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[1] Newly obtained gravity and topography data of the Moon, combined with a lithospheric
flexure model that considers both surface and subsurface loading, are used to place
constraints on the density of the upper crust from a localized spectral admittance analysis.
Subsurface loads are found to be relatively unimportant in the highlands, and when
subsurface loads are neglected, the best fitting bulk densities for a number of highland
regions are found to vary from 2590 to 2870 kg m�3, with a mean value of 2691 kg m�3.
Crustal rock densities estimated from geochemical considerations and global iron and
titanium abundances imply somewhat greater densities, which we interpret as porosity
affecting the gravity-derived bulk density estimates. The average porosity in the upper few
kilometers of crust is calculated to be about 7.7%, which is consistent with porosity
estimates of impact-fractured meteorites and terrestrial impact craters.

Citation: Huang, Q., and M. A. Wieczorek (2012), Density and porosity of the lunar crust from gravity and topography,
J. Geophys. Res., 117, E05003, doi:10.1029/2012JE004062.

1. Introduction

[2] Density and porosity are fundamental parameters in
a large range of geophysical investigations. As examples,
crustal thickness modeling requires knowledge of the density
of the crust [e.g., Neumann et al., 1996; Wieczorek and
Phillips, 1998; Hikida and Wieczorek, 2007; Ishihara et al.,
2009], and lithospheric flexure calculations require not only
the density of the crust, but also the density of the load [e.g.,
Forsyth, 1985;McGovern et al., 2002; Belleguic et al., 2005;
Wieczorek, 2008]. Impact crater scaling laws have an
important dependence on porosity [e.g., Ivanov, 2006], the
interpretation of seismic wave velocities depends upon both
density and porosity [e.g., Gardner et al., 1974; O’Connell
and Budiansky, 1974], and thermal conductivity is strongly
dependent on porosity [Warren and Rasmussen, 1987].
Remote estimates of crustal density can be used to place
constraints on the composition of planetary crusts. Further-
more, crustal porosity is a critical parameter for studies of
subsurface aquifers [Clifford, 1993].
[3] Continuing sample, remote sensing and geophysical

analyses show that there are large lateral and vertical varia-
tions in composition of the lunar crust, and by inference,
density. Global surface geochemical data from the Clem-
entine and Lunar Prospector missions indicate that there are
at least three distinct geochemical provinces on the Moon,

each possessing a unique geologic evolution [Jolliff et al.,
2000]. Heat-producing and incompatible elements are highly
concentrated within the Procellarum KREEP Terrane, along
with the dense mare basaltic lava flows. The surrounding
highlands crust is highly anorthositic in composition, and
remote sensing data of central peaks in this terrane suggest
that the crust either becomes more mafic with depth, or is
heterogeneous in composition [e.g., Tompkins and Pieters,
1999; Wieczorek and Zuber, 2001; Cahill et al., 2009]. The
interior of the South Pole-Aitken basin has a highly noritic
composition [Lucey et al., 1995; Pieters et al., 1997, 2001],
and this is often interpreted to represent the composition of
more dense lower-crustal materials.
[4] In this paper, newly obtained gravity and topography

data of the Moon are analyzed to place constraints on the
density of the highlands crust. A localized spectral admit-
tance analysis was performed at several locations and these
spectra were interpreted in terms of a geophysical model that
includes both surface and subsurface loads. In addition to
bulk crustal densities, constraints on the elastic thicknesses of
the lithosphere and the importance of subsurface loads are
obtained. Using the known compositions of Apollo samples,
an empirical correlation is found between the average grain
densities of lunar rocks and their iron and titanium abun-
dances. Using these independent density estimates in com-
bination with the gravity-based bulk density determinations,
the porosity of the upper lunar crust is estimated.

