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Abstract Mercury experiences an uneven insolation that leads to significant latitudinal and longitudinal
variations of its surface temperature. These variations, which are predominantly of spherical harmonic
degrees 2 and 4, propagate to depth, imposing a long-wavelength thermal perturbation throughout the
mantle. We computed the accompanying density distribution and used it to calculate the mechanical and
gravitational response of a spherical elastic shell overlying a quasi-hydrostatic mantle. We then compared
the resulting geoid and surface deformation at degrees 2 and 4 with Mercury’s geoid and topography
derived from the MErcury, Surface, Space ENvironment, GEochemistry, and Ranging spacecraft. More than
95% of the data can be accounted for if the thickness of the elastic lithosphere were between 110 and
180 km when the thermal anomaly was imposed. The obtained elastic thickness implies that Mercury
became locked into its present 3:2 spin orbit resonance later than about 1 Gyr after planetary formation.

1. Introduction

The long-wavelength gravity field and topography of terrestrial bodies are generally interpreted in terms of
lateral heterogeneities of the crust-mantle interface [e.g., Wieczorek, 2015], of deep-seated density anomalies
due to mantle convection, and of the accompanying dynamic topography of compositional interfaces [e.g.,
Redmond and King, 2007], or a combination thereof. The degree 2 coefficients of Mercury’s gravity field and
shape have long been known to depart significantly from hydrostatic equilibrium [Anderson et al., 1987, 1996].
The constraints on the degree 2 gravity obtained from Mariner 10 flybys, in combination with measurements
of equatorial ellipticity form radar ranging, have been first used by Anderson et al. [1996] to infer a crustal
thickness of 200 ± 100 km under the assumption that the topography is Airy compensated. These values,
however, are considerably larger than those obtained from subsequent estimates based on topographic relax-
ation models, which favor the lower end of this range [Watters and Nimmo, 2010], and on recent models based
on gravity and topography data of the MErcury, Surface, Space ENvironment, GEochemistry, and Ranging
(MESSENGER) spacecraft that yield values of few tens of kilometers only [James et al., 2015; Padovan et al.,
2015]. In particular, Padovan et al. [2015] carried out an analysis of the geoid-to-topography ratio (GTR) of the
ancient terrane of Mercury’s northern hemisphere showing that, at spherical harmonics degrees 9≤ 𝓁≤15,
the GTR is well explained by an Airy model of isostatic compensation with a mean crustal thickness of 35±18
km. At longer wavelengths, for 𝓁 ≤ 8, the GTR is significantly higher and scattered, suggesting that different
mechanisms are needed to interpret this part of the spectrum [see also James et al., 2015]. The power spectra
of Mercury’s dynamic geoid and topography obtained from 3-D spherical mantle convection models turn out
to be much smaller than the observed ones [Padovan et al., 2015], indicating that, even if mantle convection
were still ongoing, its signal would be too weak to be detected in the geoid and topography data, let alone
to affect the longest wavelengths of these two fields.

Matsuyama and Nimmo [2009] analyzed Mercury’s gravity field resulting from additional effects: tidal defor-
mation, despinning, variable eccentricity, and reorientation of a residual bulge. They concluded that neither
the mass excess associated with the Caloris basin nor a large remnant bulge acquired when the planet
was rotating faster can account alone for the observed gravity at degree 2. They proposed instead a more
complex scenario in which a (sufficiently) large gravity anomaly associated with Caloris drove the reorienta-
tion of an also large remnant bulge through an event of true polar wander.
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M. Káňová, A.-C. Plesa, M. Grott,
D. Breuer, S. Padovan, and
M. A. Wieczorek (2015), Mercury’s
low-degree geoid and topography
controlled by insolation-driven
elastic deformation, Geophys. Res. Lett.,
42, doi:10.1002/2015GL065314.

Received 10 JUL 2015

Accepted 25 AUG 2015

Accepted article online 1 SEP 2015

©2015. American Geophysical Union.
All Rights Reserved.

