(x)

)
6 8Eλ

(
Qref , B1 ∩ Ω

)
,

instead of (2.41) (with x0 = 0 and r = 1).
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2.3. The ε-regularity theorem. In this subsection, we present the main regularity estimate
which provides local Hölder regularity for weak solutions of (2.2) under a smallness assumption on
the energy. To treat interior and boundary estimates in a unified way, we consider the case of a
general system with diagonal principal part, corresponding to the scalar operator Lv = −div(A∇v),
as it appears in Proposition 2.8.

Theorem 2.12. Let r0 ∈ (0, 1] and A : Br0 → M sym
3×3 (R) be a Lipschitz field of symmetric

matrices, and assume that A is uniformly elliptic (i.e., mI 6 A 6 MI for some constants m > 0
and M > 0). Let Q ∈W 1,2(Br0 ;S4) and G ∈ L2(Br0 ;S0) be such that

−div(A∇Q) = |∇Q|2AQ+G in D ′(Br0) . (2.44)

There exist two constants εA > 0 and CA > 0, and an exponent α = α(A) ∈ (0, 1) depending only
on the Lipschitz norm of A in Br0 and the ellipticity bounds m and M such that the condition

sup
Br(x̄)⊆Br0

(
1

r

∫
Br(x̄)

|∇Q|2 dx+ r

∫
Br(x̄)

|G|2 dx

)
6 εA (2.45)

implies Q ∈ C0,α(Br0/2) with [Q]C0,α(Br0/2) 6 CAr
−α
0 .

We postpone the proof of this theorem as we require some preliminary lemmas. To this purpose,
let us first recall the notion of function of bounded mean oscillation. Given an open ball B ⊆ Rd,
a function u ∈ L1(B) belongs to the space BMO(B) if

‖u‖BMO(B) := sup
Bρ(y)⊆B

−
∫
Bρ(y)

∣∣∣u−−∫
Bρ(y)

u
∣∣∣ dx < +∞ ,

where the supremum is taken over closed balls Bρ(y) as above. Analogously, for p > 1 a function
u ∈ Lp(B) belongs to the space BMOp(B) if

‖u‖pBMOp(B) := sup
Bρ(y)⊆B

−
∫
Bρ(y)

∣∣∣u−−∫
Bρ(y)

u
∣∣∣p dx < +∞ ,

where as above the supremum is taken over closed balls Bρ(y). It is well known that taking closed

cubes inside B or closed balls Bρ(y) such that B2ρ(y) ⊆ B gives equivalent definitions where the
previous quantities are equivalent norms (see [60]).

A first ingredient coming into play is the classical John-Nirenberg inequality, see e.g. [25,
Chapter 19].

Lemma 2.13 (John-Nirenberg inequality). For every 1 < p <∞, there exists a constant Cp > 1
depending only on p and the dimension such that

1

Cp
‖u‖pBMO(B) 6 ‖u‖

p
BMOp(B) 6 Cp‖u‖

p
BMO(B)

for every u ∈ BMO(B).

The second result is a standard scaling-invariant local regularity estimate for solutions of linear
elliptic PDE’s. Since the result is standard but we were not able to find a reference in the literature
we sketch the proof for the reader’s convenience.

Lemma 2.14. For d > 3, let A : Ω̃ ⊆ Rd →Md×d(R) be a Lipschitz field of symmetric matrices,

and assume that A is uniformly elliptic (i.e., mI 6 A 6 MI in Ω̃ for some constants m > 0 and

M > 0). Let f ∈ L2(Ω̃;Rd), g ∈ L2(Ω̃) and for each Br ⊆ Ω̃, 0 < r 6 1, consider u ∈ W 1,2
0 (Br)

the (unique) weak solution of {
−div(A∇u) = div f + g in Br ,

u = 0 on ∂Br .

For every q ∈ ( d
d−1 , 2), there exists a constant CA = CA(q) depending only on q, d and the Lipschitz

norm of A in Ω̃ (i.e., not on the radius r) such that

‖∇u‖Lq(Br) 6 CA
(
‖f‖Lq(Br) + ‖g‖

L
dq
d+q (Br)

)
.
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Proof. (Sketch) Since all the norms in the inequality have the same scaling properties and the
Lipschitz norm of A is decreasing under scaling with factor r 6 1 we may assume r = 1. Then the
estimate for q = 2 just follows testing with u, integrating by parts and using Sobolev inequality.
The case q ∈ (2, d) follows from the case q = 2 and the combination of [22, Theorem 9.15] for the
case f ≡ 0 with [23, Theorem 10.17] for the case g ≡ 0. Finally, standard duality arguments give
the desired conclusion in the dual range of exponents q ∈ ( d

d−1 , 2). �

The final ingredient is the following local gradient estimate for A−harmonic functions.

Lemma 2.15. For d > 2, let A : Ω̃ ⊆ Rd →Md×d(R) be a Lipschitz field of symmetric matrices,

and assume that A is uniformly elliptic (i.e., mI 6 A 6 MI in Ω̃ for some constants m > 0 and

M > 0). If Br ⊆ Ω̃, 0 < r 6 1, and u ∈W 1,2(Br) satisfies in the weak sense

−div(A∇u) = 0 in Br , (2.46)

then u ∈ C1(Br) and

sup
Br/4

|∇u|2 6 CA
r2
−
∫
∂Br

|u− ξ|2 dx ∀ξ ∈ R ,

for some constant CA > 0 depending only on d and the Lipschitz norm of A in Ω̃ (i.e., not on the
radius r).

Proof. Since u − ξ also solves (2.46), we may assume that ξ = 0. By standard elliptic regular-
ity theory, u is of class C1,α locally inside Br, and the following estimate holds (see e.g. [21,
Theorem 5.19])

sup
Br/4

|∇u|2 6 CA−
∫
Br/2

|∇u|2 dx .

On the other hand, Caccioppoli’s inequality (see e.g. [21, Theorem 4.4]) yields∫
Br/2

|∇u|2 dx 6 CA
r2

∫
Br

|u|2 dx ,

so that

sup
Br/4

|∇u|2 6 CA
r2
−
∫
Br

|u|2 dx . (2.47)

Next we observe that |u|2 ∈W 1,1(Br) satisfies (in the W−1,1-sense)

−div(A∇|u|2) = −2(A∇u) · ∇u 6 0 in Br . (2.48)

According to [22, Theorem 9.15], there exists a unique strong solution ϕ of{
−div(A∇ϕ) = 1 in Br ,

ϕ = 0 on ∂Br ,

which belongs to W 2,p(Br) for every p < ∞. In particular, ϕ ∈ C1(Br) by Sobolev embedding
whenever p > d, and an elementary scaling argument (using r 6 1) leads to

‖∇ϕ‖L∞(Br) 6 CAr , (2.49)

for some constant CA > 0 depending only on d and the Lipschitz norm of A in Ω̃ (and independent
of r). Moreover, ϕ > 0 in Br by the maximum principle.

Next we write |u|2 = −|u|2div(A∇ϕ), and we integrate by parts over Br to obtain∫
Br

|u|2 dx =

∫
Br

(A∇|u|2) · ∇ϕdx−
∫
∂Br

|u|2(A∇ϕ) · ν dx 6 CAr
∫
∂Br

|u|2 dx , (2.50)

thanks to (2.48) and (2.49). Gathering (2.47) and (2.50) yields the announced conclusion. �

Proof of Theorem 2.12. We start with some useful pointwise identities which hold a.e. in the
domain and which allow to perform the so-called Helein’s trick and rewrite the quadratic term in
the right hand side of (2.44) in divergence form.

From the identity |Q|2 = 1, we first infer that Q : ∂kQ = 0 for each k ∈ {1, 2, 3}. As a
consequence,

3∑
k,l=1

Qkl(A∇Qij) · ∇Qkl = 0 ∀i, j ∈ {1, 2, 3} ,
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which in turn implies that

|∇Q|2AQij =

3∑
k,l=1

Qij(A∇Qkl) · ∇Qkl =

3∑
k,l=1

Bklij · ∇Qkl ,

with the vector fields

Bklij := Qij(A∇Qkl)−Qkl(A∇Qij) ∈ L2(Br0 ;R3) , i, j, k, l ∈ {1, 2, 3} . (2.51)

We now claim that in view of the previous pointwise identities for every i, j, k, l ∈ {1, 2, 3},

divBklij = GklQij −GijQkl in D ′(Br0) . (2.52)

Indeed, given a test function ϕ ∈ D(Br0), we integrate by parts using equation (2.44) to obtain∫
B1

Bklij · ∇ϕdx =

∫
B1

(A∇Qkl) · ∇(Qijϕ) dx−
∫
B1

(A∇Qij) · ∇(Qklϕ) dx

=

∫
B1

GklQijϕdx−
∫
B1

GijQklϕdx ,

and the claim follows.
We may now write in the sense of distributions

Bklij · ∇Qkl = div
(
QklB

kl
ij

)
+Q2

klGij −GklQklQij ,

in such a way that for each i, j ∈ {1, 2, 3}

−div(A∇Qij) = div(Q : Bij) + (Q : Q)Gij − (G : Q)Qij in W−1,2(Br0) ,

where Bij ∈ L2(Br0 ; (S0)3) are matrix-valued vector fields given by Bij := (Bklij )3
k,l=1 as defined in

(2.51).

Finally, if T ∈ S0 is a constant matrix, we have for every i, j ∈ {1, 2, 3},

−div(A∇Qij) = div
(
(Q− T ) : Bij

)
+ Fij in W−1,2(Br0) , (2.53)

with Fij := (Q : (Q− T ))Gij − (G : (Q− T ))Qij ∈ L2(Br0).

Let σ ∈ (0, 1/8] be a constant to be specified later. We fix x0 ∈ Br0/2 and t ∈ (0, r0/2) such
that Bt(x0) ⊆ Br0 , and then arbitrary x̄ ∈ Bσt(x0) and r ∈ (0, t) such that Bσr(x̄) ⊆ Bσt(x0).
Note that Br(x̄) ⊆ Bt(x0) ⊆ Br0 , and thus assumption (2.45) yields

sup
0<ρ6r

(
1

ρ

∫
Bρ(x̄)

|∇Q|2 dx+ ρ

∫
Bρ(x̄)

|G|2 dx

)
6 εA . (2.54)

Define

T := −
∫
Br(x̄)

Qdx ∈ S0 .

By a standard average argument based on Fubini’s theorem, we can find a good radius r̄ ∈ (r/2, r)
for which ∫

∂Br̄(x̄)

|Q− T |2 dH2 6
4

r

∫
Br(x̄)

|Q− T |2 dx . (2.55)

Since Q ∈W 1/2,2
(
∂Br̄(x̄);S0

)
, there exists a unique H ∈W 1,2(Br̄(x̄);S0) satisfying{
−div(A∇H) = 0 in Br̄(x̄) ,

H = Q on ∂Br̄(x̄) .
(2.56)

In addition, applying Lemma 2.15 with Ω̃ = Br0we infer that H belongs to C1(Br̄(x̄)) and that

sup
Br̄/4(x̄)

|∇H|2 6 CA
r̄2
−
∫
∂Br̄(x̄)

|H − T |2 dH2 =
CA
r̄2
−
∫
∂Br̄(x̄)

|Q− T |2 dH2 6
CA
r2
−
∫
Br(x̄)

|Q− T |2 dx ,

(2.57)
thanks to our choice of r̄ made in (2.55).

By (2.53) and (2.56), the map Q−H has components which solve{
−div(A∇(Qij −Hij)) = div

(
(Q− T ) : Bij

)
+ Fij in W−1,2(Br̄(x̄)) ,

Qij −Hij = 0 on ∂Br̄(x̄) ,
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and our aim now is to apply Lemma 2.14. To this purpose, let us fix the exponents

q ∈ (3/2, 2) and s :=
3q

3 + q
∈ (1, 6/5) .

(One can choose for instance q = 7/4.) Using the identity |Q| = 1 and Hölder’s inequality, we
estimate with the help of (2.54),

‖(Q− T ) : Bij‖Lq(Br̄(x̄)) 6 ‖Bij‖L2(Br̄(x̄))‖Q− T‖
L

2q
2−q (Br̄(x̄))

6 CA‖∇Q‖L2(Br̄(x̄))‖Q− T‖
L

2q
2−q (Br̄(x̄))

6 CA(εAr̄)
1/2‖Q− T‖

L
2q

2−q (Br̄(x̄))
,

as well as

‖Fij‖Ls(Br̄(x̄)) 6 C‖G‖L2(Br̄(x̄))‖Q− T‖
L

6q
6−q (Br̄(x̄))

6 C(εA/r̄)
1/2‖Q− T‖

L
6q

6−q (Br̄(x̄))

6 C(εAr̄)
1/2‖Q− T‖

L
2q

2−q (Br̄(x̄))
.

According to Lemma 2.14, we thus have

‖∇(Q−H)‖Lq(Br̄(x̄)) 6 CA(εAr̄)
1/2‖Q− T‖

L
2q

2−q (Br̄(x̄))
.

Since r̄ ∈ (r/2, r), the previous estimate and the Sobolev inequality in W 1,p
0 (Br̄(x̄)) yield

(
−
∫
Br̄(x̄)

|Q−H|p dx

)1/p

6
C

r̄3/p
‖∇(Q−H)‖Lq(Br̄(x̄))

6 CAε
1/2
A

(
−
∫
Br(x̄)

|Q− T |
2q

2−q dx

) 2−q
2q

, (2.58)

where p := q∗ = 3q
3−q > 2 is the Sobolev exponent. Next we set

H := −
∫
Bσr(x̄)

H dx and Q := −
∫
Bσr(x̄)

Qdx ,

and we infer from (2.57) and Hölder’s inequality, as r̄ ∈ (r/2, r) and 2q
2−q > 2, that

(
−
∫
Bσr(x̄)

|H −H|p dx

)1/p

6 Cσr sup
Br̄/4(x̄)

|∇H| 6 CAσ

(
−
∫
Br(x̄)

|Q− T |
2q

2−q dx

) 2−q
2q

. (2.59)

In view of (2.58) and (2.59), as r̄ ∈ (r/2, r) we may now deduce from Minkowski’s inequality and
the John-Nirenberg inequality in Lemma 2.13 that(

−
∫
Bσr(x̄)

|Q−H|p dx

)1/p

6 Cσ−3/p

(
−
∫
Br̄(x̄)

|Q−H|p dx

)1/p

+

(
−
∫
Bσr(x̄)

|H −H|p dx

)1/p

6 CA
(
σ−3/pε

1/2
A + σ

)(
−
∫
Br(x̄)

|Q− T |
2q

2−q dx

) 2−q
2q

6 CA
(
σ−3/pε

1/2
A + σ

)
‖Q‖BMO(Bt(x0)) . (2.60)
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It now follows from (2.58) and (2.60) together with Hölder’s inequality and the John-Nirenberg
inequality again that

−
∫
Bσr(x̄)

|Q−Q| dx 6 −
∫
Bσr(x̄)

|Q−H| dx+ |H −Q|

6 −
∫
Bσr(x̄)

|Q−H| dx+−
∫
Bσr(x̄)

|Q−H| dx

6

(
−
∫
Bσr(x̄)

|Q−H|p dx

)1/p

+ Cσ−3/p

(
−
∫
Br̄(x̄)

|Q−H|p dx

)1/p

6 CA
(
σ−3/pε

1/2
A + σ

)
‖Q‖BMO(Bt(x0)) .

Finally, taking the supremum over x̄ and r, we conclude that

‖Q‖BMO(Bσt(x0)) 6 CA
(
σ−3/pε

1/2
A + σ

)
‖Q‖BMO(Bt(x0)) .

We then choose σ ∈ (0, 1/8] and εA > 0 small enough (depending only on A) in such a way that

‖Q‖BMO(Bσt(x0)) 6
1

2
‖Q‖BMO(Bt(x0)) .

In view of the arbitrariness of t ∈ (0, r0/2), the inequality above holds for every t ∈ (0, r0/2). A
classical iteration argument on the function t 7→ ‖Q‖BMO(Bt(x0)) then shows that

‖Q‖BMO(Bt(x0)) 6 ‖Q‖BMO(Br0/2(x0))2
αr−α0 tα 6 2α+1r−α0 tα ∀t ∈ (0, r0/2) , (2.61)

where α ∈ (0, 1/3) is determined by σα = 1/2 (note that we have used the fact that |Q| = 1 in the
second inequality). In particular, (2.61) leads to

−
∫
Bt(x0)

∣∣∣Q−−∫
Bt(x0)

Qdy
∣∣∣ dx 6 Cr−α0 tα ∀t ∈ (0, r0/2) .