2. Bulk Density From Gravity and Topography

[5] Crustal density is an important parameter in modeling
the observed gravity field of a planet. In this study, we make
use of the fact that the linear transfer function between
gravity and topography depends primarily upon crustal den-
sity and elastic thickness when these data are expressed in
spherical harmonics [e.g.,Wieczorek, 2007]. In modeling the
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relationship between gravity and topography, we consider
the case where the lithosphere is treated as a thin elastic
spherical shell on which both surface and subsurface loads
are emplaced. We employ an adapted version of the thin
elastic spherical shell model of Turcotte et al. [1981], and
include subsurface loads that are perfectly correlated or per-
fectly anticorrelated with surface loads. This approach has
been used previously by McNutt [1983] to estimate elastic
thickness on Earth, and by McGovern et al. [2002] and
Belleguic et al. [2005] to estimate both crustal density and
elastic thickness on Mars.
[6] Using the known topography, theoretical gravity fields

are calculated as a function of crustal density rc, crustal
thickness Tc, elastic thickness Te, and a parameter L that
defines the importance of surface and subsurface loading.
L is here defined as the ratio of the mass of material added
within the lithosphere as a subsurface load to the sum of the
magnitudes of the masses of surface and subsurface loads.
As the subsurface load can have both positive and negative
values, L is bounded between �1. Though partially corre-
lated surface and subsurface loads are known to affect the
relationship between gravity and topography [e.g., Macario
et al., 1995; Wieczorek, 2007; Kirby and Swain, 2009], the
admittance function for partially correlated loads lies between
the end-member cases of correlated and anticorrelated loads
used in this study.
[7] The wavelength-dependent relationship between grav-

ity and topography is quantified by the degree-dependent
admittance and correlation functions

Z lð Þ ¼ Sgh lð Þ
Shh lð Þ ; ð1Þ

g lð Þ ¼ Sgh lð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Shh lð ÞSgg lð Þp ; ð2Þ

where Sgg, Shh, and Sgh, represent the autopower and cross-
power spectra of the gravity and topography, respectively
(for a review, see Wieczorek [2007]). The cross-power
spectrum of the radial gravity and topography is defined as

Sgh ¼
Xl

m¼�l

glmhlm; ð3Þ

where glm and hlm are the real spherical harmonic coefficients
of the radial gravity and topography, respectively. By vary-
ing the parameters of the geophysical model, the best fitting
model to the observed admittance can be obtained.
[8] Though our model admittance function depends upon

elastic thickness, crustal density, and the magnitude of sub-
surface loads, the model admittance approaches that expected
for uncompensated surface topography at high degrees (i.e.,
short wavelengths). In particular, the asymptotic value at
high degrees is proportional to the density of the crust and
is given by Z = 2prG. This equation is simply the Bouguer
gravity formula, and is a consequence of the fact that the
amount of lithospheric flexure decreases with increasing
spherical harmonic degree and that gravitational anomalies at
depth from subsurface loads become increasingly attenuated
with increasing spherical harmonic degree. If high-enough-
resolution gravity and topography were available, it would

in principle be straightforward to estimate the upper crus-
tal density from the high-degree asymptotic value of the
admittance.
[9] Given the expectation that crustal density will vary

laterally across the lunar surface, localized spectral admittance
and correlation functions were calculated by windowing the
free-air gravity and surface topography with the band-limited
localization windows ofWieczorek and Simons [2005, 2007]
and Simons et al. [2006]. The localization windows are
constructed to minimize the signal arising exterior to an
angular radius q0 for a given spectral bandwidth Lwin, and
we use a single localization window that concentrates more
than 99% of its power in the region of interest. We note that
simple windowing functions that have a constant value
within a spherical cap, and that are zero exterior to this
region, contain a significant amount of high-frequency power
beyond the first spectral lobe [Wieczorek and Simons, 2005].
[10] As a result of the spatial localization of the spectral

estimates, the spectral resolution of the spectral estimates is
decreased. In particular, a localized spectral estimate at
degree l will contain information in the global data set from
degrees l � Lwin to l + Lwin. In order to neglect the influence
of possible low-degree rotational and tidal contributions of
degree 2, which are not taken into account in our model,
localized admittances and correlations are analyzed only
between degrees Lwin + 3 and Ldata � Lwin, where Ldata
corresponds to the maximum degree of the utilized gravity
model. The assumption that surface and subsurface loads are
either perfectly correlated or anticorrelated implies that the
localized spectral correlation function should be nearly 1 or
�1. Furthermore, we implicitly assume that the geophysical
parameters do no vary laterally within the analysis region.
[11] The best fitting model and uncertainties are deter-

