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Introduction

Dendric words are infinite words defined in terms of extension graphs that describe the left and right extensions of their factors. Extension graphs are bipartite graphs that can be roughly described as follows: given an infinite word x, and given a finite factor w of x, one puts an edge between left and right copies of letters a and b such that awb is a factor of x. Dendric words are such that all their extension graphs are trees. For precise definitions, see Sections 2.1 and 2.2. This class of words with linear factor complexity includes classical families of words such as Sturmian words, codings of interval exchanges, or else, Arnoux-Rauzy words. Dendric words have striking combinatorial, ergodic and algebraic properties. This includes in particular algebraic properties of their return words [START_REF] Berthé | Acyclic, connected and tree sets[END_REF], and of maximal bifix codes defined with respect to their languages [START_REF] Berstel | Bifix codes and Sturmian words[END_REF][START_REF] Berthé | Maximal bifix decoding[END_REF][START_REF] Berthé | The finite index basis property[END_REF]. They have been introduced in [START_REF] Berthé | Acyclic, connected and tree sets[END_REF] and studied in several papers (as, for instance, [START_REF] Berthé | Maximal bifix decoding[END_REF][START_REF] Berthé | The finite index basis property[END_REF]), under the name of tree words. We have chosen to call them here dendric words, and the subshifts they generate dendric subshifts, in order to avoid any ambiguity with respect to the notion of tree shift that refers to shifts defined on trees, and not on words (see e.g. [START_REF] Aubrun | Tree-shifts of finite type[END_REF]).

We investigate here the properties of substitutive dendric words and prove some rigidity properties. Rigidity has to do with the algebraic properties of the monoid of substitutions that fix a dendric word: an infinite word generated by a substitution is rigid if all the substitutions which fix this word are powers of a unique substitution. In the present paper, we concentrate on the iterative stabilizer according to the terminology of [START_REF] Krieger | On stabilizers of infinite words[END_REF]: we focus on non-erasing morphisms and on infinite words generated by iterating a substitution.

There exist numerous results on the two-letter case concerning rigidity (see [START_REF] Richomme | Completing a combinatorial proof of the rigidity of Sturmian words generated by morphisms[END_REF][START_REF] Séébold | On the conjugation of standard morphisms[END_REF] and also [START_REF] Berthé | Selfdual substitutions in dimension one[END_REF]). It is indeed well known that Sturmian words generated by substitutions are rigid [START_REF] Richomme | Completing a combinatorial proof of the rigidity of Sturmian words generated by morphisms[END_REF][START_REF] Séébold | On the conjugation of standard morphisms[END_REF]. The situation is more contrasted as soon as the size of the alphabet increases. For instance, over a ternary alphabet, the monoid of morphisms generating a given infinite word by iteration can be infinitely generated, even when the word is generated by iterating an invertible primitive morphism (see [START_REF] Diekert | Some remarks about stabilizers[END_REF][START_REF] Krieger | On stabilizers of infinite words[END_REF]).

Our main results are the following. We provide a characterization of substitutive primitive dendric words in terms of S-adic expansions and tame substitutions (Theorem 7). An S-adic expansion corresponds to the limit of compositions of substitutions of the form σ 1 • • • • • σ n , and tame substitutions are elementary substitutions that extend to free group automorphisms (see Section 2.3 for definitions). We prove that if an infinite dendric word x is fixed by two primitive substitutions σ, τ , then these substitutions coincide up to powers, i.e., there exist positive integers i, j such that σ i = τ j ; moreover, there exists a substitution θ such that all primitive substitutions of the stabilizer of x are conjugate up to powers to θ (Theorem 9). We also prove that aperiodic minimal dendric subshifts cannot have rational topological eigenvalues (Theorem 13), and thus, they cannot be generated by constant length substitutions (Corollary 15). Our proofs rely on the notion of return words and on the so-called Return Theorem [START_REF] Berthé | Acyclic, connected and tree sets[END_REF] that states that for every infinite dendric word defined over the alphabet A, the set of (right) return words is a basis of the free group generated by the alphabet A.

Let us briefly sketch the content of this paper. We recall in Section 2 the first basic definitions that are required, such as the notions of extension graphs and dendric words, return words, stabilizers, etc. We provide in Section 3 a characterization of substitutive dendric words in terms of derived sequences and S-adic expansions. Rigidity properties are considered in Section 4. Lastly, we prove in Section 5 that recurrent dendric words cannot have rational topological eigenvalues. We conclude this paper with several questions in Section 6.

Basic definitions

Words, extensions and subshifts

Let A be a finite non-empty alphabet. All words considered below, unless stated explicitly, are supposed to be on the alphabet A. We denote by ε the empty word of the free monoid A * , by A + the free semigroup and by A N the set of infinite words over A. The Parikh vector of a word w ∈ A * is the vector in N A whose coordinates are equal to the number of occurrences of letters in w, i.e., its i-th entry is equal to |w| i , where |w| i stands for the number of occurrences of the letter i in w. The notation |w| stands for the length of w.