In view of the arbitrariness of x0 ∈ Br0/2, it implies that Q ∈ C0,α(Br0/2) with the announced
estimate by Campanato’s criterion, see e.g. [42, Theorem 6.1]. �

Applying Theorem 2.12 to our main equation (2.2) yields the following interior regularity esti-
mate.

Corollary 2.16. Let Qλ ∈W 1,2(Br0 ;S4) be such that

−∆Qλ = |∇Qλ|2Qλ + λ
(
Q2
λ −

1

3
I − tr(Q3

λ)Qλ

)
in D ′(Br0) .

There exist two universal constants εin > 0 and rin > 0 such that for every ball Br(x0) ⊆ Br0 of
radius 0 < r < rin(1 + λ)−1/2, the condition

sup
Bρ(x)⊆Br(x0)

1

ρ

∫
Bρ(x)

|∇Qλ|2 dx 6 εin

implies Qλ ∈ C0,α(Br/2(x0)) with [Qλ]C0,α(Br/2(x0)) 6 Cr−α for some constants α ∈ (0, 1) and
C > 0 independent of λ.

Proof. Since Qλ is a weak solution of(1.16), it solves (2.44) in Br(x0) with the matrix A = I, and
G := λ

(
Q2
λ − 1

3I − tr(Q3
λ)Qλ

)
. The map Qλ being S4-valued, we have

sup
Bρ(x)⊆Br(x0)

ρ

∫
Bρ(x)

|G|2 dx 6 C r4
inλ

2

(1 + λ)2
6 Cr4

in ,

for some universal constant C > 0. Hence, we can choose εin and rin small enough in such a way
that (2.45) holds (with εA = εI), and the conclusion follows from Theorem 2.12. �

Concerning boundary regularity estimates under a Dirichlet boundary condition, we apply the
refection procedure of the previous subsection, and then Theorem 2.12 to equation (2.23).

Corollary 2.17. Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω; S4). Let Qλ ∈ AQb
(Ω) be a

critical point of Eλ, and Q̂λ its extension to Ω̂ given by (2.22). There exist two constants εbd > 0
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and rbd > 0 depending only on Ω and Qb such that for every ball Br(x0) ⊆ Ω̂ with x0 ∈ ∂Ω and
0 < r < rbd(1 + λ)−1/2, the condition

sup
Bρ(x)⊆Br(x0)

1

ρ

∫
Bρ(x)

|∇Q̂λ|2 dx 6 εbd

implies Q̂λ ∈ C0,α(Br/2(x0)) with [Q̂λ]C0,α(Br/2(x0)) 6 CQb
r−α for some constants α ∈ (0, 1) and

CQb
> 0 depending only on Ω and Qb (and not on λ).

Proof. By Proposition 2.8, Q̂λ solves (2.44) in Br(x0) with the matrix field A given by (2.21),

and the map G given by G := Gλ(·, Q̂λ,∇Q̂λ) where Gλ satisfies the growth condition (2.24). In
particular,

sup
Bρ(x)⊆Br(x0)

ρ

∫
Bρ(x)

|G|2 dx 6 CQb
sup

Bρ(x)⊆Br(x0)

ρ

∫
Bρ(x)

(
(1 + λ)2 + |∇Q̂λ|2

)
dx

6 CQb
r2

bd

(
r2

bd + εbd

)
,

for a constant CQb
> 0 depending only on Ω and Qb. Hence, we can choose εbd and rbd small

enough in such a way that (2.45) holds, and the conclusion follows from Theorem 2.12. �

2.4. Higher order regularity. In this subsection, we improve Hölder continuity estimates from
the previous one into Lipschitz estimates. Finally, we deduce analytic regularity both in the interior
and at the boundary, whenever boudary data permit.

Proposition 2.18. Let r ∈ (0, 1] and let A : Br → M sym
3×3 (R) be a Lipschitz field of symmetric

matrices. Assume that A is uniformly elliptic, i.e., mI 6 A 6MI for some constants m > 0 and
M > 1. Let G : Br × S4 × (S0)3 → S0 be a Carathéodory map satisfying

|G(x, q, ξ)| 6 C∗(Λ + |ξ|2) ∀(x, q, ξ) ∈ Br × S4 × (S0)3 , (2.62)

for some constants Λ > 0 and C∗ > 0. Let Q ∈W 1,2(Br;S4) be such that

−div(A∇Q) = G(x,Q,∇Q) in D ′(Br) .

If Q ∈ C0,α(Br) for some α ∈ (0, 1) and [Q]C0,α(Br) 6 κr−α, then Q ∈W 1,∞(Br/2) and

r2‖∇Q‖2L∞(Br/2) 6 C

(
1

r

∫
Br

|∇Q|2 dx+ Λr2

)
,

for some constant C > 0 depending only on ‖A‖Lip(Br), m, M , C∗, α, and κ.

Proof. Let us fix an arbitrary point x0 ∈ Br/2, and set A0 := A(x0), r1 := r/(2
√
M) < 1. We

change variables by setting for x ∈ Br1 (so that A
1/2
0 x+ x0 ∈ Br/2(x0)),

Q̄(x) := Q

(
A

1/2
0 x+ x0

)
.

Then Q̄ ∈W 1,2(Br1 ;S4) ∩ C0,α(Br1) satisfies [Q̄]C0,α(Br1 ) 6Mα/2κr−α1 , and it solves

−div
(
Ā∇Q̄

)
= Ḡ(x, Q̄,∇Q̄) in D ′(Br1) , (2.63)

with

Ā(x) := A
−1/2
0 A

(
A

1/2
0 x+ x0

)
A
−1/2
0

and

Ḡ(x, q, ξ) := G
(
A

1/2
0 x+ x0, q, A

−1/2
0 ξ

)
.

We observe that Ā is Lipschitz continuous in Br1 , and

m

M
I 6 Ā 6

M

m
I and Ā(0) = I .

Concerning Ḡ, it satisfies

|Ḡ(x, q, ξ)| 6 C̃∗(Λ + |ξ|2) ∀(x, q, ξ) ∈ Br1 × S4 × (S0)3 , (2.64)

for some constant C̃∗ > 0 depending only on C∗ and A.
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We now fix an arbitrary radius ρ ∈ (0, r1], and we consider H ∈ W 1,2(Bρ;S0) ∩ C0(Bρ) the
(unique) solution of {

−∆H = 0 in Bρ ,

H = Q̄ in ∂Bρ .

Representing H through the Poisson integral formula, one easily obtains

osc
Bρ

H = osc
∂Bρ

Q̄ 6 Cr−α1 ρα ,

for some constant C > 0 depending only A and κ (and osc is meant for oscillation). Since H−Q̄ = 0
on ∂Bρ, we deduce that

sup
Bρ

|Q̄−H| 6 osc
Bρ

Q̄+ osc
Bρ

H 6 Cr−α1 ρα , (2.65)

with C > 0 depending only A and κ.
On the other hand, concerning the harmonic function H, we have H ∈ C∞(Bρ) and also

∆|∇H|2 = 2|D2H|2 > 0. Hence the function ρ → ρ−2
∫
|x|=ρ |∇H|

2dH2 is nondecreasing, and in

turn ρ → ρ−3
∫
Bρ
|∇H|2dx is nondecreasing as well. As a consequence, since H is equal to Q̄ on

∂Bρ, it satisfies

−
∫
Bρ′

|∇H|2 dx 6 −
∫
Bρ

|∇H|2 dx 6 −
∫
Bρ

|∇Q̄|2 dx ∀ρ′ ∈ (0, ρ) . (2.66)

We are now ready to estimate(
−
∫
Bρ/2

|∇Q̄|2Ā dx

)1/2

6

(
−
∫
Bρ/2

|∇H|2Ā dx

)1/2

+ C

(
−
∫
Bρ

|∇(Q̄−H)|2Ā dx

)1/2

=: I1/2 + CII1/2 ,

(2.67)
and we shall treat separately the two terms I and II. Since A is Lipschitz and Ā(0) = I, we have
|Ā− I| 6 CAρ in Bρ, and we infer from (2.66) that

I 6 (1 + CAρ)−
∫
Bρ/2

|∇H|2 dx 6 (1 + CAρ)−
∫
Bρ

|∇H|2 dx 6 (1 + CAr
−α
1 ρα)−

∫
Bρ

|∇Q̄|2 dx ,

where we have used that 0 < ρ 6 r1 6 1. Using again this property together with the ellipticity
bounds on A and |Ā− I| 6 CAρ in Bρ we conclude,

√
I 6 (1 + CAr

−α/2
1 ρα/2)

(
−
∫
Bρ

|∇Q̄|2Ā dx

)1/2

. (2.68)

Next we write

II = −
∫
Bρ

〈∇Q̄,∇(Q̄−H)〉Ā dx+−
∫
Bρ

〈∇H,∇(H − Q̄)〉Ā dx . (2.69)

Since Q̄−H ∈W 1,2
0 (Bρ) ∩ L∞, we can apply (2.63) and then deduce from (2.64) and (2.65) that

−
∫
Bρ

〈∇Q̄,∇(Q̄−H)〉Ā dx = −
∫
Bρ

Ḡ(x, Q̄,∇Q̄) : (Q̄−H) dx 6 Cr−α1 ρα

(
−
∫
Bρ

|∇Q̄|2 dx+ Λ

)
. (2.70)

Since H is harmonic and Q̄−H = 0 on ∂Bρ, we have
∫
Bρ
∇H : ∇(Q̄−H) dx = 0, and consequently

−
∫
Bρ

〈∇H,∇(H − Q̄)〉Ā dx 6 −
∫
Bρ

|Ā− I| |∇H||∇(H − Q̄)| dx

6 CAρ

(
−
∫
Bρ

|∇H|2 dx+−
∫
Bρ

|∇Q̄|2 dx

)
6 Cr−α1 ρα−

∫
Bρ

|∇Q̄|2 dx , (2.71)

where we have used again |Ā−I| 6 CAρ in Bρ, (2.66), and 0 < ρ 6 r1 6 1. Combining now (2.69),
(2.70), and (2.71) leads to

II 6 CAr
−α
1 ρα

(
−
∫
Bρ

|∇Q̄|2 dx+ Λ

)
.
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As 0 < ρ 6 r1 6 1, in view of the ellipticity bounds of A and |Ā− I| 6 CAρ in Bρ we conclude

√
II 6 CAr

−α/2
1 ρα/2

(
−
∫
Bρ

|∇Q̄|2Ā dx+ Λ

)1/2

. (2.72)

Combining (2.67) with (2.68) and (2.72), we obtain(
−
∫
Bρ/2

|∇Q̄|2Ā dx

)1/2

6
(
1 + CAr

−α/2
1 ρα/2

)(
−
∫
Bρ

|∇Q̄|2Ā dx

)1/2

+ CA
√

Λr
−α/2
1 ρα/2 , (2.73)

for a constant CA > 0 depending only on A, C∗, and κ and for all 0 < ρ 6 r1 6 1.

In view of the arbitrariness of ρ, we can apply (2.73) with ρk := 2−kr1 and k ∈ N. It leads to(
−
∫
Bρk+1

|∇Q̄|2Ā dx

)1/2

6
(
1 + CA2−αk/2

)(
−
∫
Bρk

|∇Q̄|2Ā dx

)1/2

+ CA
√

Λ2−αk/2 ∀k ∈ N .

Now if {θk} ⊆ (1,∞), θ = Π∞k=0θk < ∞, {σk} ⊆ (0,∞), σ = Σ∞k=0σk < ∞, and {yk} ⊆ [0,∞)
satisfy yk+1 6 θkyk + σk for each k > 0, then a simple induction argument gives yk+1 6 θ(y0 + σ)
for each k > 0. As a consequence, if we let

yk =

(
−
∫
Bρk

|∇Q̄|2Ā dx

)1/2

, θk =
(
1 + CA2−αk/2

)
, σk = CA

√
Λ2−αk/2 ,

then we obtain (
−
∫
Bρk

|∇Q̄|2Ā dx

)1/2

6 C

(−∫
Br1

|∇Q̄|2Ā dx

)1/2

+
√

Λ

 ∀k ∈ N , (2.74)

for some constant C > 0 depending only on A, C∗, κ, and α.
Finally, if x0 was chosen to be a Lebesgue point of |∇Q|2 (which holds for a.e. x0 ∈ Br0/2 by

the Lebesgue differentiation theorem), then 0 is a Lebesgue point for |∇Q̄|2
Ā

, and letting k → ∞
in (2.74) yields (recall that Ā(0) = I)

|∇Q̄(0)|2 6 C

(
−
∫
Br1

|∇Q̄|2Ā dx+ Λ

)
.

Changing variables again and using the uniform ellipticity of A, we deduce from the definition of
r1 that

|∇Q(x0)|2 6 C ′
(

1

r3
1

∫
Br/2(x0)

|∇Q|2 dx+ Λ

)
6 C

(
1

r3

∫
Br

|∇Q|2 dx+ Λ

)
,

for some constants C > 0 and Λ > 0 depending only on A, C∗, κ, and α and the conclusion
follows. �

Once Lipschitz continuity is obtained, one can derive higher regularity from linear elliptic theory.

Corollary 2.19. Let Qλ ∈W 1,2(Br(x0);S4) be such that

−∆Qλ = |∇Qλ|2Qλ + λ
(
Q2
λ −

1

3
I − tr(Q3

λ)Qλ

)
in D ′(Br(x0)) .

If 0 < r < rin(1 + λ)−1/2 and

sup
Bρ(x)⊆Br(x0)

1

ρ

∫
Bρ(x)

|∇Qλ|2 dx 6 εin ,

where rin and εin are given by Corollary 2.16, then Qλ ∈ Cω(Br/4(x0)). In addition, Qλ satisfies
for each k ∈ N,

‖∇kQλ‖L∞(Br/8(x0)) 6 Ckr
−k , (2.75)

for a constant Ck > 0 depending only on k.
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Proof. Step 1. By Corollary 2.16, Qλ ∈ C0,α(Br/2(x0)) with [Qλ]C0,α(Br/2(x0)) 6 Cr−α for some

α ∈ (0, 1) and C > 0 independent of λ. Applying Proposition 2.18 with A = I and

G(x,Q,∇Q) := |∇Q|2Q+ λ
(
Q2 − 1

3
I − tr(Q3)Q

)
(so that G satisfies (2.62) with Λ := λ+ 1) yields Qλ ∈W 1,∞(Br/4(x0)) and

r2‖∇Qλ‖2L∞(Br/4(x0)) 6 C

(
1

r

∫
Br(x0)

|∇Qλ|2 dx+ (1 + λ)r2

)
6 C

(
1

r

∫
Br(x0)

|∇Qλ|2 dx+ 1

)
6 C ,

for some universal constant C > 0. As a consequence, we have ∆Qλ ∈ L∞(Br/4(x0)). By linear

elliptic regularity theory (see e.g. [24, Theorem 3.13]), it follows that Qλ ∈ C1,α
loc (Br/4(x0)) for

every α ∈ (0, 1). A classical bootstrap argument based on Schauder estimates then shows that
Qλ ∈ C∞(Br/4(x0)) (see e.g. [22, Chapters 6 & 8]), and standard results in [46, Chapter 6] give
analytic regularity.

Step 2. In this second step, our aim is to prove the remaining estimate (2.75) for k > 2. Let us fix

a point y ∈ Br/8(x0), and rescale variables setting Q̃(x) := Qλ(y + rx). Then,

−∆Q̃ = |∇Q̃|2Q̃+ λ̃
(
Q̃2 − 1

3
I − tr(Q̃3)Q̃

)
in B1/8 , (2.76)

with λ̃ := r2λ ∈ (0, rin). Let us fix j ∈ {1, 2, 3}, and set v := ∂jQ̃. Differentiating (2.76) with
respect to the j-th variable, we obtain that v satisfies a linear system of the form

−∆v + b · ∇v + c · v = d in B1/8 ,

where the coefficients b, c, and d satisfy

‖b‖L∞(B1/8) + ‖c‖L∞(B1/8) + ‖d‖L∞(B1/8) 6 C

since |Q̃| = 1 and ‖∇Q̃‖L∞(B1/8) 6 C. By elliptic regularity (see e.g. [22, Chapter 8, Section 8.11]),
v satisfies the estimate

sup
B1/16

|∇v| 6 C
(
‖v‖L∞(B1/8) + ‖d‖L∞(B1/8)

)
6 C .

