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ABSTRACT
The large sky localization regions offered by the gravitational-wave interferometers require efficient follow-up of the many
counterpart candidates identified by the wide field-of-view telescopes. Given the restricted telescope time, the creation of
prioritized lists of the many identified candidates becomes mandatory. Towards this end, we use astrorapid, a multiband
photometric light-curve classifier, to differentiate between kilonovae, supernovae, and other possible transients. We demonstrate
our method on the photometric observations of real events. In addition, the classification performance is tested on simulated light
curves, both ideally and realistically sampled. We show that after only a few days of observations of an astronomical object, it
is possible to rule out candidates as supernovae and other known transients.

Key words: gravitational waves.

1 IN T RO D U C T I O N

The first detection of a binary neutron star (BNS) system GW170817
(Abbott et al. 2017a) by the gravitational-wave (GW) detectors
Advanced LIGO and Advanced Virgo was accompanied by the
detection of both a short gamma-ray burst (SGRB) by Fermi Gamma-
Ray Burst Monitor (GBM) (Abbott et al. 2017c; Goldstein et al.
2017; Savchenko et al. 2017) and a kilonova by many other facilities
(Abbott et al. 2017d; Coulter et al. 2017; Smartt et al. 2017). This
kilonova is the ultraviolet/optical/infrared emission powered by the
neutron-rich outflows undergoing the radioactive decay of r-process
elements (Lattimer & Schramm 1974; Li & Paczynski 1998; Metzger
et al. 2010; Kasen et al. 2017). The specifics of the light curves of
kilonovae depend on the equation of state of neutron stars and the
mass ratio of the binary (Bauswein, Baumgarte & Janka 2013; Piran,
Nakar & Rosswog 2013; Abbott et al. 2017a ; Bauswein et al. 2017;
Dietrich & Ujevic 2017; Radice et al. 2018). In addition to this,
there is synchrotron emission, which arises from a compact central
engine launching a highly relativistic jet of electron/positron/baryon
plasma (Wijers, Rees & Mészáros 1997; Mészáros & Rees 1998).
The internal dissipation of the jet’s energy is responsible for the
production of gamma-rays and hard X-rays. The afterglow phase,
produced by interaction of the jet with the ambient material, consists
of long-lasting multiwavelength emission in the X-ray, optical,
and radio. These three possible electromagnetic signatures of GW
events, the kilonova, the SGRB, and the afterglow, have different
characteristics. The kilonova is a short-lived isotropic emission in
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the visible and near-infrared spectrum, the SGRB is a beamed flare
of high-energy X-rays and gamma-rays having a duration lower than
2 s, and the afterglow is a long-standing multiwavelength transient.
There have been a number of examples in the literature of using the
photometry of both afterglows (Troja et al. 2018; Ascenzi et al. 2019)
and kilonovae (Coughlin et al. 2017; Smartt et al. 2017; Coughlin
et al. 2018a) to place constraints on the character of the progenitor
systems.

The joint observations of these systems are interesting for a variety
of reasons, including the study of SGRB beaming, energetics, and
galactic environment (Metzger & Berger 2012). In addition, the study
of the kilonova light curves provides precious information about
the nucleosynthesis of heavy elements in the Universe (Drout et al.
2017; Kasen et al. 2017; Pian et al. 2017; Watson et al. 2019) and the
Hubble constant (Abbott et al. 2017b; Coughlin et al. 2019a). The first
SGRB detected in association with a kilonova was 130603B (Tanvir
et al. 2013), providing support for the existence of an unbeamed
electromagnetic signature to compact binary mergers. Also, GRB
150101B has been reported as an off-axis jet associated with a
blue kilonova by Troja et al. (2018), based on its resemblance to
GRB 170817A. However, the detection of the kilonova transient
represents a difficult task given the large sky localizations provided
by both the gamma-ray satellites, such as the Fermi GBM and GW
interferometers. The localizations released by the GW detectors, in
particular, can be large, spanning ≈100 − 10 000 deg2 (Röver et al.
2007; Fairhurst 2009; Wen & Chen 2010; Fairhurst 2011; Grover
et al. 2014; Sidery et al. 2014; Singer et al. 2014; Berry et al. 2015;
Cornish & Littenberg 2015; Essick et al. 2015; Klimenko et al. 2016).
While GRB detections only have 2D sky localization information, the
strain measurement in GW events also allows for the computation of

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/2/1320/5861350 by guest on 28 M
ay 2024

http://orcid.org/0000-0002-8262-2924
mailto:scosmin@oca.eu


Using machine learning for transient 1321

a luminosity distance and therefore complete 3D skymap information
is provided.

