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Abstract The Gravity Recovery and Interior Laboratory (GRAIL) mission has sampled lunar gravity with
unprecedented accuracy and resolution. The lunar GM, the product of the gravitational constant G and the
massM, is very well determined. However, uncertainties in the mass and mean density, 3345.56±0.40 kg/m3, are
limited by the accuracy of G. Values of the spherical harmonic degree-2 gravity coefficients J2 and C22, as well as
the Love number k2 describing lunar degree-2 elastic response to tidal forces, come from two independent
analyses of the 3month GRAIL Primary Mission data at the Jet Propulsion Laboratory and the Goddard Space
Flight Center. The two k2 determinations, with uncertainties of ~1%, differ by 1%; the average value is
0.02416±0.00022 at a 1month period with reference radius R=1738km. Lunar laser ranging (LLR) data analysis
determines (C� A)/B and (B� A)/C, whereA< B< C are the principalmoments of inertia; the flattening of the fluid
outer core; the dissipation at its solid boundaries; and the monthly tidal dissipation Q=37.5±4. The moment of
inertia computation combines the GRAIL-determined J2 and C22 with LLR-derived (C� A)/B and (B�A)/C. The
normalized mean moment of inertia of the solid Moon is Is/MR

2=0.392728±0.000012. Matching the density,
moment, and Love number, calculatedmodels have a fluid outer corewith radius of 200–380km, a solid inner core
with radius of 0–280km and mass fraction of 0–1%, and a deep mantle zone of low seismic shear velocity. The
mass fraction of the combined inner and outer core is ≤1.5%.

1. Introduction

The lunar interior is hidden from direct inspection, so it must be investigated bymeasurements on and above
the surface. Apollo seismic experiments showed that the Moon has a thin crust, a thick mantle, and an
attenuating layer of low seismic velocities in the deep mantle [Nakamura et al., 1973, 1974, 1976; Nakamura,
1983; Toksöz et al., 1974; Goins et al., 1981]. A dense inner core was expected but not detected. Brett [1973]
argued that Fe-Ni-S phase relations allowed a fluid outer core with a lower freezing temperature than liquid
Fe. Apollo-era and Lunar Prospector magnetic field measurements appeared to show a weak, long-lasting
induced field from an electrically conductive core [Goldstein et al., 1976; Russell et al., 1981; Hood et al., 1999;
Shimizu et al., 2013]. Remanent magnetism in lunar samples may result from an early lunar dynamo in a fluid
core [Garrick-Bethell et al., 2009; Suavet et al., 2013]. A present-day fluid state for the outer core was identified
by lunar laser ranging (LLR) determination of pole orientation, which provided evidence for dissipative
torques at the boundary between the fluid core and the solid mantle [Williams et al., 2001]. Recent reanalysis
of Apollo seismic data has led two groups to propose core radii from the identification of reflections of
seismic waves off a solid-fluid boundary [Weber et al., 2011; Garcia et al., 2011]. The former group also
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presented radii for a solid inner core and a seismic low-velocity layer in the deep mantle. After 4 decades,
knowledge of the deep lunar interior is still limited, and additional information is needed. Models of interior
structure and properties must satisfy mean density, moment of inertia, and Love numbers, which are among
the subjects of this paper. The mean density and moment of inertia constrain the dependence of density
on depth. The tidal response, expressed as Love numbers, constrains the profile of elastic properties. Tidal
energy dissipation is another key lunar property of the lunar interior that influences the frequency
dependence of Love numbers and governs orbital evolution and the generation of deep moonquakes.

Analyses of radio tracking of lunar-orbiting spacecraft and laser ranging to surface retroreflectors provide
information for computing the lunar moment of inertia. Both techniques use Love numbers to characterize
tidal response. Lunar laser ranging also determines phase-shifted tides arising from tidal dissipation. This
paper presents current knowledge of density, moments of inertia, Love numbers, and dissipation parameters.
NASA’s Gravity Recovery and Interior Laboratory (GRAIL) mission [Zuber et al., 2013a], with very accurate
satellite-satellite tracking [Klipstein et al., 2013], has improved the static lunar gravity field by many orders of
magnitude [Konopliv et al., 2013; Lemoine et al., 2013; Zuber et al., 2013b]. Uncertainty in the determination of
the spherical harmonic degree-2 tidal potential Love number k2 is shown to improve several fold. Model
calculations show that the Love number is sensitive to the fluid outer core and attenuating zone.

An overview of themission has been presented by Zuber et al. [2013a]. The GRAILmission designwas discussed by
Roncoli and Fujii [2010], and the recovery of the gravity field, tidal response, and core information from the satellite-
satellite-tracking data was simulated by Park et al. [2012]. A complete description of the GRAIL system as well as
science data quality was given by Asmar et al. [2013]. Several papers are based on the Primary Mission (PM) data
from 1 March to 29 May in 2012. Zuber et al. [2013b] presented an overview of the high-resolution gravity field
from the Primary Mission. Wieczorek et al. [2013] determined the upper crustal density and constrained the
average crustal thickness. Andrews-Hanna et al. [2013] found linear gravity features that appear to be from ancient
dikes. Numerical models for the origin of lunar mascon basins consistent with GRAIL measurements were
investigated byMelosh et al. [2013]. This paper on the lunar interior uses results from two companion GRAIL data
analysis papers [Konopliv et al., 2013; Lemoine et al., 2013] that also incorporate Primary Mission data.

This paper explores the mean moment and potential Love number determined from the GRAIL data analysis.
In section 2, the lunar mass and mean density are derived from the GRAIL and ephemeris GM values, the
product of the gravitational constant G and the lunar mass M, combined with mean radius determinations
from altimetry missions. The moment of inertia of the solid Moon, the combined crust, mantle, and any
inner core (see section 4) follows from the GRAIL-determined degree-2 gravity coefficients, Love number,
and lunar laser ranging determinations of variations in three-dimensional lunar orientation called physical
librations. Section 3 reviews that theory, section 4 discusses the tide and physical libration models, and
section 5 gives the moment and Love number determinations. In section 6, the LLR dissipation solution is
updated, since it is relevant to interior models. Model calculations give insight into interior structure. Model
computations match the mean density, moment of inertia, and Love number determinations in section 7.
Section 8 extends the monthly Love numbers to other periods. Finally, future possibilities are discussed in
section 9, and a summary is given in section 10.

2. Mass and Density

Basic properties of the whole Moon include mass and mean radius, from which the mean density is derived.
The determination of the orbit period and semimajor axis of lunar-orbiting spacecraft provides lunar GM, the
product of the gravitational constant G and the mass M, from analysis of radio-tracking data [Konopliv et al.,
1998; Matsumoto et al., 2010; Goossens et al., 2011b]. The analysis of radio-tracking data from Earth to
spacecraft orbiting Mars, Venus, and other planets is also sensitive to lunar GM, since the center of the Earth is
displaced from the Earth-Moon center of mass, and the displacement reflects the orbital motion of the Moon.

Several determinations of lunar GM from the analyses of lunar-orbiting spacecraft-tracking data are given in
Table 1. The Lunar Prospector (LP) fields include tracking data from the five Lunar Orbiter (LO) spacecraft, the
Apollo 15 and 16 subsatellites, and the Clementine and Lunar Prospector (LP) missions [Konopliv et al., 2001].
The Selenological and Engineering Explorer Gravity Model (SGM) fields added tracking data from the Small
Missions for Advanced Research in Technology 1 mission and the Selenological and Engineering Explorer
(SELENE) mission, including themain spacecraft and the two subsatellites [Matsumoto et al., 2010]. In addition
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to radio tracking from the ground, SELENE mission tracking between satellites allowed extensive farside tracking
for the first time. SELENE’s very long baseline interferometry (VLBI) data were added for later fields [Goossens et al.,
2011a, 2011b]. The uncertainties in the table are larger than the formal uncertainties, typically 10 times the formal
uncertainties for the Moon-orbiting determinations, but a factor of 20 is used for the first two SGM results.

Recent lunar GM values from the Jet Propulsion Laboratory (JPL) ephemerides DE421 [Folkner et al., 2008;
Williams et al., 2008] and DE430 [Williams et al., 2013; Folkner et al., 2014] are given in Table 1. These values
resulted from analyses of interplanetary tracking of spacecraft from Earth. Both ephemerides were generated
from the joint analyses of LLR data and interplanetary radio range, astrometric angle, and spacecraft VLBI
data. In combination with the LLR-determined GM of Earth +Moon, tracking of planetary-orbiting and landed
spacecraft gives the Earth/Moon mass ratio and hence the lunar GM from the motion of the center of the
Earth with respect to the Earth-Moon center of mass. Ephemeris DE421 also processed tracking data from the
Near-Earth Asteroid Rendezvous spacecraft orbiting 433 Eros. Ephemeris DE430 processed 5 more years of
planetary-tracking data than DE421, but it did not use the Eros data. The DE421 and DE430 GM values are in
good agreement, but the latter has a larger uncertainty, perhaps due to amore conservative error estimate or
because of the lack of Eros data.

GRAIL analyses (gravity fields GL0660B and GRGM660PRIM) improve the lunar-orbiting spacecraft values of
GM in Table 1, but the ephemeris values from joint LLR and interplanetary solutions (DE421 and DE430) are
more accurate. The GM accuracies are approaching levels at which there are relativity effects that depend on
the coordinate frame implemented for the dynamical calculations. The tabulated values are from JPL and
Goddard Space Flight Center (GSFC) programs that employ a solar system barycentric frame. The unweighted
average of the two GRAIL GM values is 4902.80006 km3/s2, compatible with the LLR and planetary DE430
ephemeris value of 4902.80007± 0.00014 km3/s2. In a relative sense, all of the GM determinations of Table 1
are much more accurate than the uncertainty in the gravitational constant G. Dividing GM by the Committee
on Data for Science and Technology 2010 value of G= (6.67384 ± 0.00080) × 10�11m3/kg s2 [Mohr et al., 2012]
gives the lunar mass

M ¼ 7:34630 ± 0:00088ð Þ � 1022 kg: (1)

The uncertainty in the mass is dominated
by the 0.012% uncertainty in G.

Downward pointing lasers have
performed global lunar altimetry on the
Clementine, Chang’E-1, SELENE, and
Lunar Reconnaissance Orbiter (LRO)
missions. Table 2 summarizes the
results for the mean lunar radius from
the four missions. Fok et al. [2011]

Table 1. Recent Lunar GM Determinations

ID GM in km3/s2 Data Setsa Citation

LP75G 4902.8003 ± 0.0012 LO to LP tracking Konopliv et al. [1998]
LP150Q 4902.80108 ± 0.0008 LO to LP tracking Konopliv [2000]
DE421 4902.80008 ± 0.00010 Interplanetary range+ LLR through

2007
Folkner et al. [2008]; Williams et al.

[2008]
- 4902.8002 ± 0.002 LO to LP tracking Goossens and Matsumoto [2008]
SGM100h 4902.80212 ± 0.0026 LO to SELENE tracking Matsumoto et al. [2010]
SGM100i 4902.80080 ± 0.0018 LO to SELENE tracking + SELENE VLBI Goossens et al. [2011a]
SGM150j 4902.79918 ± 0.0017 LO to SELENE tracking + VLBI + LP XM Goossens et al. [2011b]
GL0660B 4902.80031 ± 0.00044 Dual spacecraft tracking Konopliv et al. [2013]
GRGM
660PRIM

4902.79981 ± 0.00019 Dual spacecraft tracking Lemoine et al. [2013]

DE430 4902.80007 ± 0.00014 Interplanetary range+ LLR through
2012

This paper

aLO= Lunar Orbiter, LP = Lunar Prospector, and XM=Extended Mission.

Table 2. Recent Lunar Mean Radii Determined From Laser Altimetry

Mission Identification Rm in km Citation

Clementine GLTM 2 1737.103 ± 0.015 Smith et al. [1997]
Chang’E-1 CLTM-s01 1737.013 Ping et al. [2009]
SELENE STM359_grid-02 1737.15 ± 0.01 Araki et al. [2009]
LRO 1737.153 ± 0.010 Smith et al. [2010]
LRO LRO_LTM01_PA 1737.1512 Neumann [2013]
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found that a bias of 150m needs to be added to the Change’E-1 radii. The last entry in the table is the most
accurate, with a mean radius Rm= 1737.1512 km and an uncertainty <1m. The SELENE result is compatible
and so is the Change’E-1 result after applying the Fok et al.’s correction. The earlier Goddard Lunar
Topography Model 2 (GLTM 2) radius [Smith et al., 1997] is only 50m less. We adopt Rm= 1737.151 km for the
mean lunar radius. With the above mass, the mean density is

ρm ¼ 3345:56 ± 0:40 kg=m3; (2)

and the uncertainty in the density is limited by the 0.012% uncertainty in G and mass. This mean density is
similar to the likely density of lunar mantle material, so any much denser core material must be a small
fraction of the total.

GRAIL improves the orbiting spacecraft GM values of the Moon, but the lunar and planetary value of
4902.80007± 0.00014 km3/s2 appears to be more accurate. The uncertainty in G controls the uncertainty for
the mass and the mean density ρm= 3345.56 ± 0.40 kg/m3.

3. Moment of Inertia Theory

An important property of the Moon is its moment of inertia. The three principal moments of inertia of the
whole Moon around three orthogonal principal axes are ordered A< B<C. The principal axis z near the axis
of rotation is associated with moment C, and the principal axis x associated with moment A points near the
mean Earth direction. The principal axis y is associated with moment B. The moment of inertia values result
from combining the data analysis results from two techniques: the degree-2 gravity field from orbiting
spacecraft and physical libration parameters from LLR. The combination of the LLR and spacecraft results
gives the normalized moments A/MR2, B/MR2, and C/MR2 and the mean moment Im/MR2 = (A+ B+ C)/3MR2,
where M is the mass of the Moon and R is the reference radius for gravity. This paper combines the gravity
and lunar laser ranging results.

The unnormalized second-degree gravity coefficients are related to the moment differences through
their definitions.

J2 ¼ 2C � Aþ Bð Þ
2MR2

(3)

C22 ¼ B� A

4MR2
: (4)

Because we are using the principal axes to define the coordinate frame, the static values of C21 = S21 = S22 = 0.

The lunar physical librations, the time-variable three-axis rotation or lunar orientation, are sensitive to the
relative moment differences. For the entire Moon, these are

α ¼ C � B
A

(5)

β ¼ C � A
B

(6)

γ ¼ B� A
C

: (7)

Two of these three parameters are independent. The relation among them is

α� β þ γ ¼ αβγ: (8)

Using the above definitions for J2, C22, β, and γ, the normalized polar moment C/MR2 comes from
two expressions.

C

MR2
¼ 4C22

γ
(9)

C

MR2
¼ 2J2 1þ βð Þ

2β � γþ βγ
: (10)
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Which expression is more accurate depends on the accuracies of J2, C22, β, and γ. With a C/MR2 value, the
other two moments are given by

A

MR2
¼ 1� βγð Þ

1þ βð Þ
C

MR2
(11)

B

MR2
¼ 1þ γð Þ

1þ βð Þ
C

MR2
: (12)

So β and γ along with either J2 or C22 can give all three moments. A version of these expressions appeared in
Williams et al. [1973] and Ferrari et al. [1980]. Williams et al. [2001] gave some expressions, and Bills [1995]
presented all major combinations. An expression for B/MR2 involving J2, C22, and β follows

B

MR2
¼ J2 þ 2C22

β
: (13)

Using two or three measured parameters, the expressions above give three ways to obtain B/MR2 and two
ways to obtain both C/MR2 and A/MR2. Bills [1995] presented other expressions and showed that it is always
possible to write the three principal moments using two or three parameters. It is always necessary to
combine physical libration and gravity field parameters.

