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Metabolomic and Lipidomic 
Signatures of Metabolic Syndrome 
and its physiological components 
in Adults: A Systematic Review
Stéphanie Monnerie1, Blandine comte1, Daniela Ziegler2, José A. Morais3, estelle pujos-
Guillot  1,4* & pierrette Gaudreau5,6

the aim of this work was to conduct a systematic review of human studies on metabolite/lipid 
biomarkers of metabolic syndrome (MetS) and its components, and provide recommendations 
for future studies. the search was performed in MeDLine, eMBASe, eMB Review, cinHAL 
complete, pubMed, and on grey literature, for population studies identifying MetS biomarkers from 
metabolomics/lipidomics. extracted data included population, design, number of subjects, sex/gender, 
clinical characteristics and main outcome. Data were collected regarding biological samples, analytical 
methods, and statistics. Metabolites were compiled by biochemical families including listings of their 
significant modulations. Finally, results from the different studies were compared. The search yielded 
31 eligible studies (2005–2019). A first category of articles identified prevalent and incident MetS 
biomarkers using mainly targeted metabolomics. even though the population characteristics were 
quite homogeneous, results were difficult to compare in terms of modulated metabolites because of 
the lack of methodological standardization. A second category, focusing on MetS components, allowed 
comparing more than 300 metabolites, mainly associated with the glycemic component. Finally, this 
review included also publications studying type 2 diabetes as a whole set of metabolic risks, raising the 
interest of reporting metabolomics/lipidomics signatures to reflect the metabolic phenotypic spectrum 
in systems approaches.

Metabolic syndrome (MetS) is a complex health condition responsible for the concurrence of several metabolic 
abnormalities and cardiovascular disturbances. Despite a lack of unified definition among health organizations 
(e.g. National Cholesterol Education Program (NCEP), International Diabetes Federation (IDF), World Health 
Organization (WHO)), MetS comprises glucose metabolism dysregulation due to insulin resistance, central obe-
sity, dyslipidemia, including increased blood triglycerides (TG) and decreased high-density lipoprotein choles-
terol (HDL-C), and hypertension1–4. This combination of risk factors favor adverse outcomes such as type 2 
diabetes (T2D) and cardiovascular disease (CVD) and increased mortality rate by approximately 1.5-fold5. It 
is generally accepted that the prevalence of MetS is on the rise in accordance with increasing body mass index 
(BMI) and aging of the population6. Because several clinical definitions co-exist, the true prevalence of MetS is 
difficult to establish. In spite of this, U.S. surveys indicate that one-third of adults7–9, including young adults10 
have MetS. Moreover, by the age of 60, the prevalence reaches 42% compared to 7% for young adults11. Europe 
has not been spared from such epidemic, with also a sharp increase of MetS among older adults12. Therefore, it is 
now accepted that MetS represents a global p ublic health concern with a worldwide prevalence ranging from 10 
to 84%, depending on the ethnicity, age and sex/gender13,14.

MetS is recognized as a progressive pathophysiological state, being part of the trajectory leading to 
pre-diabetes, T2D and CVD15. I n fact, MetS is not only a precursor but also a predictor of T2D development16–19. 
Risks of adverse health outcomes increase substantially with accumulation of MetS clinical components and 
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deleterious environmental factors (e.g. inactivity, Western-type diet). In this context, it is important to better 
characterize intermediate phenotypes associated with metabolic abnormalities. Biomarkers are considered useful 
to disentangle the exposure-disease relationships in chronic metabolic disorders and provide sensitive tools for 
a better identification and stratification of high-risk individuals20. Timely identification of MetS physiological 
disturbances should allow pinpointing individuals at highest risk to develop T2D, CVD, and multi-organ dam-
age. Moreover, studies of their trajectories should provide insights into key periods for lifestyle intervention, risk 
factor management, and robustness of pharmacological treatment.

Over the last few years, omics technologies allowed obtaining an integrated view of biological systems, bridg-
ing the genotype-to-phenotype gap using a systems biology approach to better define the phenotype. In chronic 
metabolic diseases, the phenotype is complex and dynamic, because of the occurrence of multiple interactions 
among genetic and environmental factors21. In this setting, metabolomics, introduced by Nicholson et al. 199922, 
aiming at measuring all small molecules/metabolites present in a biological system and accessible to analysis, 
represents a powerful phenotyping tool. Indeed, it provides metabolic profiles that represent an integrated view of 
metabolism because it allows a sensitive detection of molecular changes over time, resulting from the interaction 
between intrinsic and extrinsic factors23. Metabolites, used as single targets or in combination within a com-
prehensive signature, are thus promising biomarkers to reveal early metabolic dysfunctions, when conventional 
clinical markers have a limited ability for risk assessment and stratification. Metabolomics has therefore been 
widely applied for metabolic disease diagnosis and candidate biomarker discovery as well as pathophysiological 
exploration of underlying mechanisms, and prognosis and prediction24,25.

Because the human metabolome is complex (e.g. large concentration ranges, high number of metabolites, chem-
ical diversity), different analytical strategies and methods have been developed. The approach can be untargeted, 
as a data driven approach dedicated to biomarker discovery, or targeted when it is focused on the detection and 
quantification of specific classes of compounds, or subsets of known metabolic pathways26. For example, lipidom-
ics has been described as a subsection of metabolomics dedicated to lipid analysis, even if there is a continuum 
of polarity between lipophilic and hydrophilic metabolites27. To cover this wide diversity of metabolites present 
in a given biological sample, diverse analytical platforms are used. Mass Spectrometry (MS) coupled with gas or 
liquid chromatography (GC- or LC-, respectively) and Nuclear Magnetic Resonance (NMR) Spectroscopy are the 
two main analytical techniques used. NMR is non-destructive, rapid, and highly robust, which is convenient for a 
rapid screening of biological sample28 but suffers from limited sensitivity (less than 100 metabolites in most bio-
logical samples by current methods). Advances in MS and its hyphenated techniques, particularly the increase of 
their respective resolving and separation powers, significantly impacted metabolomics research allowing for higher 
sensitivity and broader metabolome coverage29. Nonetheless, these MS-based techniques still lack standardization 
and throughput. In addition, technical factors (time of sampling, sample type, stability) have to be considered for 
metabolome investigations and the results of different studies need to be compared. Interestingly, certified commer-
cial targeted LC-MS based assays or platforms became available during the last years (e.g. Biocrates, Metabolon).