From the arbitrariness of j, we conclude that ‖∇2Q̃‖L∞(B1/16) 6 C. Now we can proceed by

induction on k following the same strategy (differentiating (k− 1)-times equation (2.76)) to prove

that ‖∇kQ̃‖L∞(B
2−(k+2) ) 6 Ck for a constant Ck depending only on k. Scaling variables back, we

obtain that |∇kQλ(y)| 6 Ckr−k, and (2.75) follows from the arbitrariness of y. �

A similar argument then yields higher regularity near the boundary when the boundary data
are sufficiently regular.

Corollary 2.20. Assume that ∂Ω is of class C3 and Qb ∈ C1,1(∂Ω;S4). Let Qλ ∈ AQb
(Ω) be

a critical point of Eλ, Q̂λ its extension to Ω̂ given by (2.22), and Br(x0) ⊆ Ω̂ with x0 ∈ ∂Ω. If
0 < r < rbd(1 + λ)−1/2 and

sup
Bρ(x)⊆Br(x0)

1

ρ

∫
Bρ(x)

|∇Q̂λ|2 dx 6 εbd ,

where rbd and εbd are given by Corollary 2.17, then ‖∇Q̂λ‖L∞(Br/4(x0)) 6 CQb
r−1 for some

constant CQb
> 0 depending only on Ω and Qb. As a consequence Qλ ∈ Cω(Br/4(x0) ∩ Ω) ∩

C1,α
loc (Br/4(x0) ∩ Ω) for every α ∈ (0, 1).
In addition,

(i) if ∂Ω is of class Ck,β and Qb ∈ Ck,β(∂Ω;S4) with k > 2, then Qλ ∈ Ck,βloc (Br/4(x0) ∩ Ω);

(ii) if ∂Ω is real-analytic and Qb ∈ Cω(∂Ω;S4), then Qλ ∈ Cω(Br/4(x0) ∩ Ω).

Proof. By Corollary 2.17, Q̂λ ∈ C0,α(Br/2(x0)) with [Q̂λ]C0,α(Br/2(x0)) 6 CQb
r−α for some ex-

ponent α ∈ (0, 1) and a constant CQb
> 0 independent of λ. By Proposition 2.8, we can apply

Proposition 2.18 with the matrix field A given by (2.21), and G(x,Q,∇Q) given by the right-hand

side of (2.23) (once again, G satisfies (2.62) with Λ := λ + 1). It yields Q̂λ ∈ W 1,∞(Br/4(x0))
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and r2‖∇Q̂λ‖2L∞(Br/4(x0)) 6 CQb
(as in the proof of Corollary 2.19, Step 1). From the equation

(2.23) satisfied by Q̂λ, we deduce that div(A∇Q̂λ) ∈ L∞(Br/4(x0)). By elliptic regularity (see e.g.

[24, Theorem 3.13]), it implies that Q̂λ ∈ C1,α
loc (Br/4(x0)) for every α ∈ (0, 1), and consequently

Qλ ∈ C1,α
loc (Br/4(x0) ∩ Ω) for every α ∈ (0, 1). Since |∇Qλ| ∈ L∞(Br/4(x0) ∩ Ω), we can argue as

in the proof of Corollary 2.19, Step 1, to show that Qλ ∈ Cω(Br/4(x0) ∩ Ω).

Finally, under the assumption that ∂Ω is of class Ck,β and Qb ∈ Ck,β(∂Ω;S4) with k > 2, the

fact that Qλ ∈ Ck,βloc (Br/4(x0)∩Ω) now follows from equation (2.2) and standard elliptic regularity
at the boundary, see e.g. [22, Chapter 6]. The corresponding conclusion within the analytic class
follows again from the results in e.g. [46, Chapter 6]. �

2.5. Bochner inequality and uniform regularity estimates. In this subsection we refine the
previous analysis and clarify the dependence of the regularity estimates for the smooth solutions
Qλ of (1.16) on the parameter λ. The results of this subsection are not used in the present paper
but they will be a fundamental tool in the subsequent papers [15, 16] of our series where we will
study (axially symmetric) minimizers in the asymptotic limit λ→∞.

Proposition 2.21. Let Qλ ∈ W 1,2(Br;S4) be a smooth solution of (1.16) in Br. There exists a
universal constant εreg > 0 such that the condition

1

r
Eλ(Qλ, Br) 6 εreg

implies

sup
Br/4

(
1

2
|∇Qλ|2 + λW (Qλ)

)
6 Cr−2 ,

for a further universal constant C > 0.

In order to prove Proposition 2.21 we need a couple of auxiliary results.

Lemma 2.22. There exists a universal constant c? > 0 such that for every Q ∈ S4 and T ∈ S0

satisfying T : Q = 0,

2 tr(TQT ) 6

(
1√
6

+ c?
√
W (Q)

)
|T |2 .

Proof. Let µ3 6 µ2 6 µ1 be the eigenvalues of Q. Using that µ1 + µ2 + µ3 = tr(Q) = 0 and
µ2

1 + µ2
2 + µ2

3 = |Q|2 = 1, we deduce that 0 < µ1 6 2√
6

and − 2√
6
6 µ3 < 0. We now consider a

matrix P ∈ SO(3) such that Q = PDP t with D = diag(µ1, µ2, µ3) ∈ S4. Setting T̃ := P tTP , we

observe that T̃ : D = T : Q = 0, |T̃ | = |T |, tr(T̃DT̃ ) = tr(TQT ), and W (Q) = W (D). Hence, it
suffices to show that

2 tr(T̃DT̃ ) 6

(
1√
6

+ c?
√
W (D)

)
|T̃ |2 , (2.77)

for some universal constant c? > 0, i.e., that the claim holds when Q = D is a diagonal matrix.
To this purpose, let us first recall that

W (D) = 0 ⇐⇒ µ2 = µ3 ⇐⇒ µ1 =
2√
6

and µ2 = µ3 =
−1√

6
.

Let us fix a small constant 0 < t0 < 1 to be choosen later, and set

`0 := min

{
W
(
diag(ν1, ν2, ν3)

)
: ν1 > ν2 > ν3 + t0 , ν1 + ν2 + ν3 = 0 , ν2

1 + ν2
2 + ν2

3 = 1

}
> 0 .

If µ2 − µ3 > t0, then (2.77) clearly holds for c? > 2`
−1/2
0 since |D| = 1. Hence it remains to prove

the inequality in the case µ2 − µ3 < t0. To this purpose let us set t := µ2 − µ3 ∈ [0, t0). Choosing
t0 small enough ensures that µ2 < 0, and direct computations yield

µ1 =
2√
6

(1− t2/2)1/2 , µ2 =
t

2
− 1√

6
(1− t2/2)1/2 , µ3 = − t

2
− 1√

6
(1− t2/2)1/2 ,

and, as t→ 0,

W (D) =
1− (1− t2/2)3/2

3
√

6
+

t2

2
√

6
(1− t2/2)1/2 =

3

4
√

6
t2 + o(t2) .
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In particular, if t0 is sufficiently small, then t ∈ [0, t0) yields√
W (D) >

t

4
.

Let us now write

T̃ =

x1 x4 x6

x4 x2 x5

x6 x5 x3

 ,

so that |T̃ |2 = x2
1 + x2

2 + x3
3 + 2x2

4 + 2x2
5 + 2x2

6, and

2 tr(T̃DT̃ ) = 2µ1x
2
1 + 2µ2x

2
2 + 2µ3x

2
3 + 2(µ1 + µ2)x2

4 + 2(µ2 + µ3)x2
5 + 2(µ1 + µ3)x2

6 .

Since µ1 + µ2 + µ3 = 0, µ3 6 µ2 < 0 and µ1 6 2√
6
, from the previous formulas for the eigenvalues

we easily get −2µ2 6 2√
6
, −2µ3 6 t+ 2√

6
and

2 tr(T̃DT̃ ) 6 2µ1x
2
1 + 2(µ1 + µ2)x2

4 + 2(µ1 + µ3)x2
6 = 2µ1x

2
1 − 2µ3x

2
4 − 2µ2 x

2
6

6
4√
6
x2

1 + 2
( 1√

6
+ 2
√
W (D)

)
x2

4 +
2√
6
x2

6 . (2.78)

On the other hand x1 + x2 + x3 = 0 since tr(T̃ ) = 0, and µ1x1 + µ2x2 + µ3x3 = 0 since T̃ : D = 0.
It implies that (

3√
6

(1− t2/2)1/2 − t

2

)
x1 = tx3 ,

and consequently, x2
1 6 t

2x2
3 6

1
4x

2
3 for t0 small enough. Back to (2.78), we conclude that

2 tr(T̃DT̃ ) 6
1√
6
x2

3 + 2
( 1√

6
+ 2
√
W (D)

)
x2

4 +
2√
6
x2

6 6

(
1√
6

+ 2
√
W (D)

)
|T̃ |2 ,

which completes the proof for a (small) universal constant t0 > 0 and c? = max{2, 2`−1/2
0 }. �

Lemma 2.23 (Bochner inequality). Let Qλ be a smooth solution of (1.16) in Br. Setting eλ :=
1
2 |∇Qλ|

2 + λW (Qλ), we have

−∆eλ 6 Ce
2
λ in Br

for some universal constant C > 0.

Proof. First compute

−∆

(
1

2
|∇Qλ|2

)
= −|∇2Qλ|2 +∇Qλ : ∇(−∆Qλ) .

From (1.16), we derive that

∂k(−∆Qλ) = 2(∇Qλ : ∇(∂kQλ))Qλ + |∇Qλ|2∂kQλ

+ λ

(
(∂kQλ)Qλ +Qλ∂kQλ − 3tr(Q2

λ∂kQλ)Qλ − tr(Q3
λ)∂kQλ

)
.

Since Qλ : ∂kQλ = 0 and tr(Q3
λ) = −3W (Qλ) + 1/

√
6, we obtain

−∆

(
1

2
|∇Qλ|2

)
6 |∇Qλ|4 + 3λW (Qλ)|∇Qλ|2 + λ

3∑
k=1

(
2tr
(
(∂kQλ)Qλ∂kQλ

)
− 1√

6
|∂kQλ|2

)
.

It then follows from Lemma 2.22 (applied to Q = Qλ and T = ∂kQλ) that

−∆

(
1

2
|∇Qλ|2

)
6 |∇Qλ|4 + 3λW (Qλ)|∇Qλ|2 + c?λ

√
W (Qλ) |∇Qλ|2 . (2.79)

Next, we compute

−∆
(
W (Qλ)

)
= −tr

(
Q2
λ(−∆Qλ)

)
+

3∑
k=1

2tr
(
(∂kQλ)Qλ∂kQλ

)
,

and it follows from (1.16) that

−∆
(
W (Qλ)

)
= −|∇Qλ|2tr(Q3

λ)− λ
(

trQ4 − 1

3
−
(
tr(Q3

λ)
)2)

+

3∑
k=1

2tr
(
(∂kQλ)Qλ∂kQλ

)
.
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Noticing that trQ4 = 1/2, we obtain from Lemma 2.22,

−∆
(
W (Qλ)

)
= 3W (Qλ)|∇Qλ|2 + 9λW 2(Qλ)− λ

√
6W (Qλ) +

3∑
k=1

(
2tr
(
(∂kQλ)Qλ∂kQλ

)
− 1√

6
|∂kQλ|2

)
6 3W (Qλ)|∇Qλ|2 + 9λW 2(Qλ)− λ

√
6W (Qλ) + c?

√
W (Qλ) |∇Qλ|2 . (2.80)

Combining (2.79) and (2.80), we are led to

−∆eλ 6 |∇Qλ|4 + 6λW (Qλ)|∇Qλ|2 + 9λ2W 2(Qλ)− λ2
√

6W (Qλ) + 2c?λ
√
W (Qλ) |∇Qλ|2

6 (1 + c2
?/
√

6)|∇Qλ|4 + 6λW (Qλ)|∇Qλ|2 + 9λ2W 2(Qλ)

6 Ce2
λ

for a universal constant C > 0. �

Remark 2.24. If Qλ is a smooth solution of (1.16) in Br, then Qλ satisfies the interior mono-
tonicity formula (2.8) in the ball Br (see the proof of Proposition 2.4, Step 2, or [58, Chapter 2,
Sections 2.2 and 2.4]). As a consequence, Qλ satisfies

sup
Bρ(x)⊆Br/2

1

ρ
Eλ
(
Qλ, Bρ(x)

)
6

2

r
Eλ
(
Qλ, Br

)
,

exactly as in Lemma 2.6.

Proof of Proposition 2.21. We argue as in [11], where the scaling argument first presented in [54] for
harmonic maps is adapted to the harmonic heat flow. Since Qλ is smooth, we can find σλ ∈ (0, r/2)
such that (r

2
− σλ

)2

sup
Bσλ

eλ >
1

2
sup

0<σ<r/2

(r
2
− σ

)2

sup
Bσ

eλ .

In addition, by continuity we can find xλ ∈ Bσλ such that

sup
Bσλ

eλ = eλ(xλ) := eλ .

Set ρλ := ( r2 − σλ)/2 > 0, and notice that Bρλ(xλ) ⊆ Bσλ+ρλ ⊆ Br/2. Since σ = ρλ + σλ < r/2

and r/2− σ = 1
2 (r/2− σλ), by definition of σλ we have

sup
Bρλ (xλ)

eλ 6 sup
Bσλ+ρλ

eλ 6 8 eλ .

We define rλ := ρλ
√

eλ, and, as Bρλ(xλ) ⊆ Br/2, we also define

Q̃(x) := Qλ

(
xλ +

x√
eλ

)
for x ∈ Brλ .

Then Q̃ is smooth in Brλ , and it solves (1.16) in Brλ with λ̃ := λ/eλ in place of λ. Setting

ẽλ̃ :=
1

2
|∇Q̃|2 + λ̃W (Q̃) ,

we infer from our choice of σλ and xλ that ẽλ̃(0) = eλ(xλ)/eλ = 1, and ẽλ̃ 6 8 in Brλ . We now
claim that rλ 6 1. Indeed, assume by contradiction that rλ > 1. Then we infer from Lemma 2.23
that

−∆ẽλ̃ 6 C ẽ2
λ̃
6 8C ẽλ̃ in B1 ,

for a universal constant C > 0. By Moser’s Harnack inequality (see e.g. [24, Theorem 4.1]) and
Remark 2.24, we have

1 = ẽλ̃(0) 6 C
∫
B1

ẽλ̃ dx = C
√

eλ

∫
B

1/
√

eλ
(xλ)

eλ dx 6 2Cεreg ,

for a universal constant C > 0. Here we have used that B1/
√
eλ

(xλ) ⊆ Br/2 since 1/
√

eλ < ρλ.
Therefore, 1 6 2Cεreg which is clearly a contradiction if εreg is small enough.

Knowing that rλ 6 1, we may now deduce from our choice of σλ and the definition of ρλ that

sup
0<σ<r/2

(r
2
− σ

)2

sup
Bσ

eλ 6 8ρ2
λeλ = 8r2

λ 6 8 .

Choosing σ = r/4 now yields eλ 6 128r−2 in Br/4, and the proof is complete. �
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3. Regularity of minimizers under norm constraint

The aim of this section is to prove Theorem 1.2, and the proof is divided according to the fol-
lowing subsections. Recall that in the statement of Theorem 1.2, we assume that the boundary ∂Ω
is of class C3 and Qb ∈ C1,1(∂Ω;S4).

3.1. Monotonicity formulae. We start establishing the monotonicity formulae for minimizers
of Eλ over AQb

(Ω) applying the general principle in Proposition 2.4. First, let us recall that
Q̄b ∈ AQb

(Ω) is a given (S4-valued) reference extension to Ω of the boundary condition Qb.

Proposition 3.1. If Qλ is a minimizer of Eλ over AQb
(Ω), then Qλ satisfies the Interior Mono-

tonicity Formula (2.8) and the Boundary Monotonicity Inequality (2.9). Moreover the quantity
Kλ(Qb, Qλ) in (2.9) satisfies

Kλ(Qb, Qλ) 6 CΩ

(
‖∇tanQb‖2L∞(∂Ω) + λ‖W (Qb)‖L1(∂Ω) + Eλ(Q̄b)

)
. (3.1)

Proof. We first notice that, due to (1.11) and (1.4), the potentialW is nonnegative for everyQ ∈ S0.
Hence, for each ε > 0 the functional GLε(Qλ; ·) defined in (2.6) is well defined and coercive on
W 1,2(Ω;S0). Moreover, using the compact Sobolev embedding W 1,2(Ω;S0) ↪→ L4(Ω), we easily
obtain that GLε(Qλ; ·) is lower semi-continuous with respect to the weak W 1,2-convergence since
all the terms not containig derivatives of Q are weakly continuous. It then follows from the direct
method of calculus of variations that GLε(Qλ; ·) admits at least one minimizer Qε over W 1,2

Qb
(Ω;S0).

