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Introduction

The long-wavelength gravity field and topography of terrestrial bodies are generally interpreted in terms of lateral heterogeneities of the crust-mantle interface [e.g., [START_REF] Wieczorek | The gravity and topography of the terrestrial planets[END_REF], of deep-seated density anomalies due to mantle convection, and of the accompanying dynamic topography of compositional interfaces [e.g., [START_REF] Redmond | Does mantle convection currently exist on Mercury?[END_REF], or a combination thereof. The degree 2 coefficients of Mercury's gravity field and shape have long been known to depart significantly from hydrostatic equilibrium [START_REF] Anderson | The mass, gravity field, and ephemeris of Mercury[END_REF][START_REF] Anderson | Shape and orientation of Mercury from radar ranging data[END_REF]. The constraints on the degree 2 gravity obtained from Mariner 10 flybys, in combination with measurements of equatorial ellipticity form radar ranging, have been first used by [START_REF] Anderson | Shape and orientation of Mercury from radar ranging data[END_REF] to infer a crustal thickness of 200 ± 100 km under the assumption that the topography is Airy compensated. These values, however, are considerably larger than those obtained from subsequent estimates based on topographic relaxation models, which favor the lower end of this range [START_REF] Watters | The tectonics of Mercury[END_REF], and on recent models based on gravity and topography data of the MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft that yield values of few tens of kilometers only [START_REF] James | Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography[END_REF][START_REF] Padovan | Thickness of the crust of Mercury from geoid-to-topography ratios[END_REF]. In particular, [START_REF] Padovan | Thickness of the crust of Mercury from geoid-to-topography ratios[END_REF] carried out an analysis of the geoid-to-topography ratio (GTR) of the ancient terrane of Mercury's northern hemisphere showing that, at spherical harmonics degrees 9≤ 𝓁 ≤15, the GTR is well explained by an Airy model of isostatic compensation with a mean crustal thickness of 35 ± 18 km. At longer wavelengths, for 𝓁 ≤ 8, the GTR is significantly higher and scattered, suggesting that different mechanisms are needed to interpret this part of the spectrum [see also [START_REF] James | Support of long-wavelength topography on Mercury inferred from MESSENGER measurements of gravity and topography[END_REF]. The power spectra of Mercury's dynamic geoid and topography obtained from 3-D spherical mantle convection models turn out to be much smaller than the observed ones [START_REF] Padovan | Thickness of the crust of Mercury from geoid-to-topography ratios[END_REF], indicating that, even if mantle convection were still ongoing, its signal would be too weak to be detected in the geoid and topography data, let alone to affect the longest wavelengths of these two fields. [START_REF] Matsuyama | Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation[END_REF] analyzed Mercury's gravity field resulting from additional effects: tidal deformation, despinning, variable eccentricity, and reorientation of a residual bulge. They concluded that neither the mass excess associated with the Caloris basin nor a large remnant bulge acquired when the planet was rotating faster can account alone for the observed gravity at degree 2. They proposed instead a more complex scenario in which a (sufficiently) large gravity anomaly associated with Caloris drove the reorientation of an also large remnant bulge through an event of true polar wander. An alternative explanation for the lowdegree gravity and topography of Mercury is offered by the peculiar pattern of its mean surface temperature and its accompanying consequences on the density distribution of the deep interior [START_REF] Phillips | Mercury's 2nd-degree shape and geoid: Lunar comparisons and thermal anomalies[END_REF]. Because of its 3:2 spin orbit resonance, high orbital eccentricity, and small obliquity, Mercury's surface experiences an uneven insolation that not only leads to large latitudinal differences in temperature but also to significant longitudinal variations resulting in equatorial hot and cold regions forming so-called hot poles at 0 ∘ and 180 ∘ and warm poles at ±90 ∘ longitude (Figure 1a). The main part of the power spectrum of the surface temperature distribution is concentrated at degrees 2 (84%) and 4 (10%). Figures 1b and1c show Mercury's long-wavelength geoid and shape up to degree and order 4 obtained from the spherical harmonic model HGM005 of the gravitational potential [START_REF] Mazarico | The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit[END_REF] and from a spherical harmonic representation of the topography [START_REF] Neumann | Spherical harmonic expansion for the topography of Mercury. GTMES_120V02_SHA, NASA Planetary Data System[END_REF]. Hot equatorial (cold polar) poles correlate with highs (lows) of the geoid and topography. Indeed, the degrees 2 and 4 account for a significant part of the power spectrum of the two fields: respectively, 76% and 7% of the geoid and 40% and 4% of the topography. Here we explore the correlation between insolation, geoid, and topography by investigating the mechanical and gravitational response of the lithosphere and mantle to the internal thermal heterogeneities induced by the surface temperature distribution.