Considering the diversity of experimental design and analytical methods to characterize the multifaceted 
physiopathology of MetS, it is necessary to rigorously analyse the scientific literature to answer the general ques-
tion “Do metabolomic/lipidomic profiles of MetS and/or its clinical components allow distinguishing from 
healthy individuals and do they expand the current knowledge about MetS phenotypes?”. The aim of this work 
was therefore to conduct a systematic review of human studies on metabolite/lipid markers of MetS and its indi-
vidual clinical components and provide recommendations for improving the experimental design and result 
reports of MetS biomarkers.

Results
Search results. The primary search identified 20,091 records from five databases (Fig. 1). After removing 
duplicates, 10,408 original publications were screened for titles and abstracts. Following title screening, 6617 of 
them were discarded and an additional 3414 were excluded after reading the abstracts, in accordance with the 
identified inclusion/exclusion criteria. Among the 377 remaining articles, 97 were excluded because they were 
reviews and 82 more because they were books, congress reports and proceedings. Finally, the full content of 198 
original articles was read and analysed for eligibility by three independent authors, and 31 of them were retained 
for the present review.

These articles were published between 2005 and 2019, 30 out of 31 were published over the last 7 years, and 
19 since 2016. Three categories of articles were identified, depending on the main outcome and study design, and 
the same article could be classified in more than one category depending on the approaches. Twelve of them were 
case/control studies on MetS with the objective of identifying prevalent or incident MetS biomarkers (Table 1). 
Sixteen were focussing on MetS components and studied the correlations/associations between identified metab-
olites and MetS criteria (Table 2). Finally, four articles identified prevalent T2D biomarkers (Table 3) and four 
others were prospective studies of associations between metabolites and incident T2D (Table 4).

MetS biomarkers: results from case/control studies. Sixteen articles were included in the first section 
of the systematic review, on prevalent MetS biomarkers identified in case/control studies (Table 1). They provide 
population characteristics. Most of the studies were performed in populations aged between 40 and 60 years. 
Generally, MetS cases exhibited three criteria: a high WC combined with two of the following, high glucose, 
high TG or hypertension. They were compared with healthy controls. These sixteen articles described 409 differ-
ent modulated metabolites in blood or urine, each one discriminating MetS patients and controls from a single 
studied population for the discovery (Supplemental Table 1a). Ninety of them are amino acids and derivatives, 
90 others, di- and tri-glycerides, and around 70 glycerophospholipids. No replication/validation was performed 
and these biomarkers were mostly identified using targeted MS metabolomics or lipidomics. The metabolites are 
presented in Supplemental Table 1a with associated references and classified by metabolite families and direction 
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of variation (i.e. positive or negative), as well as analytical methods for metabolomics/lipidomics and used sta-
tistical parameters/cofactors. A total of twenty-four different metabolites families were found to be involved. 
The main classes are amino acids and derivatives, carbohydrates and derivatives, glycolysis related metabolites, 
glycerophospholipids, glycerolipids, sphingolipids, fatty acids, cholesterol and oxysterols, steroids, and peptides.

Two other publications described biomarkers of incident MetS in prospective studies including only men. 
Nineteen metabolites were identified as belonging to the following chemical families: amino acids and derivatives, 
carbohydrates and derivatives, carnitines, fatty acids and derivatives, glycerophospholipids, peptides and steroids 
(Supplemental Table 1b). It is noteworthy that seven among these metabolites were already described as markers 
of prevalent MetS, namely alanine, glutamic acid, phenylalanine, tyrosine, oleic acid, total and free testosterone.

Metabolites associated with MetS clinical components. Sixteen articles were included in the second 
section of the systematic review and are presented in Table 2. In these publications, the main outcome was not 
only MetS, but also associated components (e.g. obesity, cardio-metabolic risk). Each study correlated metabolites 
and MetS criteria using different statistical approaches (Spearman/Pearson correlations or linear regression). In 
terms of clinical characteristics, data were generally provided regarding the whole studied populations and there-
fore are quite heterogeneous within the age range of 36 to 69 years and BMI of 25 to 33 kg/m2.

Over three hundred metabolites (361) were described as being significantly correlated with one or several 
MetS criteria, independently (Supplemental Table 2), including 22 metabolite families. Twenty seven of them are 
correlated with all MetS components (Fig. 2): alanine, choline, glutamate, glutamine, glutamine/glutamate ratio, 
glycine, isoleucine, L-carnitine, leucine, methionine, phenylalanine, proline, tyrosine, valine, glycerol, 9 TGs, 
testosterone, alpha-hydroxybutyric acid, and Cer(20:3). Of interest, nineteen of them have already been reported 
to be prevalent MetS biomarkers in case/control studies (alanine, L-carnitine, choline, glutamate, glutamine, 
isoleucine, leucine, phenylalanine, proline, tyrosine, valine, and 8 TGs).

Around 10% of the metabolites were common to three of the MetS criteria (all combinations of them). More 
specifically, about 60% of the identified metabolites showed levels correlated with HDL-C, TG, and glycemia 
criteria. In addition, this review highlights that some metabolite levels were found to be specifically correlated to 
each of the MetS criteria (Supplemental Table 3). Seventeen of them were previously described as prevalent MetS 
biomarkers: 3-hydroxybutyrate, nitric oxides, 5 phospholipids, and 10 TGs.