The mean moment is Im= (A+ B+ C)/3. With the three principal moments and β and γ

Im
MR2

¼ 3þ β þ γ� βγð Þ
3 1þ βð Þ

C

MR2
(14)

Im
MR2

¼ 3þ β þ γ� βγð Þ
3 1þ γð Þ

B

MR2
(15)

Im
MR2

¼ 3þ β þ γ� βγð Þ
3 1� βγð Þ

A

MR2
: (16)

Bills [1995] showed that the meanmoment can be calculated from any three of the four parameters: J2, C22, β,
and γ.

To determine the moments of inertia, it is necessary to combine physical libration and gravity field
parameters. There are three principal moments and four input quantities, but only three input parameters are
needed. With two parameters from GRAIL and two from LLR, we will compute and compare three estimates
for each mean moment in section 5. Some combinations are more accurate than others, since some input
parameters are better known than others. Before GRAIL, the three parameters that gave the highest accuracy
for moments were J2, β, and γ (Appendix). With GRAIL results, moments from J2, C22, and β and J2, β, and γ are
themost accurate. Moments from C22, β, and γ are less accurate but useful as a check. The combination J2, C22,
and γ has nearly the same information content as C22, β, and γ, because the first-order part of both is 4C22/γ.

4. Tide and Physical Libration Models

The expressions of the previous section are appropriate for the whole Moon. This section considers the
consequences of both tides and a core structure that involves a liquid outer core and a solid inner core. The
physical librations are the time-varying three-dimensional lunar orientation: the direction of the pole and the
rotation about that pole. The spacecraft analysis programs read physical libration and ephemeris files. These
files are generated by integrations using parameters obtained from joint LLR and planetary solutions. The
physical libration model in the LLR software is discussed in this section.

The tidal Love numbers characterize the elastic response of the Moon to an imposed tidal potential. The
degree-2 potential Love number is k2, and the displacement Love numbers are h2 for the vertical and l2 for
the horizontal. Tracking of lunar-orbiting satellites is sensitive to k2 through perturbations to their orbits. The
physical librations are also affected by k2, which gives LLR sensitivity to this Love number as well. In addition,
LLR has sensitivity to the tidal displacements of the surface sites.

The second-degree tide-raising potential from body p (Earth or Sun) at a radius r from the center of the Moon is

V2p r; θð Þ ¼ GMpr2

2r3p
3cos2θ � 1
� �

; (17)
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where G is the gravitational constant, Mp is the mass of tide-raising body p, θ is the Moon-centered angle
between the body p and the point selected for the potential, rp is the distance to body p, and r< rp. For r
equal to a reference radius R, the simplest form for the potential from the tidal response of a spherical body is
V2pt(R,θ) = k2 V2p(R,θ).

V2pt R; θð Þ ¼ k2GMpR2

2r3p
3cos2θ � 1
� �

: (18)

For the potentials here, excess mass gives a positive potential and stronger attraction, which is a common sign
convention in geodesy and astronomy. For a point at a radius r≥R, the potential from the tidal response is

V2pt r; θð Þ ¼ k2GMpR5

2r3pr
3

3cos2θ � 1
� �

: (19)

Now θ is the Moon-centered angle between the tide-raising body p and an external point at radius r. The
gradient of equation (19) provides accelerations. Less simple tidal forms could introduce multiple k2m,
where m is the order of the second-degree response [Konopliv et al., 2013; Lemoine et al., 2013], phase shifts
or time delays due to dissipation (section 6), frequency-dependent k2 (section 8) [Efroimsky, 2012a, 2012b;
Nimmo et al., 2012], a Moon with nonspherical properties [Zhong et al., 2012], or trigonometric series
representations. There are also third- and higher-degree tides, which do not modify the moments of
inertia; these higher-degree tides weaken by 2 orders of magnitude per degree.

The tidal potential, expressed by equations (18) and (19), results from distortions that contribute variable and
constant parts to the moment of inertia matrix. Cos θ is the dot product between two unit vectors. One unit
vector, u= rp/rp, with three components ui, is directed from the center of the Moon toward the center of the
tide-raising body p (Earth or Sun). The other unit vector, r/r, points from the center of the Moon toward the
location selected for the potential. The elastic tidal distortions of the moment of inertia matrix elements
depend on u(t) and rp(t), which are functions of time.

Itij ¼ k2MpR5

r3p
uiuj � δij

3

� �
: (20)

Parameter δij is the Kronecker delta function. There are small variations in all the three components of u that
depend on lunar orbit and orientation. For a coordinate frame rotating with the Moon, optical librations
reach about 0.1 radian and the average u1 component of the Earth is <u1>=<(1� u2

2� u3
2)1/2>≈

1�<u2
2>/2�<u3

2>/2= 0.9934, where <> denotes a time average. The three diagonal elements of the
moment matrix have large constant parts from u1u1 and δii, and all of the nine elements of this symmetrical
matrix have smaller variable parts. The sum of the diagonal elements is 0, so the mean moment does not have
tidal variations. The distortions of theMoondue to solar tides are 2 orders ofmagnitude smaller than the distortions
due to the Earth. Both Bills [1995] and Williams et al. [2001] considered the effect of tidal distortion. The
latter authors also considered spin distortion, which has very small variations. For more about the lunar
and planetary integrator formulation, see Standish and Williams [2012] and Folkner et al. [2014].

The tidal distortion of the moment of inertia matrix is related to the tidal variations of the degree-2 gravity
field coefficients. The unnormalized tidal variations ΔJ2 and ΔC22 come from the definitions (3) and (4):

ΔJ2 ¼ 2It33 � It11 þ It22ð Þ
2MR2

(21)

ΔC22 ¼ It22 � It11
4MR2

: (22)

The three remaining degree-2 coefficients have tidal variations

ΔC21 ¼ � It13
MR2

(23)

ΔS21 ¼ � It23
MR2

(24)

ΔS22 ¼ � It12
2MR2

: (25)
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These time-varying alterations of the degree-2 gravity coefficients are used in the lunar and planetary
integrator [Standish and Williams, 2012; Folkner et al., 2014]. The expressions used for the spacecraft analysis
[Konopliv et al., 2013; Lemoine et al., 2013] are equivalent to equations (20)–(25). Tidal displacements of the
retroreflectors in the LLR software use the potential (equation (17)) factored by h2/g and its derivative
factored by l2/g, where g is the surface gravitational acceleration.

Following section 3 of Williams et al. [2001], the tide and spin distortions contribute to the moment of
inertia matrix

I tð Þ ¼ Itr þ Ipt þ Ivt tð Þ þ Ivs tð Þ; (26)

where tr stands for tide removed and the Itrmatrix is constant with diagonal elements A, B, and C; subscript pt
is the permanent tide, vt is the variable tide, and vs is from the variable spin distortion. The spin-distorted Ivs in
the lunar integration of orbit and physical librations is formulated to null out the mean diagonal elements, as
explained byWilliams et al. [2001]. The matrix It(t) = Ipt+ Ivt(t), where It(t) from equation (20) is separated into
constant and variable parts in equation (26). The β and γ in the LLR software and the J2 and C22 in the JPL and
GSFC spacecraft analysis programs correspond to the constant diagonal part of the Itr matrix. In the
nomenclature used for Earth zonal coefficients, the tide-removed part is “tide free” and the tide-removed
plus permanent-tide parts correspond to the “zero tide.” In the spacecraft and LLR software, the tide matrices
Ipt and Ivt and spin matrix Ivs are proportional to the potential Love number k2 that describes the tidal
response of the Moon. Matrix Itr is diagonal, but Ipt, Ivt, and Ivs have off diagonal as well as diagonal elements.
The variable part from spin is 3 orders of magnitude smaller than the variable part from tides and can be
ignored in many applications.

As described by Williams et al. [2001], the Itr matrix was referred to as “rigid” rather than “tide removed.”
It could also be called long term. Our objective here is to obtain a formulation that works for a year for
GRAIL and for decades for other lunar missions and LLR. The long-term past relaxation of the Moon’s
figure and its connection to orbital and thermal evolution are important questions [Matsuyama, 2013],
but we do not pursue them here. Note that the Moon’s shape is not near an equilibrium shape for the
current Earth distance, in contrast to a common first approximation for rapidly spinning planets and for
large icy satellites.

The simple form of the tidal potential (equation (19)) is equivalent to the permanent (pt) and variable (vt)
parts of the moment matrices in equation (26). These matrices are proportional to the k2 value used with the
potential; Table 5 inWilliams et al. [2001] gives the six elements of Ipt/k2 that may be multiplied by a value of
k2. The constant parts of the off-diagonal 1,2 and 1,3 elements are 3 orders of magnitude smaller than the
diagonal terms. These small off-diagonal constant terms arise, because the principal axes are not quite
aligned with the mean direction to the Earth and the mean axis of rotation owing to torques from third- and
higher-degree gravity field coefficients [Eckhardt, 1973; Kaula and Baxa, 1973]. The permanent tide parts of
ΔJ2/k2 and ΔC22/k2 come from the diagonal tidal elements and are also given in the cited Table 5; they follow
from the definitions (3) and (4) leading to equations (21) and (22). The permanent tide parts of β and γ would
come from their definitions (6) and (7) but are not given in that table.

A matrix of interest to measurements using spacecraft or LLR is the permanent moment matrix Ip= Itr+ Ipt,
where permanent refers to decades rather than aeons. During solutions, the variable tidal matrix Ivt should
be distinct from the constant Ip if the data sample the variations well. There is a 6 year beat between the
largest tidal terms: the 27.555 day anomalistic period of ΔJ2, ΔC22, and ΔS22 and the 27.212 day argument-of-
latitude period of ΔC21. The LLR data set is 4 decades long, so the separation of these and other periods
should be good. The GRAIL Primary Mission was only 3months long, and the tidal periods longer than a month
are not as well sampled, but there is good sampling of the five spatial components. GRAIL’s polar orbit passes over
any lunar longitude at half-month intervals, which tends to obscure semimonthly tides away from the poles.

In the physical libration model, the Moon consists of a solid crust and mantle plus a uniform fluid core, but no
solid inner core. Then each of the moment matrices may be split into solid and fluid parts. For the model,
A= As+ Af, B= Bs+ Bf, and C= Cs+ Cf, where the subscript s indicates the solid mantle plus crust and subscript f
stands for the fluid core. In reality, the principal moments of the fluid coremay not be alignedwith themantle
principal moments, but the moment ratio Cf/C is probably less than 10�3, and the flattening of the outer core
is small (see section 5 and Table 3), so the moment differences for the fluid core are small. The LLR
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retroreflectors on the lunar surface are sensitive to the
motion of the solid mantle + crust. The vector Euler
equation for the solid Moon takes the form

d Isωð Þ
dt

þ ωx Isωð Þ ¼ T; (27)

where Is is the moment of inertia matrix for the solid
Moon, ω is the solid Moon vector angular rate, the
product Isω is the solid Moon angular momentum vector,
and T is the torque vector. The external gravitational
torques on the solid mantle depend on the whole-Moon
(C�A) and (B� A), under the assumption of a uniform
density fluid core. The shape of the core-mantle boundary
(CMB) moves with the orientation of the mantle, affecting
the potential and torque that arise from the density
change at the CMB. By contrast, reorienting a uniform
fluid does not change the potential, so the gravitational

torques on the fluid are 0. There is an analogous equation to equation (27) for the fluid, but the torques arise from
boundary interactions between the fluid core and the solidmantle. Those torques at the CMB act on both fluid core
and solid mantle, but with opposite signs. The fluid interactions are very weak compared with the torques from
gravity [Goldreich, 1967]. In the model, solid moments vary due to tides and spin, whereas fluid moments are
constant. The physical libration response of the mantle depends on the moments of the solid layers through the
product Is dω/dt in the Euler equations, so the physical librations depend on ratios (C�A)/Bs and (B�A)/Cs. The LLR
model that is used to fit range data includes whole-Moon β, γ, and J2 plus a parameter for the ratio of the fluid core
moment to thewhole-MoonmomentCf/C. Currently, LLR data analysis does not obtain a significant solution for the
ratio Cf/C. It does detect a flattening of the outer core. Nevertheless, the (C�A)/Bs and (B� A)/Cs values can be
recovered from the β and γ solution parameters, even when the fluid moment ratio is not fit, so that those two
values are expected to be well determined. In combination with spacecraft-determined J2 and C22, the normalized
moments of the solid Moon As /MR

2, Bs /MR
2, Cs /MR

2, and the mean moment Is /MR
2 can be determined.

Consider a lunar structure consisting of a solid crust and mantle plus a uniform fluid outer core and a
solid inner core. Goldreich [1967] found that fluid interactions at the CMB are weak. Gravitational torques
between a solid inner core and the mantle are expected to be much stronger than torques at the boundaries
between a uniform fluid and adjacent solid structures. In the physical libration model, torques attributed to
the CMB would, in a model with an inner core, be active at both fluid boundaries. In addition to fluid
interactions, there would be torques on the inner core from the attraction of the Earth. The gravitational
torques from Earth and mantle favor a synchronously rotating inner core. The fluid rotation is not
synchronous [Williams et al., 2001], and the fluid torques act against synchronous rotation of the inner
core, but the influence of the fluid is very weak compared with the gravitational torques. Model calculations
of gravitational torques by Williams et al. [2014] predict that the frequency of inner core free libration about
a synchronous state is comparable to the mantle free libration frequency. The torques that control the inner core
synchronous rotation are expected to be strong. In this paper wewill assume that the orientation of any inner core
is coupled strongly to the orientation of mantle plus crust by gravitational torques. In addition to synchronous
rotation, the equator of the inner core should precess along the ecliptic plane with the same 18.6 year period as
the mantle, but with a separate tilt to that plane [Williams, 2007]. From the combination of spacecraft-determined
gravity field and LLR-determined physical libration information, we expect to obtain moments As /MR

2, Bs /MR
2,

Cs /MR
2, and Is /MR

2, where subscript s now indicates the solid mantle and crust plus the solid inner core.

The physical libration dynamical model incorporates elastic tides and rotation variations plus a fluid core. The
physical librations of the mantle and crust are sensitive to (C� A)/Bs and (B�A)/Cs. Consequently, the
combination with spacecraft J2 and C22 gives accurate solid Moon moments of inertia.

5. Moment of Inertia Results

This section combines the spacecraft-determined J2 and C22 values with the LLR-determined β and γ to derive
the model-dependent whole-Moon principal moments of inertia A, B, and C. Then we subtract off the LLR

Table 3. Selected Lunar Parameters From the GRAIL-
Compatible DE430 Solution

Parameter DE430 Valuesa

β (631.0213± 0.0031) × 10�6

γ (227.7317± 0.0042) × 10�6

J2 203.21568 × 10�6

k2 0.024059
h2 0.048 ± 0.006
l2 0.0107
Cf/C 7× 10�4

K/C (1.64 ± 0.17) × 10�8/d
f (2.46 ± 1.4) × 10�4

[Cf – (Af+ Bf )/2]/C (1.73 ± 0.5) × 10�7

aSolution parameters have uncertainties, except
[Cf� (Af+ Bf )/2]/C= f Cf/C is derived. Fixed parameters
lack uncertainties: J2 and k2 are GRAIL-derived values,
l2 is a model value, and Cf/C is a nominal choice.
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model’s fluid core moments Af, Bf, and Cf to obtain the solid Moon moments As, Bs, and Cs, respectively. Several
evaluations of the mean moment Is are generated.