Methods

Thermal Evolution Model

We used the mantle convection code GAIA [START_REF] Hüttig | An improved formulation of the incompressible Navier-Stokes equations with variable viscosity[END_REF] to run a representative 3-D simulation of Mercury's thermal evolution using the same approach as in [START_REF] Tosi | Thermochemical evolution of Mercury's interior[END_REF]. This model reflects a typical evolution scenario satisfying several constraints imposed by MESSENGER observations, including the prediction of a limited global contraction [START_REF] Byrne | Mercury's global contraction much greater than earlier estimates[END_REF]. We considered a 400 km thick silicate shell [START_REF] Hauck | The curious case of Mercury's internal structure[END_REF] whose top 30 km consists of a fixed crust enriched in radiogenic heat sources with respect to the mantle according to a constant factor (Λ), with the concentration of U, Th, and K reflecting the observed surface abundances inferred from gamma ray spectroscopy [START_REF] Peplowski | Aluminum abundance on the surface of Mercury: Application of a new background-reduction technique for the analysis of gamma-ray spectroscopy data[END_REF]. Note that the parameter Λ (set to 2.7 in this simulation as in the nominal model presented by [START_REF] Tosi | Thermochemical evolution of Mercury's interior[END_REF]) lies within the range of values for which evolution models are compatible with MESSENGER constraints, i.e., between 2.5 and 4.5 [START_REF] Tosi | Thermochemical evolution of Mercury's interior[END_REF]. Besides solving the andu(R c ) refer to the elastic displacements of the surface and crust-mantle interface, while t CMB represents the deformation of the CMB; ΔR th is the displacement caused by density anomalies located below the elastic layer that cause thermal expansion or contraction of the mantle (see section 2 in Text S1 for details). conservation equations of mass, momentum, and thermal energy under the extended Boussinesq approximation [START_REF] Christensen | Layered convection induced by phase transitions[END_REF], the model accounts for core cooling [e.g., [START_REF] Steinbach | Effects of depth-dependent properties on the thermal anomalies produced in flush instabilities from phase transitions[END_REF] and decaying radiogenic heat sources as appropriate for thermal evolution models. Table S2 of the supporting information contains a list of all model parameters.

The major difference with respect to the models presented by [START_REF] Tosi | Thermochemical evolution of Mercury's interior[END_REF] is that here, instead of considering a uniform surface temperature, we employed as boundary condition the distribution shown in Figure 1a. This corresponds to that predicted by model TWO of [START_REF] Vasavada | Near-surface temperatures on Mercury and the Moon and the stability of polar ice deposits[END_REF] whose details are discussed in section 1 in Text S1 of the supporting information. Although different scenarios have been proposed to explain how and when Mercury reached its current orbital resonance [START_REF] Correia | Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics[END_REF][START_REF] Wieczorek | Mercury's spin-orbit resonance explained by initial retrograde and subsequent synchronous rotation[END_REF][START_REF] Noyelles | Spin-orbit evolution of Mercury revisited[END_REF], we simply assumed the pattern of Figure 1a to be constant. The implications of this assumption will be discussed in sections 3 and 4.

