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Abstract. Although they do not lend themselves to analytical resolu-
tion, three-body atomic or molecular systems are still simple enough to
allow for very precise theoretical predictions of their energy levels, which
makes them attractive candidates for fundamental tests and determina-
tion of fundamental physical constants. Focusing on the hydrogen molec-
ular ions (H+

2 , HD+, D+
2 ), we outline the methods which have been used

to improve the theoretical accuracy by several orders of magnitude over
the last two decades. The three-body Schrödinger equation can be solved
with extreme precision by variational methods with trial functions in-
volving exponentials of interparticle distances. Quantum electrodynam-
ics (QED) corrections are evaluated in the framework of nonrelativistic
QED (NRQED). The current status of theory and possibilities of further
improvement are briefly sketched.
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1 Introduction

Precision spectroscopy of two-body (hydrogenlike) atoms, combined with QED
calculations of their energy levels, has been a very successful way to test funda-
mental physics at a low-energy scale and has led to precise determinations of the
Rydberg constant and proton charge radius [1]. In the last decade, the still unre-
solved discrepancy between results from H spectroscopy [2,3], muonic hydrogen
spectroscopy [4], and electron-proton scattering experiments [5], known as the
”proton-radius puzzle”, has been a subject of intense activity. Three-body atoms
or molecules have rich potential for further investigations in this field. Although
theoretically more complex, they can have experimentally favorable features like
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the existence of narrow transitions, and can be sensitive to different physics or
fundamental constants. For example, spectroscopy of antiprotonic helium has
been used to determine the antiproton-to-electron mass ratio and test the CPT
symmetry [6], and experiments in pionic helium [7] are underway to determine
the charged pion mass. Measurements in He have recently allowed extracting
the 3He-4He nuclear charge radius difference [8,9], to be compared with the value
deduced from muonic helium spectroscopy [10]; future theoretical progress would
allow extraction of individual radii [11]. Spectroscopy of ro-vibrational transi-
tions in the hydrogen molecular ions (HMI), H+

2 and its isotopes HD+ and D+
2 ,

can be used for determination of the proton-electron and deuteron-electron mass
ratios [12,13,14], and, if an appropriate set of transitions is measured, of the pro-
ton and deuteron charge radii and Rydberg constant [15]. Measurements in the
antihydrogen molecular ion H̄−2 compared with its normal matter counterpart
have also been proposed for improved CPT symmetry tests [16].

The main purpose of this paper is to introduce the reader to the theoretical
methods used to calculate the energy levels of three-body Coulomb bound states
with very high accuracy, with emphasis on the case of HMI. The first part is
devoted to the Schrödinger equation and its resolution by variational methods,
and the second part deals with the calculation of QED corrections. An outline
of the NRQED approach is given, after which the current status of theoretical
predictions in HMI and perspectives of further improvement are briefly discussed.

2 Variational solutions of the Schrödinger equation

HMI play the role of benchmark systems in quantum chemistry, and the cal-
culation of their nonrelativistic energy levels have been studied in hundreds of
theoretical papers. Calculations were initially performed in the framework of
the Born-Oppenheimer approximation; nonadiabatic calculations appeared in
the 1970s [17], motivated by the first precise spectroscopic measurements in
HD+ [18]. Since then, refinements in theoretical methods and constant increase
of available computing power have allowed improving the precision by many
orders of magnitude, as illustrated in Table 1 for the ground-state energy of
H+

2 . A majority of the most accurate results have been obtained using the varia-
tional approach and different variants of ”exponential” basis sets [19,20,21,22,23],
which we will now present.

Let us consider a rovibrational state of a HMI supported by the ground 1sσg
electronic curve. Its total spatial parity is Π = (−1)L where L is the rotational
quantum number. The wavefunction ψΠLM of such a state may be written using
the following separation of angular and radial degrees of freedom [24]:

ψΠLM (R, r1) =
∑

l1+l2=L

Y l1l2LM (R, r1)GLΠl1l2(R, r1, r2), (1)

Y l1l2LM (R, r1) = rl11 r
l2
2 {Yl1 ⊗ Yl2}LM . (2)

Here, ri (i = 1, 2) is the position of the electron with respect to nucleus i, and
R = r1 − r2 is the internuclear vector. The radial functions GLΠl1l2(R, r1, r2) are



Precision calculations for three-body molecular bound states 3

Table 1. Selected theoretical results for the nonrelativistic energy of the H+
2 ground

state (i.e. the (v = 0, L = 0) rovibrational state supported by the 1sσg electronic
curve). The CODATA 1986 value of the mass ratio, mp/me = 1836.152 701, was used
in all works excepted for Ref. [17] where me/mp = 5.446 17 10−4. N is the number of
terms in the expansion of the wave function. Stars signal cases where the eigenvalue
problem in Eq. (6) involves sparse-band matrices, which greatly reduces its complexity.

Author (year) Ref. Method N Energy (a.u.)