The large sky localization regions require the use of wide-field
survey telescopes to be covered. Observing instruments such as
the Panoramic Survey Telescope and Rapid Response System (Pan-
STARRS; Morgan et al. 2012), Asteroid Terrestrial-impact Last Alert
System (ATLAS; Tonry et al. 2018), the Zwicky Transient Facility
(ZTF; Bellm et al. 2018; Graham et al. 2019), and in the near
future BlackGEM (Bloemen et al. 2016) and the Large Synoptic
Survey Telescope (LSST; Ivezic et al. 2019) have the capabilities
to observe these sky localizations. However, the main difficulty
remains in the large number of contaminant transients detected
each night by these surveys. Among them, the identification of the
counterpart represents a significant challenge. For this reason, an
effective follow-up requires coordination between the wide FOV
telescopes discovering transients and the telescopes that perform the
follow-up and characterization of those transients. The transient char-
acterization is typically done by smaller FOV telescopes performing
both photometry and spectroscopy. Since the available telescope time
at these telescopes is limited, it is essential to minimize the number
of candidates that require observations, and be as efficient as possible
with the classification.

The challenging follow-up of electromagnetic transients has
pushed the astronomical community to find new ways to optimize
searches. An example is the formation of telescope networks (Cough-
lin et al. 2019d; Antier et al. 2020) that are generally built around
the previously mentioned synoptic systems. Improved ways of tiling
and observing these localizations using allocated time of telescopes
are being employed based on the GW trigger candidate, telescope
configuration, and possible electromagnetic counterparts (Coughlin
et al. 2018b). New proposals for the amelioration of the galaxy
targeting strategy have been suggested, such as the prioritization of
galaxies based on their stellar mass (Ducoin et al. 2020).

Techniques to optimize the follow-up of objects have been
proposed in the literature. In Coughlin et al. (2019d), a method
that combines the automated filtering and human vetting is used
in order to reduce the number of initial candidates for S190425z
(LIGO Scientific Collaboration & Virgo Collaboration 2019), the
first BNS candidate from the third Advanced LIGO–Advanced Virgo
observing run. During the automatic analysis, asteroids or near-
Earth objects are removed as they did not appear in consecutive
observations separated by a few tens of minutes. Objects very close
(<2 arcsec) to point-like sources or having a historical detection
prior to three days before the trigger are also automatically rejected.
Finally, machine learning algorithms are used to identify image
artefacts. Altogether, due to this automated filtering, it was possible
to reduce the number of candidates from more than 300 000 to less
than 300. Then, human vetting kept only those triggers that are in
the localization, both in the 2D and distance, and that exhibited a
rapid colour evolution consistent with a kilonova. At the end of
the entire analysis, fewer than 20 candidates remained. As another
example, in Andreoni et al. (2020), one can see the importance
of having data not only after the GW trigger, but also prior to it.
The DECam follow-up of the GW alert S190814bvs showed that it
was difficult to rule out candidates due to the lack of recent pre-
imaging history, resulting in significantly more candidates despite a
smaller localization to cover. A proposal for improving the training
set destined to a machine learning algorithm whose purpose is
to identify supernova photometric light curves is in Ishida et al.
(2019).

There are two kinds of objects that exhibit time variability:
astrophysical objects whose signal lasts for a limited time and

Figure 1. Flow chart illustrating the different steps made in the photometry
analysis. The starting point is represented by the initial set of identified
candidates, after which optical observations are carried out for each of
these events. Then astrorapid provides a time-dependent probability
distribution spread over 14 possible candidate classes. The results provided by
astrorapid are handled in order to give weights and discriminate between
only four main classes: ‘SN’, ‘KN’, ‘Others’, and ‘Indistinguishable’. Finally,
a preferred class is declared.

objects with periodic variation of the flux. Our knowledge about
these electromagnetic events has dramatically improved in the
last years. For some types, such as supernovae, there are models
for their associated light curves, estimates of the occurrence rate,
and studies of their host-galaxy environment. Because of this, it is
possible to simulate what a specific telescope will observe taking
into account the instrument sensitivity and sky background. This
was performed, for example, in the LSST PLAsTiCC data challenge
(Kessler et al. 2019). In this study, they considered both extragalactic
and galactic transients. Then, by means of the SuperNova ANAlysis
software (SNANA; Kessler et al. 2009), a realistic set of light curves
is generated illustrating what would be the LSST detections of
transients of this type in the coming years. In this paper, we will use
astrorapid (Muthukrishna et al. 2019), a classifier tool based on
machine learning to classify objects. It was trained on a set of light
curves generated using SNANA and PLAsTiCC in order to simulate a
realistic set of events that would be observed by ZTF. astrorapid
is designed to distinguish between transient templates.

We will evaluate the ability to use machine learning classifiers on
early photometric light curves to support prioritization of transients
for follow-up in GW and SGRB follow-up. While we will focus on
kilonovae, the technique will be suitable for detection of afterglows.
We will describe the algorithm we use in Section 2. In Section 3, we
describe the performance of the algorithms. In Section 4, we offer
concluding remarks and suggest directions for future research. The
paper ends with Appendix A presenting the statistical justification
for some classification criteria introduced in Section 2.