We say that a word u is a factor of a word w if there exist words p, s such that w = pus. If p = ε (resp., s = ε) we say that u is a prefix (resp., suffix) of w.

Let F be a set of words on the alphabet A. For w ∈ F , we denote

L(w) = {a ∈ A | aw ∈ F }, (w) = Card(L(w)), R(w) = {a ∈ A | wa ∈ F }, r(w) = Card(R(w)), B(w) = {(a, b) ∈ A × A | awb ∈ F }, b(w) = Card(B(w)).
Let F be a set of words. For a word w ∈ F , we consider an undirected bipartite graph E(w) called its extension graph in F and defined as follows: its set of vertices is the disjoint union of L(w) and R(w), and its edges are the pairs (a, b) ∈ L(w)×R(w) such that (a, b) ∈ B(w). For an illustration, see Example 1 below.

Example 1. Let F be a set of words on the alphabet {a, b} having as factors of length less then 4 the set {ε, a, b, aa, ab, ba, aab, aba, baa, bab}. The extension graphs of the empty word and of the two letters are represented in Figure 1.

A set of words F is factorial if it contains the factors of all its elements. It is biextendable if it is factorial and if for all w ∈ F , one has r(w) ≥ 1 and (w) ≥ 1. It is recurrent if for every u, v ∈ F there exists a word w ∈ F such that uwv ∈ F . It is uniformly recurrent if it is biextendable and for any word u ∈ F , there exists an integer n ≥ 1 such that u is a factor of every word of F of length n. Every uniformly recurrent set is recurrent while the opposite is in general not true. A word

w ∈ F is called right-special if r(w) ≥ 2. It is called left-special if (w) ≥ 2. It is called bispecial if it is both right-and left-special. For a word w ∈ F , let m(w) = b(w) -(w) -r(w) + 1.
We say that w is neutral (resp., weak, resp., strong) if m(w) = 0 (resp m(w) < 0, resp., m(w) > 0). A factorial set F is said to be neutral (resp., weak, resp., strong) if any word of F is neutral (resp., neutral or weak, resp., neutral or strong). Note that our definition of neutral set corresponds to the one of neutral set of characteristic 1 in [START_REF] Dolce | Neutral and tree sets of arbitrary characteristic[END_REF]. We will work here with a subclass of the family of neutral sets, namely dendric sets, introduced in Section 2.2. But before defining them, we also introduce notions corresponding to infinite words and subshifts.

An infinite word in A N is said to be uniformly recurrent if the set of its factors is uniformly recurrent. In other words, an infinite word x = (x n ) n∈N = x 0 x 1 • • • is uniformly recurrent if every word occurring in x occurs in an infinite number of positions with bounded gaps, that is, if for every factor w, there exists a positive integer s such that for every n, w is a factor of x n . . . x n+s-1 . The set of factors F (x) of an infinite word x is called its language.

The mapping S acting on sets of infinite words is the (one-sided) shift S acting on A N :

S ((x n ) n∈N ) = (x n+1 ) n∈N .
A subshift is a pair (X, S) where X is a closed shift-invariant subset of some A N . A subshift is said to be minimal if it admits no non-trivial closed and shift-invariant subset. A subshift X is minimal if and only if every infinite word x ∈ X is uniformly recurrent. If X is a subshift, then its language F (X) is defined as the set of factors of elements of X. Given a biextendable set of words F ⊂ A * , there exists a unique subshift X such that F (X) = F . We say that a minimal subshift is periodic whenever it is finite. Otherwise it is said to be aperiodic.

Dendric sets

The following notion has been introduced in [START_REF] Berthé | Acyclic, connected and tree sets[END_REF], under the terminology of tree set. We say that a set of words F is a dendric set if it is biextendable and if for every word w ∈ F , the graph E(w) is a tree. Note that a biextendable set F is a dendric set if and only if the graph E(w) is a tree for every bispecial word w. Indeed the extension graph associated with every non-bispecial word is trivially a tree.

If the extension graph E(w) of w is a tree, then m(w) = 0. Thus w is neutral. Note that if E(w) is acyclic, one has m(w) = 1-c, where c is the number of connected components of the graph E(w). Sturmian sets and regular interval exchange sets are examples of dendric sets (see [START_REF] Berthé | Acyclic, connected and tree sets[END_REF]).

The sequence

(p n ) n≥0 with p n = Card(F ∩ A n ) is called the factor complexity of F . Set k = Card(F ∩ A) -1.
The factor complexity of a neutral set F is equal to kn + 1 (see [START_REF] Berthé | Acyclic, connected and tree sets[END_REF]). Since a dendric set is neutral, we deduce that the factor complexity of a dendric set is also kn + 1 (see [START_REF] Berthé | Acyclic, connected and tree sets[END_REF]).

The following result shows that in neutral sets (and thus in dendric sets) the notion of recurrence and uniformly recurrence coincide.

Proposition 2 (Corollary 5.3 [START_REF] Dolce | Neutral and tree sets of arbitrary characteristic[END_REF]) A recurrent neutral set is uniformly recurrent.