By Proposition 2.4, it now suffices to show that Qε satisfies (2.7) (with Qλ in place of Qref). In
addition, observe that (3.1) follows from the minimality of Qλ. Indeed, since Q̄b ∈ AQb

(Ω) is an
admissible competitor, we have ‖∇Qλ‖2L2(Ω) 6 2Eλ(Qλ) 6 2Eλ(Q̄b).

Now, let us consider an arbitrary sequence εn → 0 satisfying εn ∈ (0, λ−1/2). First, we infer
from the minimality of Qεn that

1

2

∫
Ω

|∇Qεn |2 + |Qεn −Qλ|2 dx 6 GLεn(Qλ;Qεn) 6 GLεn(Qλ;Qλ) = Eλ(Qλ) . (3.2)

Hence, the sequence {Qεn} is bounded in W 1,2
Qb

(Ω;S0), and we can extract a (not relabelled)

subsequence such that Qεn ⇀ Q∗ weakly in W 1,2(Ω) for some Q∗ ∈ W 1,2
Qb

(Ω;S0). Up to a further

subsequence, we can assume that Qεn → Q∗ strongly in L4(Ω) (and therefore in L2(Ω)) since
the embedding W 1,2(Ω) ↪→ L4(Ω) is compact. As a consequence,

∫
Ω
W (Qεn) dx →

∫
Ω
W (Q∗) dx

which, combined with (3.2), implies that
∫

Ω
(1 − |Qεn |2)2 dx → 0. Therefore, |Q∗| = 1 a.e. in Ω,

and thus Q∗ ∈ AQb
(Ω). Now we infer from the minimality of Qλ, the weak lower semicontinuity

of Eλ, the L2-convergence and (3.2) that

Eλ(Qλ) 6 Eλ(Q∗) +
1

2

∫
Ω

|Q∗ −Qλ|2 dx 6 lim inf
n→∞

(
Eλ(Qεn) +

1

2

∫
Ω

|Qεn −Qλ|2 dx
)

6 lim inf
n→∞

GLεn(Qλ;Qεn) 6 lim sup
n→∞

GLεn(Qλ;Qεn) 6 Eλ(Qλ) .

Consequently, Q∗ = Qλ and limn GLεn(Qλ;Qεn) = Eλ(Qλ), which completes the proof. �

3.2. Compactness of blow-ups and smallness of the scaled energy. When proving regular-
ity the main issue is to analyse the asymptotic behavior of minimizers at small scales, and the key
property is the compactness of rescaled maps. When rescaling around an interior point, we have
the following statement.

Proposition 3.2. Let Qλ be a minimizer of Eλ over AQb
(Ω). Given x0 ∈ Ω and 0 < r 6 r0 such

that Br0(x0) ⊆ Ω, consider the rescaled map Qλ,r ∈W 1,2(Br0/r;S4) defined by

Qλ,r(x) := Qλ(x0 + rx) .

For every sequence rn → 0, there exist a (not relabeled subsequence) and Q∗ ∈ W 1,2
loc (R3;S4) such

that Qλ,rn → Q∗ strongly in W 1,2
loc (R3). In addition, Q∗ is a degree-zero homogeneous energy

minimizing harmonic map into S4.

To prove Proposition 3.2, we need two auxiliary lemmata.
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Lemma 3.3. Let Qλ,rn be as in Proposition 3.2 and ρ > 0. For each n ∈ N such that ρrn < r0,
let vn ∈W 1,2(Bρ;S4) be such that vn = Qλ,rn on ∂Bρ in the sense of traces. Then,

lim sup
n→∞

∫
Bρ

|∇Qλ,rn |2 dx 6 lim sup
n→∞

∫
Bρ

|∇vn|2 dx .

Proof. By minimality of Qλ and a change of variables, Qλ,rn is minimizing Eλr2
n
(·, Bρ) among all

maps in W 1,2(Bρ;S4) having the same trace Qλ,rn on ∂Bρ. Since vn is an admissible competitor
and the potential W is bounded on S4, we have

1

2

∫
Bρ

|∇Qλ,rn |2 dx 6 Eλr2
n
(Qλ,rn , Bρ) 6

1

2

∫
Bρ

|∇vn|2 dx+ Cλρ3r2
n ,

for a constant C depending only on W . Then the claim follows letting n→∞. �

The following interpolation lemma is due to S. Luckhaus [40].

Lemma 3.4. Let u, v ∈W 1,2(S2;S4). For each σ ∈ (0, 1), there exists w ∈W 1,2(S2×(1−σ, 1);S0)
such that w|S2×{1−σ} = v, w|S2×{1} = u,∫

S2×(1−σ,1)

|∇w|2 dx 6 Cσ
∫
S2

(
|∇tanu|2 + |∇tanv|2

)
dH2 + Cσ−1

∫
S2

|u− v|2 dH2 , (3.3)

and

dist2(w(x),S4) 6 Cσ−2

(∫
S2

(
|∇tanu|2 + |∇tanv|2

)
dH2

) 1
2
(∫

S2

|u− v|2 dH2

) 1
2

+ Cσ−3

∫
S2

|u− v|2 dH2 (3.4)

for a.e. x ∈ S2 × (1− σ, 1), and a universal constant C > 0.

Proof of Proposition 3.2. We essentially follow the proof of [38, Lemma 2.2.13] with minor modi-
fications. By Proposition 3.1, Qλ satisfies the interior monotonicity formula (2.8). Rescaling this
formula yields

1

R2
Eλr2

n
(Qλ,rn , BR2

)− 1

R1
Eλr2

n
(Qλ,rn , BR1

) >
∫
BR2
\BR1

1

|x|

∣∣∣∣∂Qλ,rn∂|x|

∣∣∣∣2 dx (3.5)

for every 0 < R1 < R2 6 r0/rn. As a consequence, for every 0 < R < r0/rn, we have

1

R
Eλr2

n
(Qλ,rn , BR) 6

rn
r0
Eλr2

n
(Qλ,rn , Br0/rn) =

1

r0
Eλ(Qλ, Br0(x0)) .

Consequently, we can find a (not relabeled) subsequence such that Qλ,rn converges to a map Q∗
weakly in W 1,2

loc (R3) and strongly in L2
loc(R3). Up to a further subsequence, Qλ,rn → Q∗ a.e. in R3,

and thus Q∗ ∈W 1,2
loc (R3;S4). By the monotonicity formula (2.8) satisfied by Qλ, we have

lim
n→∞

1

R
Eλr2

n
(Qλ,rn , BR) = lim

n→∞

1

Rrn
Eλ(Qλ, BRrn(x0)) = lim

r→0

1

r
Eλ(Qλ, Br(x0))

for every R > 0. Consequently, letting n→∞ in (3.5) yields by W 1,2-weak convergence and lower
semicontinuity, ∫

BR2
\BR1

1

|x|

∣∣∣∣∂Q∗∂|x|

∣∣∣∣2 dx = 0

for every 0 < R1 < R2, which shows that Q∗ is 0-homogeneous.
Now we aim to prove that, for every radius R > 0, Qλ,rn → Q∗ strongly in W 1,2(BR), and that∫

BR

|∇Q∗|2 dx 6
∫
BR

|∇Q̄|2 dx

for every competitor Q̄ ∈ W 1,2(BR;S4) such that Q̄ − Q∗ is compactly supported in BR (i.e.,
Q∗ is a minimizing harmonic map into S4 on the whole space R3 w.r.to compactly supported
perturbations). By homogeneity of Q∗, the value of the radius R does not play a role, and it
is enough to show strong W 1,2-convergence and energy minimality in a ball Bρ for some radius
ρ ∈ (0, 1).
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We fix a competitor Q̄ ∈ W 1,2(B1;S4) and δ ∈ (0, 1) such that Q̄ ≡ Q∗ a.e. in B1 \ B1−δ.
Extracting a further subsequence if necessary, by Fatou’s lemma and Fubini’s theorem, we can
select a radius ρ ∈ (1− δ, 1) and a constant C > 0 such that

lim
n→∞

∫
∂Bρ

|Qλ,rn −Q∗|2 dH2 = 0 and

∫
∂Bρ

(
|∇Qλ,rn |2 + |∇Q∗|2

)
dH2 6 C . (3.6)

We apply Lemma 3.4 with a choice σ = σn ∈ (0, δ), u(x) = Qλ,rn(ρx) and v(x) = Q∗(ρx), x ∈ S2,
for a sequence of numbers σn → 0 to interpolate between Qλ,rn and Q∗. For n sufficiently large,

we choose σn := ‖Qλ,rn −Q∗‖
1/3
L2(∂Bρ) < δ, and in this way, we obtain wn ∈W 1,2(Bρ;S0) satisfying

wn(x) =

Q̄
(

x

1− σn

)
for |x| 6 ρ(1− σn) ,

Qλ,rn(x) for |x| = ρ ,

with the estimate∫
Bρ\Bρ(1−σn)

|∇wn|2 dx 6 C
(
σn

∫
∂Bρ

(
|∇tanQλ,rn |2 + |∇tanQ∗|2

)
dH2

+
1

σn

∫
∂Bρ

|Qλ,rn −Q∗|2 dH2
)
−→
n→∞

0 , (3.7)

and dist(wn,S4) = O(σn) → 0 uniformly on Bρ \ Bρ(1−σn) as n → ∞ because of (3.6), (3.4) and
our choice of σn.

For n large enough we have |wn| > 1/2 on Bρ, hence we can define a sequence of comparison
maps vn ∈W 1,2(Bρ;S4), so that vn = Qλ,rn on ∂Bρ, by setting

vn(x) :=


Q̄

(
x

1− σn

)
if |x| 6 ρ(1− σn) ,

wn(x)

|wn(x)|
if ρ(1− σn) 6 |x| 6 ρ .

(3.8)

Notice that, since |wn| > 1/2, we have |∇vn| 6 C|∇wn| a.e. in the annulus {ρ(1− σn) 6 |x| 6 ρ}.
In view of Lemma 3.3, combining (3.7) and (3.8) together with the weak W 1,2-convergence of Qλ,rn
towards Q∗, we obtain∫

Bρ

|∇Q∗|2 dx 6 lim inf
n→∞

∫
Bρ

|∇Qλ,rn |2 dx 6 lim sup
n→∞

∫
Bρ

|∇Qλ,rn |2 dx

6 lim sup
n→∞

∫
Bρ

|∇vn|2 dx = lim sup
n→∞

[
(1− σn)

∫
Bρ

|∇Q̄|2 dx+

∫
Bρ\Bρ(1−σn)

∣∣∇vn∣∣2 dx]

6 lim
n→∞

[
(1− σn)

∫
Bρ

|∇Q̄|2 dx+ C

∫
Bρ\Bρ(1−σn)

|∇wn|2 dx

]
=

∫
Bρ

|∇Q̄|2 dx .

Since Q̄ and δ are arbitrary, this chain of inequalities provides both the strong W 1,2-convergence
Qλ,rn → Q∗ (using Q̄ = Q∗) and the energy minimality of Q∗ in the ball Bρ. �

We now aim to perform a similar blow-up analysis around a boundary point. To this purpose,
let us recall that ∂Ω is assumed to be of class C3, and Qb ∈ C1,1(∂Ω;S4). We consider the enlarged

domain Ω̂ defined in (2.20), and we extend Qb to Ω̂\Ω by setting Q̂b(x) := Qb(πΩ(x)) for x ∈ Ω̂\Ω,
where πΩ is the nearest point projection on ∂Ω. By the regularity assumption on ∂Ω and Qb, we

have Q̂b ∈ C1,1(Ω̂ \ Ω).

Proposition 3.5. Let Qλ be a minimizer of Eλ over AQb
(Ω), and denote by Q̂λ the extension of

Qλ to Ω̂ given by Q̂λ = Q̂b in Ω̂ \ Ω. Given x0 ∈ ∂Ω and 0 < r 6 r0 such that Br0(x0) ⊆ Ω̂,

consider the rescaled map Q̂λ,r ∈W 1,2(Br0/r;S4) defined by

Q̂λ,r(x) = Q̂λ(x0 + rx) .

For every sequence rn → 0, there exist a (not relabeled) subsequence and Q∗ ∈ W 1,2
loc (R3;S4) such

that Q̂λ,rn → Q∗ strongly in W 1,2
loc (R3). In addition, Q∗ is homogeneous of degree zero, and up to

a rotation of coordinates, Q∗ is a minimizing harmonic map in the upper half space {x3 > 0} and
Q∗ ≡ Qb(x0) in {x3 < 0}.
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Proof. Up to a translation and a rotation, we may assume that {x3 = 0} is the tangent plane to
∂Ω at x0 and the vector (0, 0,−1) is the outward unit normal. By Proposition 3.1, Qλ satisfies the
Boundary Monotonicity Inequality (2.9), and by rescaling variables,

1

R2
Eλr2

n
(Q̂λ,rn , BR2

∩ Ωn)− 1

R1
Eλr2

n
(Q̂λ,rn , BR1

∩ Ωn) >
∫

(BR2
\BR1

)∩Ωn

1

|x|

∣∣∣∣∂Q̂λ,rn∂|x|

∣∣∣∣2 dx
− rn(R2 −R1)Kλ(Qb, Qλ) (3.9)

for every 0 < R1 < R2 6 r0/rn, where we have set Ωn := r−1
n (Ω− x0). As a consequence,

1

R
Eλr2

n
(Q̂λ,rn , BR ∩ Ωn) 6

1

r0
Eλ(Qλ, Br0(x0) ∩ Ω) + r0Kλ(Qb, Qλ)

for every 0 < R < r0/rn. Since Q̂b ∈ C1,1(Ω̂ \ Ω) and Q̂λ,rn(x) = Q̂b(x0 + rnx) for x ∈ BR \ Ωn
and 0 < R < r0/rn, in view of (3.9) the sequence {Q̂λ,rn} is bounded in W 1,2

loc (R3). Consequently,

there exists a (not relabeled) subsequence such that Q̂λ,rn converges to a map Q∗ weakly in

W 1,2
loc (R3;S4) and strongly in L2

loc(R3). Up to a further subsequence, Q̂λ,rn → Q∗ a.e. in R3,

and thus Q∗ ∈ W 1,2
loc (R3;S4). Now observe that Ωn → {x3 > 0} locally in the Hausdorff metric.

Since Q̂b is continuous at x0, Q̂λ,rn → Qb(x0) locally uniformly in the open half space {x3 < 0}.
Therefore, Q∗(x) ≡ Qb(x0) in {x3 < 0}, and it has constant trace on the plane {x3 = 0}. Arguing
essentially as in the proof of Proposition 3.2, we can let n→∞ in (3.9) to infer that∫

(BR2
\BR1

)∩{x3>0}

1

|x|

∣∣∣∣∂Q∗∂|x|

∣∣∣∣2 dx = 0

for every 0 < R1 < R2. Since the map Q∗ is constant in {x3 < 0}, it follows that Q∗ is 0-
homogeneous in the whole R3.

Now it remains to show the strong convergence of Qλ,rn in W 1,2
loc (R3), and the local energy

minimality of Q∗ in {x3 > 0}. As in the proof of Proposition 3.2, by homogeneity, it is enough
to show strong W 1,2-convergence in a ball Bρ ⊆ B1 (perhaps up to a subsequence), and energy

minimality of Q∗ in Bρ ∩ {x3 > 0}. We first notice that, Q̂b being C1,1 in Ω̂ \ Ω, we have∫
Bρ\Ωn

|∇Q̂λ,rn |2 dx =
1

rn

∫
Bρrn (x0)\Ω

|∇Q̂b|2 dx −→
n→∞

0 =

∫
Bρ∩{x360}

|∇Q∗|2 dx ,

and we only need to show that∫
Bρ∩Ωn

|∇Q̂λ,rn |2 dx −→
n→∞

∫
Bρ∩{x3>0}

|∇Q∗|2 dx

to establish the strong convergence of Q̂λ,rn in W 1,2(Bρ). The rest of the proof is quite similar to
the one used for the interior case discussed in Proposition 3.2. For this reason; we only sketch few
differences in the construction of comparison maps when gluing different maps near the boundary.