mined using a multistep estimation procedure. First, best
fitting model parameters are estimated by minimizing the
reduced c2 function

c2

n
rc; Te; Lð Þ ¼ 1

n

Xlmax

l¼lmin

Zobs
l � Zcal

l rc; Te; Lð Þ
sobs
l

� �
; ð4Þ

where n is the number of degrees of freedom (lmax �
lmin � 3), and where lmax and lmin are the maximum and
minimum spherical harmonic degrees used in the misfit
function. Zl

obs is the observed admittance and Zl
cal is the

modeled admittance, both of which are windowed in exactly
the same manner. A simple estimate of the admittance
uncertainty, sl

obs, is first used by assuming that the localized
gravity and topography coefficients for a given degree are
linearly related and that the lack of correlation is a result of
random noise in the gravity [e.g., Simons et al., 1997]. This
initial approach assumes inherently that adjacent power
spectrum estimates are uncorrelated, but this is not the case
when using localized spectrum estimates [Wieczorek and
Simons, 2007]. After determining the best fit parameters,
the uncertainty estimate for the degree-dependent localized
admittance was improved upon using a Monte Carlo
approach: Given the best fitting model parameters and
known gravity field error spectrum, numerous realizations of
a synthetic gravity field were created as

glm ¼ Zlhlm þ Ilm; ð5Þ
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where Zl is the best fitting global linear transfer function,
and Ilm is the gravitational noise. The gravitational noise was
assumed to be a random Gaussian process with a variance
given by

s2
lm ¼ SII lð Þ

2l þ 1
; ð6Þ

where SII is the gravitational error spectrum. By definition,
the noise is uncorrelated with the surface topography. We
then compared the synthetic admittances with noise to the
noise-free ones in order to obtain an improved estimate of
the expected uncertainty in the admittance,

�smc lð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Zbestfit
l � Zmc

l ið Þ
h i2

N

vuuut
; ð7Þ

where N is the number of random realizations, Zl
mc is the

admittance for a given Monte Carlo realization with noise,
and Zl

bestfit is the noise-free value. The reduced c2 was
recalculated with these improved uncertainties, and by using
the distribution of Zl

mc, the probability that this value could
have a value less than the estimated value by chance was
determined. The allowable range of model parameters was
then estimated using the 67% (1s) and 95% (2s) confidence
intervals.

3. Bulk Density Results

[12] High-resolution topography data are currently available
from several recent spacecraft missions, such as Chang’e-1
[Ping et al., 2009], Kaguya [Araki et al., 2009], and Lunar
Reconnaissance Orbiter [Smith et al., 2010]. Since 2007,
global gravitational models that include for the first time
data collected over the farside hemisphere have been made
available by the Japanese mission Kaguya [Namiki et al.,
2009]. In this paper, we make use of the most recent topo-
graphic data obtained from the Lunar Reconnaissance
Orbiter mission, which is expressed as a 720 degree and order
spherical harmonic model [Smith et al., 2010]. The Kaguya
gravity model SGM100i is used, which has been determined
from Kaguya and historical tracking data (Figure 1). Though
the gravity model is expressed to degree and order 100, the
gravity coefficients are valid globally only to about degree
and order 70 [Matsumoto et al., 2010;Goossens et al., 2011].
Nevertheless, shorter wavelengths can be analyzed locally
in regions where the gravity coverage is good and the signal
is strong.
[13] In any localized spectral analysis, a tradeoff exists