We similarly define a dendric word as an infinite word x such that its language F (x) is a dendric set, and a dendric subshift as a subshift (X, S) such that F (X) is a dendric set.

Matrices and free groups

A morphism σ : A * → B * is a monoid morphism from A * into B * . We consider here exclusively non-erasing morphisms, that is, morphisms such that the image of every element in A + belongs to B + . When B = A, such a morphism is a substitution. If there exists a letter a ∈ A such that the word σ(a) begins with a and if |σ n (a)| tends to infinity with n, there exists a unique infinite word denoted σ ω (a) which has all words σ n (a) as prefixes. Such an infinite word is called a fixed point of the substitution σ.

A substitution σ : A * → A * is called primitive if there is a positive integer k such that for all a, b ∈ A, the letter b appears in σ k (a). If σ is a primitive substitution, there exists a power σ k that admits a fixed point, and the set of factors of any fixed point of σ (or of some power of σ) is uniformly recurrent (see for example Proposition 1.2.3 in [START_REF] Fogg | Substitutions in dynamics, arithmetics and combinatorics[END_REF]). Furthermore, all these fixed points have the same language that we call the language of the substitution.

An infinite word x over the alphabet A is said to be substitutive if there exist a substitution σ over an alphabet B with a fixed point y = σ ω (b), for some b ∈ B, and a morphism τ : B * → A * , such that τ (y) = x. It is said substitutive primitive when σ is primitive.

The incidence matrix (also called substitution matrix) of a substitution σ defined over the alphabet A is the A×A-matrix whose entry (i, j) counts the number |σ(j)| i of occurrences of the letter i in σ(j).

The subshift (X σ , S) generated by a primitive substitution σ over A is the set of infinite words x such that any word w in the language F (x) is a factor of some σ n (a), for some a ∈ A and some positive integer n. Such a subshift is minimal.

Example 3. Let σ F be the Fibonacci morphism defined over the alphabet {a, b} by σ F (a) = ab and σ F (b) = a. The morphism σ F is a primitive subtistitution and the uniformly recurrent infinite word

σ ω F (a) = abaababaabaab • • • is called the Fibonacci word. The incidence matrix of σ F is 1 1 1 0 .
The set of factors of the Fibonacci word, called the Fibonacci set, is a dendric set (see, e.g., [START_REF] Berthé | Acyclic, connected and tree sets[END_REF]) and the extensions graphs of ε, a and b are shown in Figure 1.

We denote by F A the free group on the alphabet A. It is the set of all words on the alphabet A ∪ A -1 which are reduced, in the sense that they do not have any factor aa -1 or a -1 a for a ∈ A. A morphism σ from A * to A * can be extended to a morphism from F A to F A by defining σ(a -1 ) = (σ(a)) -1 for all a ∈ A ∪ A -1 . A morphism σ of the free monoid is said to be invertible if, when extended to a morphism of the free group it is an automorphism, that is, there exists a morphism τ from F A to F A such that σ • τ = τ • σ = Id. In particular, if σ is such that there exists n such that σ n is an automorphism, then σ is itself an automorphism.

An automorphism α of the free group on A is positive if α(a) belongs to A + for every a ∈ A. We say that a positive automorphism of the free group on A is tame if it belongs to the submonoid generated by the permutations of A and the automorphisms α a,b , αa,b defined for a, b ∈ A, with a = b, by

α a,b (c) = ab if c = a, c otherwise and αa,b (c) = ba if c = a, c otherwise.
Thus α a,b places a letter b after each a and αa,b places a letter b before each a, without modifying the other letters. The above automorphisms and the permutations of A are called the elementary positive automorphisms on A. We let S e denote the set of elementary positive automorphisms. This is a subset of the set of Nielsen's transformations (see, e.g., [START_REF] Magnus | Combinatorial Group Theory[END_REF]). A substitution that extends as a positive automorphism that is tame is said to be a tame substitution.

The monoid of tame substitutions strictly contains the monoid of episturmian morphisms, also called Arnoux-Rauzy substitutions. Note that the case of a twoletter alphabet corresponds to the Stumian case. The monoid of episturmian morphisms has been thoroughly investigated, e.g., in [START_REF] Richomme | Conjugacy and episturmian morphisms[END_REF]. It is generated by the permutations together with the set of automorphisms ψ a , ψa, defined for a ∈ A by The submonoid of the monoid of episturmian morphisms generated by the permutations together with the set of automorphisms ψ a , defined for a ∈ A (that is, no ψb is allowed) is called the monoid of epistandard morphisms.

ψ a (c) = ac if c = a, a if c = a. and ψa (c) = ca if c = a, a if c = a.
Note also that the monoid of tame automorphisms is strictly included in the monoid of positive automorphisms. This is a consequence of the fact that the monoid of positive automorphisms on an alphabet containing at least three letters is not finitely generated [START_REF] Richomme | Conjugacy and episturmian morphisms[END_REF][START_REF] Tan | The structure of invertible substitutions on a three-letter alphabet[END_REF][START_REF] Wen | Some remarks on invertible substitutions on three letter alphabet[END_REF]. However, invertible substitutions over a binary alphabet are exactly the Sturmian substitutions (see, e.g., [START_REF] Mignosi | Morphismes sturmiens et règles de Rauzy[END_REF][START_REF] Wen | Local isomorphisms of invertible substitutions[END_REF]), and the monoid of all invertible substitutions (i.e., the Sturmian monoid) is finitely generated.