Figure 1. Flow diagram of reviewed citations modified from PRISMA flow diagram 200961.
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The glycemic component: towards T2D. Considering that MetS can lead to T2D and was included in 
some criteria definition (IDF), we also analyzed articles highlighting an association between prevalent and inci-
dent T2D and metabolite dysregulations. A large body of literature was found regarding the investigation of 

Reference  
(Study, 
population  
location)

Study 
design

Outcome 
(MetS 
definition) N

Age 
range Gender

Population sample characteristics

N Type Age BMI WC (cm)

Sys BP / 
Dia BP 
(mmHg)

Glucose 
(mM)

TG 
(mM)

HDL-C 
(mM)

Caimi_201263 
(Italy)

Case/
Control

MetS 
(IDF) + T2D 
(IDF)

160 — M + W
106 MetS 54 ± 9 32 ± 5 107 ± 11 132 ± 16 / 

81 ± 10 6.3 ± 2.5 2.5 ± 1.7 1.0 ± 0.3

54 non-
MetS No population description

Capel_201830 
(Mona Lisa survey, 
France)

Case/
Control

MetS 
(Alberti 
2009)

298 35–74 M + W
61 MetS 54 ± 8 30 ± 5 102 ± 10 141 ± 20 / 

88 ± 12 5.7 ± 0.6 2.0 ± 0.8 1.3 ± 0.3

237 non-
MetS 48 ± 8 24 ± 3 85 ± 10 122 ± 16 / 

77 ± 10 5.1 ± 0.4 1.0 ± 0.4 1.6 ± 0.3

James-
Todd_201664 
(NHANES, USA)

Case/
Control

MetS (NCEP 
ATP III) 1338 20–80 M

464 MetS 52 ± 22 33 ± 7 114 ± 22 129 ± 22 / 
74 ± 22 6.7 ± 4.3 2.8 ± 4.3 1.1 ± 0.4

924 non-
MetS 43 ± 30 27 ± 6 96 ± 30 119 ± 30 / 

70 ± 30 5.6 ± 1.2 1.4 ± 0.9 1.1 ± 0.6

Case/
Control

MetS (NCEP 
ATP III) 1331 20–81 W

501 MetS 53 ± 22 33 ± 9 107 ± 22 126 ± 22 / 
71 ± 22 6.4 ± 2.2 2.1 ± 2.2 1.3 ± 0.5

830 non-
MetS 43 ± 29 27 ± 6 89 ± 29 115 ± 29 / 

69 ± 12 5.1 ± 5.8 1.1 ± 0.9 1.6 ± 0.3

Kulkarni_201365 
(SAFHS, USA)

Case/
Control MetS (IDF) 1358 22–56 M + W 1358 total 

pop 39 ± 17 29 ± 7 95 ± 17 120 ± 19 
/71 ± 10 5.6 ± 2.5 1.7 ± 1.2 1.3 ± 0.3

Ntzouvani_201766 
(Greece)

Case/
Control MetS (IDF) 100 over 

30 M

56 MetS 58* 
(47;64)

29* 
(27;32)

105* 
(100;112)

134* 
(126;138) 
/ 
85*(79;90)

5.5* 
(5.0; 
6.1)

1.9* 
(1.4;2.5)

1.0* 
(0.9;1.2)

44 non-
MetS

54* 
(47;57)

25* 
(24;27)

91* 
(87;93)

124* 
(116;131) 
/ 
80*(71;86)

5.1* 
(4.8; 
5.4)

1.1* 
(0.8;1.4)

1.3* 
(1.1;1.5)

Olszanecka_201667 
(Poland)

Case/
Control MetS (IDF) 152 40–60 W

63 MetS 51 ± 3 29 ± 3 90 ± 7 163 ± 20 / 
93 ± 12 5.3 ± 0.6 2.3 ± 1.2 1.3 ± 0.3

89 non-
MetS 51 ± 2 26 ± 3 84 ± 8 151 ± 13 / 

89 ± 11 4.9 ± 0.4 1.2 ± 0.8 1.7 ± 0.3

Ramakrishanan_ 
201868 (USA)

Case/
Control

MetS (NCEP 
ATP III) 50 24–72 M + W

30 MetS 53 ± 9 35 ± 6 109 ± 14 132 ± 11 / 
80 ± 9 5.4 ± 0.7 1.7 1.0 ± 0.3

20 non-
MetS 48 ± 13 30 ± 6 92 ± 14 117 ± 12 / 

14 ± 9 4.8 ± 0.4 0.7 1.3 ± 0.3

Shim_201969 
(USA)

Case/
Control

MetS (NCEP 
ATP III) 50 24–72 M + W

30 MetS 53 ± 9 35 ± 6 109 ± 14 132 ± 11 / 
80 ± 9 5.4 ± 0.7 1.7 1.0 ± 0.3

20 non-
MetS 48 ± 13 30 ± 6 92 ± 14 117 ± 12 / 

14 ± 9 4.8 ± 0.4 0.7 1.3 ± 0.3

Surowiec_201831  
(Leiden Longevity  
Study, 
Netherlands)

Case/
Control

MetS (NCEP 
ATP III) 115 — M + W

50 MetS 64 ± 6 NA 106 ± 10 147 ± 18 / 
85 ± 9 6.9 ± 3 2.3 ± 1.3 1.1 ± 0.3

65 non-
MetS 62 ± 7 NA 96 ± 12 130 ± 18 / 

77 ± 9 5.4 ± 1.3 1.2 ± 0.5 1.6 ± 0.4

Tremblay-Franco_ 
201570 (Finland)

Case/
Control

MetS 
(NCEP ATP 
III) + obesity

285 around
40 M + W

75 MetS 46 ± 10 35 ± 6 NA 135 ± 14 / 
87 ± 9 NA 1.6 ± 0.8 1.2 ± 0.3

210 non-
MetS 42 ± 11 25 ± 2 NA 120 ± 12 / 

78 ± 8 NA 1.0 ± 0.4 1.5 ± 0.4

Wiklund_201457  
(EWI-study, 
Finland)