The starting point of the construction is to flatten the boundary ∂Ω near x0. Assuming {rn}
suitably small (depending only on x0 and the curvature of ∂Ω at x0), there exists a sequence of
diffeomorphisms {Φn} ⊆ C2(B1;R3) satisfying the following properties:

Ωn ∩Br = Φn(B+
r ) , ∂Ωn ∩Br = Φn(Br ∩ {x3 = 0}) ∀0 < r 6 1 ,

and ‖Φn − id‖C2(B1) −→n→∞ 0 , (3.10)

where we set B+
r := Br ∩ {x3 > 0}, 0 < r 6 1. We fix 0 < δ < 1/4 and a competitor Q̄ ∈

W 1,2
loc (R3;S4) such that Q̄ = Q∗ a.e. in R3 \ B+

1−δ. Notice that Q̂λ,rn ◦ Φn ⇀ Q∗ weakly in

W 1,2(B+
1 ;S4) as n → ∞. In addition, Q̂λ,rn(Φn(x)) = Qb(x0 + rnΦn(x)) and Q̄(x) = Qb(x0) for

x ∈ B1 ∩ {x3 = 0} because of (3.10). Consequently, since Qb ∈ C1,1(∂Ω;S4) we get

lim
n→∞

∫
B1∩{x3=0}

|Q̂λ,rn ◦ Φn − Q̄|2 dH2 = 0 and lim
n→∞

∫
B1∩{x3=0}

|∇tan(Q̂λ,rn ◦ Φn)|2 dH2 = 0 .

Hence we can argue as in the interior case: by Fatou’s lemma and Fubini’s theorem, extracting a
further subsequence if necessary, we can select ρ ∈ (1− δ, 1) and a constant C > 0 such that

lim
n→∞

∫
∂B+

ρ

|Q̂λ,rn ◦ Φn − Q̄|2 dH2 = 0 and

∫
∂B+

ρ

(
|∇tan(Q̂λ,rn ◦ Φn)|2 + |∇tanQ̄|2

)
dH2 6 C .
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We then choose the sequence σn → 0 with 0 < σn < δ as σn := ‖Q̂λ,rn ◦ Φn − Q̄‖1/3L2(∂B+
ρ )

.

Before going further, let us notice that we can argue as in Lemma 3.8 (using the weak convergence

of Q̂λ,rn , its energy minimality on Ωn ∩ Bρ , and (3.10)) to prove the following: for any bounded

sequence {vn} ⊆W 1,2(B+
ρ ;S4) such that vn = Q̂λ,rn ◦ Φn on ∂B+

ρ , we have∫
B+
ρ

|∇Q∗|2 dx 6 lim inf
n→∞

∫
Ωn∩Bρ

|∇Q̂λ,rn |2 dx 6 lim sup
n→∞

∫
Ωn∩Bρ

|∇Q̂λ,rn |2 dx

6 lim sup
n→∞

Eλr2
n
(Q̂λ,rn ,Ωn ∩Bρ) 6 lim sup

n→∞
Eλr2

n
(vn ◦ Φ(−1)

n ,Ωn ∩Bρ)

= lim sup
n→∞

∫
B+
ρ

|∇vn|2 dx , (3.11)

where the last equality follows from a change of variables and (3.10).
Now, to construct an effective sequence of comparison maps, it is convenient to introduce a

biLipschitz map Ψ: B1 → B+
1 . By means of Ψ, the comparison maps can be constructed as in the

interior case. More precisely, we apply Lemma 3.4 to the pair of maps from the two-sphere S2,

namely u(·) = Q̂λ,rn ◦Φn(ρΨ(·)) and v(·) = Q̄(ρΨ(·)). As in the interior case, the lemma produces
a sequence {wn} ⊆W 1,2(B1;S0) satisfying

wn(x) =

Q̄
(
ρΨ
( x

1− σn
))

if |x| 6 1− σn ,

Q̂λ,rn ◦ Φn
(
ρΨ(x)

)
if |x| = 1 ,

with the estimate∫
B1\B1−σn

|∇wn|2 dx 6 C
(
σn

∫
∂B+

ρ

(
|∇tan(Q̂λ,rn ◦ Φn)|2 + |∇tanQ̄|2

)
dH2

+
1

σn

∫
∂B+

ρ

|Q̂λ,rn ◦ Φn − Q̄|2 dH2
)
−→
n→∞

0 , (3.12)

and dist(wn,S4)→ 0 uniformly in B1 \B1−σn as n→∞.
Since |wn| > 1/2 for n large enough, we can define a sequence {v̄n} ⊆W 1,2(B1;S4) by setting

v̄n(x) =


Q̄(ρΨ

(
x

1− σn

)
) if |x| 6 1− σn ,

wn(x)

|wn(x)|
if 1− σn 6 |x| 6 1 ,

(3.13)

and it satisfies ∫
B1\B1−σn

|∇v̄n|2 dx 6 C
∫
B1\B1−σn

|∇wn|2 dx −→
n→∞

0 . (3.14)

Now we pull-back v̄n on B+
ρ by setting vn(x) = v̄n(Ψ−1(x/ρ)), so that vn ∈ W 1,2(B+

ρ ;S4) and

vn = Q̂λ,rn ◦Φn on ∂B+
ρ in the sense of traces. Then, a simple computation using the biLipschitz

property of Ψ together with (3.13) and (3.14) yields

lim sup
n→∞

∫
B+
ρ

|∇vn|2 dx 6 lim sup
n→∞

∫
B+
ρ \(ρΨ(B1−σn ))

|∇vn|2 dx+ lim sup
n→∞

∫
ρΨ(B1−σn )

|∇vn|2 dx

6 lim sup
n→∞

C

∫
B1\B1−σn

|∇v̄n|2 dx+ lim sup
n→∞

∫
ρΨ(B1−σn )

|∇Q̄|2 dx 6
∫
B+
ρ

|∇Q̄|2 dx . (3.15)

Combining (3.11) and (3.15) with Q̄ ≡ Q∗, we infer that
∫

Ωn∩Bρ |∇Q̂λ,rn |
2 dx →

∫
B+
ρ
|∇Q∗|2 dx,

while for an arbitrary Q̄, it yields
∫
B+
ρ
|∇Q∗|2 dx 6

∫
B+
ρ
|∇Q̄|2 dx. The limiting map Q∗ is thus a

minimizing harmonic map in B+
ρ , and the proof is complete. �

All possible limiting maps Q∗ obtained by either Proposition 3.2 or Proposition 3.5 are often
referred to as (minimizing) tangent maps toQλ at the given point x0. By the monotonicity formulae
and the strong compactness of rescaled maps, triviality (i.e., constancy) of all tangent maps implies
smallness of the rescaled energy at sufficiently small scale. In our setting, triviality of tangent maps
together with smallness of the scaled energy are established in the following propositions.
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Proposition 3.6. If Qλ is a minimizer of Eλ over AQb
(Ω), then

lim
r→0

1

r
Eλ(Qλ, Br(x0)) = 0

for every x0 ∈ Ω.

Proof. Let us fix an arbitrary point x0 ∈ Ω and a sequence rn → 0. According to Proposition 3.2,
up to a subsequence, the rescaled maps satisfy Qλ,rn → Q∗ strongly in W 1,2

loc (R3) as n → ∞ for

some Q∗ ∈W 1,2
loc (R3;S4). Moreover, Q∗ is a degree-zero homogeneous energy minimizing harmonic

map, so that there exists a smooth harmonic sphere ω : S2 → S4 such that Q∗(x) = ω
(
x
|x|
)
. On

the other hand, according to [57, Theorem 2.7] the map Q∗ is smooth. In particular, Q∗ is smooth
at the origin which implies that ω must be constant, and thus Q∗ itself is a constant map. Then
the interior monotonicity formula (see Proposition 3.1) and the strong W 1,2-convergence yield

lim
r→0

1

r
Eλ(Qλ, Br(x0)) = lim

n→∞
Eλr2

n
(Qλ,rn , B1) =

1

2

∫
B1

|∇Q∗|2 dx = 0 ,

which completes the proof. �

Proposition 3.7. Let Ω ⊆ R3 be a bounded open set with ∂Ω of class C3 and Qb ∈ C1,1(∂Ω;S4).
If Qλ is a minimizer of Eλ over AQb

(Ω) then

lim
r→0

1

r
Eλ(Qλ, Br(x0) ∩ Ω) = 0

for every x0 ∈ ∂Ω.

Proof. As in the previous proof, by the strong W 1,2-compactness of rescaled maps, it is enough
to prove that any limiting map Q∗ obtained from Proposition 3.5 applied at a point x0 ∈ ∂Ω
is a constant map, i.e., Q∗ ≡ Qb(x0). Indeed, by the Boundary Monotonicity Inequality (see
Proposition 3.1), we have

lim
r→0

1

r
Eλ(Qλ, Br(x0) ∩ Ω) = lim

n→∞
Eλr2

n
(Qλ,rn , B1 ∩ Ωn) =

1

2

∫
B1∩{x3>0}

|∇Q∗|2 dx = 0 ,

where we have set Ωn := r−1
n (Ω− x0).

Let us now consider a degree zero homogeneous map Q∗ ∈ W 1,2
loc (R3;S4) which is an energy

minimizing harmonic map in {x3 > 0}, and such that Q∗ = Qb(x0) =: e0 in {x3 < 0}. Setting
S2

+ := S2 ∩ {x3 > 0}, the homogeneity of Q∗ implies that Q∗(x) = ω
(
x
|x|
)

in {x3 > 0} where

ω ∈W 1,2(S2
+;S4) is a weakly harmonic map on S2

+ satisfying ω = e0 on ∂S2
+ in the sense of traces.

It now suffices to show that ω ∈ C∞(S2
+). Indeed, by Lemaire rigidity theorem [36, Theorem 3.2],

a smooth harmonic map on the (closed) half 2-sphere which is constant on the boundary has to
be constant. In other words ω ≡ e0, whence Q∗ ≡ e0.

The smoothness of ω in the interior S2
+ follows from Hélein’s theorem [26]. Smoothness up to

the boundary ∂S2
+ could be asserted directly from [50], but we prefer to give a short argument

illustrating in this simple case the reflection principle in Subsection 2.2.

Consider the map Q̂∗ ∈W 1,2
loc (R3;S4) defined by

Q̂∗(x) :=

{
Q∗(x) if x3 > 0 ,

ΣQ∗(x̄) if x3 < 0 ,

where x̄ = (x1, x2,−x3) is the reflection of x = (x1, x2, x3) across the plane {x3 = 0}, and
Σ := 2e0⊗ e0− id is the geodesic reflection on S4 with respect to the point e0. Following the proof
of Proposition 2.8 with λ = 0 (see also Remark 2.11), we infer that the reflected matrix A(x) is

the identity and Q̂∗ is weakly harmonic in R3. Since Q̂∗ clearly inherits homogeneity from Q∗, we

have Q̂∗(x) = ω̂
(
x
|x|
)

for a weakly harmonic map ω̂ ∈W 1,2(S2;S4). By Hélein’s theorem [26], ω̂ is

smooth on S2, and the conclusion follows since ω̂ = ω in S2
+. �

3.3. Full regularity. Combining the results from the subsections above with the ε−regularity
theorem and the higher regularity theorem from Section 2.1, we are finally in the position to prove
the first regularity result of the paper.
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Proof of Theorem 1.2. Let Qλ be a minimizer of Eλ over AQb
(Ω). First, we prove interior reg-

ularity of Qλ by showing smoothness in a neighborhood of an arbitrary point x0 ∈ Ω. In view
of Proposition 3.6, we have 1

rEλ(Qλ, Br(x0)) → 0 as r → 0. Combining Proposition 3.1 and
Lemma2.6 (with Qref = Qλ) with Corollary 2.19, we infer that Qλ ∈ Cω(Bρ(x0)) for some radius
ρ > 0 possibly depending on the point x0. Since x0 ∈ Ω is arbitrary, we conclude that Qλ ∈ Cω(Ω).

To prove boundary regularity, we now fix an arbitrary point x0 ∈ ∂Ω. By Proposition 3.7, we
have 1

rEλ(Qλ, Br(x0) ∩ Ω) → 0 as r → 0. Then we combine Proposition 3.1 and Lemma 2.10

(with Qref = Qλ) with Corollary 2.20 to conclude that Qλ ∈ C1,α(Bρ(x0)∩Ω) for every α ∈ (0, 1)

and some radius ρ > 0. Since x0 is arbitrary, a covering argument yields Qλ ∈ C1,α(Ω) for
every α ∈ (0, 1). Under the further assumption that ∂Ω is of class Ck,β and Qb ∈ Ck,β(∂Ω;S4)
for some β > 0 and k > 2, then Corollary 2.20 with the same covering argument tells us that
Qλ ∈ Ck,β(Ω). Finally, if ∂Ω is real-analytic and Qb ∈ Cω(∂Ω;S4), then Corollary 2.20 again
implies that Qλ ∈ Cω(Ω). �

4. LdG-minimizers in the Lyuksyutov regime

The main objective of this section is to prove Theorem 1.3, and in particular to prove that
isotropic melting (i.e., presence of the zero phase) is avoided by minimizers of the energy functional
Fλ,µ in (1.10) for values of the parameters in the Lyuksyutov regime µ→∞. More precisely, our
main goal is to prove that the pointwise norm of any minimizer Qµλ of Fλ,µ subject to an S4-valued
boundary condition is uniformly bounded from below by a positive constant whenever µ is large
enough (and λ of order one). As a consequence we deduce that the radial hedgehog (1.20) is not
energy minimizing and in Theorem 4.8 below we will show that it is not even a stable critical point
of the energy functional Fλ,µ.

Throughout this section, we assume again that the boundary ∂Ω is of class C3, and that the
boundary condition Qb belongs to C1,1(∂Ω;S4). Given λ > 0 and µ > 0, we shall consider critical
point of Fλ,µ over the class W 1,2(Ω;S0), including as a particular case solutions of the variational
problem

min
{
Fλ,µ(Q) : Q ∈W 1,2

Qb
(Ω;S0)

}
whose resolution follows from the direct method of calculus of variations. We may denote by Qµλ
a critical point of Fλ,µ, or simply by Qµ (if no confusion arises) hiding the dependence on the
fixed parameter λ to simplify the notation. We start with elementary/classical considerations and
a priori estimates on Qµ.

4.1. A priori estimates. In view of the explicit expression (1.12) of the potential W , the Euler-

Lagrange equation characterizing a critical point Qµ ∈W 1,2
Qb

(Ω;S0) reads as follows−∆Qµ = λ

(
(Qµ)2 − 1

3
|Qµ|2I − 1√

6
|Qµ|2Qµ

)
+ µ(1− |Qµ|2)Qµ in Ω ,

Qµ = Qb on ∂Ω ,

(4.1)

with the term 1
3 |Q

µ|2I due to the traceless constraint.
Let us start the analysis by establishing the regularity of critical points.

Lemma 4.1. If Qµ is a critical point point of Fλ,µ over W 1,2
Qb

(Ω;S0), then Qµ ∈ Cω(Ω)∩C1,α(Ω)

for every α ∈ (0, 1). In addition,

(i) if ∂Ω is of class Ck,β and Qb ∈ Ck,β(∂Ω;S4) for some β > 0 and k > 2, then Qµ ∈ Ck,β(Ω);
(ii) if ∂Ω is real-analytic and Qb ∈ Cω(∂Ω;S4), then Qµ ∈ Cω(Ω).

Proof. In view of equation (4.1), the fact that Qµ ∈ C1,α(Ω) for every α ∈ (0, 1) follows exactly as
in the proof of Proposition 2.4, Step 1. Then, a classical bootstrap argument based on Schauder
estimates shows that Qµ ∈ C∞(Ω) (see e.g. [22, Chapters 6 & 8]), and the standard results in
[46, Chapter 6] give interior analytic regularity. Assuming that ∂Ω is of class Ck,β and Qb ∈
Ck,β(∂Ω;S4) with k > 2, we have Qλ ∈ Ck,β(Ω) by standard elliptic regularity at the boundary,
see e.g. [22, Chapter 6]. The corresponding conclusion within the analytic class follows again from
the results in [46, Chapter 6]. �

We now prove an a priori estimate on the modulus and on the gradient of a critical point
reminiscent from the Ginzburg-Landau theories.
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Lemma 4.2. If Qµ is a critical point point of Fλ,µ over W 1,2
Qb

(Ω;S0), then |Qµ| 6 1 in Ω.