TOSI ET AL. INSOLATION-DRIVEN DEFORMATION ON MERCURY 1

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2015GL065314
http://dx.doi.org/10.1002/2015GL065314


Geophysical Research Letters 10.1002/2015GL065314

Figure 1. (a) Distribution of Mercury’s surface temperature according
to Vasavada et al. [1999] (see section 1 in Text S1). (b) Long-wavelength
geoid and (c) topography from MESSENGER data. The three fields are
plotted up to degree and order 4.

An alternative explanation for the low-
degree gravity and topography of
Mercury is offered by the peculiar pattern
of its mean surface temperature and its
accompanying consequences on the
density distribution of the deep interior
[Phillips et al., 2014]. Because of its 3:2
spin orbit resonance, high orbital eccen-
tricity, and small obliquity, Mercury’s
surface experiences an uneven insolation
that not only leads to large latitudinal
differences in temperature but also to sig-
nificant longitudinal variations resulting
in equatorial hot and cold regions form-
ing so-called hot poles at 0∘ and 180∘ and
warm poles at ±90∘ longitude (Figure 1a).
The main part of the power spectrum of
the surface temperature distribution is
concentrated at degrees 2 (84%) and 4
(10%). Figures 1b and 1c show Mercury’s
long-wavelength geoid and shape up
to degree and order 4 obtained from
the spherical harmonic model HGM005
of the gravitational potential [Mazarico
et al., 2014] and from a spherical har-
monic representation of the topography
[Neumann, 2014]. Hot equatorial (cold
polar) poles correlate with highs (lows)
of the geoid and topography. Indeed, the
degrees 2 and 4 account for a significant
part of the power spectrum of the two
fields: respectively, 76% and 7% of the
geoid and 40% and 4% of the topog-
raphy. Here we explore the correlation
between insolation, geoid, and topog-
raphy by investigating the mechanical
and gravitational response of the litho-
sphere and mantle to the internal thermal
heterogeneities induced by the surface
temperature distribution.

2. Methods
2.1. Thermal Evolution Model
We used the mantle convection code
GAIA [Hüttig et al., 2013] to run a represen-
tative 3-D simulation of Mercury’s thermal

evolution using the same approach as in Tosi et al. [2013]. This model reflects a typical evolution scenario sat-
isfying several constraints imposed by MESSENGER observations, including the prediction of a limited global
contraction [Byrne et al., 2014]. We considered a 400 km thick silicate shell [Hauck et al., 2013] whose top 30 km
consists of a fixed crust enriched in radiogenic heat sources with respect to the mantle according to a constant
factor (Λ), with the concentration of U, Th, and K reflecting the observed surface abundances inferred from
gamma ray spectroscopy [Peplowski et al., 2012]. Note that the parameter Λ (set to 2.7 in this simulation as in
the nominal model presented by Tosi et al. [2013]) lies within the range of values for which evolution models
are compatible with MESSENGER constraints, i.e., between 2.5 and 4.5 [Tosi et al., 2013]. Besides solving the
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Figure 2. Schematic diagram of the elastic model used to calculate topography and geoid due to internal loading
associated with temperature anomalies 𝛿T (and hence density anomalies 𝛿𝜌) induced by surface temperature variations
and mantle convection. Rp, Rc, Re, and RCMB denote the radii of the planet, crust (of thickness Dc), base of the elastic
layer (of thickness De), and CMB; Δ𝜌mc and Δ𝜌CMB are density contrasts across the crust-mantle interface and CMB;
u(Rp) and u(Rc) refer to the elastic displacements of the surface and crust-mantle interface, while tCMB represents the
deformation of the CMB; ΔRth is the displacement caused by density anomalies located below the elastic layer that
cause thermal expansion or contraction of the mantle (see section 2 in Text S1 for details).

conservation equations of mass, momentum, and thermal energy under the extended Boussinesq approxi-
mation [Christensen and Yuen, 1985], the model accounts for core cooling [e.g., Steinbach and Yuen, 1994] and
decaying radiogenic heat sources as appropriate for thermal evolution models. Table S2 of the supporting
information contains a list of all model parameters.