Case/
Control

MetS 
(Alberti 
2009)

78 around
40 W

36 MetS 44 ± 6 31 ± 3 99 ± 6 136 ± 11 / 
84 ± 7 5.5 ± 0.7 2.0 ± 0.9 1.4 ± 0.3

42 non-
MetS 40 ± 8 29 ± 3 96 ± 9 122 ± 7 / 

78 ± 6 5.1 ± 0.3 1.0 ± 0.3 1.6 ± 0.3

Antonio_201571  
(EMAS, Europe)

Prospective 
(4 years 
follow-up)

MetS (NCEP 
ATP III) 
prediction

1651 40–79 M
289 MetS 59 ± 10 28 ± 3 101 ± 8 147 ± 21 / 

88 ± 13 5.5 ± 1.0 1.5 ± 0.8 1.4 ± 0.4

1362 non-
MetS 59 ± 11 26 ± 3 93 ± 9 142 ± 20 / 

85 ± 11 5.3 ± 0.8 1.2 ± 0.6 1.5 ± 0.4

Pujos-
Guillot_201758 
(GAZEL, France)

Prospective 
(5 years 
follow-up)

MetS (NCEP 
ATP III) 
prediction

112 52–64 M
56 MetS 59 ± 3 27 ± 1 95 ± 4 137 ± 14 / 

80 ± 8 6.6 ± 1.3 1.2 ± 0.5 1.5 ± 0.3

56 non-
MetS 59 ± 3 27 ± 1 92 ± 5 129 ± 12 / 

78 ± 8 5.5 ± 0.5 1.0 ± 0.4 1.5 ± 0.4

Table 1. Characteristics of case/control studies on MetS. BMI = body mass index; WC = waist circumference; 
BP = blood pressure (sys = systolic; dia = diastolic); TG = triglycerides; HDL-C = high-density lipoprotein 
cholesterol. Mean values ± SD; *Median value (25th; 75th percentiles).

https://doi.org/10.1038/s41598-019-56909-7


5Scientific RepoRtS |          (2020) 10:669  | https://doi.org/10.1038/s41598-019-56909-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

T2D using metabolomics. However, we only selected publications including available clinical data about MetS 
criteria. Four original articles were selected with case/control design aiming at identifying prevalent T2D markers 
(Table 3). Four other prospective studies have assessed metabolites associated with incident T2D (Table 4). All 
these studies have included hypertensive older adults (48 to 70 years) with some cases having a BMI around 30 
compared to controls (BMI around 27). Fifty-two metabolites were positively modulated with prevalent T2D 
from 10 different metabolite families (Supplemental Table 4), identified using targeted MS approaches, predom-
inantly, performed on plasma or serum. The incident markers of T2D were more frequently investigated using 
un- or semi-targeted MS approaches and were validated within a replication study in different cohorts, revealing 
39 modulated blood metabolites (Supplemental Table 5) from 11 chemical families. Of particular interest, three 
studies used multivariate statistical analyses to define a metabolic signature of T2D-related early metabolic dis-
turbances. Among the individual markers, only isoleucine was already reported as a marker of prevalent T2D.

Reference (Study, 
population location)

Study 
design

Outcome 
(definition) N

Age 
range Gender

Population sample characteristics

Mean type 
(available 
or 
calculated) Age BMI

WC 
(cm)

Sys BP /
Dia BP 
(mmHg)

Glucose 
(mM) TG (mM)

HDL-C 
(mM)

Barrea_201872 (Italy) —
MetS 
(NCEP ATP 
III)

137 20–63 M + W Calculated 36 33 109 126 / 80 5.5 1.6 1.1

Blouin_200573 
(Quebec family study 
(QFS), Quebec (CAN))

—
MetS 
(NCEP ATP 
III)

130 20–71 M Available 43 ± 15 27 ± 5 93 ± 14 117 ± 16 / 
73 ± 10 5.5 ± 1.1 1.5 ± 0.8 1.1 ± 0.3

Caimi_201263 (Italy) Case/
Control

MetS ± T2D 
(IDF) 160 — M + W All MetS 54 ± 9 32 ± 5 107 ± 11 132 ± 16 / 

81 ± 10 6.3 ± 2.5 2.5 ± 1.7 1.0 ± 0.3

Cheng_201274 
(Framingham Heart 
Study (FHS), USA) 
(Malmö Diet and 
Cancer Study (MDC), 
Sweden)

Case/
Control

Cardio-
metabolic 
risk

1015 47–65 M + W Available 56 ± 9 28 ± 5 96 ± 14 129 ± 18 / 
76 ± 10 5.4 ± 0.6 1.8 ± 1.2 1.2 ± 0.4

Case/
Control

Cardio-
metabolic 
risk

746 53–65 M + W Available 59 ± 6 27 ± 4 88 ± 13 147 ± 19 / 
90 ± 9 5.1 ± 0.5 1.3 ± NA 1.3 ± 0.3

Favennec_201575 
(D.E.S.I.R. cohort, 
France)

Case/
Control T2D 1048 37–60 M + W Calculated 48 25 85 NA 5.5 NA NA

(Biological Atlas 
of Severe Obesity 
(ABOS), France)

Case/
Control Obesity 109 26–56 W Calculated 46 25 121 NA 6.6 NA NA

Gao_201976 
(CODING, Canada) — MetS

536 — M Available 42 ± 13 28 ± 5 99 ± 13 133 ± 15 / 
84 ± 10 5.3 ± 0.7 1.5 ± 1 1.2 ± 0.3

545 — W Available 45 ± 11 27 ± 5 91 ± 15 123 ± 16 / 
80 ± 11 5.1 ± 0.7 1.2 ± 0.7 1.5 ± 0.4

Ho_201677 
(Framingham Heart 
Study (FHS), USA)