2 A L G O R I T H M

The idea of this analysis is to use multi-epoch photometry to identify
interesting candidates. For the kilonova models being explored here,
significant changes in magnitude are expected on time-scales of a
single night. For this reason, telescope network photometry will
determine which transients can feasibly be related to the event, and
otherwise determine the background supernovae and other unrelated
transients. A flow chart showing up the method used in this study
(and explained further in the following) to identify and characterize
optical counterparts is shown in Fig. 1.
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For this purpose, we use astrorapid, which was developed
to distinguish between 14 different templates: ‘Pre-explosion’ [a
template introduced in order to distinguish the targeted flaring
event from the moments preceding it (Muthukrishna et al. 2019)],
‘SNIa-norm’ (a subtype of type Ia supernovae), ‘SNIbc’ (a subtype
of core-collapse supernovae), ‘SNII’ (a subtype of core-collapse
supernovae), ‘SNIa-91bg’ (a subtype of type Ia supernovae), ‘SNIa-
x’ [a subtype of type Ia supernovae (Silverman et al. 2012; Foley et al.
2013)], ‘point-Ia’ [hypothetical supernova type (Shen et al. 2010)],
‘Kilonova’ [electromagnetic counterpart to either BNS or neutron
star–black hole (NS–BH) mergers (Abbott et al. 2017a)], ‘SLSN-I’
[type I superluminous supernovae (Quimby et al. 2008)], ‘PISN’
[pair-instability supernovae (Ren, Christlieb & Zhao 2012)], ‘ILOT’
[intermediate-luminosity optical transients (Berger et al. 2009)],
‘CART’ [calcium-rich gap transients (Lunnan et al. 2017)], ‘TDE’
[tidal disruption events (Rees 1988)], and ‘AGN’ (active galactic
nucleus). A description of each specific template can be found in
Kessler et al. (2019). At the same time, the model libraries used in this
analysis are publicly available.1 Muthukrishna et al. (2019) describe
the intrinsic luminosity, light-curve shapes, and colour evolution
for the transient templates used in the training of astrorapid.
In addition, fig. 2 of Muthukrishna et al. (2019) displays example
light-curve shapes of these templates. The tool takes as input data
the light curve of the transient, including the time of the exposure,
apparent magnitude, and associated error bar; the output consists of
a time-dependent discrete probability distribution. It can take either
a redshift (such as from a probable host galaxy) or not, and we
will show results for both cases in the following. This distribution
provides the probability for each one of the 14 template types.
The probability distribution changes with every new observation,
and the more points the light curve contains, the more precise the
identification.

Whileastrorapidwas designed to classify full light curves, the
goal of this analysis is to determine, given a few observations, how
to prioritize objects for follow-up to support kilonova identification.
To this end, we made a few modifications to the initial code. First
of all, we collapse all 14 different templates into three main classes.
Thus, we consider the following classes: ‘SN’ (which accounts for
‘SNIa-norm’, ‘SNIbc’, ‘SNII’, ‘SNIa-91bg’, ‘SNIa-x’, ‘point-Ia’,
‘SLSN-I’, and ‘PISN’), ‘Others’ (accounting for ‘ILOT’, ‘CART’,
‘TDE’, and ‘AGN’), and ‘KN’ (which is simply the ‘Kilonova’
template). The probability of ‘Others’ and ‘KN’ is simply the sum
of the probabilities of their constituents. For the new probability
for the ‘SN’ class in particular, we found that we are required to
penalize it more than the others (likely because it is made up of a
majority of the classes). Therefore, for ‘SN’ in particular, we use
the sum of the probabilities of its components multiplied by the
factor (1. − e−kth

obs/β ), where kth
obs stands for the (k + 1)th observation.

The choice of the factor (1. − e−kth
obs/β ), is based on the following

considerations, and specific tests done with real data of transients
detected by ZTF as described in Appendix A. Considering only the
very first observations the probabilities of the initial astrorapid
templates are about equal, and thus the probability of the ‘SN’ class
becomes large because it accounts for numerous initial templates, and
needs to be reduced. We choose an exponential function to impose
our knowledge that having only a few observations is uninformative
(i.e. returning essentially the prior) and to leave unchanged the late
observation predictions. Hand-tuning for β led to β = 4, although it is
worth acknowledging that this particular choice might not be optimal.

1https://doi.org/10.5281/zenodo.2612896

Then, we also introduce a new class called ‘Indistinguishable’, where
we will say that the preferred event is ‘Indistinguishable’ if none of
the other classes (‘SN’, ‘KN’, and ‘Others’) has a probability higher
than 40%. The 40 % threshold was selected at the end of several trials.
This value represents a trade-off between two different behaviours.
A higher threshold will favour too much the ‘Indistinguishable’
class at least for the very first observations where there is not
much information and the initial weight of the ‘Pre-explosion’
template is already high. On the other hand, the consequence of
a lower threshold will be to force the modified classifier to choose
some class in {‘SN’, ‘KN’, ‘Others’}, although there is not enough
information for any inference; this is also an undesirable effect. In
summary, in total there are four classes: ‘KN’, ‘SN’, ‘Others’, and
‘Indistinguishable’. We also now introduce the idea of a ‘preferred
event’ after k observations. We define the preferred event as X (here
X stands for ‘KN’, ‘SN’, or ‘Others’) if two conditions are fulfilled:
(i) Prob(X) = max[Prob(‘SN’), Prob(‘KN’), Prob(‘Others’)] and
(ii) Prob(X) > 40%. This will be convenient for classification later.
More details about the motivation of both the penalty factor and the
threshold can be found in Appendix A.