The spacecraft-determined J2 and C22 and the LLR-determined β and γ are values pertinent to the tide-
removed part Itr of the moment matrix. If I(t) is well sampled in time by the data, its meanmatrix value should
be close to the permanent Ip= Itr+ Ipt. The matrix Ipt/k2 given by Williams et al. [2001] must be multiplied by
the k2 of the solution. Since Ip, the mean value of I(t), is closer to the measurements than Itr, we expect the
“permanent” quantities of J2, C22, β, and γ to have smaller uncertainties than the tide-removed solution values
after accounting for the uncertainty in and correlations with k2.

To recover the moments of the solid Moon, the fluid Af, Bf, and Cf need to be subtracted from the diagonal
elements of Itr and consequently from Ip= Itr+ Ipt. The LLR integration program has a uniform fluid core density
with no inner core interactions. Consequently, the CMB shape, with equatorial radii af and bf and polar radius cf, is
related to the fluid moments, and f= [Cf� (Af+Bf)/2]/Cf≈ [(af+bf)/2� cf]/cf, where the flattening parameter f is a
small LLR solution parameter. The LLR model has Af=Bf, or af=bf, since little sensitivity of LLR to equatorial
ellipticity is expected. The inner and outer radii of the fluid core and its moment ratio Cf/C are uncertain, but Cf/C is
probably less than 10�3. Past LLR physical libration integrations have beenmadewithmoment ratios 3×10�4 and
7×10�4 (see pre-GRAIL solutions in Table A1). The latter ratio is used here. Moment Cf is C times Cf/C, and
Af=Bf=Cf (1� f). The flattening f is a small correction when converting A and B to As and Bs.

To ensure high compatibility between the GRAIL and LLR results, a new integration of the lunar orbit and
physical librations was made. This ephemeris is a combination of LLR and planetary data analysis. The new
ephemeris is intended to replace DE421 [Williams et al., 2008; Folkner et al., 2008], JPL’s standard lunar
ephemeris since 2008, as the ephemeris recommended for lunar work. GRAIL data analysis supplied input
values for Love number k2 and a low-degree gravity field up to degree and order 6. These input values to the
ephemeris integrations and fits are improved by adopting GRAIL results from the Primary Mission [Konopliv et al.,
2013; Lemoine et al., 2013]. The full GRAIL field from the Primary Mission extended to degree and order 660, a
precursor to GL0660B, but since LLR sensitivity to gravity coefficients drops off by 2 orders of magnitude per
degree, a degree-6 field is more than adequate. Earth zonal gravity coefficients up to degree 5 have also been
updated. The LLR solutions and integrations were iterated to ensure convergence. The final set of lunar and
planetary orbits and lunar physical librations is called DE430. During the lunar integration, C22 is computed from J2,
β, and γ; it is not treated as an independent parameter in the LLR fits. Apart from J2 and C22, the other degree-2
coefficients are assumed to be 0, giving a principal axis frame for the tide-removed moment matrix.

LLR has been reviewed by Dickey et al. [1994] and Murphy [2013]. The LLR solution presented in Table 3 uses
data fromMarch 1970 to December 2012 totaling 18,548 ranges. The tabulated values and uncertainties were
obtained while making solutions for the new ephemeris, DE430. During the fits, the displacement Love
number l2 was fixed at a model value of 0.0107, see Tables 6–8 in section 7. Three of the third-degree gravity
coefficients were adjusted during the LLR fits: C32, S32, and C33. This adjustment gives a better LLR fit, but the
small differences from the GRAIL values are thought to indicate unmodeled effects in the physical libration
model. The new ephemeris, DE430, is publicly available; lunar aspects have been documented by Williams
et al. [2013], and equations of motion and planetary analysis have been described by Folkner et al. [2014]. The
full set of parameters input to the lunar and planetary integration is included with the DE430 ephemeris files.

Pre-GRAIL LLR solutions for β and γ along with pre-GRAIL spacecraft solutions for J2 and C22 are given in the
Appendix. Two different fluid core moment ratios Cf/C are used for the LLR solutions to demonstrate the
influence of that parameter. A comparison of Tables 3 and A1 shows that the LLR values for β = (C�A)/B and
γ= (B� A)/C are improved by adopting the GRAIL low-degree gravity coefficients. There is an order of
magnitude improvement in β.

In Table 3, the quantities with uncertainties were DE430 solution parameters or are derived from them.
Parameters without uncertainties were fixed during the solution. The last four entries are parameters for a
fluid core. The ratio Cf/C specifies the moment of inertia of the fluid outer core. It was a fixed input quantity,
but the uncertainties on the last three parameters include a contribution from Cf/C uncertainty judged from
Table A1 differences. The last entry is derived from the product f Cf/C. The parameter K/C in the physical
libration model is a coefficient for dissipation from fluid motion at the CMB but more generally at both outer-
core boundaries [Williams et al., 2001]. This interaction first demonstrated that the outer core must be fluid. In
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that paper the detection of K/C was a factor of 4 greater than its uncertainty. In Table 3 detection is nearly a
factor of 10 greater than the uncertainty, so this indication of a fluid core is now very strong.

The second LLR indication of a fluid core in Table 3 comes from the core flattening in the model,
f= [Cf� (Af+ Bf )/2]/Cf, the relative pole-to-equator moment difference. The physical libration model uses the
moment difference definition, which is also a good approximation if there is a synchronous oblate inner core resulting
in geometric flattening at both boundaries. For a uniform-density core, the product f Cf/C= [Cf� (Af+Bf)/2]/C is
better determined than f. This latter quantity is a factor of 3 greater than its uncertainty, so evidence for the
existence of the flattening is stronger than the value of the flattening itself. The pole-to-equator radius
difference is on the order of 100m. Note the similarity of the flattening in Table 3 to the theoretical value for
a CMB in hydrostatic equilibrium with the existing nonhydrostatic mantle [Meyer and Wisdom, 2011]. In the
Meyer and Wisdom study, the observed static degree-2 gravity field was assumed to arise in the lunar
lithosphere. Extending the potential from the lithosphere downward, the flattening of the core-mantle
interface was calculated by requiring the potential along its surface to be constant. Using a similar technique,
Le Bars et al. [2011] obtained a theoretical CMB equatorial ellipticity of about 10�4. By contrast, if the whole
Moon were in hydrostatic equilibrium, the CMB flattening would be 2.2×10�5, an order of magnitude smaller
than the value determined for f, and the equatorial ellipticity would be 2.6×10�5.

Two independent solutions for GRAIL-derived Love number k2 and unnormalized J2 and C22 are presented in
Table 4: GL0660B from the JPL analysis group and software [Konopliv et al., 2013] and GRGM660PRIM from the
GSFC analysis and software [Lemoine et al., 2013]. Data from the GRAIL Primary Mission were analyzed for
each solution. Along with J2, C22, and the gravity field, the GRGM660PRIM solution included estimates of the
three independent k20, k21, and k22 parameters, whereas the GL0660B solution constrained the three
parameters to be equal, giving a single k2. In Table 4, three unconstrained k2m values are also given for the
GL0660B column but from a separate related solution. The GRGM660PRIM column also gives a k2 value that is
the weighted combination of the three k2m values (ignoring mutual correlations). The difference in the two
independent determinations of the Love number k2 is less than 1%. GRAIL analysis determines the Love
number with an ~1% uncertainty, a factor of 5 improvement over pre-GRAIL knowledge (Appendix). The
unweighted average of the two values and their uncertainties is 0.02416 ± 0.00022.

A comparison of the two solutions presented in Table 4, plus GM in Table 1 and C21, S21, and S22 [Konopliv
et al., 2013; Lemoine et al., 2013], shows that there are differences in both parameter values and uncertainties.
The difference in uncertainties reflects the sensitivity of such estimates to the choice of variables, analysis
procedure, and data weighting. The comparison of the differences between the two sets of solution
parameters with their uncertainties indicates that the J2p values stand out with difference/uncertainty ratios
of 7.3 and 4.6. For the other parameters, the largest ratio is 2.6. For J2, it is only the permanent value that
stands out. The much larger uncertainty on the tide-removed values is compatible with its difference.
Accounting for the correlations with Love numbers, the transformation of J2 and C22 from tide-removed to

Table 4. Two Independent GRAIL Analysis Results for Unnormalized J2 and C22 Gravity Coefficients, Degree-2 Love
Numbers, and the Mean Solid Moment of Inertia Derived From Three Combinations With LLR-Derived β and γ

Parameter GL0660B GRGM660PRIM

R 1738.0 km 1738.0 km
k20 0.02408± 0.00045 0.024165± 0.00228
k21 0.02414± 0.00025 0.023915± 0.00033
k22 0.02394± 0.00028 0.024852± 0.00042
k2 0.02405± 0.000176 0.02427± 0.00026
k30 0.00734± 0.00375
k3 0.0089± 0.0021
J2tr (203.21572± 0.00317) × 10�6 (203.22040± 0.00855) × 10�6

C22tr (22.38184± 0.00111) × 10�6 (22.38000± 0.00079) × 10�6

J2p (203.30517± 0.00070) × 10�6 (203.31028± 0.00111) × 10�6

C22p (22.42635± 0.00022) × 10�6 (22.42600± 0.00014) × 10�6

J2p, β, γ➔ Is /MR2 0.392733± 0.000003 0.392743± 0.000003
C22p, β, γ➔ Is /MR2 0.392715± 0.000008 0.392709± 0.000007
J2p, C22p, β➔ Is /MR2 0.392730± 0.000002 0.392737± 0.000003
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permanent values reduced the calculated uncertainties as expected, but whereas the transformation
decreased the C22 difference between the two solutions, the J2 difference increased.

Expressions (11)-(16) are used to combine the J2 and C22 gravity coefficients (Table 4) with the LLR-determined β
and γ (Table 3) to derive the values of the solid mean moment of inertia Is /MR

2 given in Table 4. The three most
distinct combinations are presented: J2p, β, and γ; then C22p, β, and γ; and finally J2p, C22p, and β. The unweighted
average of the threeGL0660B estimates is 0.392726with an RMS scatter of 7 in the last digit. Theweighted average
is 0.392730. The unweighted average of the three GRGM660PRIM values is 0.392730 with an RMS scatter of 15 in
the last two digits. Mean moment values using the GRGM660PRIM J2p value are largest. The weighted average is
0.392738. The unweighted average of all the six determinations is 0.392728 with a scatter of 12 in the last two
digits. We give Is /MR

2=0.392728±0.000012 as the GRAIL estimate of the mean moment of the solid Moon. Then
As /MR

2=0.392615, Bs /MR
2=0.392705, and Cs /MR

2=0.392863, all with the same uncertainty. The moment
differences are known with smaller uncertainty: (Cs�As)/MR

2=2.4809×10�4, (Cs� Bs)/MR
2 =1.5838×10�4,

(Bs� As)/MR
2=0.8971×10�4, (Cs� Is)/MR

2=1.3549×10�4, (Bs� Is)/MR
2=�0.2289×10�4, and (As� Is)/MR

2 =
�1.1260×10�4.

In the Appendix, three recent pre-GRAIL spacecraft solutions are used for the degree-2 gravity coefficients.
The comparison of Tables 4 and A2 shows that GRAIL J2 and C22 have improved by an order of magnitude or
more compared with pre-GRAIL values. For the mean moment of inertia of the solid Moon, Is/MR2, the GRAIL
result is also improved by an order of magnitude over older results.

The results in Table 4 are for R=1738 km, the standard reference radius for lunar gravity work. As a result of
altimetry (see Table 2), the mean radius of the Moon is known to be 1737.151 km. How does one convert
these values to different reference radii? Invariant degree-2 products in the potential are GMJ2R

2 and
GMC22R

2 for constant coefficients. Table 1 in section 2 shows that the relative GM uncertainty is less than
10�7, so just consider products J2R

2 and C22R
2. To convert J2 and C22 from the 1738 km gravity standard to

the topographic 1737.151 km radius, multiply by (1738/1737.151)2 = 1.000978. Higher-degree coefficients
involve higher powers of the radii, e.g., the product JnR

n for degree n. From definitions (6) and (7), β and γ do
not depend on the reference radius. Equations (9) through (16) show that the moments of inertia normalized
by MR2 depend on R2. Consequently, the mean moment of inertia of the solid Moon depends on R4. The
Table 4 normalized mean solid moment Is/MR2 of 0.392728± 0.000012 converts to 0.393112± 0.000012 with
the topographic radius. A uniform density sphere has a normalized mean moment of 0.4; a smaller value
indicates that density increases inward.

For degree-2 tides, equation (19) gives the combination GMpk2R
5/ap

3, where p stands for Earth or Sun.
The relative uncertainty of GME is 10

�9 [Ries et al., 1992; Ries, 2007; Dunn et al., 1999], whereas the GMS

uncertainty is on the order of 10�11 [Williams et al., 2013]. The relative uncertainty of lunar semimajor
axis a is 10�9, and the length of the AU was known to better than 10�11 prior to recently becoming a
defined quantity, so small differences in GME/a

3 or GMS/AU
3 can be ignored compared with the radius

R difference. To convert k2 to the topographic radius, multiply by (1738/1737.151)5 = 1.002446. For
higher-degree Love numbers, consider the product knR

2n+1 to be invariant. The averaged GRAIL Love
number k2 converts from 0.02416 ± 0.00022 to 0.02422 ± 0.00022, when R changes from 1738
to 1737.151 km.

The GRAIL detection of the third-degree Love number k3 [Konopliv et al., 2013; Lemoine et al., 2013] is an
impressive achievement. The strength of lunar tides falls off by 2 orders of magnitude per degree, but the
shorter wavelengths for higher degrees help detection. Although GRAIL provides a degree-2 Love number
accurate to 1%, at present the model values of higher-degree Love numbers (section 7) are expected to be
more accurate than their measurements.

6. Lunar Rotation and Energy Dissipation

There are two known causes of energy dissipation in the Moon that affect lunar rotation and orientation, the
physical librations: (1) Tidal distortion dissipates energy as the distortion varies due to changes in distance
and apparent direction of the Earth. (2) The interactions at the two boundaries between fluid and solid
material are weak, and the axis of rotation of the fluid core does not line up with the axis of the solid Moon
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[Goldreich, 1967]. Dissipation arises from
the fluid motion with respect to the
mantle at the CMB and the motion at an
inner core boundary. Lunar laser
ranging detects both of these causes
through their effects on the physical
librations. This section updates the LLR
dissipation solutions given by Williams
et al. [2001]. GRAIL data analysis is likely
to detect tidal dissipation as a phase

shift in the largest monthly tidal variations, see Table 3 in Konopliv et al. [2013] for the nominal values used
for GL0660B.