Proof. Consider the scalar function u := 1 − |Qµ|2. In view of the previous lemma and equation
(4.1), u is continuous in Ω is a classical solution to

−∆u+ 2µ|Qµ|2u > 2λ√
6

(
|Qµ|4 −

√
6tr((Qµ)3)

)
in Ω . (4.2)

Let x0 ∈ Ω be a minimum point for u, and assume by contradiction that u(x0) < 0, (in other
words, |Qµ(x0)| > 1). Since u = 1 − |Qb|2 ≡ 0 on ∂Ω, we must have x0 ∈ Ω. Consequently,
∆u(x0) > 0, and (4.2) leads to

0 > |Qµ(x0)|4 −
√

6tr
(
(Qµ)3

)
(x0) > |Qµ(x0)|3 −

√
6tr
(
(Qµ)3

)
(x0) . (4.3)

However, (1.4) tells us that the right-hand side of (4.3) is nonnegative, a contradiction. �

Lemma 4.3. If Qµ is a critical point point of Fλ,µ over W 1,2
Qb

(Ω;S0), then

|∇Qµ| 6 C
(√

λ+ µ+ 1
)

in Ω ,

for a constant C depending only on Ω and Qb.

Proof. Consider H to be the harmonic extension of Qb to the domain Ω, i.e.,{
∆H = 0 in Ω ,

H = Qb on ∂Ω .

By our regularity assumption on ∂Ω and Qb, we have H ∈ C1,α(Ω) ∩ C2(Ω) for every α ∈ (0, 1).
Setting Uµ := Qµ −H, we deduce from (4.1) and Lemma 4.2 that ‖∆Uµ‖L∞(Ω) 6 C(λ + µ), and
Uµ = 0 on ∂Ω. By interpolation (see e.g. [5, Lemma A.2]) and Lemma 4.2 again, we conclude that

‖∇Uµ‖L∞(Ω) 6 C‖∆Uµ‖
1/2
L∞(Ω)‖Uµ‖

1/2
L∞(Ω) 6 C

√
λ+ µ ,

for a constant C depending only on Ω and Qb. Since ‖∇Qµ‖L∞(Ω) 6 ‖∇Uµ‖L∞(Ω) + ‖∇H‖L∞(Ω),
the conclusion follows. �

The last ingredients we need are the following monotonicity formulae.

Lemma 4.4. If Qµ is a critical point point of Fλ,µ over W 1,2
Qb

(Ω;S0), then

(1) for every x0 ∈ Ω and every 0 < ρ < r < dist(x0, ∂Ω), we have

1

ρ
Fλ,µ

(
Qµ, Bρ(x0)

)
6

1

r
Fλ,µ

(
Qµ, Br(x0)

)
; (4.4)

(2) there exist a radius rΩ > 0 (depending only on Ω) and a constant CλQb
> 0 depending only

λ, Ω, Qb, and on (an upper bound of) ‖∇Qµ‖L2(Ω) but independent of µ, such that

1

ρ
Fλ,µ

(
Qµ, Bρ(x0)

)
6

1

r
Fλ,µ

(
Qµ, Br(x0)

)
+ CλQb

(r − ρ) (4.5)

for every x0 ∈ ∂Ω and every 0 < ρ < r < rΩ.

The proof of this lemma follows word by word the one in Proposition 2.4 (Step 2 & Step 3),
and we shall omit it. We just observe that the constant CλQb

in (4.5) is independent of µ because
Qb has always unit norm on ∂Ω.

4.2. Lyuksyutov regime and absence of isotropic melting. We now complete the proof of
Theorem 1.3 analyzing the asymptotic behavior as µ → +∞ of minimizers of Fλ,µ over the class

W 1,2
Qb

(Ω;S0). The heart of the matter is Proposition 4.5 below. We emphasize that Proposition 4.5
does not rely on energy minimality but on the a priori strong convergence towards a smooth
limiting map. This allows for more flexibility in its application, see our companion paper [16].

Proposition 4.5. Given a sequence µn → +∞, consider for each µn a critical point Qµnλ of

Fλ,µn over W 1,2
Qb

(Ω;S0). Assume that Qµnλ ⇀ Qλ weakly in W 1,2(Ω;S0) as n → ∞ for some

Qλ ∈ AQb
(Ω) ∩ C1(Ω;S4), and that

lim
n→∞

Fλ,µn(Qµnλ ) = Eλ(Qλ) .

Then,

(1) Qµnλ → Qλ strongly in W 1,2(Ω;S0);
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(2) µn

∫
Ω

(1− |Qµnλ |
2)2 dx→ 0;

(3) |Qµnλ | → 1 uniformly in Ω.

Proof. Step 1. We start proving items (1) and (2). First, notice that Qµnλ → Qλ strongly in L4(Ω)
by the compact embedding W 1,2(Ω) ↪→ L4(Ω). Hence

∫
Ω
W (Qµnλ ) dx→

∫
Ω
W (Qλ) dx and by lower

semicontinuity of the Dirichlet integral we get Eλ(Qλ) 6 lim infn→∞ Eλ(Qµnλ ).
Hence, we have

Eλ(Qλ) 6 lim inf
n→∞

Eλ(Qµnλ ) + lim sup
n→∞

µn
4

∫
Ω

(1− |Qµnλ |
2)2 dx 6 lim

n→∞
Fλ,µn(Qµnλ ) = Eλ(Qλ) .

Therefore µn
∫

Ω
(1−|Qµnλ |2)2 dx→ 0 and ‖∇Qµnλ ‖2L2(Ω) → ‖∇Q

µn
λ ‖2L2(Ω). Combined with the weak

W 1,2-convergence, this latter fact implies that Qµnλ → Qλ strongly in W 1,2(Ω).

Step 2. It now remains to prove that |Qµnλ | → 1 uniformly in Ω. Given δ ∈ (0, 1) arbitrary, we thus

have to prove that |Qµnλ | > δ on Ω for n large enough. We argue by contradiction assuming that,
along a (not relabeled) subsequence, there exists xn ∈ Ω such that |Qµnλ (xn)| 6 δ. Extracting a

further subsequence if necessary, we can assume that xn → x0 as n→∞ for some x0 ∈ Ω. In view
of Lemma 4.3 (and the fact that |Qµ| = 1 on ∂Ω), we can find a constant κ ∈ (0, 1) independent

of n such that for rn := κµ
−1/2
n → 0 and for all n we have

Brn(xn) ⊆ Ω and |Qµn |2 6
1 + δ2

2
in Brn(xn) . (4.6)

We now distinguish two cases:

Case 1: x0 ∈ Ω. The limiting map Qλ being of class C1, we can find a radius r0 ∈ (0,dist(x0, ∂Ω))
such that

1

r0
Eλ(Qλ, Br0(x0)) <

πκ2(1− δ2)2

24
.

From Step 1, we deduce that for n large enough,

1

r0
Fλ,µn(Qµnλ , Br0(x0)) <

πκ2(1− δ2)2

24
. (4.7)

On the other hand, still for n large enough, we have |xn − x0| < r0/2 and rn < r0/2. Then we
infer from (4.6) and (4.4) that

πκ2(1− δ2)2

12
6

µn
4rn

∫
Brn (xn)

(
1− |Qµnλ |

2
)2
dx 6

1

rn
Fλ,µn(Qµnλ , Brn(xn))

6
2

r0
Fλ,µn(Qµnλ , Br0/2(xn)) 6

2

r0
Fλ,µn(Qµnλ , Br0(x0)) ,

which contradicts (4.7).

Case 2: x0 ∈ ∂Ω. Once again, since Qλ ∈ C1(Ω) and ∂Ω is of class C3, we can find a small radius
r0 ∈ (0, rΩ) where rΩ is given by Lemma 4.4 such that the nearest point projection on ∂Ω is well
defined in the r0-tubular neighborhood of ∂Ω, and

1

r0
Eλ(Qλ, Br0(x0) ∩ Ω) + CλQb

r0 <
πκ2(1− δ2)2

48
,

where the constant CλQb
is also given by Lemma 4.4 (notice that ‖∇Qµnλ ‖L2(Ω) is bounded by Step

1). From Step 1, we deduce that for n large enough,

1

r0
Fλ,µn(Qµnλ , Br0(x0) ∩ Ω) + CλQb

r0 <
πκ2(1− δ2)2

48
. (4.8)

If we denote yn ∈ ∂Ω the projection of xn on ∂Ω, we have for n large enough (by (4.6)),

rn 6 |yn − xn| = dist(xn, ∂Ω) 6 |xn − x0| <
r0

4
,
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so that |yn−x0| < r0/2. Arguing as in Case 1 and setting dn := |yn−xn|, we infer from (4.6) and
(4.4)-(4.5) that

πκ2(1− δ2)2

12
6

1

rn
Fλ,µn(Qµnλ , Brn(xn)) 6

1

dn
Fλ,µn(Qµnλ , Bdn(xn))

6
1

dn
Fλ,µn(Qµnλ , B2dn(yn) ∩ Ω) 6

4

r0
Fλ,µn(Qµnλ , Br0/2(yn) ∩ Ω) + CλQb

r0

6
4

r0
Fλ,µn(Qµnλ , Br0(x0) ∩ Ω) + CλQb

r0 ,

which contradicts (4.8). �

Proof of Theorem 1.3. Let us consider an arbitrary sequence µn → +∞ and corresponding Qµnλ
minimizing Fλ,µn over W 1,2

Qb
(Ω;S0). Since the map Q̄b ∈ AQb

(Ω) is an admissible competitor to

the minimality of Qµnλ , we have

Fλ,µn(Qµnλ ) 6 Fλ,µn(Q̄b) = Eλ(Q̄b) . (4.9)

Therefore, the sequence {Qµnλ } is bounded in W 1,2(Ω;S0), and we can extract a (not relabeled)

subsequence such that Qµnλ ⇀ Qλ weakly in W 1,2(Ω) for some Qλ ∈W 1,2
Qb

(Ω;S0). By the compact

embedding W 1,2(Ω) ↪→ L4(Ω), we have
∫

Ω
(1−|Qµnλ |2)2 dx→

∫
Ω

(1−|Qλ|2)2 dx, and it follows from
(4.9) that ∫

Ω

(1− |Qλ|2)2 dx = lim
n→∞

∫
Ω

(1− |Qµnλ |
2)2 dx 6 lim

n→∞

1

µn
Fλ,µn(Qµnλ ) = 0 .

Hence |Qλ| = 1 a.e. in Ω, so that Qλ ∈ AQb
(Ω).

Since any Q ∈ AQb
(Ω) is in fact admissible to test the minimality of Qµnλ , we can proceed as in

(4.9) and use the lower semicontinuity of Eλ to infer that

Eλ(Qλ) 6 lim inf
n→∞

Eλ(Qµnλ ) 6 lim inf
n→∞

Fλ,µn(Qµnλ ) 6 Eλ(Q) (4.10)

for every Q ∈ AQb
(Ω). Hence Qλ is a minimizer of Eλ over AQb

(Ω), and we deduce from Theo-

rem 1.2 that Qλ ∈ C1,α(Ω). In addition, using Q = Qλ as competitor in (4.10) we obtain that
Fλ,µn(Qµnλ )→ Eλ(Qλ). The conclusion now follows from Proposition 4.5. �

4.3. Instability of the melting hedgehog. In this subsection we discuss instability of the melt-
ing hedgehog Hµ

λ given in (1.20) in the Lyuksyutov regime µ→∞. The conclusion here is similar
to the one in [29], where the low-temperature regime a2 → ∞ is considered. However, instead of
the careful spectral decomposition considered there, to analyse the linearized operator we will use
different and somewhat simpler perturbation arguments. More precisely, the instability property
of Hµ

λ will essentially follow here from the corresponding one for the constant norm hedgehog H̄
seen as a degree-zero homogeneous harmonic map into S4.

First we recall that the constant norm hedgehog

H̄(x) =

√
3

2

(
x

|x|
⊗ x

|x|
− 1

3
I

)
satisfies H̄ ∈ W 1,2

loc (R3;RP 2) ∩ C∞(R3 \ {0};RP 2). It is a critical point of Eλ both for λ = 0 (i.e.,
a weakly harmonic map into S4), and a critical point for λ > 0 since ∇tanW (H̄) ≡ 0. In order to
discuss its stability properties, we first set for any Φ ∈ C∞c (B1;S0),

E
′′

λ (Φ; H̄) :=

[
d2

dt2
Eλ
(
H̄ + tΦ

|H̄ + tΦ|

)]
t=0

.

The second variation formula for harmonic maps (see, e.g., [38, Chapter 1]) yields

E
′′

λ (Φ; H̄) =

∫
B1

|∇ΦT |2 − |∇H̄|2|ΦT |2 + λD2
tanW (H̄)Φ : Φ dx , (4.11)

where ΦT := Φ− H̄(H̄ : Φ) is the tangential component of Φ along H̄, and

D2
tanW (H̄)Φ : Φ :=

[
d2

dt2
W

(
H̄ + tΦ

|H̄ + tΦ|

)]
t=0

= D2W (H̄)ΦT : ΦT

=
1√
6

(
2(H̄ : ΦT )2 + |ΦT |2 −

√
6 tr(H̄Φ2

T )
)

=
1√
6

(
|ΦT |2 −

√
6 tr(H̄Φ2

T )
)
. (4.12)
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Due to the O(3)-equivariance of H̄, the second variation E ′′0 (Φ; H̄) takes a particularly simple
form whenever Φ is a radial vector field.

Lemma 4.6. For any v̄ ∈ S4 and any radial function η ∈ C∞c (B1 \ {0}), we have

E
′′

0 (ηv̄; H̄) =
4

5

∫
B1

|∇η|2 − 3

|x|2
|η|2 dx . (4.13)

Proof. Let i = (1, 0, 0)t, j = (0, 1, 0)t, k = (0, 0, 1)t be the canonical basis of R3. From these
vectors, we construct a distinguished orthonormal basis of S0 by setting

e0 =

√
3

2

(
k⊗ k− 1

3
I

)
, e1 =

1√
2

(i⊗ k + k⊗ i) , e2 =
1√
2

(j⊗ k + k⊗ j) ,

e3 =
1√
2

(i⊗ i− j⊗ j), e4 =
1√
2

(i⊗ j + j⊗ i) .

In terms of the latitude θ ∈ [0, π] and of the colatitude φ ∈ [0, 2π) on S2, the components of H̄
with respect to this basis are easily seen to be

H̄ : e0 =
3

2

(
cos2 θ − 1

3

)
, H̄ : e1 =

√
3

2
sin 2θ cosφ , H̄ : e2 =

√
3

2
sin 2θ sinφ ,

H̄ : e3 =

√
3

2
sin2 θ cos 2φ , H̄ : e4 =

√
3

2
sin2 θ sin 2φ .

Therefore a straightforward calculation gives∫
S2

(H̄ : ei)(H̄ : ej) dvolS2 =
4π

5
δij (4.14)

for any i, j = 0, . . . , 4. As a consequence, if we write v̄ =
∑
i v̄iei with |v̄|2 =

∑
i v̄

2
i = 1, then

h̄ := H̄ : v̄ satisfies∫
S2

h̄2 dvolS2 =

4∑
i,j=0

∫
S2

(H̄ : ei)(H̄ : ej)v̄iv̄j dvolS2 =

4∑
i,j=0

4π

5
δij v̄iv̄j =

4π

5
. (4.15)

Next, we notice that H̄ is a degree-zero homogeneous harmonic map and |∇H̄|2 = |∇tanH̄|2 = 6
|x|2 ,

hence
∆S2 h̄ = −

∣∣∇tanH̄
∣∣2 h̄ = −6h̄ ,

and in view of (4.15) we obtain∫
S2

h̄2|∇tanH̄|2 dvolS2 =

∫
S2

|∇h̄|2 dvolS2 = 6

∫
S2

h̄2 dvolS2 =
6

5
· 4π . (4.16)

Finally, evaluating E ′′0 in (4.11) for Φ = ηv̄ and integrating by parts, since η is radial and (4.16)
holds, we conclude that

E
′′

0 (ηv̄; H̄) =

∫
B1

(1− h̄2) |∇η|2 +
η2

|x|2
(

2
∣∣∇h̄∣∣2 − (1− h̄2)

∣∣∇tanH̄
∣∣2) dx

=

(∫
S2

(1− h̄2)dvolS2

)∫ 1

0

(η′)2r2dr +

(∫
S2

2
∣∣∇h̄∣∣2 − (1− h̄2)

∣∣∇tanH̄
∣∣2 dvolS2

)∫ 1

0

η2dr

=
4

5
· 4π

∫ 1

0

(η′)2r2dr − 12

5
· 4π

∫ 1

0

η2dr =
4

5

∫
B1

|∇η|2 − 3

|x|2
|η|2 dx ,

and the proof is complete. �

The instability property of H̄ for the Dirichlet energy E0 along some vector field can be derived
from the general instability result for harmonic tangent maps from R3 in to S4 proved in [57] and
[37]. Here, exploiting the O(3)-equivariance of H̄ and using Lemma 4.6, we obtain a stronger and
more explicit instability result for H̄ as a common critical point of all the functionals Eλ.