3 PE R F O R M A N C E

To demonstrate the utility of the method for transient prioritization
and identification, we seek to show that two conditions hold. The
first is that kilonova light curves should in general be identified in
the ‘KN’ class. The second is that for input light curves representing
some other transient type, the analysis should not misidentify them
as a ‘KN’. In the following, we will use both simulated light curves
and real ZTF astrophysical transients from the public survey to assess
these questions. For the injection sets in particular, we will create
two sets of simulated SN and KN light curves. Each set has 1000
light curves representing transients uniformly distributed in distance
between 40 and 3000 Mpc. The set of real ZTF events is formed by
2291 light curves from the public data stream with an average of 29
observations per light curve. These events are mainly different types
of supernovae, but also include transients like TDE, AGN, ILOT, and
CART.

3.1 Real transients observed in multiple filters

The study of light curves observed during real survey is obviously
necessary to assess the performances of our classifier in realistic
situations. To this end, we use public ZTF light curves. We put these
events in two categories: ‘SN’ and ‘Others’. There are 2049 ‘SN’-
type events (1450 ‘SNIa’, 110 ‘SNIbc’, 447 ‘SNII’, and 42 ‘SLSN’)
and 174 ‘Others’-type events (152 ‘AGN’, 4 ‘CART’, 6 ‘ILOT’, and
12 ‘TDE’). As input, we consider only the observational data from the
r and g bands. Fig. 2 displays the results of the classifier after the first
observation points in the case of ‘SN’- and ‘Others’-type real events.
One can see that the classifier starts to correctly classify (efficiency
higher than 40%) after only 11 observations in the identification of
‘SN’ and 16 in the ‘Others’ case. It also exhibits that the classifier
almost never misidentifies these real events as being kilonovae. This
shows that kilonovae represent a fundamentally different part of the
parameter space. As pointed out above, these real ZTF objects have
an average of 29 observations per light curve. Fig. 3 illustrates the
number of observations for the set of real ZTF objects. To take into
account the unequal number of observations, we consider for a light
curve possessing a total of N observations that the preferred event
after m observations with m > N is the same as the one found at the
end of the N (real) observations.

MNRAS 497, 1320–1331 (2020)
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Figure 2. On the left are the histograms of classifier favoured events given different numbers of observations: from 1 (top-left corner) up to 26 (bottom-right
corner). The input is represented by the set of 2049 ZTF real sources identified as ‘SN’ type. On the right is the same for the set of 174 ZTF real sources
identified as the ‘Others’ type.

Figure 3. Histogram showing the observation number for the set of real
ZTF objects. Both ‘SN’- and ‘Others’-types objects are included in this
study.

3.2 Real transients observed in a single filter

Among the real supernova transient light curves, there are 157
transients that have only single passband observations. As for any
deep learning algorithm, the idea is that the more information there is,
the better is the classification. Thus, a classification result comparison
between the two passbands (r and/or g) case and only one passband
(only r or only g) case is worthwhile. In Fig. 4, we show the results
of the follow-up of those single filter events. In this case, the success
rate after 26 observations is much lower (around 10%) compared
to the case presented in the previous section (success rate around
60%). This highlights how essential colour information is in the
classification. It is worth mentioning that simulations for which
astrorapid was trained on did not include single filter light
curves; therefore, as a future activity retraining astrorapid to
include both single and multiphotometric bands will help to fix this
issue.

Figure 4. Preferred template fraction given different numbers of observa-
tions: from 1 (top-left corner) up to 26 (bottom-right corner). The input is
represented by the set of 157 ZTF real sources observed in only one filter.
Those events were finally all identified as being SN types.

3.3 Injection sets

There are several reasons that motivate us to verify performance
using simulated light curves. It was shown in the previous sections
how well the classifier performs in identifying supernovae sampled
at the ZTF cadence (an illustration of the ZTF cadence is available in
Fig. 14). A question that arises is how much the background transient
identification can be improved if we increase the observational rate,
or equivalently, how much a dedicated ToO observation will amelio-
rate the results compared to the typical ZTF cadence. Likewise, we
want to check how well the kilonova light curves are recovered by
our classifier. Because of the very small set of real kilonovae detected
to date, the choice of an injection set becomes important.

As described above, we use simulations of both kilonova and
supernova light curves generated by varying different parameters.
The codebase used to generate kilonova light curves was described
previously in Coughlin et al. (2018a, 2019b). The variable physical
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Figure 5. Left: Light curves representing the absolute magnitude as a function of time for five KN injections, for different input parameters. For all the light
curves Mej = 0.05 M� and vej = 0.15c. The only parameter that varies is Xlan, whose value is shown on the legend. Right: Apparent magnitude versus time for
five SN injections. The light curves share parameters like cosmological redshift z = 0.022 and colour index c = 0. Here the shape parameter x1 is different for
each light curve and its value is shown in the legend. These are the simulation results for the g band for both plots.

parameters in the model are the ejectum mass (Mej), the velocity of
the ejecta (vej), and the lanthanide fraction (Xlan). Likewise, the prior
ranges of the parameters are Mej ∈ [0.01M�, 0.1M�], vej ∈ [0.01c,
0.3c], and Xlan ∈ [10−5, 10−1], where M� is the solar mass and
c represents the speed of light. While vej is sampled uniformly, the
parameters Xlan and Mej are log-uniformly distributed. An illustration
of several such light curves is given on the right of Fig. 5. Type Ia
supernova light curves are generated by ‘sncosmo’, whose details are
explained in Guy et al. (2007) and Barbary et al. (2016). In order to
be as general as possible, parameters like parameter shape (hereafter
x1) and colour index (hereafter c) were chosen to fill a broad space:
x1 ∈ [−0.5, 0.5] and c ∈ [−0.05, 0.05]. The left of Fig. 5 shows a
few such light curves.