The equator of the Moon precesses retrograde along the ecliptic plane with a period of 18.6 years. The tilt
between the equator and ecliptic planes is only I= 1.543° = 0.02692 radian. Although the Earth’s much slower
precession of the equatorial plane is along the ecliptic plane, this precession of the lunar equatorial plane
follows the precession of the lunar orbit plane, but the tilt I is opposite to the orbit inclination. The
synchronously rotating Moon is in a Cassini state [Peale, 1969]. The orientation of the lunar equatorial plane,
and the pole normal to it, is not arbitrary; it depends on the inclination of the lunar orbit plane, the lunar
gravity field including tides, CMB flattening, and dissipation from both tides and core boundary interactions
[Dickey et al., 1994; Williams et al., 2001]. The change of orientation due to dissipation is large, 0.27″ in pole
direction and �10.0″ in node, as determined by the LLR data analysis.

The weak interactions between the fluid and the mantle at the CMB leave the axis of rotation of the outer
core close to the pole of the ecliptic plane [Goldreich, 1967], so the axes of the core andmantle differ by about
I. The relative velocity at the CMB is approximately Rfω sin I. The surface equatorial rotation rate is 4.62m/s, so
the differential velocity is about 25mm/s for a CMB radius of about 20% of the lunar radius. The differential
velocity at the inner core boundary would depend on its inclination to the ecliptic plane, which is not known.

Although the tidal time delay and the core boundary dissipation are both effective at introducing a shift in
the precessing pole direction, the key to separating the two causes of dissipation is the detection of
additional small physical libration effects of a few milliseconds of arc (mas) size. Guided by semianalytical
theories for both tide and core boundary dissipation effects on physical librations [Williams et al., 2001], the
LLR data analysis solves for the coefficients of periodic terms in physical libration in longitude (τ) at 206 days,
1 year, and 1095 days in addition to a tidal time delay and the fluid core coupling parameter K/C. The three
small periodic terms allow for tidal-dissipation-induced phase shifts in physical libration periodicities in
addition to those implicit in the integrator models that use tidal time delay and K/C. From the solution leading
to DE430, Table 5 gives the LLR-determined values for tide and core boundary dissipation parameters. In
addition to the three terms correcting longitude libration τ, the solution constrains a latitude libration (Iσ)
correction at 27.555 day period. Uncertainties in the table are intended to include systematic and formal
errors. The solution parameters for dissipation at the outer core boundaries (K/C) and tidal dissipation
(time delay Δt) have a correlation coefficient of�0.908, but they are separated well enough that the detection
of the fluid core is strong at nearly a factor of 10 greater than its uncertainty. The latitude libration
correction is modeled as a circular correction to the path of the pole, so that the latitude libration coefficient
for tilt Δρ is the same as for ΔIσ except for sign; e.g., the constrained Iσ correction is 1.0mas cos l, whereas
the Δρ correction is �1.0mas sin l. The constrained correction is compatible with the step of the analysis
that follows.

There are five solution parameters for lunar dissipation in Table 5: K/C, tidal time delay, and three longitude
libration corrections. Orbit-related Delaunay arguments are l for lunar mean anomaly (27.555 day period); l′
for solar, or Earth-Moon center of mass, mean anomaly (365.26 days); F for argument of latitude (27.212 days);
and D for elongation of Moon from Sun (29.531 days). These angles are represented by polynomials in time
and do not include periodic perturbations, see equation (5.43) in Petit and Luzum [2010]. Of the three
longitude libration corrections, the annual correction is strongest compared with its uncertainty. The other
two corrections are not strong compared with their uncertainties, but they are still useful for limiting
frequency dependence of tidal dissipation.

Table 5. Dissipation-Related Parameters From the DE430 Solution

Parameter Function Units Value

K/C 1/d (1.64 ± 0.17) × 10�8

k2 1 0.024059 fixed
Time delay Δt day 0.0958± 0.0109
Δτ206 cos(2 l� 2D) mas 1.54± 1.16
Δτ365 cos l’ mas 5.00± 1.27
Δτ1095 cos(2 F� 2 l) mas �3.64 ± 3.26
ΔIσ27.6 cos l mas 1.0 constrained
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The nominal model for lunar tides in the program that numerically integrates the lunar orbit and physical
librations derives tidal accelerations and torques from equations (20) to (25) with u and rp functions of time t
minus a single time delay Δt [Williams et al., 2001; Standish and Williams, 2012; Folkner et al., 2014]. For
tides, the Earth-Moon vector and the orientation of the Moon are computed at earlier time t� Δt, so that
equation (20) is evaluated with u(t� Δt) and rp(t�Δt). Elastic tides would have Δt=0, whereas a finite
value introduces dissipation. The integrator does not use an expansion in Δt but consider the form that an
expansion would have. The terms from u(t) and rp(t) would behave like elastic tides; the bulge would be aligned
with the Earth, and the resulting forces would be radial and would apply no torques, but the moment of inertia
matrix varies. Dissipative effects can come from the terms proportional to the product k2Δt. These effects include
secular changes in the orbit and tangential forces that cause torques, which can affect the lunar physical librations
[Williams et al., 2001]. With Q for the quality factor for dissipation, the energy dissipated during each tidal cycle
depends on k2/Q at the tidal period. For a tidal time delay, k2/Q= (2πk2Δt)/period= (k2Δt frequency). At 1month,
the Table 5 values give (k2/Q)F= (2πk2Δt)/(27.212days) = (5.3±0.6)×10

�4 and QF=27.212days/(2πΔt) = 45±5.
Note that for the single time delay model of the integrator, each periodic term in a tidal expansion would have
k2/Q∝ frequency∝ 1/period.

If a single tidal time delay were a good fit to the dependence of tidal dissipation on frequency, then the
206 day, 365 day, and 1095 day corrections in Table 5 would be 0. The annual correction in Table 5 depends
mainly on the annual tidal dissipation, making interpretation straightforward, whereas the two tidal
dissipation terms at 206 days and 1095 days depend on tides at several periods [Williams et al., 2001, Tables 1
and 2]. Using their Tables 3 (for constant Q) and 4 (time delay) gives an annual (k2/Q)365 = (6.4 ± 1.5) × 10�4

and, with the GRAIL k2, Q365 = 37± 9. In contrast to the single time delay model, which would have predicted
an annual (k2/Q)365, an order of magnitude smaller, and a Q365 of hundreds, the Table 5 monthly and annual
results, at periods different by a factor of 13.4, indicate that tidal k2/Q and Qmust have a much weaker
dependence on tidal frequency. The uncertainties at 1month and 1year are too large to assess whether
dissipation increases or decreases with period. The single time delay representation is not adequate, and we seek
another form for k2/Q. A k2/Q that is independent of frequency can be tested by differencing Tables 3 and 4 in
Williams et al. andmultiplying by the above (k2/Q)F=5.3×10

�4. For the 1095day correction, that procedurewould
give +10 mas amplitude, which does not have the right sign. A solution that approximately satisfies all five
dissipation parameters in Table 5 requires adjusting K/C, (k2/Q)F, and the dependence of k2/Q on tidal period.

Since the tidal frequency or period is not necessarily the same as the physical libration frequency or period,
we need a relation for k2/Q as a function of tidal period or frequency (2π/period). We posit a power law form
for k2/Q dependence on tidal period, k2/Q= (k2/Q)F (27.212d/period)

�w, with (k2/Q)F and w parameters to be
adjusted. For small cyclic distortions of materials, one expects energy dissipation per cycle to increase at lower
frequencies or longer periods. Although the situation for the entire Moon is more complicated [Efroimsky, 2012a,
2012b], a positivew for tidal flexure would have been expected. FollowingWilliams et al. [2001], we searched for a
combination of fluid core K/C, (k2/Q)F, and w parameters that best satisfy the five Table 5 dissipation parameters.
The result is (k2/Q)F= (6.4±0.6)×10

�4 and w=�0.17±0.10; with the GRAIL k2, we obtain QF=37.5±4. The fit of
the five dissipation parameters is not as good as would be expected if the power law was a good representation.
For example, the power law predicts that the annual k2/Q is (4.1 ± 1.2) × 10�4, plausibly agreeing with
the (k2/Q)365 = (6.4 ± 1.5) × 10�4 found above, but not as good a match as one would like. Either the
dissipation law is more complex or there are other unmodeled influences on physical librations.

Energy dissipation in the Moon may have affected early thermal evolution and helped to power a core
dynamo. As the Moon evolved outward from Earth, there was a decrease in dissipated tidal and core-
boundary power due to the increasing distance. However, at about 34 Earth radii, there was a change of
Cassini state that caused the tilt of the lunar equatorial plane to the ecliptic and orbit planes to become large
[Ward, 1975]. The power from both tidal and core-boundary dissipation increases with the tilt so near the Cassini
state change, there was a surge of heat deposited in the mantle and at the boundaries between the outer fluid
core and the adjacent solid core and mantle. Williams et al. [2001] suggested that the heat deposited at the two
core boundaries could help power a dynamo. Dwyer et al. [2011] considered mechanical stirring of the core to be
more efficient than thermal convection. Both mechanisms would link remanent magnetization found in lunar
surface samples [Garrick-Bethell et al., 2009; Shea et al., 2012; Suavet et al., 2013] with a core dynamo powered in
part by the dissipation of energy from resonant or nearly resonant precession of the equatorial plane.
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7. Model Calculations
and Interior Structure

The Moon is believed to have a crust, a thick
mantle, a fluid outer core, and probably a solid
inner core. The crust makes up the top 2–3% of
the lunar radius, the thick mantle accounts for
at least 75%, and the outer core radius is within
a few percent of 20%. At the base of the
mantle, above the outer core, is a layer of
low seismic Q and low shear velocity often
thought to be partially molten. Deep-focus
moonquakes occur in the region immediately
above the low-velocity layer. SeeWieczorek et al.
[2006] for a review covering knowledge of the
interior. Interior elastic properties are clues to
composition. Given radial profiles of density
and seismic P and S wave velocities, the elastic
Love numbers can be computed. In this section

we use profiles from two recent lunarmodels to compute Love numbers. Model Love numbers are also computed
for variations on the interior models that include different outer core radii. The model values are then
compared with the density, moment of inertia, and Love number determinations given in sections 2 and 5.
A new sequence of interior models that satisfy these values is constructed, and their sensitivity to core and
crustal densities is assessed.

The structure of the outer ~60% of the Moon by radius comes from the analyses of the Apollo seismic data.
There are a number of concordant analyses. Two published models are discussed below. Nonseismic
evidence for a lunar core comes from moment of inertia, magnetic induction, and lunar laser ranging. The
moment of inertia indicates that density generally increases with depth. Magnetic induction indicates an
electrically conductive core but does not determine the state; Hood et al. [1999] gave a radius of 340 ± 90 km,
whereas Shimizu et al. [2013] found a radius of 290 km with an upper bound of 400 km. Analysis of lunar
orientation, the physical librations determined from LLR data, indicates two sources of dissipation: tides and
an interaction at a fluid-core/solid-mantle boundary.Williams et al. [2001] detected a fluid core and placed a
374 km upper limit on the radius if the core density matches that of an Fe-FeS eutectic fluid, or a 352 km
upper limit for a pure iron composition. The LLR dissipation analysis is updated in section 6. Table 3 includes
an LLR detection of the outer core flattening, another interaction requiring a fluid outer core. Presumably,
the lunar core is composed of iron and siderophile elements.

Two recent models of the Moon’s deep interior come from Weber et al. [2011] and Garcia et al. [2011]. Both
models are based on the analyses of the Apollo seismic data plus mean density. Garcia et al. also used
information onmeanmoment and Love number. In both analyses, the outer radius of the fluid outer core was
estimated from the arrival times of reflected seismic waves. Weber et al. obtained Rf= 330± 20 km for the

fluid core radius, whereas Garcia et al. obtained Rf= 380± 40 km. Weber et al. also identified possible
reflections off the inner core boundary and the top of a low-velocity layer at the base of the mantle. The two
radii were given as Ri=240± 10 km and Rlv= 480± 15 km, respectively. These radius determinations are
affected by seismic velocities above the interfaces. Garcia et al. did not report an inner core or a low-velocity
layer, and neither feature is present in their model. The model differences in the deep mantle and core
illustrate uncertainties in deep lunar structure and properties. High attenuation in the deep mantle weakens
the seismic signals and limits knowledge of the deep interior.

The model degree-2 and -3 elastic Love numbers and the degree-2 fluid Love numbers (subscript f )
calculated from theWeber et al. [2011] and Garcia et al. [2011] models are given in Table 6. Also given are the
inner and outer core mass and moment fractions. Both published models used a lunar radius of 1737.1 km,
which has been expanded to 1737.15 km in the calculations here, and both models have a 40 km thick crust
with an average density close to 2760 kg/m3. Small adjustments<0.3% were made to both density profiles to

Table 6. Model Parameters and Love Numbers for Two Models
of the Lunar Interior

Parameter Weber et al. Model Garcia et al. Model

R 1737.15 km 1737.15 km
Rf 330 km 380 km
Ri 240 km 0
Mf/M 6.4 × 10�3 1.62 × 10�2

Mi/M 6.3 × 10�3 0
If/Im 3.0 × 10�4 7.7 × 10�4

Ii/Im 1.2 × 10�4 0
k2 0.0234 0.0223
h2 0.0410 0.0390
l2 0.0107 0.0104
k3 0.00945 0.00910
h3 0.0233 0.0224
l3 0.00300 0.00298
k2f 1.440 1.442
h2f 2.440 2.442
l2f 0.720 0.721
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match the mean density and
solid moment Is/MR2 = 0.393112
of this paper for R= 1737.151 km
(sections 2 and 5). Among the
geophysical parameters fit for
their model, Garcia et al. used
a low k2 value, an older and
less accurate LLR value, than
the GRAIL-derived values in
Table 4, and that choice
contributed to a more rigid
model. For the Weber et al.
model, the degree-2 Love
numbers in the table are very

similar to the model values given in that paper, but the GRAIL-derived k2 values are larger than the model
values. The GRAIL results constrain possible lunar models. For both models, the combined inner and outer core
makes up less than 2% of the lunar mass.

The degree-2 Love numbers in Table 6 are ~1% different from those given byWeber et al. [2011] andGarcia et al.
[2011]. Weber et al. gave k2 = 0.0232 and h2 = 0.0406, whereas Garcia et al. gave k2 = 0.0223, h2 = 0.0394, and
l2 = 0.0106. There can be small differences in the analysis procedures, and there are small differences (<0.3%) in
the density distributions that were forced to match this paper’s mean density and solid moment of inertia.

Variations on both lunar models were generated by simultaneously changing the radii of the fluid outer core
and solid inner core while requiring the lunar mean density and solid moment of inertia to be satisfied.
One extreme has a vanishingly small inner core with a maximum size outer core, whereas the other extreme
has only a very thin shell of fluid between the mantle and inner core, giving a maximum size inner core and a
minimum size outer core. For the Garcia et al. [2011] model, the variation required the addition of a solid
inner core with the density of iron (8000 kg/m3). These model variations are summarized in Table 7. The
extreme fluid core radii for variations on theWeber et al. [2011] model are 278km (thin fluid layer) and 372km. For
the Garcia et al. variations, the extreme radii are 277km and 367km. These extremes were found by requiring
the moment of inertia of the input density profile to agree closely with the Is /MR

2 found in this paper. For Garcia
et al., the 367km maximum is smaller than their 380 km radius due to the different moment of inertia of this
paper. On the basis of the extreme cases, the table presents fits to the model k2, h2, and l2 Love numbers as a
function of the cube of the ratio of the fluid core radius to the lunar radius, Rf/R. These empirically derived
cubic expressions were tested on intermediate points. From these expressions, the fluid outer core in the
Weber et al. model contributes 3% to the k2 and h2 Love numbers, whereas the larger core of Garcia et al.
contributes 7%. The l2 Love number is an order of magnitude less sensitive to the outer core size. Unlike the
terrestrial planets with their large fluid cores, the small lunar core has only a subtle influence on the tidal response.