The major difference with respect to the models presented by Tosi et al. [2013] is that here, instead of consider-
ing a uniform surface temperature, we employed as boundary condition the distribution shown in Figure 1a.
This corresponds to that predicted by model TWO of Vasavada et al. [1999] whose details are discussed in
section 1 in Text S1 of the supporting information. Although different scenarios have been proposed to
explain how and when Mercury reached its current orbital resonance [Correia and Laskar, 2004; Wieczorek
et al., 2012; Noyelles et al., 2014], we simply assumed the pattern of Figure 1a to be constant. The implications
of this assumption will be discussed in sections 3 and 4.

2.2. Elastic Model
To evaluate the mechanical and gravitational response of the mantle to internal loads, we calculated the
distribution of temperature anomalies 𝛿T from the thermal evolution model:

𝛿T(r, 𝜗, 𝜑) = T(r, 𝜗, 𝜑) − ⟨T(r)⟩, (1)

where (r, 𝜗, 𝜑) denote radius, colatitude, and longitude, respectively, T(r, 𝜗, 𝜑) is the actual three-dimensional
temperature field, and ⟨T(r)⟩ its laterally averaged profile. We then used the obtained thermal anomalies to
compute the mechanical response of the mantle using the spherical shell model sketched in Figure 2. The
model consists of an elastic layer of thickness De, in which the momentum and continuity equations for an
elastic, compressible, and self-gravitating continuum are solved in the spectral domain [Golle et al., 2012].
This elastic shell is partially composed of a crust of thickness Dc, across which a density contrast Δ𝜌mc is pre-
scribed, and overlies a quasi-hydrostatic layer where shear stresses are neglected but whose deformation
ΔRth caused by thermal expansion and contraction is taken into account in the surface boundary conditions.
The core-mantle boundary (CMB), across which a density jump Δ𝜌CMB is prescribed, is assumed to follow an
equipotential, and its shape tCMB is also taken into account in the boundary conditions. The surface topog-
raphy results from the elastic deformation of the surface u(Rp), from the expansion and contraction of the
elastic lithosphere and deep mantle, and from the CMB topography. Internal temperature anomalies 𝛿T along
with the displacements of the surface, crust-mantle interface, and CMB are then employed to calculate in
the spectral domain the gravitational potential at the surface and hence the geoid. Section 2 in Text S1
and Table S3 of the supporting information contain a detailed description of the conservation equations,
boundary conditions, and parameters used.
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Figure 3. (a) Profiles of the minimum (blue), average (black), and maximum (red) mantle temperature from the 3-D
thermal evolution model. Solid lines refer to the convective solution after 1 Gyr and dashed lines to the conductive
solution after 4.5 Gyr. (b) Variance reduction as a function of elastic thickness for geoid and topography together (black)
and separately (red and blue). Solid and dashed lines refer to the convective and conductive solutions.

3. Results

We first ran the 3-D thermal evolution model described in section 2.1. The parameters used here lead to the
cessation of convection after about 3.5 Gyr. By monitoring the evolution of the temperature profiles beneath
the hot and cold surface poles, we estimated that in about 500 Myr the pattern of surface temperature dif-
fuses down to the CMB, reaching a quasi steady state that is maintained until the present day. This causes the
formation of a long-wavelength temperature perturbation that reflects the surface distribution but does not
interfere with the convection planform, which remains small-scale as in simulations employing a uniform sur-
face temperature. Figure 3a shows laterally averaged profiles of the minimum, average, and maximum mantle
temperature after 1 Gyr and 4.5 Gyr of evolution, respectively. The former correspond to a time at which the
mantle was convecting and the transient signal due to the laterally varying temperature boundary conditions
was well in a quasi steady state; the latter correspond to the present day, after the mantle became conduc-
tive (see Figure S1 of the supporting information for a plot of the mantle temperature distribution at these
two times.)