We want to imitate the ‘background’ introduced by such light
curves in searches for kilonovae. To this end, it is important to
understand where the supernova observations are positioned relative
to the peak of the light curve. If there are enough points before
the peak, then one could expect a few misclassifications as ‘KNe’
because a rising light curve is not characteristic for kilonovae. In
Fig. 6, we illustrate the time of the first observation with respect to
the peak of the supernova light curve. It is worth mentioning that by
first observation, we mean first detection of the supernova. The data
set used in this study was the same set of real ‘SN’ objects used in
Section 3.1. It is worth mentioning that we cannot be sure if the peak
of the light curve coincides with the peak of the supernova, while
in principle, it could be a local maximum. However, even a local
maximum will appear as a ‘rise’, which is one of the main features we
are investigating here. From Fig. 6, one sees that, for a non-negligible
(more than 10%) part of the objects, their first observation represents
the peak of the light curve. We do not know if it coincides with the
global peak or where the global peak might actually be. According
to these results, we choose the first observations of the supernovae
to be uniformly distributed in the range [−7 days, +30 days].

Looking at the distance distribution, we considered a uniformly
distributed population of supernovae and kilonovae between 40 and
300 Mpc (chosen as the edge of the BNS GW detection horizons).
This choice is also motivated by the distribution of the cosmological
redshifts in the case real ZTF ‘SN’ objects; this is the same light
curve set used in Section 3.1. Indeed in Fig. 7, one can see that this
distribution possesses a peak around z = 0.05, which corresponds to

Figure 6. The amount of time before the peak of the light curve for the first
observation. On the top (bottom) plot, there is the histogram corresponding
to the r (g) passband. The input is represented by the set of real ‘SN’ ZTF
objects.

a luminosity distance of approximately 230 Mpc. Although a popu-
lation uniformly distributed in volume is also possible, we injected
uniformly in distance because we are predominantly interested in
how the algorithm performs as a function of distance, and so how it
performs spanning the bright to the faint end. A volume-limited set
would be a more realistic distribution of kilonovae, and essential for
any rates-related work.

In the case of kilonovae, we considered two sets: the first one
ideally sampled (two observations per night per filter on average)
and the second one realistically sampled (one observation per three
nights per filter on average). In the view of already treated real ZTF
‘SN’ objects, we limit ourselves to only the case of ideally sampled
supernova injections. Magnitude uncertainties have been also taken
into account for these sets of light curves. The error bars considered
for this study are magnitude and filter dependent, and have similar
values to those measured on the real ZTF objects.
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Figure 7. Redshift histogram for the real ZTF ‘SN’-type light curves.

Figure 8. Preferred event fraction histogram given different amounts of
observation time: from 0.5 day (left) up to 1.5 days (right). The input is
represented by the set of 1000 SN injections.

We verify the performance of our method on the simulated light
curves. In the case of kilonova injections, the output assesses how
well the classifier recognizes a kilonova; the purpose of evaluating
the output on supernova injections is to quantify how often our tool
misidentifies a transient as being a kilonova when it is not. In this
regard, the supernova transients represent our ‘background’. The
choice of supernovae as the background set is motivated by the
dominance of this type of transient among the identified candidates.

3.3.1 Well-sampled type Ia supernovae

In this section, the light curves are ideally sampled (two observations
per night taken in each consecutive night) with detections in two
filters (r and g bands). In the case of the type Ia supernova injections
(see Fig. 8), the ‘SN’ template is preferred after only a few nights.
This is because these are the brightest transient events, and therefore
their brightness is the key determinant.

Also, given that these injections present only-rising, only-
decreasing, and rising-decreasing shapes, one can conclude that the
classification efficiency is not simply due to shape recognition. The

Figure 9. The number of days the kilonova is detectable by ZTF. We use the
same set of 1000 ideally sampled KN injections.

better classification efficiency with respect to the case of real ZTF
‘SN’-type objects seems to arise from the sampling cadence.

3.3.2 Well-sampled kilonovae

In this section, the kilonovae light curves considered are also ideally
sampled (two observations per night taken in each consecutive night)
with detections in two filters (r and g bands). Given their inherent
faintness, the kilonovae are not visible at the ZTF sensitivity at large
distances as the supernovae. More precisely, the injection set of
kilonovae is visible for an average of 8.1 days. And the farther away
a kilonova is, the less time it will be detectable by ZTF. A histogram
showing the number of days the injected kilonovae are visible is in
Fig. 9. As in the case of real ZTF objects, we consider for a kilonova
visible for only N days that the preferred event after m days, with m
> N, is the same as the preferred event at the end of the real N days
of observation.