Elastic Model

To evaluate the mechanical and gravitational response of the mantle to internal loads, we calculated the distribution of temperature anomalies 𝛿T from the thermal evolution model:

𝛿T(r, 𝜗, 𝜑) = T(r, 𝜗, 𝜑) -⟨T(r)⟩, (1) 
where (r, 𝜗, 𝜑) denote radius, colatitude, and longitude, respectively, T(r, 𝜗, 𝜑) is the actual three-dimensional temperature field, and ⟨T(r)⟩ its laterally averaged profile. We then used the obtained thermal anomalies to compute the mechanical response of the mantle using the spherical shell model sketched in Figure 2. The model consists of an elastic layer of thickness D e , in which the momentum and continuity equations for an elastic, compressible, and self-gravitating continuum are solved in the spectral domain [START_REF] Golle | Topography and geoid induced by a convecting mantle beneath an elastic lithosphere[END_REF]. This elastic shell is partially composed of a crust of thickness D c , across which a density contrast Δ𝜌 mc is prescribed, and overlies a quasi-hydrostatic layer where shear stresses are neglected but whose deformation ΔR th caused by thermal expansion and contraction is taken into account in the surface boundary conditions. The core-mantle boundary (CMB), across which a density jump Δ𝜌 CMB is prescribed, is assumed to follow an equipotential, and its shape t CMB is also taken into account in the boundary conditions. The surface topography results from the elastic deformation of the surface u(R p ), from the expansion and contraction of the elastic lithosphere and deep mantle, and from the CMB topography. Internal temperature anomalies 𝛿T along with the displacements of the surface, crust-mantle interface, and CMB are then employed to calculate in the spectral domain the gravitational potential at the surface and hence the geoid. Section 2 in Text S1 and Table S3 of the supporting information contain a detailed description of the conservation equations, boundary conditions, and parameters used. 

Results

We first ran the 3-D thermal evolution model described in section 2.1. The parameters used here lead to the cessation of convection after about 3.5 Gyr. By monitoring the evolution of the temperature profiles beneath the hot and cold surface poles, we estimated that in about 500 Myr the pattern of surface temperature diffuses down to the CMB, reaching a quasi steady state that is maintained until the present day. This causes the formation of a long-wavelength temperature perturbation that reflects the surface distribution but does not interfere with the convection planform, which remains small-scale as in simulations employing a uniform surface temperature. Figure 3a shows laterally averaged profiles of the minimum, average, and maximum mantle temperature after 1 Gyr and 4.5 Gyr of evolution, respectively. The former correspond to a time at which the mantle was convecting and the transient signal due to the laterally varying temperature boundary conditions was well in a quasi steady state; the latter correspond to the present day, after the mantle became conductive (see Figure S1 of the supporting information for a plot of the mantle temperature distribution at these two times.)

We then used the corresponding distribution of temperature anomalies as internal load for the elastic model described in section 2.2 to compute the resulting geoid and topography. Hot equatorial poles (Figure 1a) are associated with a positive geoid and topography (Figures 1b and1c). The underlying lithosphere and mantle, being hotter than average, are characterized by a negative density anomaly, which, in absence of deformation, would lead to a negative geoid, in contrast with the observations. This negative geoid, however, can be compensated through the effect of positive density anomalies associated with a sufficiently large
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10.1002/2015GL065314 upward deflection of the surface and CMB that largely depends on the thickness D e of the elastic lithosphere (the opposite argument clearly applies to cold poles and their geoid and topography lows).

In order to evaluate the agreement between models and observations, we performed a parameter space search by running several forward models using different elastic layer thicknesses. For every value of D e , we computed the resulting variance reduction  N,H (D e ) for the joint prediction of geoid (N) and topography (H) [e.g., [START_REF] Mitrovica | Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial rebound observables[END_REF]:

 N,H (D e ) = [ 1 - ( a N ∑ 𝓁m ( N mod 𝓁m (D e ) -N obs 𝓁m ) 2 ∑ 𝓁m ( N obs 𝓁m ) 2 + a H ∑ 𝓁m ( H mod 𝓁m (D e ) -H obs 𝓁m ) 2 ∑ 𝓁m ( H obs 𝓁m ) 2 )] × 100%, (2) 
where the sums only include 𝓁 = 2 and 4; m = -𝓁, … , 𝓁, N 𝓁m and H 𝓁m are harmonic coefficients of the modeled (mod) and observed (obs) geoid and topography, respectively, and a N = a H = 1∕2. For the variance reduction  N (D e ) of the geoid alone, we set a N = 1 and a H = 0 in equation ( 2) and vice versa for the variance reduction  H (D e ) relative to the topography. Note that because of the symmetry of the surface temperature distribution (see Figure 1a and Table S1), spherical harmonic coefficients of odd degree and/or order of the modeled fields are negligible.