between the spatial size of the window and the spectral res-
olution of the power spectrum estimates. For our analyses,
we used a localization window with an angular radius of 12�
(i.e., a diameter of about 720 km) and a spectral bandwidth
Lwin equal to 21 (see section 2). For a maximum degree of
100 for the gravity field, this allows us to analyze localized
power spectrum estimates from degree 21 to 79. Given that
the quality of the Kaguya gravity field is laterally heteroge-
neous, the maximum localized spherical harmonic degree
utilized was in practice less than this. This window size and
spectral bandwidth allows us to avoid averaging over adja-
cent geologic provinces, while retaining a sufficient number
of localized admittance estimates in order to give reason-
able error estimates on our geophysical model parameters. In
order to increase the degree range of the localized admittance
function, we also investigated in some regions windows with
an angular radius of 20� and a spectral bandwidth of 13.
Future high-resolution gravity models from the mission
GRAIL (Gravity Recovery And Interior Laboratory) will
eventually allow one to use smaller localization windows
with higher spectral bandwidths.
[14] Since our geophysical model requires the localized

spectral correlation function between gravity and topography
to be nearly unity, we manually searched for regions ame-
nable to analysis. For each point on a 1� by 1� global grid,
we calculated the average radius of the region within the
localization window, we downward continued the gravita-
tional field to this reference radius, the resulting gravity and
topography were multiplied by the localization window, and
the localized autopower and cross-power spectra of these

Figure 1. Laser altimeter–derived topography from the
Lunar Reconnaissance Orbiter mission and Kaguya radial
gravity (SGM100i) plotted on a reference sphere of 1738 km.
The rotational contribution to the gravity and topography
has been removed for clarity. Both images are shown in a
global Mollweide projection centered over the farside hemi-
sphere on the 180� meridian, and grid lines are spaced at
30� intervals. The white circles correspond to the regions
analyzed in Tables 1 and 2.

HUANG AND WIECZOREK: DENSITY AND POROSITY OF THE LUNAR CRUST E05003E05003

3 of 9



fields were determined. Regions where the localized spectral
correlation was greater than 0.95 over at least 10 contiguous
degrees were retained for further analysis.
[15] For each retained region, the range of geophysical

model parameters that could fit the observed localized
admittance was obtained as described in section 2. For each
set of model parameters, a forward gravity model was con-
structed and windowed in a similar manner as the actual data.
The crustal density, elastic thickness and loading parameter
were treated as free parameters, whereas the other rheological
parameters were set to fixed values. Crustal density rc was
allowed to vary between 2500 and 3300 kg m�3, the elastic
thickness Te varied from 0 to 150 km, and the loading
parameter L varied between �0.5 and 0.5. It is well known
that the crustal thickness cannot be obtained uniquely from
admittance analyses, so for each analysis region we set this
value equal to the average value predicted by the crustal
thickness model of Garrick-Bethell et al. [2010] (see Tables 1
and 2). The mantle density rm was fixed to 3360 kg m�3

[e.g., Hikida and Wieczorek, 2007], Young’s modulus E was
set to 1011 Pa, and a value of 0.25 was used for Poisson’s

ratio. The sensitivity of our results to these assumed values
is small and will be discussed later. By varying the crustal
density, elastic thickness, and loading parameter over all
possible values, the best fitting model was obtained, along
with their 1 s and 2 s confidence intervals. Though previous
analyses have attempted to constrain the elastic thickness at
various regions on the Moon by using spectral techniques
[e.g., Crosby and McKenzie, 2005; Audet, 2011], none of
these analyses have treated the crustal density as a free
parameter.
[16] Out of about 100 retained regions, 9 gave results with

reasonable error bars for the bulk density (see Table 1).
Figure 1 shows that the locations of these regions are pri-
marily on the farside hemisphere in the highlands and the
South Pole-Aitken basin. The small number of analysis
regions on the nearside is partially a result of the large
localization window sizes that make it difficult to avoid sig-
nals from the mascon basins and maria. Example best fitting
localized admittance and correlation spectra are shown in
Figure 2 for a representative farside highlands region. In
this example, the admittance is modeled from degrees 32

Table 1. Summary of Bulk Density, Elastic Thickness, Loading Parameter, and Porosity Results

Region
Number

Region
(E, N) q0

Modeled Degree
Range

Tc
(km)

Te
(km) L

rc
(kg m�3)

rFe�Ti

(kg m�3)
Porosity
(%)

1 (195�, 80�) 12� 38–54 47.7 26�26
+∞ 0.15�0.30

+0.11 2960�280
+310 2884 �2.6 (�13.4 to 7.1)