Fig. 10 presents the histograms of preferred events for the very first
night of observations. As expected, the category ‘Indistinguishable’
is favoured when there are not enough observations (usually less
than ∼ 6), but at the end of two nights, the classifier identifies it
as a kilonova light curve with a high probability. From Fig. 10, two
conclusions can be made. First, one can see that after only two days of
observations, the ‘KN’ template starts to be preferred over the others.
Secondly, one notices that after 3 days of observations, the classifier
mainly chooses the ‘KN’ template, and the few failures consist of
a preference for the ‘SN’ and ‘Indistinguishable’ templates. The
false dismissal rate is less than 4 per 10 events. Fig. 11 shows the
dependence of the classifier’s preferred events (at the end of 3 days
of observation) as a function of Xlan, redshift, Mej, and vej.

Fig. 11 suggests that a low velocity for the ejecta has the
effect of preferring ‘Indistinguishable’ by the classifier. Likewise,
the more mass ejected leads to a higher preference for the ‘SN’
templates; this is because they become brighter and therefore more
consistent in appearance with supernovae. It also reveals that the
lanthanide fraction and the redshift have a non-negligible impact on
the light curve; we see that the smaller Xlan, the more probable
is the ‘SN’ template, and the higher Xlan, the more probable is
‘Indistinguishable’. The lanthanide fraction is responsible for the
reddening of the light curve. As the lanthanide fraction decreases,
the transient becomes more blue and therefore compatible with a
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Figure 10. Preferred event fraction histogram given different amounts of
observation time: from 0.5 day (top-left corner) up to 3 days (bottom-right
corner). The input is represented by the set of 1000 kilonova injections.

supernova light curve (which are in general more grey). In addition,
a large lanthanide fraction leads to red light curves, where the g-
band observations are upper limits instead of detections and so the
‘Indistinguishable’ template becomes the favoured one, as there is no
colour information. At small redshifts, kilonovae can be misclassified
as SNe (intrinsically brighter) at higher distance with respect to the
injected one. On the other hand, a high value of the redshift denotes a
small signal-to-noise ratio, and thus the classifier is also more likely
to prefer the ‘Indistinguishable’ template.

In order to assess the utility of our method, understanding the
brightness of the kilonovae once they are detected for the first time
by the algorithm is of great significance. To this end, we pick out
only those light curves that were classified as ‘KN’ after the last
observation. There are 757 such injections. For each of these light
curves, we looked for the first time t1 when our tool identifies it as
a ‘KN’, and then we determine the magnitude of the kilonova at
this particular time t1. Whereas all of these light curves contain
observations in the r passband at t1, only 553 of them are still
detectable in the g passband at t1. This is because in general the
fade in g is faster than the fade in r, so usually that is the filter being
measured last. In Fig. 12, we show the normalized histogram of the
apparent magnitude with both filters at the time t1. We can infer

Figure 11. Classification result dependence on the varied parameters for the 1000 KN injections. On the top row, a histogram of classifier favoured events after
3 days of observation as a function of Xlan (on the left) and redshift (on the right). On the bottom row is the same as a function of Mej (on the left) and vej (on
the right).
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Figure 12. The probability density function for the apparent magnitude (on
top for the r filter and on bottom for the g filter) at t1, the first time the kilonova
was identified as being ‘KN’. It was considered a sample of 757 (553) light
curves for the r (g) filter.

Figure 13. Classification results after two nights of observations with (blue)
and without (green) the knowledge of the cosmological redshift. The input is
represented by the same 1000 ‘KN’ injection set discussed inside this section.

from this figure that in the majority of cases, our tool identifies the
kilonovae early enough for follow-up by telescopes that can reach
∼21 mag, i.e. reasonably sensitive telescopes.

In the previous paragraphs, we presented the results of our method
when the input consists only of photometric data. However, as any
classifier based on machine learning, astrorapid provides more
precise classifications if additional information is available. One
example of such additional information might be the redshift of the
candidate. In Fig. 13, this is illustrated by means of a histogram for
the quantitative improvement in the classification results when the
redshift is taken into account compared to the situation where this
information is considered unknown. For this study, we use the same
set of well-sampled kilonova injections presented at the beginning
of this section. One can observe that at the end of two nights of
observations, the success rate in the recovery of KN templates is
improved by more than 10 % if the cosmological redshift is given.

Figure 14. Histogram of time spacing between two consecutive observations
in each filter. All real ZTF objects have been used for this study. The r-band
results are on top and the g-band results are on bottom.

Figure 15. Preferred event fraction histogram given different amounts of
observation time: from 0.5 day (top-left corner) up to 3 days (bottom-right
corner). The input is represented by the set of 1000 kilonova injections
sampled similarly to the ZTF cadence.