In Figure 3b, for both the convective and conductive solutions, we show the variance reductions  N,H (black),  N (red), and  H (blue), obtained using a model with a thermal expansivity 𝛼 = 3 × 10 -5 K -1 , D c = 30 km, Δ𝜌 mc = 500 kg m -3 , and Δ𝜌 CMB = 3600 kg m -3 . For values of D e between ∼130 km and 140 km,  N,H shows a pronounced peak of about 96%, with a sharp decrease away from these values. Note that negative values of  are indicative of modeled geoid and/or topography that are anticorrelated with respect to the observations. The shape of  N,H is very similar to that of  N ; the shape of  H also exhibits a maximum, which is attained for an elastic thickness of ∼145 km. This maximum, however, is not as sharp as the one that characterizes  N . In particular, the variance reduction remains above 80% for values of D e greater than ∼145 km. The influence of the mode of heat transport on the estimate of D e is minor: the maxima of  are attained at approximately the same value of D e for both the convective and conductive solutions. Indeed, the elastic model we used to calculate geoid and topography is insensitive to the absolute mantle temperature and only depends on density anomalies. These anomalies in turn, at degrees 2 and 4, are controlled by the distribution of surface temperature and are not affected by the presence of mantle convection, which is characterized by small-scale cells that do not perturb the long-wavelength signal generated by the insolation pattern.

Besides the thickness of the elastic shell, the thermal expansivity is the parameter that has the largest influence on the prediction of the data. As shown in Figure S2a, the maximum of  N,H occurs for D e = 120, 130, or 165 km when assuming a convective mantle and 𝛼 = 2.5, 3, or 3.5 × 10 -5 K -1 , respectively (note that the conductive solution is again very similar to the convective one as shown in Figure S2b). Different values of the crustal thickness, which simply controls the depth at which the density contrast Δ𝜌 mc is imposed, also affect the estimate of the elastic thickness, though to a lesser extent: the difference in the values of D e at which the maximum of  N,H is attained is only ∼15 km for crustal thicknesses between 20 and 40 km (compare the solid, dashed, and dotted lines in Figure S2). Furthermore, as the CMB topography calculated with our model is typically small (few tens of meters at most), the density contrast between mantle and core plays only a negligible role.

Since the above estimates of the elastic thickness are independent of the absolute mantle temperature, the best fitting value of D e is only indicative of the time at which the surface thermal anomaly propagated through the mantle and reached a quasi steady state (∼500 Myr after the planet was locked into the 3:2 resonance).

Depending on the choice of the thermal expansivity and limiting us to consider only maxima of  N,H , the degrees 2 and 4 of geoid and topography are equally well predicted by our model when D e lies approximately between 110 and 180 km (Figure S2).

In order to verify whether this range is compatible with estimates based on a more detailed rheological description of the mantle, which does depend on temperature, we employed the strength envelope formalism [START_REF] Mcnutt | Variations of elastic plate thickness at continental thrust belts[END_REF] to provide an independent estimate of the elastic thickness. Under the assumption of small curvature, which is justified at the long wavelengths that we are considering [START_REF] Grott | On the spatial variability of the Martian elastic lithosphere thickness: Evidence for mantle plumes?[END_REF], we calculated D e as the mechanical thickness of the lithosphere, i.e., the depth corresponding to the 10.1002/2015GL065314 temperature T d at which the lithosphere loses its mechanical strength because of ductile flow [e.g., [START_REF] Grott | The evolution of the Martian elastic lithosphere and implications for crustal and mantle rheology[END_REF]:

T d = Q R [ log ( 𝜎 n B ε )]-1 , ( 3 
)
where Q, B, and n are rheological parameters, R is the gas constant, 𝜎 a bounding stress, and ε the strain rate (see Table S4 for the assumed values). In Figure 4, we show the resulting distribution of D e assuming a strain rate of 10 -18 s -1 and using the temperature field corresponding to the convective solution after 1 Gyr and to the conductive solution at present day (Figures 4a and4b, respectively), as well as the time evolution of the
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10.1002/2015GL065314 minimum, average, and maximum D e for three different values of the strain rate (Figure 4c) that are representative for terrestrial planets [START_REF] Mcgovern | Localized gravity/topography admittance and correlation spectra on Mars: Implications for regional and global evolution[END_REF]. Maxima and minima of D e , corresponding to cold and hot poles, differ by ∼25 km in both the convective and conductive cases, in agreement with previous estimates of [START_REF] Williams | Insolation driven variations of Mercury's lithospheric strength[END_REF] based on parametrized thermal evolution models. Furthermore, Figure 4a shows that the small-scale planform of mantle convection that characterizes Mercury's thin mantle does not affect the long-wavelength thermal perturbation imposed by surface temperature variations (see also Figure S1).