Proposition 4.7. Let H̄ be the constant norm hedgehog. There exists a radial function ξ ∈
C∞c (B1 \ {0}) such that for any vector v̄ ∈ S4, H̄ is a critical point of E0 which is unstable along

the vector field Φ := ξv̄, i.e., E ′′0 (Φ; H̄) < 0.
As a consequence, for each λ > 0 there exists a radial function ξλ ∈ C∞c (B1 \ {0}) such that for

any vector v̄ ∈ S4, H̄ is a critical point of Eλ which is unstable along the vector field Φλ := ξλv̄,
i.e., E ′′λ (Φλ; H̄) < 0.
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Proof. As already proved in Lemma 4.6 above, we have

E
′′

0 (ηv̄; H̄) =
4

5

∫
B1

|∇η|2 − 3

|x|2
|η|2 dx

for any radial function η ∈ C∞c (B1 \ {0}). In view of the standard Hardy inequality in R3, the
quadratic form is not bounded from below and there exists a radial function η ∈ C∞0 (B1 \ {0})
such that E ′′0 (ηv̄; H̄) < 0. Indeed, setting ηn(x) := [min{n|x|, |x|−1/2} − 2]+, we have a sequence
of radial functions ηn ∈ Lip(B1) compactly supported in B1 \ {0} satisfying∫

B1

|∇ηn|2 dx =
1

4

∫
1

n2/3
<|x|< 1

4

dx

|x|3
+O(1) =

1

4

∫
B1

η2
n

|x|2
dx+O(1) as n→∞ ,

whence E ′′0 (ηnv̄; H̄)→ −∞ as n→∞. In particular, E ′′0 (ηnv̄; H̄) < 0 for n large enough. Finally, as
ηn ≡ 0 for |x| < 1/n and |x| > 1/4, taking ξ = ηn ∗ρε a regularization by convolution with ε < 1/n
and {ρε} a family of radial mollifiers, we have a (family of) radial function ξ ∈ C∞c (B1 \ {0})
satisfying E ′′0 (ξv̄; H̄) < 0 for ε > 0 small enough, which proves the first claim of the theorem.

In order to discuss the case λ > 0, we rescale the radial function ξ above setting ξδ(x) := ξ(x/δ)
for 0 < δ < 1 to be chosen later. Computing the second variation of Eλ along the vector field
Φδ := ξδ v̄ ∈ C∞c (B1;S0), equation (4.11) with ΦδT = Φδ − H̄(H̄ : Φδ) (the tangential component
of Φδ along H̄) yields

E
′′

λ (Φδ; H̄) = E
′′

0 (Φδ; H̄) + λ

∫
B1

D2
tanW (H̄)Φδ : Φδ dx .

As H̄ is degree-zero homogeneous, a simple rescaling gives

E
′′

λ (Φδ; H̄) =

∫
B1

|∇ΦδT |2 − |∇H̄|2|ΦδT |2 +D2W (H̄)ΦδT : ΦδT dx

= δ

(
E
′′

0 (Φ; H̄) + λδ2

∫
B1

D2W (H̄)ΦT : ΦT dx

)
.

Since by construction E ′′0 (Φ; H̄) < 0, the conclusion follows for δ > 0 small enough. �

Finally we consider the radial hedgehog Hµ
λ as the uniaxial critical point of the functional Fλ,µ

of the form (1.20) discussed in the introduction. Recall that such critical point is the unique
minimizer of Fλ,µ in the class of O(3)-equivariant maps in W 1,2(B1;S0) which agree with H̄ on
the boundary (see [30, Theorem 1.4]). Moreover, arguing as in the proof of Theorem 1.3 above, it
is not difficult to show that Hµ

λ → H̄ strongly in W 1,2 as µ → ∞ (convergence of minimizers in
the class of O(3)-equivariant maps). In addition, the convergence is locally uniform away from the

origin because |Hµ
λ | =

√
2/3 sµλ → 1 locally uniformly away from the origin as µ→∞.

Exploiting the aforementioned convergence of Hµ
λ to its constant norm counterpart, we are going

to infer the instability property of Hµ
λ from the corresponding one for H̄ passing to the limit in

the second variations of the energies Fλ,µ, and using Proposition 4.7. With this respect, we first
set for any Ψ ∈ C∞c (B1;S0),

F
′

λ,µ(Ψ;Hµ
λ ) :=

[
d

dt
Fλ,µ (Hµ

λ + tΨ)

]
t=0

, F
′′

λ,µ(Ψ;Hµ
λ ) :=

[
d2

dt2
Fλ,µ (Hµ

λ + tΨ)

]
t=0

.

Simple calculations based on (1.10) now yield

F
′

λ,µ(Ψ;Hµ
λ ) =

∫
B1

∇Hµ
λ : ∇Ψ + λ∇W (Hµ

λ ) : Ψ + µ(|Hµ
λ |

2 − 1)Hµ
λ : Ψ dx , (4.17)

and

F
′′

λ,µ(Ψ;Hµ
λ ) =

∫
B1

|∇Ψ|2 + λD2W (Hµ
λ )Ψ : Ψ + µ

(
2(Hµ

λ : Ψ)2 + (|Hµ
λ |

2 − 1)|Ψ|2
)
dx . (4.18)

We have the following instability result for the radial hedgehog in the Lyuksyutov regime.

Theorem 4.8. Let λ > 0 be fixed and for each µ > 0, let Hµ := Hµ
λ be the radial hedgehog. There

exists a radial function ξ ∈ C∞c (B1 \ {0}) such that the following holds. Given a vector v̄ ∈ S4,
if ΦT denotes the tangential part along H̄ of the vector field Φ = ξv̄ ∈ C∞c (B1 \ {0};S0), then

ΦT ∈ C∞c (B1 \ {0};S0) and F ′′λ,µ(ΦT ;Hµ
λ ) < 0 for all µ large enough. As a consequence, the radial

hedgehog Hµ
λ is an unstable critical point of Fλ,µ for all µ sufficiently large.
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Proof. Given λ > 0 and v̄ ∈ S4, we fix the radial function ξ ∈ C∞c (B1 \ {0}) as constructed in
Proposition 4.7 (which depends on λ, but not on v̄). Then we introduce the vector fields Φ := ξv̄
and ΦT := Φ− H̄(H̄ : Φ). Since ΦT ∈ C∞c (B1 \ {0};S0), it is admissible for the second variation
formula (4.18).

Since by construction Hµ
λ : ΦT ≡ 0, we obtain

F
′′

λ,µ(ΦT ;Hµ
λ ) =

∫
B1

|∇ΦT |2 + λD2W (Hµ
λ )ΦT : ΦT + µ(|Hµ

λ |
2 − 1)|ΦT |2 dx . (4.19)

Recall that Hµ
λ → H̄ strongly in W 1,2(B1;S0) and locally uniformly away from the origin as

µ→∞. As a consequence, the dominated convergence theorem yields

lim
µ→∞

∫
B1

|∇ΦT |2 + λD2W (Hµ
λ )ΦT : ΦT dx =

∫
B1

|∇ΦT |2 + λD2W (H̄)ΦT : ΦT dx . (4.20)

On the other hand, since Hµ
λ is a critical point of Fλ,µ, computing (4.17) with the vector field

Ψ := |ΦT |2
|Hµλ |2

Hµ
λ ∈ C∞c (B1 \ {0};S0) yields

0 = F
′

λ,µ (Ψ;Hµ
λ ) =

∫
B1

∇Hµ
λ : ∇

(
|ΦT |2

|Hµ
λ |2

Hµ
λ

)
+ λ
|ΦT |2

|Hµ
λ |2
∇W (Hµ

λ ) : Hµ
λ + µ(|Hµ

λ |
2 − 1)|ΦT |2 dx ,

whence∫
B1

µ(|Hµ
λ |

2 − 1)|ΦT |2 dx =−
∫
B1

|∇Hµ
λ |

2 |ΦT |2

|Hµ
λ |2

dx

−
∫
B1

∇Hµ
λ : Hµ

λ ∇
|ΦT |2

|Hµ
λ |2

+ λ
|ΦT |2

|Hµ
λ |2
∇W (Hµ

λ ) : Hµ
λ dx .

Since ∇H̄ : H̄ ≡ 0, ∇W (H̄) : H̄ = (1 − β̃(H̄))/
√

6 ≡ 0, Hµ
λ → H̄ strongly in W 1,2(B1;S0) and

uniformly on the support of ξ, letting µ→∞ in the previous formula leads to

lim
µ→∞

∫
B1

µ(|Hµ
λ |

2 − 1)|ΦT |2 dx = −
∫
B1

|∇H̄|2|ΦT |2 dx . (4.21)

Combining (4.19) with (4.20)-(4.21) and taking into account (4.11) and (4.12), we infer that

lim
µ→∞

F
′′

λ,µ(ΦT ;Hµ
λ ) = E

′′

λ (Φ; H̄) ,

and the conclusion follows, since the right hand side is negative by construction of ξ and Φ. �

Remark 4.9. As Hµ
λ is O(3)-equivariant, it is also S1-equivariant in the sense of condition (1.24).

Hence, if we choose v̄ ∈ S4 such that Rtv̄R = v̄ for any R ∈ S1, then each map Hµ
λ + tξv̄ is

S1-equivariant for any t ∈ R. As a consequence, according to Theorem 4.8 the radial hedgehog
is an unstable critical point of Fλ,µ also in the restricted class of S1-equivariant maps (a similar
conclusion is valid for H̄ as critical point of Eλ in view of Proposition 4.7).

In the next remark we discuss the role of the biaxial phase in the instability results.

Remark 4.10. Let Φ ∈ C∞0 (B1;S0) be fixed and ΦT its tangential part along H̄. Simple calcu-
lations using (1.4), (1.15), (4.12), and Lemma 2.22, give

d2

dt2
β̃

(
H̄ + tΦ

|H̄ + tΦ|

)∣∣∣∣
t=0

= −3
√

6
d2

dt2
W

(
H̄ + tΦ

|H̄ + tΦ|

)∣∣∣∣
t=0

= −3
(
|ΦT |2 −

√
6 tr(H̄Φ2

T )
)
6 −3

2
|ΦT |2 ,

and in turn

d2

dt2
β̃ (Hµ

λ + tΦ)

∣∣∣∣
t=0

=
d2

dt2
β̃

(
H̄ + t Φ

|Hµλ |

|H̄ + t Φ
|Hµλ |
|

)∣∣∣∣∣
t=0

6 −3

2

|ΦT |2

|Hµ
λ |2

.

Expanding around the value t = 0 and using stationarity of H̄ and Hµ
λ both for β̃ and for the

energy functionals, as t→ 0 we infer

β̃

(
H̄ + tΦ

|H̄ + tΦ|

)
6 1− 3

4
|ΦT |2t2 + o(t2) , Eλ

(
H̄ + tΦ

|H̄ + tΦ|

)
= Eλ(H̄) + E

′′

λ (Φ; H̄)
t2

2
+ o(t2) , (4.22)

together with

β̃ (Hµ
λ + tΦ) 6 1− 3

4

|ΦT |2

|Hµ
λ |2

t2 + o(t2) , Fλ,µ (Hµ
λ + tΦ) = Fλ,µ(Hµ

λ ) + F
′′

λ,µ(ΦT ;Hµ
λ )
t2

2
+ o(t2) .

(4.23)
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As a consequence of (4.22) and (4.23), we see that for t sufficiently small biaxial escape occurs
for the perturbed maps in the set where ΦT 6= 0. Moreover, if Φ = ξv̄ with v̄ ∈ S4 and µ is
large enough, then Proposition 4.7 and Theorem 4.8 show that this escape is energetically more
favourable because the second variations of the energy functionals in (4.22) and (4.23) are negative.

As a final remark in this section, we further comment on the actual range of validity of our
results in the Lyuksyutov regime (1.18).

Remark 4.11. When studying asymptotic limits from a physical perspective, it is important that
all quantities to be compared have the same physical dimensions. Experts often rescale the energy
in such a way to recast it in a new fully adimensional form (see, e.g., [18]). Our energy (1.10) is
only partially non-dimensionalized, because the terms under integral sign are not pure numbers
but they all have the same physical dimension. In fact, the parameters λ and µ in the energy
density of Fλ,µ have the dimension of the inverse of a length squared (Q-tensors are adimensional
by definition), so the resulting value of the energy Fλ,µ has the physical dimension of a length;
in addition, the ratio µ/λ is adimensional and we are allowed to compare them in a physically
meaningful way, considering in particular the case µ� λ. Thus, in the Lyuksyutov regime (1.18)
we are requiring that on a fixed domain Ω the parameter λ is constant, hence of the same order
of (diam Ω)−2, whereas µ is much larger.

On the other hand, we could obtain a fully non-dimensionalized energy functional by first
choosing a reference length and then rescaling the domain with respect to it. In the present
situation there are at least three natural choices of length, namely, 1√

λ
, 1√

µ , and diam Ω, where the

first two choices, up to an harmless numerical factor, correspond to the biaxial coherence length and
the nematic-isotropic correlation length respectively, see [49, 32, 18]. Calling ` the chosen reference

length, the original energy functional F̃LG(Q,Ω) under the further rescaling x = `x turns into the
non-dimensionalized functional Fλ̃,µ̃(Q,Ω) as in (1.10), where Ω = `Ω and the new parameters

are given by λ̃ = `2λ, µ̃ = `2µ, with λ and µ as in (1.18). Thus, the adimensional energy Fλ̃,µ̃
is formally identical to Fλ,µ, and our results continue to hold without any change in the regime

λ̃ ∼ 1 and µ̃ � 1 on a fixed reference domain Ω. It turns out that the second choice, ` = 1/
√
µ,

amounts to µ ∼ λ and µ̃ = 1, so it is not covered by our results. However, the first and the third
choices both correspond to diam Ω ∼ 1/

√
λ and µ̃ ∼ µ/λ� 1, i.e., to the following generalization

of (1.18) to domains of unconstrained size, namely

diam Ω ∼ 1√
λ

=

√
L

b2s+
,

1√
λ
·
(

1
√
µ

)−1

=

√
a2

b2s+
� 1 . (4.24)

As a consequence, we see that the diameter diam Ω must be comparable to the the biaxial coherence
length, while the nematic correlation length must be negligible with respect to them. Finally, notice
that the second condition in (4.24) holds in particular in the low temperature limit a2 → ∞ but
in domains Ω of smaller and smaller size because of (1.6), or, alternatively, in the limit b → 0
but on domains Ω with suitably expanding diameter. For a more detailed discussion of this non-
dimensionalization procedure and related issues, the interested reader is referred to [18] and the
references therein.

5. Topology of minimizers

In this section, we discuss topological properties of field configurations Q satisfying assumptions
(HP0) − (HP3), and restricting to energy minimizing configurations, we will obtain in particular
the proof of Theorem 1.6.

In connection with assumption (HP2), we start recalling the following auxiliary result which
characterizes simple connectivity of any smooth bounded domain Ω ⊆ R3.

Lemma 5.1. [4, Thm.3.2 and Corollary 3.5] Let Ω ⊆ R3 be a bounded connected open set with
boundary of class C1. Then Ω is simply connected if and only if its boundary can be written as
∂Ω = ∪Ni=1Si and each surface Si is diffeomorphic to the standard sphere S2 ⊆ R3.