3.3.3 Realistically sampled kilonovae

While the case of dedicated ToOs was treated in the previous
section by considering an ideal sampling of two observations per
night and in each of the two filters r and g bands, we are now
interested in what is the efficiency of the classification in the case
of a serendipitous observation. To this end, the spacing in time of
two consecutive observations was studied for the case of real ZTF
objects. Indeed in Fig. 14, one can see the time difference between
two consecutive observations in each filter for the entire set of real
ZTF objects, both ‘SN’ and ‘Others’ types. One can easily observe
a peak corresponding to a time spacing of 3 days. This is why we
simulated a second set of 1000 kilonovae, with a sampling rate of
one observation every three nights in each filter. Fig. 15 shows the
results of the classification for the first 3 days of observations for this
new set of injections. One can see that the classifications are much
less efficient than in the case of the ideal sampling, which allows us
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to conclude that dedicated ToOs versus serendipitous observations
make a big difference.

4 C O N C L U S I O N

In this study, we present a method to classify transients starting from
photometric observations and the cosmological redshift. The method
is based on the use of an open-source classifier astrorapid. By
running this tool on input data represented by the observational
light curves and combining the output results by source class, we
propose a way to distinguish between four main classes: ‘KN’,
‘SN’, ‘Others’, and ‘Indistinguishable’. The performance of this
classifier and class system has been tested on both real ZTF objects
and simulated light curves. The case of real transients from the
public ZTF alert stream emphasizes the necessity of around 10
observations at the ZTF cadence, provided that the information from
both r and g passbands is used. Concerning the well-sampled light
curves, it has been shown that the identification of SNe necessitates
only a few observations, while for the recognition of KNe, a few
nights of photometry in multiple passbands is required (with signif-
icantly worse results in the case of single passband observations).
Finally, it has been shown that for kilonovae sampled at a cadence
similar to that of ZTF, the efficiency of the classifier decreases
significantly.

This study opens prospects for future work, including the dominant
question in the community concerning how to determine the best
observing strategy to adopt in the case of a GW alert. In order
to address this question, several issues should be considered. First
of all, an evaluation of the candidate recognition dependence on
the observing cadence needs to happen. In addition, a performance
comparison between imaging in two filters and spending twice as
long in a single filter needs to happen (with of course the possibility
of even more filters being considered). Also, the possibility of having
three or more filters cannot be discredited. Once the entire parameter
space is explored, an optimal observing strategy could be found.
The current version of astrorapid does not have the current
capability to address these items. To do so, we will need to retrain
astrorapid on single passband light curves, as well as light curves
observed in more than three filters.

In the future, we intend to improve astrorapid to account
for ‘missing’ observations where only upper limits are available.
This should be useful in cases of particularly red or blue transients,
where likely the colour information is even more apparent than
in the case where there are detections. Another improvement to
astrorapidmight consist of the introduction in the training set of
new interlopers such as M-dwarf. In addition, we plan to incorporate
these techniques into some of the ongoing follow-up infrastructure,
such as the GROWTH target of opportunity marshal (Coughlin et al.
2019c) and the GRANDMA iCARE pipeline (Antier et al. 2020).
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PASP, 131, 118002

Pian E. et al., 2017, Nature, 551, 67

MNRAS 497, 1320–1331 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/2/1320/5861350 by guest on 28 M
ay 2024

https://github.com/mcoughlin/gwemlightcurves
http://dx.doi.org/10.1103/PhysRevLett.119.161101
http://dx.doi.org/10.1038/nature24471
http://dx.doi.org/10.3847/2041-8213/aa920c
http://dx.doi.org/10.3847/2041-8213/aa91c9
http://dx.doi.org/ 10.3847/1538-4357/ab6a1b
http://dx.doi.org/ 10.1093/mnras/stz3142
http://dx.doi.org/10.1093/mnras/stz891
http://dx.doi.org/10.1103/PhysRevLett.111.131101
http://dx.doi.org/10.3847/2041-8213/aa9994
http://dx.doi.org/10.1088/1538-3873/aaecbe
http://dx.doi.org/10.1088/0004-637X/699/2/1850
http://dx.doi.org/10.1088/0004-637X/804/2/114
http://dx.doi.org/10.1088/0264-9381/32/13/135012
http://dx.doi.org/10.3847/1538-4357/aa9114
http://dx.doi.org/ 10.1093/mnras/sty2174
http://dx.doi.org/10.1093/mnras/sty1066
http://dx.doi.org/10.1088/1538-3873/aaff99
http://dx.doi.org/ 10.1103/PhysRevResearch.2.022006
http://dx.doi.org/10.1093/mnrasl/slz133
http://dx.doi.org/10.3847/2041-8213/ab4ad8
http://dx.doi.org/10.1126/science.aap9811
http://dx.doi.org/10.1088/1361-6382/aa6bb0
http://dx.doi.org/10.1126/science.aaq0049
http://dx.doi.org/10.1093/mnras/staa114
http://dx.doi.org/10.1088/0004-637X/800/2/81
http://dx.doi.org/10.1088/1367-2630/11/12/123006
http://dx.doi.org/10.1088/0264-9381/28/10/105021
http://dx.doi.org/10.1088/0004-637X/767/1/57
http://dx.doi.org/10.3847/2041-8213/aa8f41
http://dx.doi.org/10.1088/1538-3873/ab006c
http://dx.doi.org/10.1103/PhysRevD.89.042004
http://dx.doi.org/10.1051/0004-6361:20066930
http://dx.doi.org/10.1093/mnras/sty3015
http://dx.doi.org/ 10.3847/1538-4357/ab042c
http://dx.doi.org/10.1038/nature24453
http://dx.doi.org/10.1086/605984
http://dx.doi.org/10.1088/1538-3873/ab26f1
http://dx.doi.org/10.1103/PhysRevD.93.042004
http://dx.doi.org/10.1086/181612
http://dx.doi.org/10.1086/311680
http://dx.doi.org/10.3847/1538-4357/836/1/60
http://dx.doi.org/10.1086/311499
http://dx.doi.org/10.1088/0004-637X/746/1/48
http://dx.doi.org/10.1111/j.1365-2966.2010.16864.x
http://dx.doi.org/10.1088/1538-3873/ab1609
http://dx.doi.org/10.1038/nature24298