Bishop (1977) [17] Var. elliptic 515 -0.597 139 062 5
Moss (1993) [25] Transformed H -0.597 139 063 12(5)
Grémaud (1998) [26] Var. perimetric 31746∗ -0.597 139 063 123(1)
Moss (1999) [27] Var. elliptic -0.597 139 063 123 4(1)
Hilico (2000) [28] Var. perimetric 66046∗ -0.597 139 063 123 40(1)
Korobov (2000) [19] Var. exponential 2200 -0.597 139 063 123 405 074
Bailey (2002) [20] Var. exponential 3500 -0.597 139 063 123 405 074 83
Cassar (2004) [21] Var. exponential 1052 -0.597 139 063 123 405 074 834 338(3)
Li (2007) [22] Var. exponential 8381 -0.597 139 063 123 405 074 834 134 096 026(5)
Hijikata (2009) [29] Free complement 19286 -0.597 139 063 123 405 074 834 134 096 026 0
Ning (2014) [23] Var. exponential 3806 -0.597 139 063 123 405 074 834 134 096 026 189 9(1)

then expanded in a basis set involving exponentials of inter-particle distances.
Two different types of expansion have been used with particular success. The
first one uses pure exponential functions [19,20]:

GLΠl1l2(R, r1, r2) =

Nl2∑
n=1

[
CnRe(e−αnR−βnr1−γnr2) +DnIm(e−αnR−βnr1−γnr2)

]
(3)

where the exponents αn, βn, γn are complex numbers. In practice, it is essential
to use complex αn in order to reproduce the oscillatory behavior of the vibra-
tional part of the wavefunction, but βn and γn can be kept real. The real and
imaginary parts of exponents are generated pseudo-randomly in several inter-
vals, the bounds of which play the role of variational parameters and need to be
optimized. The second type of expansion is [21,23,30]

GLΠl1l2(R, r1, r2) =

2∑
p=1

Ω∑
i,j=0

Ωhigh∑
k=Ωlow

C
(p)
ijk r

i
1r
j
2R

k e−αpR−βpr1−γpr2 (4)

where all exponents are real, and their values are fully optimized through calcu-
lation of the first derivatives of the energy with respect to αp, βp, γp.

According to the basic variational theorem, the quantity

E =
〈ψ|H|ψ〉
〈ψ|ψ〉

(5)

provides an upper bound for the exact ground-state energy E0. Finding the

extrema of E with respect to the linear parameters (Cn, Dn in Eq. (3) or C
(p)
ijk
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in Eq. (4)) is equivalent to solving the generalized eigenvalue problem

Ac = λBc (6)

where c is a column vector of coefficients (ψ =
∑N
i=1 ciψi), A the Hamiltonian

matrix (Aij = 〈ψi|H|ψj〉), and B the overlap matrix (Bij = 〈ψi|ψj〉). The lowest
eigenvalue λ0 is an upper bound to E0; a less widely known property called the
Hylleraas-Undheim-MacDonald theorem [31,32], crucial for the applicability of
variational methods to excited states, is that the other eigenvalues λ1, λ2 . . . are
also upper bounds to the exact energies E1, E2 . . ..

An essential property of the above ”exponential” expansions allowing to get
high-precision results is that the matrix elements of the Hamiltonian, as well
as those appearing in calculation of relativistic and QED corrections, can be
evaluated analytically [30,33,34].

The efficiency of variational methods is not limited to the first few ex-
cited states, contrary to a common misconception. For example, in the recent
work [35], the energies of all bound and quasibound states of H+

2 supported by
the 1sσg electronic curve were calculated with an uncertainty of 10−7cm−1, using
the complex coordinate rotation method for quasibound states. An important
technical point is that the quasi-adiabaticity of HMI greatly helps reducing the
complexity of the calculation for high rotational states as it allows restricting
the sum in Eq. (1) to low values of l2 (which is related to the electronic orbital
momentum).

One may wonder what kind of accuracy is actually required for fundamental
metrology applications. Typically, an uncertainty of 10−20 a.u. on the nonrela-
tivistic energy level allows calculation of leading-order (α2) corrections with 10
significant digits, and with an absolute uncertainty < 10−14 a.u. The resulting
relative uncertainty on rovibrational transition frequencies (ν ∼ 0.01 a.u.) is
< 10−12, which is still smaller than the uncertainty from unevaluated high-order
QED corrections (see next Section). Since such (or even better) accuracies can
be obtained with modest computing resources, the nonrelativistic three-body
bound-state problem may be regarded as solved from a practical viewpoint.