2 (200�, 80�) 12� 38–54 48.1 19�19
+∞ 0.12�0.27

+0.21 3010�260
+170 2888 �4.2 (�10.1 to 4.8)

3 (230�, 20�) 12� 35–47 68.8 19�19
+∞ 0.16�0.39

+0.15 2720�180
+250 2897 6.1(�2.5 to 12.3)

4 (45�, �85�) 12� 40–70 46.5 5�5
+∞ 0.18�0.60

+0.05 2640�120
+400 2907 9.2 (�4.6 to 13.3)

5 (110�, �45�) 12� 40–70 45.0 9�9
+∞ 0.07�0.52

+0.24 2850�150
+350 2937 3.0 (�8.9 to 8.1)

6 (144�, �16�) 12� 38–54 57.6 9�9
+∞ 0.13�0.53

+0.10 2660�100
+410 2907 8.5 (�5.6 to 11.9)

7 (210�, 70�) 20� 32–60 53.0 11�7
+11 0.04�0.29

+0.11 2840�90
+160 2899 2.0 (�3.5 to 5.1)

8 (215�, 20�) 12� 45–60 74.6 30�30
+∞ � 0.15�0.23

+0.38 2690�130
+120 2898 7.2 (3.0 to 11.7)

9 (225�, �35�) 12� 32–60 51.7 30�30
+∞ 0.10�0.33

+0.19 2700�170
+360 2902 7.0 (�5.4 to 12.8)

Table 2. Summary of Bulk Density, Elastic Thickness, and Porosity Results When Subsurface Loads are Neglected

Region
Number

Region
(E, N) q0

Modeled Degree
Range

Tc
(km)

Te
(km)

rc
(kg m�3)

rFe�Ti

(kg m�3)
Porosity
(%)

1 (10�, �45�) 12� 42–70 41.3 20�12
+∞ 2670�60

+90 2922 8.6 (5.5 to 10.7)
2 (30�, �85�) 12� 40–70 46.8 21�9

+∞ 2600�50
+70 2906 10.5 (8.1 to 12.2)

3 (35�, �85�) 12� 40–70 46.7 16�6
+∞ 2630�60

+60 2906 9.5 (7.4 to 11.6)
4 (45�, �85�) 12� 40–70 46.5 12�6

+∞ 2690�60
+90 2907 7.5 (4.4 to 9.5)

5 (95�, 20�) 12� 57–70 40.6 60�51
+∞ 2690�50

+90 2898 7.2 (4.1 to 8.9)
6 (95�, �25�) 12� 42–60 41.6 16�6

+∞ 2610�60
+80 2935 11.1 (8.3 to 13.1)

7 (110�, �45�) 12� 40–70 45.0 8�2
+2 2820�50

+70 2937 4.0 (1.6 to 5.7)
8 (144�, �16�) 12� 38–54 57.6 14�6

+∞ 2700�90
+150 2907 7.1 (2.0 to 10.2)

9 (155�, 45�) 12� 30–44 58.0 22�7
+∞ 2590�80

+90 2914 11.1 (8.0 to 13.9)
10 (160�, 45�) 12� 30–42 58.6 18�7

+∞ 2650�90
+130 2910 8.9 (4.5 to 12.0)

11 (177�, �69�) 12� 47–69 24.9 90
+∞ 2630�70

+140 2992 12.1 (7.4 to 14.4)
12 (182�, �70�) 12� 47–70 25.1 15�8

+∞ 2720�100
+180 2992 9.1 (3.1 to 12.4)

13 (191�, �43�) 12� 40–56 23.9 20�9
+∞ 2730�110

+180 3041 10.2 (4.3 to 13.8)
14 (210�, 70�) 20� 32–60 53.0 11�2

+3 2860�50
+40 2899 1.3 (0.0 to 3.1)

15 (215�, 20�) 12� 45–60 74.6 15�7
+∞ 2660�40

+60 2898 8.2 (6.1 to 9.6)
16 (227�, �35�) 15� 40–60 53.9 130

+∞ 2650�40
+60 2896 8.5 (6.4 to 9.9)