As illustrated in Figure 4c, because of mantle cooling, the mean elastic thickness increases significantly over time: from 85-100 km after 1 Gyr of evolution to 170-190 km at present day (depending on the choice of the strain rate). The results of our inversion of geoid and topography predict elastic thicknesses between ∼110 and 180 km. This range, marked in grey in Figure 4c, is consistent with the above estimates only after at least 1.5 Gyr. Since the time needed for the insolation pattern to propagate through the mantle and reach a quasi steady state is ∼500 Myr, this suggests that Mercury may have acquired its 3:2 spin orbit resonance relatively late in its evolution, about 1 Gyr after its formation or later.

Discussion

Both the low-degree geoid and topography can be naturally maintained out of equilibrium through deformation of the elastic lithosphere and of the underlying mantle caused by deep, insolation-driven temperature anomalies, a mechanism also proposed by [START_REF] Phillips | Mercury's 2nd-degree shape and geoid: Lunar comparisons and thermal anomalies[END_REF] in the framework of a simpler model of a conductive mantle with isostatically compensated topography. For an optimal choice of the thickness D e of the elastic lithosphere, our model reproduces well the observed geoid and topography at degrees 2 and 4 (Figure 3b). The best fitting value of D e varies between 110 and 180 km, chiefly depending on the choice of the coefficient of thermal expansion. Indeed, a topography that both fits the observed shape and allows us to reproduce the observed geoid is obtained using either a thick lithosphere and a small thermal expansivity or, vice versa, a thin lithosphere and a large thermal expansivity (Figure S2). Other parameters, such as the crustal thickness, the density contrast across the crust-mantle interface, or the CMB play a second-order role.

The mechanical and gravitational responses of the lithosphere and mantle calculated with the above model do not depend on the absolute mantle temperature and are little influenced by the presence of convection. Our estimates of D e are thus only representative for the time at which the pattern of surface temperature developed through the mantle. Because of mantle cooling, however, the thickness of the lithosphere increases over time. We thus computed D e using the strength envelope formalism [START_REF] Mcnutt | Variations of elastic plate thickness at continental thrust belts[END_REF] and found that its average value increases from ∼85-100 km after 1 Gyr to ∼170-190 km at present day (Figure 4c). The above values can be reconciled with those predicted by the geoid and topography inversion (110-180 km) if Mercury was captured into its 3:2 spin orbit resonance after about 1 Gyr of evolution or later (Figure 4c). This scenario compares favorably with the one proposed by [START_REF] Wieczorek | Mercury's spin-orbit resonance explained by initial retrograde and subsequent synchronous rotation[END_REF] according to which Mercury escaped from an initial synchronous rotation as a consequence of a large impact, allowing subsequent capture into the present-day 3:2 resonance [see also [START_REF] Correia | Impact cratering on Mercury: Consequences for the spin evolution[END_REF]. The last such impact that could have accomplished this is the one that generated the Caloris basin at about 3.7 Ga. [START_REF] Le Feuvre | Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System[END_REF].

On the basis of the analysis of lobate scarps, [START_REF] Nimmo | Depth of faulting on Mercury: Implications for heat flux and crustal and effective elastic thickness[END_REF] inferred elastic thicknesses of only 25-30 km at the time of faulting (about 4 Ga). These values are significantly lower than those predicted by our evolution model, i.e., between 75 and 90 km at that time. The latter range, however, is in good agreement with estimates of ∼75-125 km based on the analysis of tectonic structures related to Caloris [START_REF] Melosh | The tectonics of Mercury[END_REF].