We then used the corresponding distribution of temperature anomalies as internal load for the elastic model
described in section 2.2 to compute the resulting geoid and topography. Hot equatorial poles (Figure 1a)
are associated with a positive geoid and topography (Figures 1b and 1c). The underlying lithosphere and
mantle, being hotter than average, are characterized by a negative density anomaly, which, in absence of
deformation, would lead to a negative geoid, in contrast with the observations. This negative geoid, however,
can be compensated through the effect of positive density anomalies associated with a sufficiently large
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upward deflection of the surface and CMB that largely depends on the thickness De of the elastic lithosphere
(the opposite argument clearly applies to cold poles and their geoid and topography lows).

In order to evaluate the agreement between models and observations, we performed a parameter space
search by running several forward models using different elastic layer thicknesses. For every value of De, we
computed the resulting variance reduction N,H(De) for the joint prediction of geoid (N) and topography (H)
[e.g., Mitrovica and Forte, 1997]:

N,H(De) =

[
1 −

(
aN

∑
𝓁m

(
Nmod
𝓁m

(De) − Nobs
𝓁m

)2∑
𝓁m

(
Nobs
𝓁m

)2
+ aH

∑
𝓁m

(
Hmod
𝓁m

(De) − Hobs
𝓁m

)2∑
𝓁m

(
Hobs
𝓁m

)2

)]
× 100%, (2)

where the sums only include 𝓁 = 2 and 4; m = −𝓁,… ,𝓁, N𝓁m and H𝓁m are harmonic coefficients of the
modeled (mod) and observed (obs) geoid and topography, respectively, and aN = aH = 1∕2. For the variance
reduction N(De) of the geoid alone, we set aN = 1 and aH = 0 in equation (2) and vice versa for the variance
reduction H(De) relative to the topography. Note that because of the symmetry of the surface temperature
distribution (see Figure 1a and Table S1), spherical harmonic coefficients of odd degree and/or order of the
modeled fields are negligible.

In Figure 3b, for both the convective and conductive solutions, we show the variance reductions N,H (black),
N (red), and H (blue), obtained using a model with a thermal expansivity 𝛼 = 3 × 10−5 K−1, Dc = 30 km,
Δ𝜌mc = 500 kg m−3, and Δ𝜌CMB = 3600 kg m−3. For values of De between ∼130 km and 140 km, N,H shows a
pronounced peak of about 96%, with a sharp decrease away from these values. Note that negative values of
 are indicative of modeled geoid and/or topography that are anticorrelated with respect to the observations.
The shape of N,H is very similar to that of N; the shape of H also exhibits a maximum, which is attained for
an elastic thickness of ∼145 km. This maximum, however, is not as sharp as the one that characterizes N. In
particular, the variance reduction remains above 80% for values of De greater than ∼145 km. The influence
of the mode of heat transport on the estimate of De is minor: the maxima of  are attained at approximately
the same value of De for both the convective and conductive solutions. Indeed, the elastic model we used
to calculate geoid and topography is insensitive to the absolute mantle temperature and only depends on
density anomalies. These anomalies in turn, at degrees 2 and 4, are controlled by the distribution of surface
temperature and are not affected by the presence of mantle convection, which is characterized by small-scale
cells that do not perturb the long-wavelength signal generated by the insolation pattern.

Besides the thickness of the elastic shell, the thermal expansivity is the parameter that has the largest influence
on the prediction of the data. As shown in Figure S2a, the maximum ofN,H occurs for De = 120, 130, or 165 km
when assuming a convective mantle and 𝛼 = 2.5, 3, or 3.5 × 10−5 K−1, respectively (note that the conductive
solution is again very similar to the convective one as shown in Figure S2b). Different values of the crustal
thickness, which simply controls the depth at which the density contrast Δ𝜌mc is imposed, also affect the
estimate of the elastic thickness, though to a lesser extent: the difference in the values of De at which the
maximum of N,H is attained is only ∼15 km for crustal thicknesses between 20 and 40 km (compare the
solid, dashed, and dotted lines in Figure S2). Furthermore, as the CMB topography calculated with our model
is typically small (few tens of meters at most), the density contrast between mantle and core plays only a
negligible role.