Tame substitutions are closely related to dendric words such as shown in Section 3 where a characterization of substitutive dendric words is provided. But, not every tame substitution admits as a fixed point a dendric word (see Example 5.25 in [START_REF] Berthé | Maximal bifix decoding[END_REF]). The situation is thus more contrasted than in the Sturmian case where every Sturmian substitution generates a Sturmian word (see, e.g., [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF]). Note however that it is decidable whether the language of a primitive aperiodic substitution a is a dendric set (see [START_REF] Dolce | Decidable properties of extension graphs for substitutive languages[END_REF]).

Stabilizers

The stabilizer of an infinite word x ∈ A N , denoted by Stab (x), is the monoid of substitutions σ defined on the alphabet A that satisfy σ(x) = x. Words that have a cyclic stabilizer are called rigid b .

Note that we concentrate here on the iterative stabilizer according to the terminology of [START_REF] Krieger | On stabilizers of infinite words[END_REF]. Results on the possible growth of elements of the stabilizer are provided in [START_REF] Diekert | Some remarks about stabilizers[END_REF] and [START_REF] Durand | Syndeticity and independent substitutions[END_REF]. It is shown in particular that polynomial and exponential growth cannot co-exist in the stabilizer for aperiodic words.

Words generated by Sturmian substitutions are rigid (see [START_REF] Séébold | On the conjugation of standard morphisms[END_REF]). It is proved in [START_REF] Krieger | On stabilizers of infinite words[END_REF] that Arnoux-Rauzy words that are fixed points of epistandard morphisms are rigid.

Note also that the question of the existence of non-negative integers n, p such that σ n = τ p is decidable [START_REF] Pansiot | A decidable property of iterated morphisms[END_REF].

Return words

Let F ⊂ A * be a set of words. For w ∈ F , let

Γ F (w) = {x ∈ F | wx ∈ F ∩ A + w} and Γ F (w) = {x ∈ F | xw ∈ F ∩ wA + }.
If F is recurrent, the sets Γ F (w) and Γ F (w) are non-empty. Let

R F (w) = Γ F (w) \ Γ F (w)A + and R F (w) = Γ F (w) \ A + Γ F (w)
a A primitive substitution is said to be aperiodic if the subshift it generates is aperiodic. b Note that rigidity has nothing to do with the ergodic notion of rigidity.

be respectively the set of right return words and the set of left return words to w. In other words, a right return word to w is a word x such that wx is in F , w is a suffix of wx and wx contains exactly two occurrences of w, and a left return word to w is a word x such that xw is in F , w is a prefix of xw and xw contains exactly two occurrences of w. Note that wR F (w) = R F (w)w. Note also that a recurrent set S is uniformly recurrent if and only if the set R S (w) is finite for any w ∈ S.

Return words will play a crucial role in the following. The following theorem is proved in [START_REF] Berthé | Acyclic, connected and tree sets[END_REF] and it is referred as the Return Theorem.

Theorem 4 (Theorem 4.5 [START_REF] Berthé | Acyclic, connected and tree sets[END_REF]) Let F be a recurrent dendric set containing the alphabet A. Then, for any w ∈ S, the set R F (w) is a basis of the free group F A on A. Similarly, for any w ∈ S, the set R F (w) is a basis of the free group on A.

Substitutive dendric words

We first recall some basic definitions concerning S-adic representations in terms of return words. For more on S-adic words see, e.g., [START_REF] Berthé | Beyond substitutive dynamical systems: S-adic expansions[END_REF][START_REF] Durand | Do the properties of an S-adic representation determine factor complexity[END_REF][START_REF] Leroy | Some improvements of the S-adic conjecture[END_REF][START_REF] Leroy | An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n + 1) -p(n) ≤ 2, Discrete Math[END_REF][START_REF] Leroy | A combinatorial proof of S-adicity for sequences with linear complexity[END_REF]].

An infinite word x ∈ A N is said to be S-adic if there is a sequence of alphabets

(A n ) n∈N , a sequence of morphisms s = (σ n : A * n+1 → A * n ) n∈N and a sequence of letters a = (a n ∈ A n ) n∈N such that x = lim n→+∞ σ 0 σ 1 • • • σ n (a n+1
). The set S in the terminology S-adic refers to the set of morphisms S = {σ n | n ∈ N}. The pair (s, a) is called an S-adic representation of x and the sequence s a directive sequence of x. The pair (s, a) is eventually periodic if there exists a non-negative integer N and a positive integer n such that (σ m+n , a m+n ) = (σ m , a m ) for all m ≥ N , and it is purely periodic if there exists a positive integer n such that (σ m+n , a m+n ) = (σ m , a m ) for all m ∈ N. The pair (s, a) is said to be primitive whenever the directive sequence s is primitive, i.e., for all r ≥ 0, there exists r > r such that all letters of A r occur in σ r σ r+1 • • • σ r (a) for all a ∈ A r +1 . Observe that if x has a primitive S-adic representation, then x is uniformly recurrent (see, e.g., [START_REF] Durand | Linearly recurrent subshifts have a finite number of non-periodic subshift factors, Ergodic Theory & Dynam. Systems[END_REF]). If X is a minimal subshift and if x ∈ X admits a primitive S-adic representation (s, a), then we say that (s, a) is also an S-adic representation of X.