The expressions in Table 7 show that Love numbers increase with a larger fluid core. In addition, they also
increase with a smaller mantle S wave velocity. The existing seismic data are not able to determine the lower
mantle S wave velocity as well as the velocity in the middle and upper mantle. The Garcia et al. [2011] Love
numbers are lower than the Weber et al. [2011] values despite the larger fluid core in the former model,
because that model lacks an S wave low-velocity layer at the base of the mantle.

The model k2 values in Tables 6 and 7 are lower than the GRAIL-derived value. What modifications to the
lunar interior models would allow the average GRAIL-determined Love number to be fit better? With the
average k2=0.02422±0.00022 from section 5, we can solve the cubic relation of Table 7 to obtain Rf=423±21km
for the Weber et al. variations, which is larger than any radius in Table 7. The cubic relation for the Garcia et al.
model variations gives Rf=500km, which is even larger. Another change is needed. Increasing the Weber et al.
[2011] 480 km radius of the low-velocity zone by 20km increases k2 by 0.0001, whereas decreasing the S wave
velocity by 500m/s increases k2 by 0.0003. Applying both changes to the model, an outer core radius of
Rf=380km satisfies the GRAIL-determined Love number, consistent with the Garcia et al. [2011] estimate of
core radius. Although the core radius is larger than the proposed Weber et al. radius, it is compatible with the

Table 7. Parameter Extremes and Love Number Expressions for Variations on
Two Models of the Lunar Interior

Parameter Weber et al. Model Variations Garcia et al. Model Variations

Rf 278–372 km 276–367 km
Ri 277–0 km 275–0 km
Mf/M 0.0001–0.0150 0.0001–0.0146
Mi/M 0.0097–0 0.0095–0
If/Im 0–6.9 × 10�4 0–6.5 × 10�4

Ii/Im 2.5 × 10�4–0 2.5 × 10�4–0
k2 span 0.0231–0.0237 0.0214–0.0221
k2 solid Fe core 0.0226 0.0210
k2(Rf ) 0.02270 [1 + 4.64 (Rf/R)

3] 0.02076 [1 + 6.98 (Rf/R)
3]

h2(Rf ) 0.03965 [1 + 4.67 (Rf/R)
3] 0.03621 [1 + 7.14 (Rf/R)

3]
l2(Rf ) 0.01069 [1 + 0.39 (Rf/R)

3] 0.01034 [1 + 0.53 (Rf/R)
3]
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results of other techniques. There is a family of models that can be formed by adjusting the radii of the inner
and outer core and including a low-velocity layer. For the Garcia et al. model, a low-velocity layer is needed
above the core to increase its Love number.

The fluid core density deserves comment. The Weber et al. [2011] and Garcia et al. [2011] models have an
outer core density appropriate to a near-eutectic Fe-FeS composition at a pressure of 5GPa [Brett and Bell,
1969; Brett, 1973; Usselman, 1975; Sanloup et al., 2000, 2002]. Weber et al. used 5100 kg/m3, whereas Garcia
et al. used 5171 kg/m3. The solidification of a solid iron inner core from an iron-rich Fe-S melt would
concentrate the sulfur in the fluid while lowering its density and freezing point [Stevenson and Yoder, 1981]. An
initial iron-rich melt would evolve toward the eutectic mixture. See Brett and Bell [1969], Sanloup et al. [2002], and
Chen et al. [2008] for the relevant phase curves. Initial iron-richmelts are plausible; models with a fluid density larger
than the eutectic value are explored below. Other elements can also be present in themelt, including nickel, carbon
[Hirayama et al., 1993], and various siderophile elements. In contrast to an iron-rich core, a molten silicate core rich
in ilmenite would have a much lower density of ~3500kg/m3 [Wieczorek and Zuber, 2002;Wieczorek et al., 2006].

All-solid models with a solid iron core predict lower Love numbers. If the thin-shell modification of the Weber
et al. model (Table 7) is converted to a completely solid core by removing the liquid shell, then the Love
number decreases from 0.0231 to 0.0226. For the modified Garcia et al. profile, the Love number decreases
from 0.0214 to 0.0210. The thin fluid shell case does not give the same Love numbers as a completely solid
core. Even a thin shell of fluid gives larger Love numbers than a completely frozen core. All-solid iron core
models have Love numbers that are lower than the GRAIL determinations by 7% (Weber et al.) and 13%
(Garcia et al.). Layered solid core models were not investigated, but presumably, they would also have low Love
numbers compared with their fluid-outer/solid-inner core analogs. Lower density solid cores were also not
investigated. Whereas the model k2 can be increased by expanding the size or lowering the seismic wave speed
in the low-velocity zone, the resulting model would feature a core that is sufficiently cool to freeze juxtaposed
against a lower mantle that is sufficiently hot to be attenuating and perhaps partially molten. A completely
solid iron core offers no advantages, and it conflicts with the LLR and seismic evidence for a fluid outer core.

Five GRAIL PrimaryMission (GPM)models that aremodifications of theWeber et al. [2011]model are summarized in
Table 8. They satisfy themean density 3345.56kg/m3, themean solidmoment of inertia Is /MR

2=0.393112, and the
GRAIL-derived Love number k2 = 0.02422. The Weber et al. densities were maintained for the GPM models,
but the inner and outer core radii were adjusted to satisfy the mean density and solid moment values.
Figures 1–3 show the spread of GPM model values for radii, mass fractions, and moment fractions. Figure 1
displays radii for the inner and outer core. Figure 2 gives the mass fractions Mf/M and Mi/M plus their sum.
Figure 3 gives the moment fractions If/Im and Ii/Im. Note that the GPM3 model has inner and outer core radii

Table 8. GRAIL Primary Mission (GPM) Models That Satisfy Mean Density, Mean Solid Moment, Love Number, and a Deep
Mantle Low-Velocity Zonea

Parameter GPM1 GPM2 GPM3 GPM4 GPM5

Rf 372 km 350 km 325 km 300 km 278 km
Ri 0 183 km 230 km 259 km 277 km
Rlv 507 km 520 km 534 km 545 km 554 km
Mf/M 0.0150 0.0107 0.0064 0.0028 0.0001
Mi/M 0 0.0028 0.0055 0.0079 0.0097
If/Im 6.9 × 10�4 4.9 × 10�4 2.9 × 10�4 1.2 × 10�4 2.9 × 10�6

Ii/Im 0 3.1 × 10�5 9.7 × 10�5 1.8 × 10�4 2.5 × 10�4

Im/MR2 0.39338 0.39330 0.39322 0.39316 0.39311
k2 0.02422 0.02422 0.02422 0.02422 0.02422
h2 0.04237 0.04237 0.04240 0.04240 0.04242
l2 0.01076 0.01077 0.01077 0.01078 0.01079
k3 0.00951 0.00952 0.00952 0.00953 0.00954
h3 0.02344 0.02345 0.02348 0.02350 0.02353
l3 0.00298 0.00298 0.00298 0.00298 0.00297
k4 0.00536 0.00537 0.00537 0.00537 0.00537
k2f 1.441 1.441 1.440 1.439 1.439
h2f 2.441 2.441 2.440 2.439 2.439
l2f 0.721 0.720 0.720 0.720 0.719

aThe reference R=1737.15 km.
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of 230 km and 325 km that match the
Weber et al. [2011] values within the
uncertainties that were proposed for
those radii, 240 ± 10 km and 330 ± 20 km,
respectively. The GPM3 model’s density
and seismic velocity profiles are shown
in Figure 4.

After adjusting the core radii, the outer
radius of the low-velocity zone was
adjusted until the GRAIL-determined k2
was matched. For the low-velocity zone,
the S wave velocity of VS= 2700m/s is
500m/s lower than in the Weber et al.
[2011] model, the P wave velocity of

VP= 7160m/s is 340m/s lower, and the zone’s outer radius is larger. An increased outer radius for the low-
velocity zone could be replaced with a lower Swave velocity. This initial fit to the GRAIL-derived k2 with a low-
velocity layer will be replaced with a viscoelastic model in the next section.

The GPM1 model resembles the Garcia et al. [2011] model with the addition of a low-velocity layer. However,
the Garcia et al. near-eutectic Fe-FeS outer core composition and density are compatible with an inner
core. A model in the spread from 372 ≥ Rf≥ 340 km and 0≤ Ri≤ 205 km would still satisfy the Garcia et al.
Rf= 380 ± 40 km value.

The Love numbers are given to more significant figures in Tables 7 and 8 than a 1% accuracy would justify. An
extra digit is useful for comparing differences among models. The 1% uncertain GRAIL-derived k2 and the 1%
model computational accuracy will influence the size of the low-velocity layer rather than the core radii.

The models in Table 8 are not unique. There is a family of models that satisfy the known data. Considering small
possible model adjustments to the density profile of the mantle, and larger density adjustments possible for crust
and core, there would be a broader spread of acceptable model values than those shown in Table 8.

The GPMmodels were generated by adjusting theWeber et al. inner and outer core radii and the radius of the
low-velocity layer. The S wave velocity in the low-velocity layer was also reduced. All densities were held
constant. How do different crustal or outer core densities affect the results in Table 8? Table 9 addresses this
question by showing the end-members of models that satisfy the mean density, moment of inertia, and Love
number.Wieczorek et al. [2013] used the GRAIL gravity field data and the Lunar Orbiter Laser Altimeter (LOLA)
topography data to infer an upper crustal density of 2550 kg/m3 and an average crustal thickness of 34
to 43 km. For a model perturbation, here we decrease the density of the three-layer Weber et al. crust by
183 kg/m3 for an average of 2577 kg/m3 over the 40 km thickness. This 7% decrease in the crustal mass was
compensated by a 0.7% increase in density for the rest of theMoon. Model Love numbers are nearly the same

as those in Table 8, but the l2 values are
slightly smaller (0.01070–0.01072).
Changing the thickness of the crust would
also change its mass. A thickness of 34 to
43 km corresponds to a �15% to +8%
volume change, with the mass difference
depending on the density distribution.
Although the crust’s mass is still uncertain,
it is clear that decreasing the crustal
density or changing the crustal thickness
can introduce shifts of many tens of
kilometers to the model’s inner and outer
core radii.

The choice of the Fe-FeS eutectic density
for the GPM models implies that the fluid

Figure 1. Radii of inner and outer core for five GPM models.

Figure 2. Inner and outer coremass fractionsMi/M andMf/M plus their
sum for five GPM models.
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evolved toward the ~1000°C minimum
temperature of the eutectic, while the solid
core grew. If the core is hotter, then the
fluid may be more iron rich and dense than
the eutectic composition. Decreasing the
sulfur content from the 25wt % of the
eutectic composition to 10wt % increases
the density to about 5700 kg/m3 [Sanloup
et al., 2000]. The boundary between solid
and liquid then occurs at temperatures
approaching 1500°C [Brett and Bell, 1969].
This case is shown in the last column of
Table 9. The maximum outer core size is
reduced by 32 km, but the thin-shell
minimum remains the same. Model Love
numbers are very close to those in Table 8. A

fully liquid iron core for the Moon, not investigated here, would require core temperatures of ~1660°C [Brett,
1973]. Such a high core temperature is not expected at the present time, since models of lunar cooling have
lower temperatures at the base of the mantle; the calculations by Spohn et al. [2001] indicate a lower mantle
temperature that is 200–250° cooler, whereas the model of Ziethe et al. [2009] is nearly 500° cooler.

Opposite to a higher density iron-rich core, the low-density ilmenite-rich silicate fluid core of Wieczorek and
Zuber [2002], which was discussed at greater length by Wieczorek et al. [2006], requires a 460 km radius to
match the GRAIL k2 value or a 583 km radius to match the new density and moment, both using the Weber
et al. crust and mantle densities without a lower mantle low-velocity layer. The former radius is a poor match
to the moment of inertia, and the latter radius gives a k2 value of 0.0273, 13% larger than the GRAIL
determination. Note that the moonquake zone, approximately 800–1100 km deep as given by Goins et al.
[1981] or possibly extending somewhat deeper according to Nakamura [2005], provides an upper limit to the
size of the fluid core. A smaller core radius would result from an increase in the mantle’s density with depth.
To satisfy this paper’s density, moment, and Love number values, low-density core models would require
modifications to crustal and mantle density that are not explored here.

The deep structure of the Moon is uncertain, but a consistent picture can be painted. Subject to this paper’s
values for mean density and moment of inertia, a range of inner and outer core radii are possible. In the GPM
models (Table 8), the outer core composition is assumed to have approached the Fe-FeS eutectic
composition from the iron-rich side, but additional siderophile elements could be present. A plausible range
for the fluid outer core radius is about 200–380 km, guided by the ranges in Table 9 contributed by
uncertainties in lunar model densities. Iron plus other less abundant elements that have solidified from the
melt would make an inner core with radius less than approximately 280 km and mass fraction ≤1%. The

combined inner and outer core mass
fraction is ≤1.5% for the models of
Tables 7–9. Lunar models would benefit
from a reanalysis of the seismic data
subject to the new values for density,
moment of inertia, and Love number.

8. Viscoelastic Models
and Love Numbers

The analysis of lunar laser ranging data
shows strong tidal dissipation in the Moon
[Williams et al., 2001]. Subsequent
solutions continue to support strong
tidal dissipation; an update in section 6
finds monthly (k2/Q)F= (6.4 ± 0.6) × 10�4

Figure 3. Inner and outer core moment of inertia fractions Ii/Im and If/Im
for five GPM models.

Figure 4. Profiles of lunar density in kg/m3 and seismic speeds VS and
VP in m/s versus radius for model GPM3.
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or, with the GRAIL-determined k2, QF= 37.5 ± 4. The LLR data analysis is sensitive to tidal periods from
0.5month to 6 years and indicates that tidal k2/Q decreases with period, which is contrary to usual
expectations for a rocky body. As a consequence of tidal dissipation, models by Efroimsky [2012a,
2012b] and Nimmo et al. [2012] predict that Love numbers depend on period. We seek an expression
for elastic properties as functions of period that can be used to link the monthly GRAIL k2
determinations with local seismic velocities near 1 s period. Then the monthly k2 and k2/Q values can
be extended to other periods.

Information on dissipation at seismic frequencies has long been known. The analysis of Apollo seismometer
data led to the discovery of an attenuating layer of low seismic velocities in the deepmantle [Nakamura et al.,
1973, 1974, 1976; Nakamura, 1983; Toksöz et al., 1974; Goins et al., 1981]. This layer, just above the core, was
suspected to be a zone of partial melting. The upper andmiddle mantle also dissipate seismic energy but less
strongly than the deep low-velocity zone. Values of the dissipation-related quality factor Q for the upper
mantle are several thousand [Nakamura and Koyama, 1982].

The local Swave velocity VS is given by VS
2 =μ/ρ, where μ is the shear modulus or rigidity and ρ is the density.