Using machine learning for transient 1329

Piran T., Nakar E., Rosswog S., 2013, MNRAS, 430, 2121
Quimby R., Aldering G., Wheeler J., H’oflich P., Akerlof C., Rykoff a., 2008,

ApJ, 668, L99
Radice D., Perego A., Zappa F., Bernuzzi S., 2018, ApJ, 852, L29
Rees M. J., 1988, Nature, 333, 523
Ren J., Christlieb N., Zhao G., 2012, Res. Astron. Astrophys., 12, 1637
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A P P E N D I X : P E NA LTY FAC TO R A N D C H O I C E O F T H R E S H O L D

When collapsing the probabilities of the 14 initial astrorapid templates, one could naively sum the corresponding probabilities, i.e.

P (SN) = P (SNIa-norm) + P (SNIbc) + P (SNII) + P (SNIa-91bg) + P (SNIa-x) + P (point-Ia) + P (SLSN-I) + P (PISN)

P (Others) = P (ILOT) + P (CART) + P (TDE) + P (AGN)

P (KN) = P (Kilonova)

P (Pre-explosion) = P (Pre-explosion).

Given the abundance of SN classes, ‘SN’ would almost always be selected as the preferred class.
We illustrate this behaviour on real ZTF light curves, i.e. the same data set we used in Section 3.1. In Fig. A1, we plot the detection fraction

of the preferred event after different numbers of observations. From this figure, several conclusions can be drawn. First of all, one can see,
especially in the case where ‘Others’ light curves are input, the ‘SN’ class is often incorrectly chosen. This behaviour is visible for early
observations especially and improves somewhat at later times. This motivates our decision to penalize the ‘SN’ class by a factor (1. − e−kth

obs/β ),
where kth

obs stands for the (k + 1)th observation. Secondly, at early times, too many events are misclassified as ‘Others’ and ‘SN’, when a
non-determinative choice, i.e. a preference for the ‘Pre-explosion’ template, is physically reasonable. This supports our decision to replace
‘Pre-explosion’ with ‘Indistinguishable’ as well as the introduction of a probability threshold in order for a transient to be classified in the set
{‘Indistinguishable’, ‘SN’, and ‘Others’}.

In Fig. A2, we illustrate the distribution of astrorapid preferred event probabilities after two observations, when the input is a real ZTF
‘Others’-type object, and the preferred event at the end of two observations is in {‘KN’, ‘SN’}. Fig. A2 therefore shows the probability of the
‘wrong’ preferred class when there is misclassification at early times. As a consequence of these results, we choose a threshold equal to 40 %
below which the preferred event is always ‘Indistinguishable’.

Once the threshold is fixed, we are looking for a value of β based on our data set results. Given the expression of the penalty factor we
imposed, (1. − e−kth

obs/β ), it is worth mentioning the β-dependence of our classifications. A too small β means a penalty factor close to 1,
so basically the classifications will be very similar to our initial results. On the other hand, a too large β means a penalty factor close to 0,
which will have as a consequence the preference of the other classes than ‘SN’. We can anticipate from this discussion that a near-optimal
β will be obtained as a trade-off between these two regimes. To assess this, we analyse the impact of the penalty factor on the same set

Figure A1. The preferred event after 2, 11, and 21 observations, respectively. The input is represented on the left by the set of 2049 ZTF real sources identified
as ‘SN’ type and on the right by the set of 174 ZTF real sources identified as the ‘Others’ type.
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Figure A2. Histogram of the preferred event probabilities after the two observations. The input is represented by those real ‘Others’ light curves that are
misclassified as ‘SN’ or ‘KN’ after two observations.

of real ZTF objects as presented in Section 3.1. For the ‘SN’-type objects, we define the failure probability as being the proportion of
‘SN’-type objects classified as ‘Others’ or ‘KN’. Analogously for the ‘Others’-type objects, we define the failure probability as the proportion
of ‘Others’-type objects classified as ‘SN’ or ‘KN’. It should be clear that these success/failure probabilities are a function of the number of
observations.

In Fig. A3, one can see that except for the very earliest times (∼ 2 observations), all the other curves contain β = 4, indicating that it is
near-optimal.
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Figure A3. Success and failure probability for ‘SN’-type objects (on top) and ‘Others’-type objects (on bottom). It turns out from these plots that β = 4 is a
reasonable choice.
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