Return words provide S-adic representations of uniformly recurrent words. Indeed, let x = (x n ) n∈N ∈ A N be a uniformly recurrent word. We consider a factorization in left return words with respect to the first letter x 0 of x (note that such return words starts with x 0 ). Denoting by F the language of x, there exists a unique sequence (w n ) n∈N ∈ (R F (x 0 )) N such that x = w 0 w 1 w 2 • • • . Let R be the alphabet {1, 2, . . . , Card(R F (x 0 ))} and consider the return morphism λ : R * → A * such that λ(R) = R F (x 0 ) and λ(i) is the i-th return word occurring in (w n ) n∈N for all i. More precisely, λ is such that for all i ∈ R and all m ∈ N,

if w m / ∈ {w 0 , w 1 , • • • , w m-1 } = {λ(j) | 1 ≤ j < i}, then λ(i) = w m . The derived se- quence of x is the unique sequence D(x) ∈ R N such that λ(D(x)) = x. We recursively define D n (x), λ n and R n by D 0 (x) = x, R 0 = A and D n (x) = D(D n-1 (x)) ∈ R N n with λ n : R * n+1 → R * n the return morphism of D n (x).
Let us consider the set of morphisms Λ = {λ n | n ∈ N}. We denote λ = (λ n ) n∈N and 1 = (1) n≥1 the constant sequence that takes the value 1. The pair (λ, 1) is clearly primitive (see also Proposition 5.22 in [8]). We call it the Λ-adic representation of x. For all n ≥ 1, we set

θ n = λ 0 λ 1 • • • λ n-1 : R * n → A * . Thus we have θ n (D n (x)) = x.
The Λ-adic representation allows the following formulation for characterizing primitive substitutive words.

Theorem 5 ([16]

) A uniformly recurrent word x ∈ A N is primitive substitutive if and only if the set of its derived sequence {D n (x) | n ∈ N} is finite.

The next result implies that any recurrent dendric word admits a primitive S eadic representation (see also Theorem 5.23 in [START_REF] Berthé | Maximal bifix decoding[END_REF]). The main property used below is that in a recurrent dendric set the set of return words of a given word forms a basis of the free group (Theorem 4.5 in [START_REF] Berthé | Acyclic, connected and tree sets[END_REF]). We recall that S e stands for the set of elementary positive automorphisms such as defined in Section 2.3. Theorem 6. Let x ∈ A N be a recurrent dendric word over the alphabet A = {1, . . . , d} and let (λ, 1) be its Λ-adic representation in return words.

(1) For all n ∈ N, D n (x) ∈ A N is a recurrent dendric word.

(2) For all n ∈ N, the morphism λ n : A * → A * extends to a tame automorphism of F A .

In other words, the Λ-adic representation of x provides an S e -adic representation of x.

Proof. By Proposition 2, x is uniformly recurrent. Item 1 then follows from Theorem 5.13 in [START_REF] Berthé | Maximal bifix decoding[END_REF]. Item 2 follows from Theorem 4.5 in [START_REF] Berthé | Acyclic, connected and tree sets[END_REF] and Theorem 5.19 in [START_REF] Berthé | Maximal bifix decoding[END_REF].

We now can state the main result of this section that provides a characterization of primitive substitutive dendric words. A similar statement is known to hold for Sturmian words (see, e.g., [START_REF] Berthé | Initial powers of Sturmian sequences[END_REF]). In the latter case it can even be expressed in terms of eventually periodic continued fractions and Ostrowski expansions. Theorem 7. A recurrent dendric word is primitive substitutive if and only if it has an eventually periodic primitive S e -adic representation.

Proof. One easily checks that the condition is sufficient. The necessary part follows from Theorem 5: the set {D n (x) | n ∈ N} being finite, there exists m, n ∈ N, m < n such that D m (x) = D n (x). By construction of λ, this means that for all k ∈ N, D m+k (x) = D n+k (x) and λ m+k = λ n+k , i.e., (λ, 1) is eventually periodic. We then apply Theorem 6.

Observe that if the Λ-adic representation of a uniformly recurrent dendric word x is purely periodic, then x is the fixed point of a primitive tame substitution. The converse is not true, such as illustrated by the following example. and its fixed point x = σ ω (0). One has x = λ 0 λ 1 (λ 2 ) ω (0) where

λ 0 : 1 → 01 2 → 0 , λ 1 : 1 → 1 2 → 12 , and 
λ 2 : 1 → 12 2 → 122 .
Thus, the Λ-adic representation of x is eventually periodic, but not purely periodic.