— BMI 2383 45–65 M + W Available 55 ± 10 28 ± 5 NA 126 ± 19
75 ± 10

5.3* 
(4.9;5.7)

1.4* 
(1.0;2.0)

1.2* 
(1.0;1.5)

Huynh_201978 
(AusDiab, Australia) —

Cardio-
metabolic 
risk

389 — M + W Available 55 ± 12 27 ± 4 NA 131 ± 18 / 
71 ± 11 5.3 ± 0.4 1.5 ± 0.9 1.46 ± 0.4

Liu_201779 (ERF, 
Netherlands)

Case/
Control T2D 2776 — M + W Calculated 49 27 NA 140 / 80 4.7 1.2 1.3

Marchand_201880 
(Quebec (CAN)) — Insulin 

resistance 101 48–68 W Available 57 ± 4 28 ± 5 89 ± 12 130 ± 15 / 
82 ± 7 5.6 ± 0.8 1.3 ± 0.7 1.4 ± 0.4

Neeland_201881 (DHS, 
USA) — T2D 3072 18–65 M + W Available 43 ± 10 28 NA 119 / NA 5 5.2 2.7

Ntzouvani_201766 
(Greece)

Case/
Control MetS (IDF) 100 over 30 M Calculated 56 27 NA 130 / 83 5.3 1.5 1.1

Ottosson_201882 
(Malmö Preventive 
Project, Sweden)

— T2D 1084 — M + W Calculated 69 27 NA 147 / NA 5.5 1.3 1.3

Ramakrishanan_201868 
(USA)

Case/
Control

MetS 
(NCEP ATP 
III)

50 24–72 M + W Calculated 51 33 102 126 / 78 5.2 1.3 1.2

Shim_201969 (USA) Case/
Control

MetS 
(NCEP ATP 
III)

50 24–72 M + W Calculated 51 33 102 126 / 78 5.2 1.3 1.2

Wang-Satler_201283 
(KORA, Germany)

Case/
Control T2D 1297 58–72 M + W Calculated 64 28 NA 135 / NA 5.6 1.5 1.5

Table 2. Characteristics of studies investigating correlations between metabolites and MetS criteria. 
BMI = body mass index; WC = waist circumference; BP = blood pressure (sys = systolic; dia = diastolic); 
TG = triglycerides; HDL-C = high-density lipoprotein cholesterol; NA = not available; ‘Calculated mean type’ 
refers to clinical variable means that were calculated, when missing, from the available data in the publication. 
Mean values ± SD; *Median value (25th; 7 = th percentiles).
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The prevalent and incident T2D markers were then compared to those previously described as being asso-
ciated with the glucose component (Fig. 3). Thirteen metabolites (mostly amino acids, total hexoses and lipid 
derivatives) are shared by the prevalent T2D and the glucose component whereas 9 metabolites (mostly amino 
acids) are shared by the incident T2D and the glucose component of MetS. Of particular interest, the amino acid 
isoleucine is the only shared metabolite by all these glycemic states.

Discussion
MetS biomarkers: results from case/control studies. In the present systematic review, a first category 
of publications identified prevalent MetS biomarkers in adults using mainly targeted metabolomics approaches. 
Even if the population characteristics were clearly presented and quite homogeneous, results were difficult to 
compare in terms of modulated metabolites because of the limited metabolome detected by each single tar-
geted analytical method. However, if the same samples were subjected to different complementary analyses or 
techniques, some additional metabolites would have been detected. This point is highlighted in two included 
recent publications that performed semi-targeted approaches that allowed identifying hundreds of modulated 
metabolites30,31. This comparison of throughput and coverage in targeted and non-targeted metabolomics have 
extensively been discussed in the literature, showing the interest of using multi-platform approaches32–34 to obtain 
a broader scope of the metabolome related to specific phenotypes. However, due to the high costs of analyses, 
limited biofluid sample volumes and complexity of resulting data treatments, this strategy is still not a current 
practice.

Reference  
(Study, 
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location)

Study 
design Outcome N

Age 
range Gender

Population sample characteristics Methods Results

N Type Age BMI
WC 
(cm)

Sys BP
Dia BP
(mmHg)

Glucose 
(mM)

TG  
(mM)

HDL-C 
(mM)

Biological 
fluid / 
sample

Data  
production

Statistical  
method  
(covariates  
in fully  
adjusted  
model)

Family with  
significantly  
modulated  
metabolites

Lind_ 
201284

(PIVUS,  
Sweden)

Case/
Control T2D 1016 70 M+W

119 T2D 70 29±5 98±11 155±24
80±12 8.4±3.1 1.5±0.8 1.4±0.4

Serum /  
NA

Targeted  
LC/MS  
metabolo 
mics

Logistic  
regression  
(Sex/ 
gender,  
serum  
cholesterol  
and TG,  
BMI,  
smoking  
and exercise  
habits,  
educational  
levels)

Phtalates
897 non-

T2D 70 27±4 90±11 149±22
79±10 4.9±0.5 1.3±0.6 1.5±0.4

Liu_201785

(ERF,  
Netherland)

Case/
Control T2D 2776 48–60 M+W

212 T2D 60±12 30±6 99±14 154±21
83±10 7.4±2.2

1.6*
(1.1; 
1.9)

1.1±0.3
Plasma 
/ lipid 
extract + 
plasma

Targeted LC/ 
MS-MS +  
NMR  
lipidomics  
and  
metabolomics

Logistic 
regression  
(Age, sex/
gender  
and lipid-
lowering  
medication)

Amino acids  
and  
derivatives, 
carbohydrates  
and derivatives,  
cholesterol and  
oxysterols,  
glycerolipids,  
glyceropho 
spholipids

2564 non-
T2D 48±14 27±5 87±13 139±20

80±10 4.5±0.7
1.2*
(0.8; 
1.6)

1.3±0.4

Glycolysis  
related  
metabolites,  
organic acids,  
peptides

Meikle_ 
201386

(AusDiab, 
Australia)