Since the above estimates of the elastic thickness are independent of the absolute mantle temperature, the
best fitting value of De is only indicative of the time at which the surface thermal anomaly propagated through
the mantle and reached a quasi steady state (∼500 Myr after the planet was locked into the 3:2 resonance).
Depending on the choice of the thermal expansivity and limiting us to consider only maxima of N,H, the
degrees 2 and 4 of geoid and topography are equally well predicted by our model when De lies approximately
between 110 and 180 km (Figure S2).

In order to verify whether this range is compatible with estimates based on a more detailed rheological
description of the mantle, which does depend on temperature, we employed the strength envelope formal-
ism [McNutt et al., 1988] to provide an independent estimate of the elastic thickness. Under the assumption
of small curvature, which is justified at the long wavelengths that we are considering [Grott and Breuer,
2010], we calculated De as the mechanical thickness of the lithosphere, i.e., the depth corresponding to the
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Figure 4. Elastic thickness obtained using the strength envelope formalism for the temperature distribution
corresponding (a) to the convective solution after 1 Gyr and (b) to the present-day conductive solution. (c) Time
evolution of the minimum (dotted lines), average (solid lines), and maximum (dashed lines) elastic thickness De
for three different values of the strain rate �̇�. The gray area indicates the range of De obtained from the inversion
of geoid and topography data.

temperature Td at which the lithosphere loses its mechanical strength because of ductile flow [e.g., Grott and
Breuer, 2008]:

Td = Q
R

[
log

(
𝜎nB
�̇�

)]−1

, (3)

where Q, B, and n are rheological parameters, R is the gas constant, 𝜎 a bounding stress, and �̇� the strain rate
(see Table S4 for the assumed values). In Figure 4, we show the resulting distribution of De assuming a strain
rate of 10−18 s−1 and using the temperature field corresponding to the convective solution after 1 Gyr and to
the conductive solution at present day (Figures 4a and 4b, respectively), as well as the time evolution of the
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minimum, average, and maximum De for three different values of the strain rate (Figure 4c) that are represen-
tative for terrestrial planets [McGovern et al., 2002]. Maxima and minima of De, corresponding to cold and hot
poles, differ by ∼25 km in both the convective and conductive cases, in agreement with previous estimates
of Williams et al. [2011] based on parametrized thermal evolution models. Furthermore, Figure 4a shows that
the small-scale planform of mantle convection that characterizes Mercury’s thin mantle does not affect the
long-wavelength thermal perturbation imposed by surface temperature variations (see also Figure S1).

As illustrated in Figure 4c, because of mantle cooling, the mean elastic thickness increases significantly over
time: from 85–100 km after 1 Gyr of evolution to 170–190 km at present day (depending on the choice of the
strain rate). The results of our inversion of geoid and topography predict elastic thicknesses between ∼110
and 180 km. This range, marked in grey in Figure 4c, is consistent with the above estimates only after at least
1.5 Gyr. Since the time needed for the insolation pattern to propagate through the mantle and reach a quasi
steady state is ∼500 Myr, this suggests that Mercury may have acquired its 3:2 spin orbit resonance relatively
late in its evolution, about 1 Gyr after its formation or later.

4. Discussion

Both the low-degree geoid and topography can be naturally maintained out of equilibrium through deforma-
tion of the elastic lithosphere and of the underlying mantle caused by deep, insolation-driven temperature
anomalies, a mechanism also proposed by Phillips et al. [2014] in the framework of a simpler model of a
conductive mantle with isostatically compensated topography. For an optimal choice of the thickness De of
the elastic lithosphere, our model reproduces well the observed geoid and topography at degrees 2 and 4
(Figure 3b). The best fitting value of De varies between 110 and 180 km, chiefly depending on the choice of
the coefficient of thermal expansion. Indeed, a topography that both fits the observed shape and allows us
to reproduce the observed geoid is obtained using either a thick lithosphere and a small thermal expansiv-
ity or, vice versa, a thin lithosphere and a large thermal expansivity (Figure S2). Other parameters, such as the
crustal thickness, the density contrast across the crust-mantle interface, or the CMB play a second-order role.