Let π : 1 → 1, 2 → 0. Note that λ 0 = π • α1,2 , λ 1 = α2,1 , λ 2 = α 1,2 α2,1 .

Stabilizers of dendric words

The following theorem states that one has a weak form of rigidity for dendric words together with a structure theorem for the stabilizer of a dendric word. Recall that recurrent dendric words are uniformly recurrent by Proposition 2.

Theorem 9. Let x be a dendric word. Primitive substitutions in the stabilizer Stab (x) of x coincide up to powers. More precisely, if x is a fixed point of both σ and τ primitive substitutions, then there exist i, j ≥ 1 such that τ i = σ j . Let x be a recurrent substitutive dendric word. There is a primitive tame substitution θ such that any primitive substitution σ ∈ Stab (x) has a power that is (tamely) conjugate to a power of θ, that is, there exists a positive tame automorphism τ such that σ i = τ θ j τ -1 , for some i, j ≥ 1.

In particular, if x is a dendric word, any primitive substitution in Stab (x) extends to an automorphism of the free group and is a tame substitution.

Note that the first statement implies that the Perron-Frobenius eigenvalues of σ and τ are multiplicatively dependent, which is also a consequence of Cobham's Theorem [START_REF] Durand | Cobham's theorem for substitutions[END_REF].

Proof. The first statement is a direct consequence of Corollary 22 in [START_REF] Durand | HD0L ω-equivalence and periodicity problems in the primitive case[END_REF]. Indeed, given any finite word w, the set of Parikh vectors of returns words to w generates Z d by the Return Theorem (see Theorem 4). Now, let x be a recurrent dendric word. If x is primitive substitutive, then the set {D n (x) | n ∈ N} is finite by Theorem 5. Let (λ, 1) be its Λ-adic representation, and, k, l ∈ N, k < l, be such that D k (x) = D l (x) and all derived sequences in

{D n (x) | 0 ≤ n < l} are pairwise distinct. Let θ be the morphism such that θ l = θ k θ, i.e., θ = λ k λ k+1 • • • λ l-1 . Since ((λ n ) n≥k , 1) is a primitive Λ-adic representation of D k (x), θ is a primitive substitution having D k (x) as a fixed point.
Let σ be a primitive substitution in Stab (x). There exists a primitive substitution σ k satisfying σθ k = θ k σ k and having D k (x) for fixed point, by Proposition 5.1 in [START_REF] Durand | A characterization of substitutive sequences using return words[END_REF]. By Theorem 6 and by the first statement, we have σ i k = θ j for some i, j ≥ 1. We thus get σ i = θ k θ j θ -1 k , which finishes the proof of the second statement. We deduce that if σ is a primitive element of Stab (x), then it is invertible. By Theorem 5.19 in [START_REF] Berthé | Maximal bifix decoding[END_REF], it is thus a tame substitution. 

Dendric subshifts and topological eigenvalues

We prove in this section that aperiodic minimal dendric subshifts cannot be generated by substitutions of constant length (see Corollary 15 below). We provide here a spectral proof and prove the more general result that aperiodic minimal dendric subshifts cannot have rational eigenvalues. Let us start by recalling some definitions.

Let (X, S) be a subshift. We say that (X, S) is totally minimal whenever (X, S n ) is minimal for all n.

A cyclic partition of (X, S) is a partition X = ∪ m i=1 X i in closed subsets such that X i+1 = S(X i ), for 1 ≤ i ≤ m -1, and S(X m ) = X 1 . Note that the elements X i are thus clopen sets.

A topological eigenvalue of (X, S) is a complex number λ such that there exists a non-zero continuous function f : X → C satisfying f • S = λf . The function f is called a topological eigenfunction associated with λ. A topological eigenvalue of the form exp(2iπk/n), for some n ≥ 2 and some integer k, is said to be a rational topological eigenvalue.

Example 10. Let σ T M be the Thue-Morse substitution defined on {a, b} * by σ T M (a) = ab, and

σ T M (b) = ba. Let X 1 = σ T M [a] ∪ σ T M [b].
The partition (X 1 , SX 1 ) is a cyclic partition of the subshift X T M generated by σ T M . Indeed, one checks that S 2 X 1 = X 1 , and moreover that X 1 and SX 1 are disjoint, by recognizability of the Thue-Morse substitution [START_REF] Mossé | Puissances de mots et reconnaissabilité des points fixes d'une substitution[END_REF][START_REF] Mossé | Reconnaissabilité des substitutions et complexité des suites automatiques[END_REF].

The eigenvalue -1 = exp(iπ) is a topological eigenvalue. Indeed, consider the function f that maps every element of X 1 to the constant value -1, and every element of SX 1 to the constant value 1. One has f (Sx) = -f (x) for every element x of X T M .