All the three parameters vary with radius within the Moon. S wave attenuation is associated with μ rather
than ρ, and if μ is represented with a complex variable, then the imaginary part expresses the dissipative
component. Laboratory experiments have explored the frequency dependence of rigidity and associated
dissipation [Gribb and Cooper, 1998; Jackson and Faul, 2010]. For a small distortion at a period P, we use a
combination of an Andrade power law representation and Maxwell viscosity. The power law controls the
short-period dissipation, whereas a viscous term would dominate the long-period dissipation.

1
μ Pð Þ ¼

1
μ 0ð Þ þ b cot

wπ
2

� � P
Pr

� �w

� i b
P
Pr

� �w

þ P
2πη

� �� 	
: (28)

Here Pr is a reference period, b combines a parameter that depends on the material with functions of Pr and
exponent w, and η is shear viscosity. The ratio of the (negative) imaginary and real parts gives the tangent of
the phase shift. We take the sine of the phase shift as equal to 1/Q. See Efroimsky [2012a, 2012b] for a
discussion of several definitions of Q. It is not clear whether a viscosity term is needed for deep lunar
conditions. As η→∞, expression (28) approaches an anelastic representation.

The Love number k2 for a homogeneous incompressible sphere can be written as 3/[2(1 + 19VS
2/Ve

2)], where
Ve is the escape velocity at the surface. For the Moon, VS≈ 4.4 km/s and Ve= 2.38 km/s, so 19VS

2/Ve
2≈ 65. The

3/2 factor is replaced by 5/2 for displacement Love number h2 and by 3/4 for l2. For small nearly
homogeneous bodies with weak gravity, the Love number is approximately proportional to 1/μ and equation (28)
may be used to approximate a frequency-dependent Love number bymultiplying equation (28) by 3ρVe

2/38. Even
when there is internal structure, equation (28) suggests a form for a frequency-dependent Love number.

k2 Pð Þ ¼ k2 PFð Þ þ K cot
wπ
2

� � P
PF

� �w

� 1

� 	
� i K

P
PF

� �w

þ ξ
P
PF

� �� 	
: (29)

Wehave substituted Pr=PF, where PF=27.212days, and k2(0) = k2(PF)� K cot(wπ/2), tomake the right-hand side of
equation (29) depend on a monthly reference period. The viscous parameter ξ depends on 1/η and several other
parameters, including the fraction of the real Love number that comes from the layer exhibiting viscosity,
presumably the low-velocity zone. The negative imaginary part depends on period and is identified with k2/Q.

Table 9. Parameter Spreads for GPM Models Plus Separate Model Variations With a Lower Density Crust and a Higher-
Density Outer Core

Parameter GPM 1–5 Less Dense Crust More Dense Outer Core

Rf 372 – 278 km 301 – 222 km 340 – 278 km
Ri 0 – 277 km 0 – 221 km 0 – 277 km
Rlv 507 – 554 km 550 – 576 km 525 – 553 km
Mf/M 0.0150 – 0.0001 0.0079 – 0.0001 0.0128 – 0.0001
Mi/M 0 – 0.0097 0 – 0.0049 0 – 0.0097
Im/MR2 0.39338 – 0.39311 0.39321 – 0.39311 0.39330 – 0.39311
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Although equation (29) can be approximated from equation (28) for a small homogeneous body and guessed
for small layered bodies, it can also be derived for larger structured bodies by adding together the fraction of
k2 that comes from each layer, provided that w is assumed to be the same for all the dissipative layers. To
construct an anelastic Earth model, Wahr and Bergen [1986] used partial derivatives of k2 with respect to μ
times μ(P)�μ(Pr) from two mantle layers. Bulk modulus was treated similarly. The resulting analogue of
equation (29), but with ξ =0 and a different reference period, is applied to tidal dissipation in the solid Earth,
see equation (6.12) in Petit and Luzum [2010]. Partials of k2 with respect to μ were also used by Khan et al.
[2004] in their investigation of lunar Q.

For a structured body, equation (29) for k2(P) can be assembled from equation (28) by using a Taylor series
truncated following the linear terms. In particular, by summing the partial derivative of k2(Pr) with respect to
μj(Pr) for each lunar layer j times μj(P)�μj(Pr) from equation (28) for that layer, for Pr= 0, the expansion is

k2 Pð Þ ¼ k2 0ð Þ þ
X
j

∂k2 0ð Þ
∂μj 0ð Þ μj Pð Þ � μj 0ð Þ

h i
: (30)

Multiplying by �μj(0)
2 converts the partial derivative with respect to μj(0) into a partial derivative with

respect to 1/μj(0), which is appropriate for use with equation (28):

k2 Pð Þ ¼ k2 0ð Þ �
X
j

μj 0ð Þ ∂k2 0ð Þ
∂μj 0ð Þ

μj 0ð Þ
μj Pð Þ � 1

" #
: (31)

The lunar Love numbers are only slightly affected by bulk modulus, so those partial derivatives are ignored in our
approximation. With μ=0 for a fluid, the outer core contributes to k2(0), but dissipation there depends only on
bulkmodulus and that partial derivative is disregarded here. Wemay substitute equation (28) into equation (31) to
obtain the compact form of equation (29), provided that all the layers have the same exponentw. Otherwise, there
would be multiple terms. Expressions for the displacement Love numbers h2 and l2 follow the same form as
equation (29). Very long periods or very small values of Qwould require terms in addition to the linear expansion.

If equation (28) is substituted into (31) with the same exponentw for all the layers, then one derives equation (29)
with the following expressions for K and ξ :

K ¼ �
X
j

∂k2 0ð Þ
∂μj 0ð Þμj 0ð Þ2bj (32)

ξ ¼ �
X
j

∂k2 0ð Þ
∂μj 0ð Þ

μj 0ð Þ2PF
2πηj

: (33)

Note that ηj/μj(0) is the Maxwell time for layer j. Analogous to equation (29), expressions for h2(P) and l2(P)
result from replacing ∂k2(0)/∂μj(0) in equations (30)–(33) with ∂h2(0)/∂μj(0) and ∂l2(0)/∂μj(0). That substitution
generates parameters analogous to K and ξ .

Since μ= ρVS
2, analysis of lunar seismic data for a band of periods near 1 s supplies information on the

internal structure along with μ(r) at seismic periods [Goins et al., 1981; Nakamura, 1983; Weber et al., 2011;
Garcia et al., 2011]. The imaginary part of equation (29) is zero at zero period. We assume that dissipation-free
values of k2(0), h2(0), and l2(0) can be calculated for the five GPM models by replacing the seismic VS and VP
of the low-velocity zone with the adjacent mantle values of VS=4500m/s and VP=8500m/s. Zero-period values
k2(0), h2(0), and l2(0) are presented in Table 10 for the five models.

The partial derivatives of the lunar Love numbers with respect to μ are presented in Table 11 for each layer j in
the GPM3 model. Since VS

2 =μ/ρ and VP
2 = KS/ρ+ (4/3)VS

2, where KS is adiabatic bulk modulus, the partial
derivatives were computed from finite difference perturbations of the seismic velocities, decrementing VS

2

by 10% and VP
2 by 10% of (4/3)VS

2. The nominal values of the parameters were at their zero-period values, so
the μj(0)∂k2(0)/∂μj(0) are suitable for equations (31)–(33). Except for sign, dividing by k2(0) ideally gives the
fraction of k2(0) contributed by each layer. Since the partial derivatives are generated from finite differences
rather than infinitesimals, the sum of each column differs somewhat from �1. Although the layers have
different thicknesses, a column-by-column comparison can be made. The sensitivities of the k2 and h2 partial
derivatives with respect to μ in the different layers are similar, with h2 slightly more sensitive to deep
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structure. In contrast, l2 is much more sensitive to the layers in the outer half of the lunar radius. The cubic
expressions for the Love numbers in Table 7 show that l2 is an order of magnitude less sensitive to the outer
core than are k2 and h2, analogous to the partial derivatives for the low-velocity layer.

The partial derivatives in Table 11 can be used to relate the tidal Q to the Qj associated with 1/μj for layer j. If
Qj(PF)≫ 1 and μj(PF)≈μj(0), then the monthly dissipation has 1/Q(PF)≈�P

[μj(0)/k2(0)] [∂k2(0)/∂μj(0)]/Qj(PF). If
all of the tidal dissipation is coming from the low-velocity zone at the base of the mantle, then Qlv≈ 3 at
1month, which strains the Qj≫ 1 requirement. If the tidal dissipation is split evenly between the two lowest
mantle layers, then the local Q values are ~6 and ~29 at 1month.

There are four parameters on the right-hand side of equation (29) that must be specified. The Love number
k2(PF) = 0.02422± 0.0022 results from GRAIL data analysis, K+ ξ = (k2/Q)F= (6.4 ± 0.6) × 10�4 is determined by
LLR data analysis (section 6), and w and ξ depend on the GPMmodels. We select a sequence of ξ values and
solve forw: (1) K= (k2/Q)F� ξ and (2)w= (2/π) tan�1{K/[k2(PF)� k2(0)]}. For a given value of ξ, there is a unique
value of w for each GPM model. The anelastic case has ξ =0.

The solutions for exponentw are presented in Table 10. They are computed for four values of the ξ parameter
for each of the five GPM models. The values of w in Table 10 range from 0.17 to 0.34. For solid-body Earth
tides, the Wahr and Bergen [1986] expression with the form of equation (29), but with ξ = 0, is used with
w= 0.15 [Petit and Luzum, 2010]. Laboratory experiments on polycrystalline olivine by Gribb and Cooper
[1998] and Jackson and Faul [2010] indicated w values of 0.35 and 0.34, respectively. Two cautions are
needed: the laboratory data were obtained at subdaily periods and the low Q values are less reliable. Nimmo
et al. [2012] used an extended Burgers model, a sophisticated computation that depends on diffusion and
grain boundary sliding. They replaced equation (28) with integral expressions, but the anelastic form of
equation (29) fits their baseline model for tidal periods fairly well, except that their multiyear k2/Q values
increase more slowly than an anelastic (P/PF)

w power law would predict.

Also presented in Table 10 are the partial derivatives of k2(0), h2(0), and l2(0) with respect to VS
2 for the mantle

layer adjacent to the core, given a modification to the “low-velocity” zone achieved by setting VS= 4500m/s
and VP=8500m/s for zero period. The partial derivativeswere derived from a�10% change of VS

2= (4500m/s)2 in
a low-velocity zone with radii Rlv from Table 8 in the previous section. Dividing by Rlv-Rf partly compensates for the
different radial extents for the low-velocity layer in the five GPM models; the partials may be multiplied by

Table 11. For Parameters at Zero Period, the Partial Derivatives of Love Numbers With Respect to Shear Modulus μ Are
Tabulated for Each Layer in the GPM3 Model

Layer Layer Radii (μ/k2) ∂k2/∂μ (μ/h2) ∂h2/∂μ (μ/l2) ∂l2/∂μ

Inner core 0 – 230 km 0 0 0
Outer core 230 – 325 km 0 0 0
Low velocity 325 – 534 km �0.082 �0.086 �0.009
Mantle 534 – 999 km �0.392 �0.401 �0.164
Mantle 999 – 1249 km �0.261 �0.259 �0.252
Mantle 1249 – 1499 km �0.204 �0.188 �0.374
Mantle 1499 – 1697 km �0.091 �0.069 �0.273
Crust 1697 – 1737 km �0.004 �0.001 �0.020

Table 10. Parameters for Frequency-Dependent GPM Models

Parameter GPM1 GPM2 GPM3 GPM4 GPM5

k2(0) 0.02313 0.02289 0.02265 0.02245 0.02229
h2(0) 0.04038 0.03995 0.03952 0.03916 0.03888
l2(0) 0.01070 0.01069 0.01068 0.01067 0.01067
[VSlv

2/(Rlv� Rf )] · ∂k2/∂(VSlv
2) �1.00 × 10�5/km �0.94× 10�5/km �0.89× 10�5/km �0.83 × 10�5/km �0.79 × 10�5/km

[VSlv
2/(Rlv� Rf )] · ∂h2/∂(VSlv

2) �1.82 × 10�5/km �1.72× 10�5/km �1.62× 10�5/km �1.53 × 10�5/km �1.45 × 10�5/km
[VSlv

2/(Rlv� Rf )] · ∂l2/∂(VSlv
2) �5× 10�7/km �5 × 10�7/km �5 × 10�7/km �5× 10�7/km �5× 10�7/km

w for ξ =0 0.338 0.286 0.246 0.221 0.204
w for ξ =10�6 0.338 0.285 0.246 0.221 0.204
w for ξ =10�5 0.334 0.282 0.243 0.218 0.201
w for ξ =10�4 0.293 0.246 0.211 0.189 0.174
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alternative thicknesses or VS
2 values. As an

example, theWeber et al. [2011] radius for
the low-velocity zone is 480 km, and the
outer core radius is 325km for GPM3, so
ΔR=155km and VSlv

2 ∂k2/∂(VSlv2) =
�0.00138. The 6.9% difference of
k2(PF)� k2(0) = 0.00157 for GPM3 would
require ΔVSlv

2/VSlv
2 =�1.1, which is

impossibly large, because it is out of the
linear range of the partial derivative.
With the larger radius for the low-
velocity zone in Table 8 for GPM3,
ΔRlv=209 km and ΔVSlv

2/VSlv
2 =�0.8,

which is more acceptable, but this large
change is still affected by nonlinearity in
the partial derivative. The actual value
used to construct the GPM models of
Table 8 was ΔVSlv

2/VSlv
2 =�0.64, so the

second partial derivative must be positive. This exercise is predicated on the assumption that all of the
power law dissipation is due to the low-velocity zone, but some must originate in shallower mantle layers,
which would decrease the magnitude of ΔVSlv.

Curves of k2(P)/Q(P) are illustrated in Figure 5. Periods span 1 day to 105 days. The GPM3 model is used as
an example. Four curves are shown using the four pairs ofw and ξ values tabulated in Table 10. Finite ξ values
deflect the curves upward at long periods. The four model curves pass through the section 6 LLR value of
(k2/Q)F= (6.4±0.6)×10

�4. The three dashed lines show the LLR results derived for k2/Q versus period and the 1
standard deviation (±1σ) uncertainties for periods from 0.5month to 6years. The exponent that is fit in section 6
is w=�0.17±0.10. The figure also shows the separate 1month and 1year LLR determinations as circles with
uncertainties. Those two points alone are compatible with a range of small positive or negative exponents.
However, the determination of the 3 year dissipation term in Table 5 is incompatible with positive values ofw, but
it cannot be plotted as a separate determination, because it depends on k2/Q values at 0.5month, 1month, and
3years [Williams et al., 2001]. Similarly, the 206day term in Table 5 depends on k2/Q values at 0.5month, 1month,
and 206days. A comparison of LLR results with model values in Figure 5 implies that the lunar k2/Q curve is not as
simple as either an anelastic power law or a power law plus viscosity. Although the power law seems tomodel the
average change from seismic periods to tidal periods reasonably well, an inflection in the curve in the vicinity of
tidal periods is suspected. Alternatively, there may be other influences on the out-of-phase physical libration
components that are not well understood. The 1095day term is close to a resonance at 1056days that magnifies
the importance of small influences. Although the large k2/Q values in the upper right portion of the figure should
be considered speculative, we chose to extend the curves through the period of the lunar analog of the Chandler
wobble at 27,257days=74.6 years [Rambaux and Williams, 2011].