As already mentioned in the Introduction, by assumption (HP1) the maximal eigenvalue λmax(x)
of the matrix Q(x) is simple for every x ∈ ∂Ω, and there is a well defined smooth eigenspace
map Vmax : ∂Ω → RP 2. In addition, as Ω is simply connected and in view of Lemma 5.1, there
exists a smooth lifting vmax ∈ C1(∂Ω;S2) such that, under the inclusion RP 2 ⊆ S4, we have

Vmax(x) =
√

3/2(vmax(x)⊗ vmax(x)− 1
3I) for all x ∈ ∂Ω.
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Notice that as in (1.21), the case β̄ = 1 in (HP1) corresponds to Q/|Q| : ∂Ω → RP 2 ⊆ S4. In

this case we have λmax ≡
√

2
3 |Q| on ∂Ω. Still in view of (HP2) there exists a map v′ ∈ C1(∂Ω;S2)

such that Q = |Q|
√

3/2(v′ ⊗ v′ − 1
3I) on ∂Ω (under the inclusion RP 2 ⊆ S4). Hence, under the

assumption β̄ = 1, one has Q ≡ |Q|Vmax on ∂Ω.
Recall also that assumption (HP3) on the lifting vmax of the map Vmax : ∂Ω → RP 2, namely

that the total degree deg(vmax, ∂Ω) =
∑N
i=1 deg(vmax, Si) is odd, does not depend on the chosen

lifting. Indeed, since on each spherical component Si of ∂Ω the lifting exists by simple connectivity
of Si, and it is unique up a sign, each deg(vmax, Si) may only change by a sign when passing to a
different lifting.

Now we discuss properties of the biaxiality regions defined in (1.23). The first result below
shows that the biaxial escape observed in the introduction is indeed topological in nature, and
that every possible value of the biaxiality is attained.

Lemma 5.2. Let Ω ⊆ R3 be a bounded open set with boundary of class C1, and Q : Ω → S0. If
Ω and Q satisfy (HP0)− (HP3), then the subset {β = −1} ⊆ Ω is not empty. As a consequence,
{β = t} ⊆ Ω is not empty for every t ∈ [−1, β0], where β0 := max∂Ω β. In particular, if β̄ = 1,
then the range of β is [−1, 1].

Proof. The consequence follows trivially from the definition of β0, as the set Ω (hence Ω) is con-
nected, and furthermore β0 = 1 whenever β̄ = 1.

To prove the first statement, we argue by contradiction assuming that minΩ β > −1. Then the

maximal eigenvalue λmax(x) of Q(x) is always simple for every x ∈ Ω, hence of class C1, and there
is a well defined eigenspace map V̄ ∈ C1(Ω;RP 2) which extends Vmax from the boundary of Ω to
its interior. Since Ω is simply connected this map can be lifted to ṽ ∈ C1(Ω;S2) which has to satisfy
deg(ṽ, ∂Ω) = 0 by Stokes’s theorem. On the other hand, as both vmax and ṽ are liftings of the same
map Vmax at the boundary, we have vmax = ±ṽ on each Si, whence deg(vmax, Si) = ±deg(ṽ, Si)
for all i = 1, . . . , N . Summing up over i and passing to mod 2, we have

deg(vmax, ∂Ω) =

N∑
i=1

deg(vmax, Si) =

N∑
i=1

deg(ṽ, Si) = 0 mod 2 ,

which contradicts (HP3). �

We now further investigate properties of the biaxiality regions {β 6 t}, {β > t}. The following
lemma and its corollary below represents the key points where the analyticity assumption is used.

Lemma 5.3. Let Ω ⊆ R3 be a bounded open set with boundary of class C1, and Q : Ω→ S0. If Ω

and Q satisfy (HP0) − (HP3), then the set of singular (critical) value of β = β̃ ◦ Q in (−1, β̄) is
at most countable and can accumulate only at β̄. As a consequence,

1) for any t ∈ (−1, β̄) there exists a regular value t′ ∈ (−1, t) such that {β > t} ⊆ Ω is a
deformation retract of {β > t′};

2) for any t ∈ [−1, β̄) there exists a regular value t′ ∈ (t, β̄) such that {β 6 t} ⊆ Ω is a
deformation retract of {β 6 t′}.

Proof. Since β = β̃ ◦ Q ∈ Cω(Ω), by Sard’s theorem for analytic functions (see [59]) the set of
singular value is finite on each compact set K ⊆ Ω, hence all but countably many t ∈ (−1, β̄) are
regular for β in Ω. For such t, the level set {β = t} is contained in Ω by definition of β̄ and it
is a finite union of analytic, connected, orientable and boundaryless surfaces. However, since the
singular values are finite on compact sets and in view of the definition of β̄, the only accumulation
point for the singular values can be β̄. Indeed, otherwise there would be a countably many distinct
singular value βn → β∗ ∈ [−1, β̄) and corresponding distinct critical points xn ∈ {β = βn} ⊆ Ω
such that up to subsequences xn → x∗ ∈ {β = β∗}. Notice that x∗ ∈ ∂Ω, otherwise x∗ would be a
critical point as well and β∗ would be a singular value, with coutably many singular values attained
in a neighborhood of x∗, which contradicts Sard’s Theorem. Thus x∗ ∈ {β = β∗} ∩ ∂Ω, which is
however impossible by definition of β̄. To conclude the proof, we observe that the set of regular
value is open. Then, given a regular value t, choosing t′ sufficiently close to t, the conclusion 1)
(resp. 2)) follows by a standard retraction following the gradient (resp. negative gradient) flow
associated to β in Ω in a neighboorhood of {β = t} ⊆ Ω. Actually the same argument applies for
any singular value t, such value being isolated by the discussion above, and the conclusion follows
from real analyticity and the retraction theorem of  Lojasiewicz (see [39, Theorem 5]). �
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Corollary 5.4. Let Ω ⊆ R3 be a bounded open set with boundary of class C1, and Q : Ω→ S0. If
Ω and Q satisfy (HP0)− (HP3) with β̄ = 1 and Q ∈ Cω(Ω;S0), then the set of singular (critical)
value of β in (−1, 1) is finite, and there exists a regular value t′ ∈ (−1, 1) such that {β = 1} ⊆ Ω
is a deformation retract of {β > t′} ⊆ Ω.

Proof. The proof is similar to the one of Lemma 5.3, so it will be just sketched. In view of the

analytic regularity up to the boundary, the tensor Q has an analytic extension Q̂ (simply by power

series) to a larger open set Ω̂ ⊇ Ω. Then the function β̂ := β̃ ◦ Q̂ is analytic in Ω̂ with finitely

many critical values in Ω again by Sard’s theorem. Clearly 1 is a critical value (maximum) of β̂.
Hence, choosing a slightly smaller regular value t′, the conclusion still follows from [39] retracting

the set {β > t′} ⊆ Ω onto {β = 1} by the gradient flow of β̂ in Ω. �

The first information on the topology of the biaxiality regions is contained in the following
result.

Proposition 5.5. Let Ω ⊆ R3 be a bounded open set with boundary of class C1, and Q : Ω→ S0.
If Ω and Q satisfy (HP0)− (HP3), then the biaxiality regions satisfy

1) {β > t} is not simply connected for any t ∈ (−1, β̄);

2) {β 6 t} is not simply connected for any t ∈ (−1, β̄);

3) the negative uniaxial set {β = −1} is not simply connected;

4) {β = t} contains a surface of positive genus for any regular value t ∈ (−1, β̄) of the function
β;

5) if in addition β̄ = 1 and Q ∈ Cω(Ω;S0), then the set {β = 1} ⊆ Ω is not simply connected.

Proof. In view of Lemma 5.3 it is enough to prove claim 1) and 2) for a regular value t ∈ (−1, β̄)
since (non)simple connectivity passes to deformation retracts. A similar argument applies to claim
3). Indeed, t = −1 is a singular value (minimum), and it is isolated by Lemma 5.3. Hence,
combining claim 2) for regular values t′ close to −1, the set {β 6 t′} is not simply connected, and
thus its deformation retract {β = −1} is also nonsimply connected.

Let us now prove claims 1) and 4). We assume that t ∈ (−1, β̄) is a fixed regular value of
β ∈ Cω(Ω). Then the set {β > t} is the closure of the open set Ω ∩ {β > t} which is bounded
with smooth boundary. In addition, {β > t} and Ω ∩ {β > t} are homotopically equivalent (by
inward-retracting both sets along the normal direction in a small neighborhood of the boundary).

So it is enough to show that Ω̃ := Ω ∩ {β > t} is not simply connected. Observe that in view of

the regularity of t and the smoothness of the boundary, we can write ∂Ω̃ as a disjoint union

∂Ω̃ = ∂Ω ∪ {β = t} =
(
∪Ni=1Si

)
∪
(
∪Mj=1S̃j

)
,

where each Si is diffeomorphic to S2 and each S̃j is compact, analytic, connected, orientable and
boundaryless surface because {β = t} ⊆ Ω. Now we claim that there exists an index j∗ such that

the surface S̃j∗ has positive genus. In other words, claim 4) holds and the open set Ω̃ is not simply
connected in view of Lemma 5.1, i.e., claim 1) also holds.

To prove the existence of the distinguished surface S̃j∗ , we argue by contradiction assuming that

the genus g(S̃j) = 0 for each j = 1, . . . ,M . Hence the Euler characteristic χ(S̃j) = 2− 2g(S̃j) = 2
for each j = 1, . . . ,M , and we shall derive a contradiction from this fact. Indeed, notice first that
the maximal eigenvalue λmax(Q(x)) is simple for every x ∈ {β > t} ⊆ Ω. Therefore, there is a well

defined smooth eigenspace map Ṽ : {β > t} → RP 2, Ṽ (x) = Ker (Q(x)− λmax(Q(x))I). Since

each S̃j are assumed to be of zero genus, both Ω̃ and {β > t} are simply connected by Lemma 5.1.

Therefore the map Ṽ ∈ C1({β > t};RP 2) has a lifting ṽ ∈ C1({β > t};S2) as in the proof of
Lemma 5.2. From Stokes’ theorem we infer that

deg(ṽ, ∂Ω̃) =

N∑
i=1

deg(ṽ, Si) +

M∑
j=1

deg(ṽ, S̃j) = 0 .

Then assumption (HP3) yields
∑M
j=1 deg(ṽ, S̃j) 6= 0, so that there exists 1 6 j∗ 6 M such that

deg(ṽ, S̃j∗) 6= 0.
Now consider F = TS2 → S2 the (real, oriented, rank-two) tangent bundle of S2 with its Euler

class e(F ) ∈ H2(S2;Z). With respect to a normalized volume form on S2, we can write e(F ) =
2dvolS2 ∈ H2

dR(S2;R), and its Euler number (i.e., Euler characteristic) is χ(S2) =
∫
S2 e(F ) = 2.
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Using the map ṽ we can consider the pull-back bundle ṽ∗F → S̃j∗ which is a smooth real

oriented rank-two vector bundle over S̃j∗ . By functoriality of the Euler class (see e.g. [6]), we have∫
S̃j∗

e(ṽ∗F ) =

∫
S̃j∗

ṽ∗e(F ) = 2

∫
S̃j∗

ṽ∗dvolS2 = 2 deg(ṽ, S̃j∗) 6= 0 ,

hence the pull-back bundle ṽ∗F → S̃j∗ is nontrivial. On the other hand, since S̃j∗ ⊆ {β = t} and
t ∈ (−1, 1) is a regular value, each eigenvalue λ ∈ σ(Q(x)) = {λmax(x), λmid(x), λmin(x)} is simple

for every x ∈ S̃j∗ . Therefore there are well defined eigenspace maps Ṽmid, Ṽmin ∈ C1(S̃j∗ ;RP 2) and

corresponding liftings ṽmid, ṽmin ∈ C1(S̃j∗ ;S2) (since S̃j∗ simply connected, i.e., g(S̃j∗) = 0). By

the spectral theorem we have Fṽ(x) = Tṽ(x)S2 = {ṽ(x)}⊥ = Rṽmid(x)⊕Rṽmin(x) for every x ∈ S̃j∗ .
Hence the bundle ṽ∗F → S̃j∗ is trivial and ṽmid, ṽmin ∈ C1(S̃j∗ ;F ) provides a trivializing frame
(up to orientation), a contradiction.

To prove claim 2) we fix a regular value t ∈ (−1, β̄), and we recall that ∂{β 6 t} = {β = t} ⊆ Ω
is a finite union of surfaces of class C1 (in fact analytic) which are disjoint, embedded, connected
and boundaryless. Notice that ∂{β > t} = ∂Ω ∪ {β = t} is also a finite union of C1-surfaces
which are disjoint, embedded, connected and boundaryless. Moreover, since Ω is simply connected
and {β > t} is not (because of claim 1)), one of the component of {β = t} has positive genus
by Lemma 5.1. Applying again Lemma 5.1 to {β < t} ⊆ Ω, we infer that {β < t} is not simply
connected because the total genus of its boundary is positive. Hence {β 6 t} is also not simply
connected since the two sets are homotopically equivalent.

Finally, the proof of claim 5) follows from claim 1) for regular values t ∈ (−1, 1) combined with
the homotopic equivalence property stated in Corollary 5.4. �

As a direct consequence of the previous proposition, we have the linking property between
biaxiality sets.

Proposition 5.6. Let Ω ⊆ R3 be a bounded open set with boundary of class C1, and Q : Ω→ S0.
Assume that Ω and Q satisfy (HP0)− (HP3). If [t1, t2] ⊆ [−1, β̄) is such that (t1, t2) contains no

singular value of β = β̃ ◦ Q, then {β 6 t1} ⊆ Ω and {β > t2} ⊆ Ω are nonempty compact and
disjoint subset of Ω, and they are mutually linked.

Proof. In view of Lemma 5.2 the sets {β 6 t1} ⊆ Ω and {β > t2} ⊆ Ω are nonempty compact and
disjoint subset of Ω. Since [t1, t2] ⊆ [−1, β̄) we clearly have {β 6 t1} ⊆ Ω \ {β > t2} = {β < t2}
and {β > t2} ⊆ Ω \ {β 6 t1} = {β > t1}. As (t1, t2) contains no singular value, these two sets
are homotopically equivalent to {β 6 t1} and {β > t2}. Indeed, the gradient flow of ±β gives a
deformation retract of each larger set onto the corresponding smaller one (this is standard if t1
and t2 are regular values, and otherwise, it follows from [39, Theorem 5] as in Lemma 5.3 thanks
to real analyticity). Thus {β 6 t1} is contractible in Ω \ {β > t2} if and only if it is contractible,
and {β > t2} is contractible in Ω \ {β 6 t1} if and only if it is contractible. On the other hand,
the sets {β 6 t1} and {β > t2} are not simply connected by Proposition 5.5. Hence both of them
are not contractible and therefore mutually linked. �

In the final result of this section, which contains Theorem 1.6 as a particular case, we summarize
the topological information obtained as a straightforward combination of Lemma 5.2, Lemma 5.3,
Corollary 5.4, Proposition 5.5 and Proposition 5.6.

Theorem 5.7. Let Ω ⊆ R3 be a bounded open set with boundary of class at least C1, and Q :
Ω → S0. Assume that Ω and Q satisfy (HP0) − (HP3) (e.g., suppose ∂Ω has an odd number of

connected components and that Q(x) =
√

3/2(
→
n(x)⊗→n(x)− 1

3I) on ∂Ω, so that β̄ = 1). Then the
biaxiality sets satisfy:

1) the set of singular values of β in [−1, β̄] is at most countable and can accumulate only at
β̄; moreover, for any regular value −1 < t < β̄, the set {β = t} ⊆ Ω is a smooth surface
with a connected component of positive genus;

2) for any −1 6 t1 < t2 < β̄, the sets {β 6 t1} ⊆ Ω and {β > t2} ⊆ Ω are nonempty,
compact, and not simply connected;

3) if in addition Q ∈ Cω(Ω) and β̄ = 1, then {β = 1} ⊆ Ω is also nonempty, compact, and
not simply connected; in particular {β = 1} ∩ Ω is not empty;

4) for any −1 6 t1 < t2 < β̄ such that (t1, t2) contains no singular value, the sets {β 6 t1}
and {β > t2} are mutually linked.



50 FEDERICO DIPASQUALE, VINCENT MILLOT, AND ADRIANO PISANTE

References

[1] F.J. Almgren, E.H. Lieb : Singularities of energy minimizing maps from the ball to the sphere: examples,

counterexamples, and bounds, Ann. of Math. 128 (1988), 483–530.

[2] J. Ball : Liquid crystals and their defects. Mathematical thermodynamics of complex fluids, 1–46, Lecture
Notes in Math., 2200, Fond. CIME/CIME Found. Subser., Springer, Cham, 2017.

[3] J. Ball, A. Zarnescu : Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech.

Anal. 202 (2011), 493–535.
[4] R. Benedetti, R. Frigerio, R.Ghiloni : The topology of Helmholtz domains. Expo. Math. 30 (2012),

319–375.
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