The following result is part of the folklore of topological dynamical systems (see, e.g., [START_REF] Ormes | Strong orbit realization for minimal homeomorphisms[END_REF]). It shows that these notions are intimately related. Lemma 11. Let (X, S) be a minimal subshift. The following are equivalent.

(1) (X, S) has a cyclic partition X 1 , . . . , X n for some n ≥ 2;

(2) exp(2iπ/n) is a topological eigenvalue of (X, S) for some n ≥ 2;

(3) (X, S) is not totally minimal.

Proof. It is clear that (3) is equivalent to [START_REF] Aubrun | Tree-shifts of finite type[END_REF].

Let us prove that (1) implies [START_REF] Berstel | Bifix codes and Sturmian words[END_REF]. Let f be defined as the constant function taking the value exp(2iπk/n) on X k . One checks that f is a topological eigenfunction associated with the eigenvalue exp(2iπ/n).

Conversely, let us prove that (2) implies [START_REF] Aubrun | Tree-shifts of finite type[END_REF]. Let exp(2iπ/n) be a topological eigenvalue of (X, S), and let f be a topological eigenfunction for this eigenvalue. One can suppose f (x) = 1 for some x ∈ X. One has f (S n x) = f (x) = 1. By minimality, every element y of X can be written as y = lim S ni (x), for some nondecreasing subsequence (n i ) i . There exists k with 0 ≤ k ≤ n -1 such that in-finitely many n i are congruent to k modulo n. By continuity of f , one has f (y

) = exp(2iπk/n)f (x) = exp(2iπk/n). Hence f (X) = {exp(2iπk/n) | 0 ≤ k ≤ n -1}. Let X k = f -1 ({exp(2iπk/n)}), for 0 ≤ k ≤ n -1.
This defines a cyclic partition.

We now prove that minimal dendric subshifts are totally minimal. We use below the fact that the set of factors of a given length over the alphabet A is a code, as well as the properties of stability of dendric sets by maximal bifix decoding, and the fact that recurrent dendric sets are in fact uniformly recurrent. Recall that a set G ⊂ A + of non-empty words over the alphabet A is a code if the relation

g 1 • • • g n = h 1 • • • h m
with n, m ≥ 1 and g 1 , . . . , g n , h 1 , . . . , h m ∈ G implies n = m and g i = h i for i = 1, . . . , n. A coding morphism for a code G ⊂ A + is a morphism f : B * → A * which maps bijectively B onto G.

In the next proposition we use the fact that the set of factors of a fixed length of a minimal subshift X is a F (X)-maximal bifix code (see [START_REF] Berthé | Maximal bifix decoding[END_REF]).

Proposition 12. A minimal dendric subshift is totally minimal.

Proof. Let (X, S) be a minimal dendric subshift. Let n ≥ 2. We consider the code G made of the factors of the language of X of length n, that is, G = F (X) ∩ A n . Let f : B → G be a coding morphism for G. Let H = f -1 (F (X)) and let (Y, T ) be the subshift defined by F (Y ) = H, with T standing for the shift acting on Y . One thus has Y ⊂ B N , with B being in bijection with the set G of factors of length n of X. Then f extends to an isomorphism from (Y, S) onto (X, S n ). Since G is an F (X)maximal bifix code, the set H is a recurrent dendric set by [START_REF] Berthé | Maximal bifix decoding[END_REF] . By Proposition 2 (i.e., by Corollary 5.3 in [START_REF] Dolce | Neutral and tree sets of arbitrary characteristic[END_REF]) this implies that (Y, T ) is minimal, which yields that (X, S n ) is minimal.

We now can state the main result of this section. Theorem 13. Let (X, S) be an aperiodic minimal dendric subshift. Then it admits no rational topological eigenvalue.

Proof. This is a direct consequence of Proposition 12 together with Lemma 11.

As a consequence, we deduce that Arnoux-Rauzy subshifts and regular interval exchanges cannot have rational topological eigenvalues. For examples of interval exchanges having topological eigenvalue, see, e.g., [START_REF] Hmili | Non topologically weakly mixing interval exchanges[END_REF], and for examples of Arnoux-Rauzy subshifts having topological eigenvalue, see [START_REF] Cassaigne | Weak mixing and eigenvalues for Arnoux-Rauzy sequences[END_REF].

Example 14. Consider the Tribonacci substitution σ T defined over the alphabet {a, b, c} by σ T (a) = ab, σ T (b) = ac and σ T (c) = a. Let X T be the subshift generated by σ T . The subshift X T is an aperiodic dendric subshift by [START_REF] Berstel | Bifix codes and Sturmian words[END_REF]. It thus admits no rational topological eigenvalue.

Let τ be the substitution defined over the alphabet {a, b, c} by τ (a) = ab, τ (b) = ac and τ (c) = aa. Let X τ be the subshift generated by τ . Let X

1 = τ [a] ∪ τ [b] ∪ τ [c].
The partition (X 1 , SX 1 ) is a cyclic partition of X τ . Indeed, one checks, as in Example 10, that S 2 X 1 = X 1 , and moreover that X 1 and SX 1 are disjoint, by recognizability of this primitive substitution [START_REF] Mossé | Puissances de mots et reconnaissabilité des points fixes d'une substitution[END_REF][START_REF] Mossé | Reconnaissabilité des substitutions et complexité des suites automatiques[END_REF]. The subshift (X, S) admits -1 as a rational topological eigenvalue. Thus, the subshift (X, S) is not a dendric subshift.