During the numerical integration of the lunar orbit and physical librations, a tidal time delay model is used rather
than a series representation [Standish and Williams, 2012; Folkner et al., 2014]. The time delay model gives
dissipation that depends on the inverse period. It should represent the dissipation at 1month, and the line in
Figure 5 is shown passing through the DE430 monthly value of k2/Q, but the time delay model does not represent
the smaller contributions at other periodswell. That differencemotivates LLR data analysis to fit the terms in Table 5.

The model values of real k2 and k2/Q are illustrated in Figure 6 for the GPM3model. The periods span 1 day to
105 days. At a 1month period, the two sets of curves are constrained to the GRAIL-determined real k2 and the
LLR-derived k2/Q, which are indicated with arrows. Compared with the monthly k2, the predicted 0.5month k2 is
only 1% smaller, the annual k2 is 6% larger, and the 3year value is 10%greater. For the anelastic case, the predicted
6year k2 is 13% larger, and the 74.6 year wobble value is 30% greater than the monthly k2.

The amplitudes of the 0.5month tides are 13–19% of themonthly amplitudes. With only a 1%difference expected
for real k2 at the two periods, it would be difficult to detect that frequency dependence. The sensitivity of physical
librations to k2 is strongest at monthly periods, whereas sensitivity at shorter or longer periods is weak.

Figure 5. Model k2/Q values versus tidal period for the GPM3 model
(solid curves with positive slope). The viscosity-related parameter ξ has
values of 0, 10�6, 10�5, and 10�4. The dashed lines show the multiterm
LLR determination and ±1σ uncertainties from 0.5month to 6 years. The
circles mark the LLR determinations at 1month and 1 year. A time delay
model fits dissipation only at 1month.
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The physical librations have three well-
determined periods for resonances:
1056 days in longitude librations, plus
27.30 days and 74.6 years in latitude
librations. [Rambaux and Williams, 2011].
The amplification of long-period librations
by resonances allows LLR data analysis to
extract the information on k2/Q versus
period that has been presented here.

The solutions in Table 10 can be extrapolated
down to seismic periods. For the five anelastic
values of w, the tidal Q at 1 s ranges from
5000 for w=0.34 to 700 at w=0.20. The QS

for an Swave is twice theQ(r) for μ(r), since VS
is proportional to μ1/2. Nakamura and

Koyama [1982] found a QS value of several thousand in the upper mantle at ~5Hz, but the QS decreases to ~1500 in
the middle mantle [Nakamura et al., 1976] and decreases further to <500 in the attenuating zone. Our tidal Q
extrapolated to the seismic range with an anelastic power law cannot be compared directly with local values of QS

withoutmaking assumptions about the distribution of dissipation. For dissipation concentrated in a low-velocity layer
with an outer radius of 480km [Weber et al., 2011], the models giveQS values at 1 s of ~400 forw=0.34 and ~100 at
w=0.20, which are compatible with the seismic results. The inverse square root of equation (28) relates QS to
dispersive S wave propagation for the combined Andrade and Maxwell model.

The measurement of free oscillations of the Moon would give important information about its interior structure
and elastic properties. The gravest torsional mode has a predicted period of ~16min, and other mantle modes
would be shorter [Gudkova and Zharkov, 2002; Gudkova and Raevskii, 2013]. The tidal Q values extrapolated to an
8min period for GPM models 1–5 are ~600–200, 8–3 times less than for seismic periods, respectively.

The GRAIL and LLR data analyses are sensitive to tidal variations through k2. LLR also has some sensitivity to
tidal displacements. The partial derivatives of the Love numbers in Table 11 show that k2 and h2 have similar
sensitivities to layer μ values in a relative sense, but the sensitivity of l2 to the deep mantle is much weaker.
The Q values associated with k2 and h2 should be similar, but if the tidal Q is mainly coming from the low-
velocity zone, then theQ for l2 should be an order of magnitude larger. Dissipation in the upper mantle would
decrease the Q associated with l2. Tidal dissipation should affect the monthly vertical displacement at the
Apollo 11 and 14 sites by about 2.5mm. The effect on the horizontal tides should be on the order of 0.1mm.

For the response of material to stress, Efroimsky [2012a, 2012b] employed a representation equivalent to
equation (28) with combined Andrade and Maxwell influences. A body’s phase-shifted response to tidal
forcing is expressed by k2/Q, but even for a homogeneous body, the tidal Q is not identical to the Q
associated with μ. However, they would be similar for a homogeneous Moon so long as 19VS

2/Ve
2≈ 65. At

very long periods, k2/Q is reduced by self-gravitation so as to cause a maximum in k2/Q versus frequency. To
explain the LLR results, Efroimsky exploited the interplay of rheology and gravity and proposed that
the dissipation-related phase-shifted tidal response is near this maximum. To this end, he was led to
propose a viscosity of ~3 × 1015 Pa s based on a homogeneous incompressible model for the Moon.
The Maxwell relaxation time η/μ would then be ~0.5 day, which is much shorter than any model
considered in this section. As illustrated by Efroimsky [2012b] for the homogeneous lunar model, both
Re(k2) and k2/Q approach 0.7 at long periods, k2/Q has a maximum, and the curve turns over for longer
periods. As the period approaches infinity, k2/Q approaches 0, while k2 approaches its fluid value. A large
Love number is not observed for the Moon, but with a shift of frequency scale, this model predicts k2 and
k2/Q over a very wide range of periods. A reversal of slope is not expected for equation (28) and is not
predicted by equation (29); some modification, such as additional terms based on nonlinear partial
derivatives, would be required to capture a turnover of k2/Q.

Whereas Efroimsky [2012a, 2012b] considered that a zone of partial melting might be a source of viscous
behavior, Nimmo et al. [2012] went further by suggesting that the attenuating layer is not a zone of partial

Figure 6. Model Love number components k2r=Re(k2) and k2/Q ver-
sus period for the GPM3 model. The viscosity-related parameter ξ has
model values of 0, 10�6, 10�5, and 10�4.
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melting but rather a zone in which creep becomes important at tidal frequencies. Heat speeds up the creep,
so the model has a hot deep mantle and core. Their baseline model has a temperature of 1410°C at the
CMB, and the comments in the previous section on core temperature and density apply. Such a temperature
would be more consistent with the cooling calculations by Spohn et al. [2001] than the model by Ziethe et al.
[2009]. Despite the high temperature, flattening of the CMB does not necessarily relax. However, Meyer
andWisdom [2011] and Le Bars et al. [2011] demonstrated that CMB distortions of the size of f in Table 3 can
be relaxed, shaped by a nonequilibrium mantle’s internal potential, see the comments on Table 3 in
section 5. The Nimmo et al. model gave a tidal Q similar to the LLR result, but it does not give the dependence
on period that LLR indicates. The Nimmo et al. model predicts a 10% increase in k2 when passing from the
short-period elastic limit to a 1month period, somewhat larger than the 5–9% increases in Table 10.

A small amount of water in the lunar interior would change its properties. Karato [2013] found that water
lowers seismic and tidal Q and increases electrical conductivity. Defect-related processes are affected by
water content and temperature. Mantle temperatures can be cooler than those required for a partial melt or
creep. The lower mantle zone of low Q appears to be thicker for the creep and water processes than for a
partial melt, so that the material of the zone can have larger Q. Karato suggested that tidal strain may be
nonlinear, but the strain value that was given was an order of magnitude too large.

The Moon has a low-velocity zone, but the reduction in velocity and attenuation in the zone are different for
seismic and tidal periods. Changes in the Love numbers with period are related to the variation of dissipation
with period. Lunar viscoelastic models are constructed by combining seismic data at short periods with the
GRAIL-derived k2 and LLR-determined k2/Q at tidal periods. Frequency-dependent models are needed to
fully exploit the 1% accuracy of the GRAIL analysis. It is important to test the variation of k2 and k2/Q as functions
of period with very accurate observations and analyses.

9. Future Possibilities

The results of this paper are based on the analysis of the GRAIL Primary Mission data. The data analysis
models are still improving, and that progress should lead to improved fits [Konopliv et al., 2013; Lemoine et al.,
2013]. The GRAIL Extended Mission obtained lower altitude data suitable for a high-resolution gravity field.
Higher-degree fields are being fit to the combined Primary and Extended Mission data [Goossens et al., 2014;
Konopliv et al., 2014]. We anticipate some improvement in the Love number and low-degree field from
analyzing the two blocks of data jointly.

Lunar laser ranging analysis (section 6) yields a monthly tidal Q of about 37.5 ± 4. Future GRAIL data analysis
may be able to detect tidal dissipation as an ~1.5° phase shift in the largest monthly tidal variations. Given
tidal dissipation, both k2 and k2/Q are expected to vary with period, possible future subjects for investigation.

Zhong et al. [2012] suggested that there may be a small nonspherical response to tidal forcing due to
asymmetric elastic properties between the lunar nearside and farside. They proposed that this asymmetry
would change the degree-2 tides and introduce a mixed-mode degree-3 response. Future GRAIL data
analysis can search for these effects.

The inner core could be slightly oblate from spin and triaxial from tides. Both spin and tides would have been
stronger, when the early Moon was closer to Earth. Compared with a current equilibrium shape, which the
whole Moon does not exhibit, an order of magnitude larger equilibrium shape would result for the Moon
early in its evolution. But there are questions of relaxation for the hot deep mantle, CMB, and inner core. The
shape of the CMB may be a local equilibrium shape controlled by the interior gravity field of the mantle
[Meyer andWisdom, 2011; Le Bars et al., 2011]. GRAIL data analysis may detect an inner core through its gravity
field, a possibility that was proposed by Williams [2007]. Although inner core rotation is expected to be
synchronous on average, small oscillations in orientation would not precisely follow that of the mantle. In
particular, the two poles of rotation would not be expected to line up. Thus, any nonspherical gravity field of
the inner core would cause a variable gravity component when measured in the frame of the crust and
mantle. Analysis of GRAIL data to search for such a variable component is warranted.

GRAIL data analysis has not yet exhausted the information content of the data. The view of the lunar tidal
response is evolving from simpler models to more complex possibilities. Also, an inner core gravity field may
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reveal its presence through variable C21 and S21 coefficients. There are a number of future possibilities for
GRAIL data analysis and interior results.

Future missions to the Moon will benefit from GRAIL data analysis results. Important studies of
complementary data sets can be conducted by orbiting or landed spacecraft, and indeed the GRAIL gravity
field will improve the precision of future landings. Such missions will be opportunities to learn more about
the lunar interior.

10. Summary

GRAIL data analysis has produced a high-resolution map of the lunar gravity field [Zuber et al., 2013b].
This paper is concerned with the interior-related lunar properties: mean density, moment of inertia of the
solid Moon, elastic tidal response specified by the potential Love number k2, and tidal dissipation. Lunar
structure includes a thin crust, a deep mantle, a fluid outer core, and a suspected solid inner core. A layer
of low shear wave velocity and enhanced attenuation is thought to lie just above the outer core. An accurate
Love number is sensitive to the fluid core size as well as the size and S wave velocity in the attenuating
layer. Interior models are fit to density, moment, k2, and tidal dissipation k2/Q. A summary follows.

The GRAIL Primary Mission (PM) lasted for 3months with data from 1 March to 29 May 2012. The PM
was designed to have only one major orbit maneuver in order to change the mutual drift rate of the two
spacecraft from separating to closing. The two long, low-activity intervals are ideal for determining properties
of interest for the lunar interior, including tidal response and low-degree gravity field. This paper uses
solutions for these parameters from the PM data. Solutions from two independent analysis programs and
groups [Konopliv et al., 2013; Lemoine et al., 2013] provide a cross check.

GRAIL has improved the lunar-orbiting spacecraft GM, but the Table 1 value of 4902.80007 ± 0.00014 km3/s2,
from the joint lunar and planetary ephemeris fit leading to DE430, has smaller uncertainty. The lunar mass
M given in section 2 is (7.34630 ± 0.00088) × 1022 kg, and the mean density is 3345.56 ± 0.40 kg/m3 for the
mean radius of 1737.151 km. The 0.012% uncertainty in the gravitational constant G so dominates the
uncertainty for the lunar mass and mean density that all modern values of lunar GM in Table 1 give
compatible results for mass and density.

Theoretical expressions for the moments of inertia are reviewed in section 3. The principal moments of the whole
Moon are A, B, and C, ordered by increasing size. Moments result from combinations of spacecraft-determined J2
and C22 with lunar laser ranging (LLR) determinations of orientation-related γ= (B�A)/C and β = (C�A)/B.

Tide and physical libration models are described in section 4. Expressions are given for the tidal variations of the
potential and the moment of inertia matrix. The constant part of the degree-2 tidal potential is added to the
spacecraft solution parameters for J2 and C22. Analogous corrections to β and γ are also made, and the whole-
Moon moments of inertia are calculated. The three-dimensional orientation, or physical libration, is sensitive to
(B�A)/Cs and (C�A)/Bs, where the subscript s stands for the solid crust, mantle, and inner core of the Moon
without the fluid core. The moments As, Bs, and Cs are derived more accurately than A, B, and C. Consequently, the
fluid core moments of the physical libration model are subtracted from the A, B, and C to obtain As, Bs, and Cs.

New fits of lunar laser ranges and planetary-tracking data led to a simultaneous integration of the lunar and
planetary orbits and lunar physical librations. The iterated fits and integrations used the GRAIL-derived Love
number and low-degree gravity field coefficients. This step assured compatibility between the strongly
improved GRAIL field and the lunar laser physical libration parameters. A selected set of lunar parameter
values is given in Table 3 of section 5. The new ephemeris, designated DE430, is available to the public
[Williams et al., 2013; Folkner et al., 2014].

The best estimate for themeanmoment of inertia of the solid Moon, the crust, themantle, and any inner core given
in section 5 is Is/MR

2=0.392728±0.000012 for a gravity reference radius R=1738kmor Is/MR
2=0.393112±0.000012

for a mean radius R=1737.151 km. The MR2 product makes the normalized ratio dimensionless. This
moment results from combining two independent GRAIL determinations of the degree-2 gravity field with
a lunar laser ranging determination of the β and γ values, see Tables 3 and 4 in section 5. The gravity
coefficients and mean moment are strongly improved by GRAIL. A uniform-density Moon would have a
normalized moment of 0.4, so the influence of structure is subtle.
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The GRAIL-determined value for the k2 Love number is 0.02416± 0.00022, with R= 1738 km, and
0.02422± 0.00022, for R=1737.151 km. This value is the average of two independent analyses of data, see
Table 4 and section 5. A selective average of several pre-GRAIL spacecraft and lunar laser determinations of
Love number k2 gives 0.0245 ± 0.0012, see the Appendix. GRAIL has reduced the uncertainty from 5% to 1%.
Attesting to GRAIL’s sensitivity, the detection of the third-degree Love number is an impressive
accomplishment. Sensitivity to higher-degree Love numbers falls off by 2 orders of magnitude per degree, so
accurate higher-degree Love numbers are not expected from GRAIL.

Dissipation in the Moon introduces phase shifts in the tidal response. Effects of dissipation have been determined
by lunar laser ranging (LLR) and are updated in section 6. Subject to the assumption of a power law dependence
of k2/Q with tidal period, a solution for DE430 leads to a monthly k2/Q of (6.4±0.6)×10�4 and, using the GRAIL
k2, a monthly Q of 37.5±4. LLR analysis obtains a decrease of k2/Q with increasing tidal period rather than the
expected increase. Themonthly k2/Q amounts to 2.7±0.3% of the GRAIL-determined k2, a phase shift of 1.5°±0.2°.