Case/
Control T2D 287 52–73 M+W

117 T2D 62*
(52;73)

28*
(26;31)

97*
(89;104)

143* 
(131; 
154)
NA

6.9*
(5.7; 7.4)

1.9*
(1.3; 
2.9)

1.2*
(1.0;1.5)

Plasma 
/ lipid 
fraction

Targeted  
LC/MS  
lipidomics

Logistic 
regression  
(Age, sex/
gender,  
WC and  
SBP) BH  
corrected 
p-value  
<0.05

Ceramides,  
cholesterol  
and oxysterols, 
glycerolipids,  
glyceropho 
spholipids170 non-

T2D
60*
(49;72)

26*
(24;28)

90*
(83; 98)

133* 
(121; 
146)
NA

5.3*
(5.1;5.6)

1.2*
(0.9; 
1.6)

1.4*
(1.2;1.7)

Wang-
Satler_ 
201283

(KORA, 
Germany)

Case/
Control T2D 957 58–72 M+W

91 T2D 66±5 30±4 NA 147±22
NA 7.4±1.8 1.9±1.2 1.3±0.4

Serum / 
serum

Targeted  
LC/MS
metabolomics 
(AbsoluteIDQ®  p180 kit:  
Biocrates)

Logistic 
regression  
(Age, sex/
gender,  
BMI,  
physical  
activity, 
alcohol  
intake, 
smoking,  
SBP and 
HDL-C +  
fasting 
glucose)

Amino acids  
and derivatives,  
carbohydrates 
andderivatives,  
glyceropho 
spholipids

866 non-
T2D 64±6 28±4 NA 132±19

NA 5.3±0.4 1.4±0.8 1.6±0.4

Table 3. Characteristics of case/control studies on T2D. BMI = body mass index; WC = waist circumference; 
BP = blood pressure (sys = systolic; dia = diastolic); TG = triglycerides; HDL-C = high-density lipoprotein 
cholesterol. Mean values ± SD; *Median value (25th; 75th percentiles) ‘Extract’ refers to direct protein 
precipitation/extraction on raw biological materials; ‘fraction’ refers a separation of biological materials into 
polar and lipid fractions.
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Because of the targeted aspects of most of the methods, the underlying mechanisms were not explored, and 
the frequencies of occurrence of specific metabolites described as MetS biomarkers in these studies were low, and 
not representative of the importance of these metabolites in the physiopathology but can just be related to the 
choice of the analytical methods.

Metabolites associated with MetS clinical components. The second category of articles focusing 
on MetS individual components allowed us comparing metabolites associated with clinical data defining MetS. 
Amino acids, glycerolipids and glycerophospholipids are the major metabolite classes reported as being corre-
lated. Among lipid species, results were particularly difficult to report and to compare, due to the diversity in 
notations of lipid structures. In fact, even if several consortia proposed guidelines35,36, there is still different levels 
of annotations (from lipid class to stereoisomers) and different ontologies among the databases in use.

In these publications, the diversity of outcome, related to cardiometabolic risk was found to be important. 
Moreover, the lack of description regarding either other MetS criteria or characteristics of controls, together with 

Reference  
(Study,  
population  
location)

Study 
design

Follow-
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(years) Outcome N

Age 
range Gender

Population sample characteristics Methods Results

N Type Age BMI
WC 
(cm)

Sys BP
Dia BP
(mmHg)

Glucose 
(mM)

TG  
(mM)

HDL-C 
(mM)

Biological
fluid / 
sample

Data  
production

Statistical  
method  
(covariates  
in fully  
adjusted  
model)

Family with  
significantly  
modulated  
metabolites

Peddinti_ 
201787

(Botnia,  
Finland +  
DESIR,  
France)

Case/ 
Control 10 T2D

prediction 543 48–52 M+W

146 T2D 52±1 29±0.4 96±1 139±2
84±1

5.9± 
0.05

1.7± 
0.08

1.3± 
0.03

Plasma 
/ MeOH 
extract

Semi- 
targeted  
LC/MS +  
GC/MS
(Metabolon®  platform)
metabolo 
mics

Conditional  
logistic  
regression  
FDR  
q<0.05  
(Age,  
sex/gender,  
BMI,  
fasting  
glucose  
level  
and family  
history  
of T2D)  
p- values  
<0.05  
multivariate  
logistic  
regression

Amino  
acids and  
derivatives,  
bilirubins,  
carbohydrates  
and  
derivatives,  
fatty acids  
and  
derivatives,  
quinones  
and  
hydro 
quinones

397 non-
T2D 48±1 26±0.2 88±1 130±1

79±1
5.6± 
0.03

1.3± 
0.04

1.4± 
0.01

Suvitaival_ 
201788

(METSIM  
(discovery  
set),  
Denmark)

Case/ 
Control 5 T2D

prediction 323 53–65 M

107 T2D 59±6 29±4 102±0 143±16
90±9

6.0± 
0.5

1.9± 
1.2

1.3± 
0.4 Plasma 

/ lipid 
fraction

Non- 
targeted  
LC/MS  
lipidomics

Logistic  
regression
Model  
(Age  
and BMI)

Glycerolipids,  
glycerophos- 
pholipids216 non-

T2D 60±5 26±2 95±7 133±15
85±9

5.2± 
0.2

1.1± 
0.5

1.5± 
0.4

Wang-
Satler_ 
201283

(KORA,  
Germany)

Case/
Control 10 T2D

prediction 876 58–72 M+W

91 T2D 66±5 30±4 NA 138±19
NA

5.9± 
0.6

1.7± 
0.8

1.3± 
0.3

Serum / 
serum

Targeted  
LC/MS
metabolo 
mics
(Absolute 
IDQ® p180 kit:  
Biocrates)