3 Calculation of QED corrections

We now give a basic introduction to nonrelativistic quantum electrodynamics
(NRQED) and its application to HMI. The NRQED approach, originally pro-
posed by Caswell and Lepage [36] and further developed by other authors (see
e.g. [37,38,39]) is a powerful tool to study QED corrections in weakly bound
few-body systems. In brief, it consists in constructing from QED a nonrela-
tivistic Lagrangian describing the interaction of an electron or a nucleus with
the electromagnetic field, and then using it to calculate the QED corrections by
applying the nonrelativistic perturbation theory. One way of constructing the
NRQED Lagrangian [36,37] is to write all possible interactions satisfying the
required symmetries, such as gauge invariance, parity invariance, time reversal,
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Galilean invariance, hermiticity, and locality. In principle this is an infinite ex-
pansion, but it may be truncated according to the order of the correction one
wants to calculate. Its first few terms are

L=ψ†
{
iDt+

D2

2m
+

D4

8m3
+cF q

σ ·B
2m

+cDq
∇·E
8m2

+icSq
σ ·(D×E−E×D)

8m2

}
ψ (7)

where q,m are the particle’s mass and charge, Dt = ∂t+iqA0, and D = ∇−iqA.

The coefficients of this Lagrangian are regularized by introducing a cutoff
on the photon momentum of the order of the electron’s rest energy. Physics
at relativistic energy scales is incorporated in the theory in the form of contact
terms. Finally, the coefficients of the Lagrangian are fixed by imposing that
the NRQED and QED scattering amplitudes coincide up to the desired order -
this is the so-called ”matching” procedure. An alternative approach [38,39] is to
obtain the NRQED Hamiltonian directly from the Dirac Hamiltonian through a
Foldy-Wouthuysen transformation.

It is important to note that the matching is the only stage of the method
which involves calculation of QED diagrams. It is done using only the scattering
of free particles, and does not involve any bound states. This separation of the
matching from the bound-state calculations is a key simplification allowed by
the NRQED approach.

After the Lagrangian has been constructed, the next step is to apply the
nonrelativistic perturbation theory. This can be formalized in terms of NRQED
Feynman rules similarly to QED (see Fig. 3 in [37]). The number of interaction
vertices is much higher than in QED since there are many terms in the NRQED
Lagrangian, but each diagram is much simpler to calculate. To illustrate this
procedure, all diagrams contributing to the leading-order (Breit-Pauli) hyperfine
Hamiltonian of HMI are shown in Fig. 1. The interaction potential corresponding
to each diagram is directly obtained in impulse space through application of
NRQED Feynman rules, and Fourier transform gives the potentials in coordinate
space (see Eq. (2) of [40]).

Application of the NRQED approach to HMI has allowed calculation of
leading-order relativistic and radiative corrections at the mα4 and mα5 or-
ders [42]. Among these, the most difficult contribution to evaluate is the Bethe
logarithm, which may be expressed as a sum over intermediate states converging
very slowly as the maximal energy of the states included in the sum is increased.
Its evaluation therefore requires an accurate representation of scattering states
lying high in the continuum. An efficient numerical scheme for calculating the
Bethe logarithm is presented in Ref. [43].

Corrections of order mα6, mα7, and (partially) mα8 have been calculated
in the framework of the adiabatic approximation [44,45,46], including only cor-
rections to the bound electron in a two-center potential. Spin-averaged rovi-
brational transition frequencies are now predicted with a relative uncertainty
of 7.6 10−12 [46], which already allows for an improved determination of the
proton-electron mass ratio if a measurement of similar accuracy is performed in
ongoing Doppler-free spectroscopy experiments. Further progress in accuracy by
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Fig. 1. Leading-order NRQED diagrams contributing to the hyperfine structure of
HMI. Particles 1 and 2 may be either an electron or one of the nuclei. Left: Coulomb
photon exchange (dashed line) where 1 and 2 respectively interact via Coulomb and
spin-orbit vertices. Center: transverse photon exchange (wiggly line) where 1 and 2
interact via dipole and Fermi vertices. Right: transverse photon exchange where both
particles interact via a Fermi vertex. The photon impulse is q = p′2−p2. The matching
with QED yields c

(e)
F = 1 + ae, c

(e)
S = 1 + 2ae for an electron [37], and c

(N)
F = Z + aN ,

c
(N)
S = Z + 2aN for a spin 1/2 nucleon of charge Z [41], where ae (resp. aN ) is the

anomalous magnetic moment of the electron (resp. nucleus).

a factor 2-3 would allow an independent cross-check of the values of the Rydberg
constant and nuclear radii [15].

The highest precision reached in experiments so far is 3.8 10−10 on the fun-
damental rotational transition in HD+ [13]. In this case, a single hyperfine
component was measured, and comparison with theory is limited by hyperfine
structure calculations [13,47]. Calculation of mα6(m/M) order corrections to
the spin-orbit and spin-spin tensor interactions in the three-body framework is
currently in progress to improve this, following previous work on the spin-spin
contact Fermi interaction [48]. Spin-averaged interaction potentials at the same
order have been recently derived [49].

Regarding spin-averaged transition frequencies, the largest source of theoret-
ical uncertainty is the one-loop self-energy contribution at the mα8 order [35]
which has not been calculated yet even in hydrogenlike systems. One possible
way forward would be to calculate the one-loop self-energy of a bound electron
in a two-center potential, without performing the expansion in powers of the
binding potential, as previously done in hydrogenlike atoms [50,51].
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