Section 7 concerns lunar interior models. The GRAIL-derived moment and k2, suitable for the mean
topographic radius, are compared with two published models of the lunar interior in Tables 6 and 7. With the
assumptions that an inner core has the density of iron, the outer core is near the density of the Fe-FeS
eutectic composition, and mantle and crustal densities are fixed, the mean density and moment set limits to
the radii for the inner and outer core.

Moment, density, and Love number are matched by a sequence of models that vary the outer radii of the inner
and outer core and of the deepmantle low-velocity layer but hold densities of structures fixed. Structural and Love
number information are presented for fiveGPMmodels in Table 8. Figures 1–3 show their core radii, mass fractions,
and moment of inertia fractions, respectively, and Figure 4 profiles density and seismic velocities for one model. If
the density of the outer core is increased or the density of the crust is decreased, the limiting radii shift as shown in
Table 9. The mass of the crust is a major uncertainty. For the spread of models generated to fit the new results we
find the following: A plausible range for the fluid outer core radius is about 200–380km, giving a global mass
fraction of 0–1.5%. The inner core has a radius of approximately 0–280km and a mass fraction of 0–1%. The
combined inner and outer core mass fraction is ≤1.5%.

The Love number is most sensitive to outer core radius and mantle S wave velocity. The upper mantle was
probed by the Apollo seismic experiment, and the outer core radius is constrained by the mean density and
moment. Consequently, an accurate Love number illuminates a combination of the extent of and decrease in
lower mantle S wave velocity. Dissipation has been detected at both seismic and tidal periods, but with
different values for Q. Section 8 explores how dissipation causes the Love numbers and k2/Q to vary with
period. Viscoelastic model parameters are presented in Table 10 for the five GPM models; the parameters
connect the behavior between seismic and tidal periods. Although tidal dissipation in the Moon has a smaller
Q than tidal Q for the solid Earth, the derived exponents for frequency dependence are comparable with
values from laboratory and terrestrial experience. To exploit the full accuracy of the tidal and seismic data, the
influence of dissipation on the Love number must be taken into account. Frequency-dependent damping
also affects free oscillations and free librations.

What are the future possibilities for GRAIL data analysis? (1) We anticipate improved accuracy for the data
analysis results from the GRAIL PM. (2) Detection of themonthly tidal dissipation is a future possibility for GRAIL. (3)
Asymmetries in the Moon’s elastic properties would complicate the tidal response [Zhong et al., 2012]. (4) Tidal
Love numbers should depend on frequency. (5) An inner core would produce a time-varying signal in the
gravity field [Williams, 2007]. The signal is expected to be weak however, and it is unclear whether its
strength will exceed GRAIL’s threshold. Future GRAIL analyses can refine results from the Primary Mission
and explore new effects.

GRAIL analysis has yielded a lunar gravity field with unprecedented accuracy. Ongoing data analysis is
extracting improving results on the static and time-varying gravity field. This information is increasing our
knowledge of the Moon and its interior properties.

Appendix A: Interior Properties Prior to GRAIL
In this appendix, we present two LLR solutions, three sets of spacecraft-determined J2 and C22 values, 12
resulting derivations of the mean moment of inertia, and eight k2 values from the last 1.5 decades. These
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results make use of pre-GRAIL
information. These pre-GRAIL
computations can be compared with
the GRAIL results in section 5 to show
the improvement.

The size and moment of the fluid outer
core are uncertain. Consequently,
Table A1 gives two parallel pre-GRAIL
LLR solutions using two different
outer core moment ratios Cf/C:
3 × 10�4 and 7 × 10�4. The solutions
are designated LLR3 and LLR7,
respectively. They used 17,549 ranges

from March 1970 to June 2011. The uncertainties for the β, γ, J2tr, k2, and h2 parameters in the table do
not include a contribution from the unknown Cf/C ratio. The difference in the two parallel solutions shows
the systematic shift in the solution parameter values as the outer fluid core moment varies over a
plausible spread of values. Those differences can be used to judge the additional uncertainties due to the
Cf/C ratio. The last three parameters of Table 3 include a contribution from the Cf/C ratio as judged from
their differences in Table A1. The LLR J2 value is not used to derive moments in this appendix, but it may
be compared with the more accurate spacecraft results. LLR is also sensitive to the displacement Love
numbers h2 and l2, but the two second-degree displacement Love numbers are correlated and do not
separate well in solutions. For the solutions given in the table, the displacement Love number l2 was set to
a model value of 0.0107, whereas both solutions gave h2 = 0.045 ± 0.008. Love number k2 is better
determined than h2.

The 12 solid moment of inertia Is/MR
2 values in Table A2 are derived from three pre-GRAIL spacecraft-determined

pairs of J2 and C22 coefficients combined with the two Table A1 LLR values of β and γ. The final moments include
the constant part of the tidal distortion, the permanent tide. During the combination, individual LLR and spacecraft
permanent tide corrections take account of their different k2 values. The LP150Q solution has tracking data up
through the Lunar Prospector mission. The two SGM fields also include SELENE tracking data, and the SGM100i
solution adds SELENE VLBI data (see Table 1). In all three cases, J2 gives a smaller uncertainty for the moment than
C22 does. Also, for all the three cases, the moment derived from C22 comes out slightly smaller than the one from
J2. For the two SGM cases, the differences between the moments derived from J2 and C22 are larger than the
uncertainties. The uncertainties given for the LP150Q gravity coefficients are 10 times the formal uncertainties.
For the two SGM cases, a factor of 20 times formal uncertainty is used for J2 and C22, but that adjustment does
not cover the differences between the results. Considering the six moment values and their scatter, we suggest
that Is /MR2 = 0.3930±0.0003 for R=1738km. The moment differences are known with much better accuracy;
including the permanent tide, the moment differences are (As� Is)/MR2 =�1.127×10�4, (Bs� Is)/MR2

=�0.229×10�4, and (Cs� Is)/MR2 =1.356×10�4, with the six spacecraft/LLR combinations differing by
≤2 in the last digit. For R = 1737.151 km, the Is/MR2 = 0.3934 ± 0.0003.

Table A1. Two Pre-GRAIL LLR Solutions With Two Different Fixed Fluid
Core Moments

Parameter LLR3 LLR7

β (631.320± 0.080) × 10�6 (631.059± 0.081) × 10�6

γ (227.826± 0.006) × 10�6 (227.735± 0.006) × 10�6

J2tr (203.70 ± 0.41) × 10�6 (203.51 ± 0.42) × 10�6

k2 0.0247± 0.0016 0.0235± 0.0019
h2 0.045 ± 0.008 0.045 ± 0.008
l2 0.0107 0.0107
Cf/C 3× 10�4 7 × 10�4

K/C (1.39 ± 0.15) × 10�8 d�1 (1.52 ± 0.14) × 10�8 d�1

f (4.7 ± 1.7) × 10�4 (2.7 ± 0.9) × 10�4

[Cf – (Af+ Bf )/2]/C (1.4 ± 0.5) × 10�7 (1.9 ± 0.6) × 10�7

Table A2. Three Pre-GRAIL Spacecraft Results for Love Number k2, Unnormalized J2 and C22 Gravity Coefficients, and
Moments of Inertia Derived by Combining With LLR β and γ

Parameter LP150Q SGM100h SGM100i

R 1738.0 km 1738.0 km 1738.0 km
k2 0.0248± 0.0030 0.0240± 0.0015 0.0255± 0.0016
J2tr (203.261± 0.120) × 10�6 (203.450± 0.074) × 10�6 (203.475± 0.074) × 10�6

C22tr (22.358± 0.024) × 10�6 (22.372± 0.016) × 10�6 (22.370± 0.012) × 10�6

J2p (203.353± 0.121) × 10�6 (203.539± 0.074) × 10�6 (203.570± 0.074) × 10�6

C22p (22.404± 0.025) × 10�6 (22.417± 0.016) × 10�6 (22.417± 0.012) × 10�6

J2p+ LLR3➔ Is/MR2 0.39279± 0.00024 0.39314± 0.00018 0.39320± 0.00018
J2p+ LLR7➔ Is/MR2 0.39280± 0.00024 0.39316± 0.00018 0.39322± 0.00018
C22p+ LLR3➔ Is/MR2 0.39230± 0.00044 0.39252± 0.00028 0.39252± 0.00022
C22p+ LLR7➔ Is/MR2 0.39234± 0.00044 0.39256± 0.00028 0.39256± 0.00022
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Mazarico et al. [2010] analyzed tracking data from the NASA’s Lunar Orbiter to Lunar Prospector spacecraft.
The Love number was fixed while deriving the GLGM-3 gravity field. A recent gravity field solution called
LPE200 was derived from an analysis of Lunar Prospector tracking data [Han et al., 2011]. The low-degree
gravity coefficients from GLGM-3 were adopted for the LPE200 field. The J2 and C22 coefficients give
moments of inertia that are almost identical to the corresponding LP150Q moments. The GLGM-3 and
LPE200 moments are not listed in Table A2. The LP150Q gravity field used a different data analysis program
than the GLGM-3, LPE200, and the three SGM fields.

Compared with the pre-GRAIL knowledge of the lunar moments of inertia and their differences, GRAIL
improves the J2 and C22 uncertainties by a large amount and reduces the uncertainties in the moments. Less
apparently, the pre-GRAIL LLR β and γ uncertainties were limited by the gravity field uncertainties, most
strongly by C31 and C33, and reprocessing the LLR data with an improved gravity field improves β, γ, the orbit,
and physical librations. Table 4, compared with Table A2, shows an order of magnitude improvement in the
moments of the solid Moon from GRAIL.

A summary of recent pre-GRAIL orbiting spacecraft and LLR determinations of the lunar potential Love
number k2 is given in Table A3. The spacecraft analyses include gravity field as well as tidal Love number. The
spacecraft determinations of k2 are sensing tidal variations of the gravity field. The mission data sets in the
determinations are described in section 2.

The lunar laser ranging (LLR) determinations of Love number k2 are sensitive to data span and choice of
solution parameters. The flattening f of the outer core is anticorrelated with both k2 and the fluid core
moment of inertia. Independent of LLR, there is no determination of flattening f.

For each spacecraft-determined gravity field, the simultaneously determined Love number k2 should be used
with the second-degree coefficients. An average k2 value should be more accurate than individual
determinations. An equally weighted average of the LP150Q, SGM100h, SGM100i, and two LLR values gives
k2 = 0.0245. The uncertainties in the spacecraft-determined values are not independent, because the data
sets overlap in part. Considering the spread of the five values and overlapping data sets, we adopt a pre-
GRAIL uncertainty of ±0.0012 or 5%, so k2 = 0.0245± 0.0012. GRAIL analysis determines the Love number with
a 1% uncertainty (see Table 4 in section 5), a factor of 5 improvement over pre-GRAIL knowledge.

Notation

A Smallest principal moment of inertia
a Largest CMB equatorial radius
B Second principal moment of inertia
b Smallest CMB equatorial radius or dissipation coefficient
C Largest principal moment of inertia
c Polar CMB radius.

C22 Degree-2 gravitational field coefficient
D Elongation of Moon from Sun
f Flattening of the outer core
F Lunar argument of latitude
G Gravitational constant, m3/kg s2

Table A3. Recent Pre-GRAIL Love Number k2 Determinations

ID k2 Data Setsa Citation

LP165P 0.026 ± 0.003 LO to LP tracking Konopliv et al. [2001]
LP150Q 0.0248 ± 0.003 LO to LP tracking Konopliv [2000]
- 0.0213 ± 0.0075 LO to LP tracking Goossens and Matsumoto [2008]
SGM100h 0.0240 ± 0.0015 LO to SELENE tracking Matsumoto et al. [2010]
SGM100i 0.0255 ± 0.0016 LO to SELENE tracking + VLBI Goossens et al. [2011a]
SGM150j 0.0252 ± 0.0010 LO to SELENE tracking + VLBI + LP XM Goossens et al. [2011b]
LLR3 0.0247 ± 0.0016 LLR 1970–2011 This paper
LLR7 0.0235 ± 0.0019 LLR 1970–2011 This paper

aLO= Lunar Orbiter, LP = Lunar Prospector, and XM=Extended Mission.
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h2 Degree-2 vertical displacement Love number
h2f Degree-2 vertical displacement fluid Love number
i √(–1)
I Inclination of lunar equator plane to ecliptic plane
If Mean moment of inertia of fluid outer core
Ii Mean moment of inertia of solid inner core
Im Mean moment of inertia (A+ B+ C)/3
Ipt Permanent tide moment of inertia matrix
Is Mean moment of inertia of solid Moon, (As+ Bs+ Cs)/3
Itr Tide-removed moment of inertia matrix
Ivt Variable tide moment of inertia matrix
Ivs Variable spin moment of inertia matrix
J2 Degree-2 gravitational field coefficient
k2 Degree-2 potential Love number
k2f Degree-2 potential fluid Love number
K Dissipation coefficient
KS Adiabatic bulk modulus
l Lunar mean anomaly
l’ Solar or Earth-Moon center of mass mean anomaly
l2 Degree-2 horizontal displacement Love number
l2f Degree-2 horizontal displacement fluid Love number
M Mass
Mf Mass of fluid outer core
Mi Mass of solid inner core
P Period
PF 27.212 day period of argument of latitude
Q Quality factor for dissipation
R Reference radius, km
Rf Radius of fluid outer core, km
Ri Radius of solid inner core, km
Rlv Radius of low velocity layer, km
r Radial distance
t Time

Ve Escape velocity
VP Seismic P wave velocity
VS Seismic S wave velocity
V2p Tidal potential
w Exponent in power law representation of dissipation
α Physical libration parameter (C� B)/A
β Physical libration parameter (C�A)/B
γ Physical libration parameter (B�A)/C
Δ Small change
η Shear viscosity
μ Shear modulus
ξ Coefficient related to inverse viscosity
ρ Density or component of physical libration in latitude

ρm Mean density, kg/m3

σ Component of physical libration in latitude
τ Physical libration in longitude
ω Angular rate vector

Subscripts

f Fluid or fluid outer core
F Argument of latitude
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i Solid inner core
j Index for layers
lv Low velocity
m Mean
p Permanent or external body (Earth or Sun)
P P wave
pt Permanent tide
s Solid Moon
S S wave
t Tide
tr Tide removed
vs Variable spin
vt Variable tide

Abbreviations

CMB core-mantle boundary
GL GRAIL Lunar
GLGM Goddard Lunar Gravity Model
GLTM Goddard Lunar Topography Model
GPM GRAIL Primary Mission
GRAIL Gravity Recovery and Interior Laboratory
GRGM GRAIL Gravity Model
GSFC Goddard Space Flight Center
JPL Jet Propulsion Laboratory
LLR lunar laser ranging
LO Lunar Orbiter
LOLA Lunar Orbiter Laser Altimeter
LP Lunar Prospector
LRO Lunar Reconnaissance Orbiter
PDS Planetary Data System
PM Primary Mission
PRIM Primary Mission
SELENE Selenological and Engineering Explorer
SGM SELENE Gravity Model
XM Extended Mission
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