The long-wavelength part of the spectrum of Mercury's shape and gravity field possesses significant power also at degrees 3 and 5 [START_REF] Mazarico | The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit[END_REF][START_REF] Neumann | Spherical harmonic expansion for the topography of Mercury. GTMES_120V02_SHA, NASA Planetary Data System[END_REF]. However, since the surface temperature distribution is symmetric with respect to the equator and the small-scale thermal structures associated with mantle convection are uniformly distributed and do not provide a significant dynamic contribution [START_REF] Padovan | Thickness of the crust of Mercury from geoid-to-topography ratios[END_REF], our model can only explain the degrees 2 and 4 of the two fields. Finding suitable mechanisms accounting for these degrees remains a task for future models. Vast volcanic plains are concentrated in the northern hemisphere of the planet [e.g., [START_REF] Head | Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER[END_REF], and a north-south asymmetry in the mantle density distribution could thus arise as a consequence of compositionally distinct materials associated with the source regions of the partial melts that led to the formation of these plains. This density distribution could potentially induce a gravity response involving odd degrees. Large-scale impacts such as the one associated
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with the formation of Caloris [START_REF] Roberts | The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury[END_REF] or the effects of a residual mantle resulting from the crystallization of a magma ocean [START_REF] Brown | Compositions of Mercury's earliest crust from magma ocean models[END_REF][START_REF] Charlier | Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy[END_REF] also represent viable options that will ultimately have to be verified quantitatively.

Conclusions

The large latitudinal and longitudinal variations of Mercury's surface temperature, which are predominantly of spherical harmonic degrees 2 and 4, induce at these same degrees a thermal perturbation throughout the mantle. Such perturbation causes a surface deformation and a geoid that are strongly influenced by the thickness of the elastic lithosphere and by the thermal expansion coefficient of the mantle. Using a 3-D thermal evolution model to calculate the temperature distribution in the mantle and lithosphere and a 3-D elastic model to compute their mechanical and gravitational responses, we showed that, for an elastic thickness D e between ∼110 and 180 km, our model can predict the observed degrees 2 and 4 of the geoid and topography with a variance reduction of more than 95%. On the basis of independent estimates obtained with the strength envelope formalism applied to the evolution of the interior temperature, the above values can be accounted for if Mercury was trapped in its 3:2 resonance later than about 1 Gyr after planetary formation.

Figure 1 .

 1 Figure 1. (a) Distribution of Mercury's surface temperature according to Vasavada et al. [1999] (see section 1 in Text S1). (b) Long-wavelength geoid and (c) topography from MESSENGER data. The three fields are plotted up to degree and order 4.

Figure 2 .

 2 Figure 2. Schematic diagram of the elastic model used to calculate topography and geoid due to internal loading associated with temperature anomalies 𝛿T (and hence density anomalies 𝛿𝜌) induced by surface temperature variations and mantle convection. R p , R c , R e , and R CMB denote the radii of the planet, crust (of thickness D c ), base of the elastic layer (of thickness D e ), and CMB; Δ𝜌 mc and Δ𝜌 CMB are density contrasts across the crust-mantle interface and CMB; u(R p )and u(R c) refer to the elastic displacements of the surface and crust-mantle interface, while t CMB represents the deformation of the CMB; ΔR th is the displacement caused by density anomalies located below the elastic layer that cause thermal expansion or contraction of the mantle (see section 2 in Text S1 for details).

Figure 3 .

 3 Figure 3. (a) Profiles of the minimum (blue), average (black), and maximum (red) mantle temperature from the 3-D thermal evolution model. Solid lines refer to the convective solution after 1 Gyr and dashed lines to the conductive solution after 4.5 Gyr. (b) Variance reduction as a function of elastic thickness for geoid and topography together (black) and separately (red and blue). Solid and dashed lines refer to the convective and conductive solutions.

Figure 4 .

 4 Figure 4. Elastic thickness obtained using the strength envelope formalism for the temperature distribution corresponding (a) to the convective solution after 1 Gyr and (b) to the present-day conductive solution. (c) Time evolution of the minimum (dotted lines), average (solid lines), and maximum (dashed lines) elastic thickness D e for three different values of the strain rate ε. The gray area indicates the range of D e obtained from the inversion of geoid and topography data.
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