Logistic  
regression  
(Age,  
sex/gender,  
BMI,  
physical  
activity,  
alcohol  
intake,  
smoking,  
SBP, HDL  
cholesterol  
Hb1Ac,  
fasting  
glucose  
and fasting  
insulin)

Glycerophos- 
pholipids

785 non-
T2D 63±5 28±4 NA 132±19

NA
5.4± 
0.5

1.4± 
0.8

1.6± 
0.4

Yengo_ 
201689

(DESIR,  
Europe)

Case/ 
Control 9

T2D 
prediction 
(ADA)

1067 37–60 M+W

231 T2D 51±9 28±4 94±11 139±17
84±9

5.9± 
0.6

1.7± 
1.2

1.5± 
0.4

Plasma 
/ MeOH 
extract

Semi- 
targeted  
LC/MS- 
MS +  
GC/MS
(Metabolon®  platform)
metabolo 
mics

Logistic  
and  
Cox  
regressions

Amino acids  
and  
derivatives,  
carbo 
hydrates  
and  
derivatives,  
carnitines,  
fatty acids  
and  
derivatives,  
glycerolipids,  
glycerophos- 
pholipids,  
peptides,  
purines  
and  
derivatives,  
steroids

836 non-
T2D 47±10 25±4 83±11 131±16

80±10
5.3± 
0.7

1.1± 
0.7

1.6± 
0.4

Table 4. Characteristics of prospective studies on T2D. BMI = body mass index; WC = waist circumference; 
BP = blood pressure (sys = systolic; dia = diastolic); TG = triglycerides; HDL-C = high-density lipoprotein 
cholesterol. ‘Extract’ refers to direct protein precipitation/extraction on raw biological materials; ‘fraction’ refers 
a separation of biological materials into polar and lipid fractions. MeOH: methanol.
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Figure 2. Venn diagram showing the number of metabolites significantly correlated with MetS components, 
together with respective histogram representing the number of significant metabolites for each clinical MetS 
components. WC = waist circumference; BP = blood pressure; TG = triglycerides; HDL-C = high-density 
lipoprotein cholesterol.

Figure 3. Venn diagram showing the numbers of metabolites significantly modulated with prevalent and 
incident T2D and the number of metabolites associated with glycemia, together with respective histogram 
representing the number of significant metabolites for each outcome.
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the absence of additional phenotypic data (e.g. physical activity, nutrition) in some publications, prevented us from 
including them in this review. For example, plasma metabolite concentrations are known to be highly influenced 
by physical activity and/or microbiota37–39 and plasma phospholipids were proposed to be indicative of both food 
habits and metabolic changes40. It has been recognized that publication of all the metadata (data about the samples) 
along with the metabolomic data is a good practice to assess the quality of the models and the drawn conclusions. 
Despite the existing data repositories in the field (MetaboLights41, Metabolomics Workbench42) and available 
guidelines provided by the metabolomics standards initiative (MSI)43,44, such good practice is still quite rare.

Despite these limitations, this review highlights the importance of amino acids and TGs, which have both 
been described as MetS biomarkers and associated with each of the five clinical MetS criteria. In fact, previously 
alterations of serum amino acids have been reported in the development of overweight, obesity, and insulin resist-
ance45,46. Increased TG levels have also been linked to obesity and insulin resistance47, but even if associations 
with hypertension and hypertension risk were shown, the involved mechanisms remain to be explored48.

The glycemic component: towards T2D. Among all the MetS criteria, elevated fasting blood glucose was 
by far the most studied phenotype using metabolomics/lipidomics, because of its direct link with T2D. Studies 
on dysglycemia have been among the main drivers in this research field using global metabolomic approaches for 
biomarker discovery and validation. This review allows first to get an overview of the publications considering 
this specific component among a whole set of metabolic risks, which is of great interest, in the context of systems 
approaches. In particular, it highlights the interest of profiling both amino acids, lipids and carbohydrates to 
decipher the complex interplay between obesity and diabetes, as previously discussed25. In addition, it allows 
identifying specific metabolites of interest such as isoleucine, α-hydroxybutyrate, and ether phosphaditylcholine 
(PC) species to monitor disease progression in the context of metabolic disorders. In fact, although little stud-
ied, ether PC species are part of an overlapping lipid profile between diabetes and hypertension49. Further, this 
review illustrates the use of metabolomics as a powerful tool for the identification of relevant pattern of hundreds 
of detected metabolites that could be used to predict future development of T2D. However, metabolic profiles 
acquired with semi- or non-targeted approaches are complex and required dedicated variable selection to build 
powerful predictive models of specific prediabetic phenotypes50. As the analysis of data is one of the most chal-
lenging steps in the metabolomics approach due to high data dimensionality and limited number of samples, rec-
ommendations as well as appropriate statistical workflows have been proposed. They often include a combination 
of univariate and multivariate analyses and highlighted the importance of feature/variable selection and external 
validation to minimize the risk of overfitting51,52. In most publications included in the present review, statistical 
approaches were not described in detail and limited to univariate analyses, which are the most commonly used 
due to their easiness of interpretation. However, in the context of metabolomics/lipidomics, multivariate meth-
ods are of great relevance as they make use of all variables simultaneously and deal with the relationship between 
variables, reflecting orchestrated biological processes53.

Limitations and recommendations for further studies. An important limitation concerning this 
review is the intrinsic issue of selecting a targeted metabolomic or lipidomic approach or interpreting the result-
ing data in connection with the study design and the phenotypes of interest. Such a strategy can lead to difficulties 
in interpretation due to missing acquired data on relevant pathways from this context. In addition, around 60% 
of the selected studies were using only metabolomics, which is probably the best compromise when using a single 
approach, as it also allows detecting the most polar lipid families. However, considering the multifaceted physi-
opathology of MetS, it is of great interest to consider applying a more comprehensive strategy using both untar-
geted metabolomics and lipidomics to cover the large diversity of potential modulated metabolites in biofluids. 
This combination is still rare (only three studies in the present review) most probably because of costs, expertise, 
and complexity of data analytical treatment.