We recall that a subshift generated by a primitive constant length substitution admits rational topological eigenvalues (see, e.g., [START_REF] Dekking | The spectrum of dynamical systems arising from substitutions of constant length[END_REF]). A subshift X is said to be Toeplitz if any element x = (x n ) n ∈ X satisfies the following: for all n, there exists a positive integer p such that x n = x n+kp , for all k. For more on Toeplitz subshifts, see, e.g., [START_REF] Downarowicz | Survey of odometers and Toeplitz flows, Algebraic and topological dynamics[END_REF]. Toeplitz subshifts are also known to have rational topological eigenvalues.

Corollary 15. Let (X, S) be an aperiodic minimal dendric subshift. Then, it can neither be generated by a primitive constant length substitution, nor be a Toeplitz subshift.

Concluding questions

Let us recall that Arnoux-Rauzy words that are fixed points of epistandard morphisms are rigid, as proved in [START_REF] Krieger | On stabilizers of infinite words[END_REF]. We are not able here to answer the question asked in [START_REF] Krieger | On stabilizers of infinite words[END_REF] on the rigidity of Arnoux-Rauzy words that are fixed points of episturmian morphisms (that not necessarily epistandard ones), even if Theorem 9 provides some elements of answer. Nevertheless, we extend this question to the general framework of dendric words. We then ask the following: are recurrent dendric words or minimal dendric subshifts rigid?

By analogy with the monoid of epistandard morphisms, we introduce the monoid of standard tame substitutions as the monoid generated by the permutations of A and the automorphisms α a,b , for a, b ∈ A with a = b, and the monoid of antistandard tame substitutions as the monoid generated by the permutations of A and the automorphisms αa,b , for a, b ∈ A with a = b. There is a simple characterization of elements of the monoid of standard tame substitutions which extends Lemma 2.4 in [START_REF] Richomme | Conjugacy and episturmian morphisms[END_REF]: a tame substitution is standard (resp., antistandard) if and only if the set of the first (resp., last) letters of the images of letters in A is equal to A. However, one notable difference with the episturmian case is that the tame automorphism α a,b is not rotationally conjugate to α a,b , whereas ψ a is rotationally conjugate to ψ a . We recall that two substitutions σ and ρ over the finite alphabet A are said to be rotationally conjugate if σ = γ w • ρ for some w ∈ A * , where γ w is the inner automorphism of F A defined by γ w (x) = wxw -1 , for all x ∈ F A . Another difference comes from the fact that not every fixed point of a tame substitution is a dendric word (see Example 5.25 in [START_REF] Berthé | Maximal bifix decoding[END_REF]).

Several questions occur naturally. Do fixed points of standard tame substitutions play a role analogous for dendric words as the role played by fixed points of epistandard morphisms for Arnoux-Rauzy words, in particular with respect to special factors? Is this notion relevant in the present context? What can be said on tame substitutions that have the same incidence matrix? What can be said when one exchanges α a,b with α a,b in a decomposition of a tame substitution? Can rotational conjugacy be seen on the decomposition by elementary morphisms of a substitution that preserves a dendric word?

Let x be a recurrent dendric word. If x is a fixed point of a substitution, is this substitution primitive? In other words, is any non-trivial element of Stab (x) primitive? Moreover, can one characterize in terms of the S e -directive sequence of a recurrent dendric word x (see Theorem 6) the case where its stabilizer is nontrivial, that is, the case where there exists at least one non-trivial substitution σ such that σ(x) = x? Can one characterize among substitutive dendric words the dendric words that are fixed points of substitutions? For the two-letter Sturmian case, see, e.g., [START_REF] Berthé | On substitution invariant Sturmian words: an application of Rauzy fractals[END_REF], and the references therein.

The very fact that the family of dendric subshifts encompasses Arnoux-Rauzy subshifts shows the diversity of spectral behaviors of minimal dendric subshifts. Indeed, by [START_REF] Cassaigne | Weak mixing and eigenvalues for Arnoux-Rauzy sequences[END_REF], Arnoux-Rauzy subshifts can have topological eigenvalues or not; the same holds for measure-theoretic ones. Note that if we focus on dendric subshifts generated by primitive substitutions, it is known that measure-theoretical and topological eigenvalues are the same [START_REF] Host | Valeurs propres des systèmes dynamiques définis par des substitutions de longueur variable[END_REF]. One way to tackle spectral questions concerning dendric subshifts is to interpret their S e -adic representation in terms of continued fractions and understand the underlying convergence.
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 1 Fig. 1. The extension graphs of ε (on the left), a (on the center) and b (on the right) are trees.
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 8 Let us consider the primitive substitution σ : 0 → 010, 1 → 10
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