The mechanical and gravitational responses of the lithosphere and mantle calculated with the above model
do not depend on the absolute mantle temperature and are little influenced by the presence of convection.
Our estimates of De are thus only representative for the time at which the pattern of surface temperature
developed through the mantle. Because of mantle cooling, however, the thickness of the lithosphere increases
over time. We thus computed De using the strength envelope formalism [McNutt et al., 1988] and found that
its average value increases from ∼85–100 km after 1 Gyr to ∼170–190 km at present day (Figure 4c). The
above values can be reconciled with those predicted by the geoid and topography inversion (110–180 km)
if Mercury was captured into its 3:2 spin orbit resonance after about 1 Gyr of evolution or later (Figure 4c).
This scenario compares favorably with the one proposed by Wieczorek et al. [2012] according to which
Mercury escaped from an initial synchronous rotation as a consequence of a large impact, allowing subse-
quent capture into the present-day 3:2 resonance [see also Correia and Laskar, 2012]. The last such impact
that could have accomplished this is the one that generated the Caloris basin at about 3.7 Ga. [Le Feuvre and
Wieczorek, 2011].

On the basis of the analysis of lobate scarps, Nimmo and Watters [2004] inferred elastic thicknesses of only
25–30 km at the time of faulting (about 4 Ga). These values are significantly lower than those predicted by
our evolution model, i.e., between 75 and 90 km at that time. The latter range, however, is in good agreement
with estimates of ∼75–125 km based on the analysis of tectonic structures related to Caloris [Melosh and
McKinnon, 1988].

The long-wavelength part of the spectrum of Mercury’s shape and gravity field possesses significant power
also at degrees 3 and 5 [Mazarico et al., 2014; Neumann, 2014]. However, since the surface temperature dis-
tribution is symmetric with respect to the equator and the small-scale thermal structures associated with
mantle convection are uniformly distributed and do not provide a significant dynamic contribution [Padovan
et al., 2015], our model can only explain the degrees 2 and 4 of the two fields. Finding suitable mechanisms
accounting for these degrees remains a task for future models. Vast volcanic plains are concentrated in the
northern hemisphere of the planet [e.g., Head et al., 2011], and a north-south asymmetry in the mantle den-
sity distribution could thus arise as a consequence of compositionally distinct materials associated with the
source regions of the partial melts that led to the formation of these plains. This density distribution could
potentially induce a gravity response involving odd degrees. Large-scale impacts such as the one associated
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with the formation of Caloris [Roberts and Barnouin, 2012] or the effects of a residual mantle resulting from
the crystallization of a magma ocean [Brown and Elkins-Tanton, 2009; Charlier et al., 2013] also represent viable
options that will ultimately have to be verified quantitatively.

5. Conclusions

The large latitudinal and longitudinal variations of Mercury’s surface temperature, which are predominantly
of spherical harmonic degrees 2 and 4, induce at these same degrees a thermal perturbation throughout the
mantle. Such perturbation causes a surface deformation and a geoid that are strongly influenced by the thick-
ness of the elastic lithosphere and by the thermal expansion coefficient of the mantle. Using a 3-D thermal
evolution model to calculate the temperature distribution in the mantle and lithosphere and a 3-D elastic
model to compute their mechanical and gravitational responses, we showed that, for an elastic thickness De

between ∼110 and 180 km, our model can predict the observed degrees 2 and 4 of the geoid and topogra-
phy with a variance reduction of more than 95%. On the basis of independent estimates obtained with the
strength envelope formalism applied to the evolution of the interior temperature, the above values can be
accounted for if Mercury was trapped in its 3:2 resonance later than about 1 Gyr after planetary formation.
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