A second limitation concerns methods both for data production and treatment. Regarding sample preparation 
and analytical methods, experimental conditions were very heterogeneous, making comparison between studies 
challenging. Moreover, in the selected articles, even if confounding factors have been often considered in study 
designs, data description and analysis of these potentially interacting factors were frequently lacking. Such biases 
have often been identified and statistical approaches have been developed to avoid false discoveries in metabo-
lomics52. Beyond this aspect, multiple ontologies used to describe metabolites/lipids54 and the semi quantitative 
property of most of the analytical methods, are still major bottlenecks of the field.

Despite these limitations, it is now recognized that metabolomics is a powerful tool allowing metabolic strati-
fication of patients and prognosis55. Indeed a metabolic signature would lead to a molecular definition of MetS56, 
as exemplified by Wiklung et al.57 and Pujos-Guillot et al.58. Clinically speaking, the interest of subtyping MetS 
has been shown since the prevalence and risk for further cardiovascular disease and T2D is associated with 
different combinations of its components15. More recently, Sperling et al.59 highlighted the need of identifying 
subtypes of MetS on the basis of pathophysiology, as well as studying the evolution of its stages for a more efficient 
prevention and therapy. In this context, metabolomic and lipidomic signatures are suitable systems approaches 
not only to identify biomarkers of sub-phenotypes but also for hypothesis generation of the underlying patho-
genic mechanisms.

conclusion
The present review indicates that relatively few articles have been published so far on MetS biomarkers identifica-
tion using metabolomics and lipidomics in adults. Unfortunately, due to many limitations previously highlighted, 
it is difficult to compare conclusions from the available data. Moreover, individual MetS clinical components 
were not specifically investigated, despite the fact that metabolomics/lipidomics are recognized as being powerful 
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phenotyping tools in chronic metabolic diseases. Since studies on T2D have been among the main drivers in this 
research field using these global approaches for biomarker discovery and validation, it can be concluded that 
metabolomics and lipidomics signatures could be the strategy of choice for a deeper investigation and charac-
terization of MetS and its sub-phenotypes. Considering future research, a number of key recommendations can 
be made. First, untargeted methods must be performed using multiplatform approaches for a wide detection 
of metabolite diversity enabling new biomarker discovery. Second, the complexity of metabolomic/lipidomic 
data has to be investigated using dedicated univariate and multivariate statistics and data reporting has to follow 
the FAIR principle60, concerning both population characteristics and marker metadata. This issue is crucial to 
ensure the reliability, validity and inter-comparability of experimental results. Such effort should allow transfer-
ring knowledge from basic research to clinical practices.

Materials and Methods
Methodology for review of published literature. The systematic review of the literature was performed 
according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for 
conducting systematic reviews61.

A specific request was made through several bibliographic electronic databases in August 2019. All databases 
were chosen in line with the application field studied in the review, namely health research and biology, and 
five were retained: MEDLINE (from 1946 onwards), EMBASE (from 1974 onwards), EMB Review (from 1991 
onwards), CINHAL Complete (from 1937 onwards) and PubMed. To ensure that information collected was com-
plete, the request was also performed on grey literature ((CADTH, Clinical Trials, National Guideline Clearing 
House, National Institute for Health and Care Excellence (NICE), MedNar, Google Scholar and Open Grey). The 
request combined words and expressions for three conceptual groups: “Metabolomics/lipidomics”, “Metabolic 
Syndrome” and “metabolites/biomarkers” (Supplemental Material 1). For each database, words and expressions 
from controlled vocabulary (MeSH, EMTREE and others) and free-text searching were used. Snowballing tech-
niques and Handsearching was also used to identify other references. Duplicate publications were deleted.

Study selection and data extraction. Initially, titles and abstracts were screened by two authors using 
the following inclusion and exclusion criteria: (1) articles had to be published in English; (2) publications had to 
contain original data, therefore reviews, book chapters, and editorials were excluded; (3) studies on non-human 
models (e.g. animals, plants, cells) were excluded; human studies were restricted to case/control, observational, 
and prospective designs; intervention studies were excluded. Finally, population was restricted to adult/aging 
Caucasian subjects; thus articles on children, adolescents or pregnant women were excluded; (4) the primary 
outcome had to be the MetS and/or its components, including T2D, and (5) articles referring to genetic/transcrip-
tomic markers or proteomics were also excluded. These two authors resolved disagreements. To determine publi-
cation relevance, three authors independently screened all titles and abstracts to assess their eligibility against the 
following more restrictive criteria: Eligible publications in the review had to include a minimum of 20 subjects 
per group and available clinical data regarding the MetS criteria: fasting glucose, TG, HDL-C concentrations, 
waist circumference, systolic and diastolic blood pressures. Concerning the number of subjects considered as 
minimum per study, it is generally admitted that 30 subjects is a limit to be able to perform common methods in 
statistics, in relation to a normal distribution. Moreover, because of the diversity/complexity of the MetS meta-
bolic phenotypes, influenced by numerous factors (gender, age, diet…), taking a population of 40 subjects (i.e. 
20 subjects per group for a case/control study) was considered as a minimum requirement. Disagreements in 
abstracts inclusion were resolved after consensual decision involving a fourth author.

Pertinent data from papers were then extracted, including, author names, publication year, study population 
and design, number of subjects, gender/sex, baseline clinical characteristics and main outcome. The experimental 
measures were collected regarding the nature of the biological samples, the analytical approach and techniques, 
and information regarding statistical methods and covariates when relevant. The results were analysed and com-
piled by biochemical family including significantly modulated metabolites (p-value < 0.05), metabolite listings 
with levels of change according to the outcome and/or MetS clinical criteria. Finally, results from different studies 
were compared using Venn diagrams62 to obtain a more synthetic view.

ethics statement. This article does not contain any studies with human or animal subjects performed by 
any of the authors.
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