17 (230�, 20�) 12� 35–47 68.8 63�47
+∞ 2800�30

+80 2897 3.3 (0.6 to 4.4)
18 (252�, �74�) 12� 47–57 39.3 18�18

+∞ 2620�70
+290 2925 10.4 (0.5 to 12.8)

19 (255�, �77�) 12� 49–60 38.9 13�13
+∞ 2630�90

+290 2929 10.2 (0.3 to 13.3)
20 (260�, 75�) 12� 42–58 47.4 22�15

+∞ 2670�40
+130 2913 8.3 (3.9 to 9.7)

21 (270�, 70�) 12� 40–60 46.6 7�6
+9 2870�180

+210 2915 1.5 (�5.7 to 7.7)
22 (325�, �70�) 12� 40–60 47.7 35�23

+∞ 2670�70
+110 2899 7.9 (4.1 to 10.3)

23 (335�, �70�) 12� 40–60 48.1 18�11
+∞ 2720�90

+160 2897 6.1 (0.6 to 9.2)
24 (340�, �70�) 12� 44–60 48.4 13�7

+∞ 2750�120
+240 2896 5.0 (�3.2 to 9.2)

25 (345�, �65�) 12� 40–60 46.3 19�9
+∞ 2710�60

+100 2895 6.4 (2.9 to 8.5)
26 (350�, �65�) 12� 44–56 46.9 13�8

+∞ 2700�110
+220 2894 6.7 (�0.9 to 10.5)

HUANG AND WIECZOREK: DENSITY AND POROSITY OF THE LUNAR CRUST E05003E05003

4 of 9



to 60 where the correlation spectrum possesses values greater
than 0.95. The spectral correlation function sharply decreases
beyond degree 60, which is a result of the sparse four-way
Doppler tracking on the lunar farside, especially at mid to
high northern latitudes [Matsumoto et al., 2010]. The geo-
physical model is seen to be capable of fitting the entire
degree range where the correlation is high.
[17] Figure 3 shows the minimum misfit for this same

region as a function of each varied geophysical parameter.
With a 67% confidence interval, the crustal density is con-
strained to lie between 2750 to 3000 kg m�3, possessing a
best fit value of 2840 kg m�3. The best fit elastic thickness is
11 km, with an allowable range from 4 to 22 km. The misfit
function of the load ratio is approximately centered over zero,
and indicates that subsurface loads are not required to fit the
admittance. Nevertheless, the best fitting subsurface load is
found to be about 4% of the total load, and could contribute
up to 25% of the total load (1s).
[18] Our results for all 9 regions show that the best fit-

ting densities vary from about 2640 to 3010 kg m�3, with

individual uncertainties of about �200 kg m�3. Best fit
elastic thicknesses are between 5 and 30 km, but for most
cases, any value greater than 0 can fit the data. The best fit
loading parameter L varies from �0.15 to 0.18, with a ten-
dency toward positive values. Nevertheless, the uncertainties
for each region allow both positive and negative values, and
the misfit plots are approximately centered over zero.
[19] From our analyses that consider both surface and

subsurface loads, the elastic thickness is not well constrained
and the uncertainties on the crustal density are somewhat
high. Since our results show that subsurface loads are not
required to fit the observed localized admittances, we have
performed similar inversions using the assumption that only
surface loads are present (i.e., L = 0) in an attempt to place
tighter constraints on these parameters. Under this assump-
tion, 26 regions are found to be both amenable to analysis
and to have well constrained densities. As summarized in
Table 2, the best fit bulk densities for these regions lie
between 2590 and 2870 kg m�3, with an average of 2691 kg
m�3. Most of the density analyses have uncertainties that are

Figure 2. Localized admittance and correlation spectra for a representative region over the farside
highlands and the best fitting geophysical model. The localization window is centered at 210�E, 70�N with
q0 = 20� and Lwin = 13, and the localized admittance is modeled only where the localized correlations are
close to unity between degrees 32 and 60.

Figure 3. Minimummisfits for the region shown in Figure 2 as a function of (a) crustal density, (b) elastic
thickness, and (c) loading parameter. The green and blue lines represent the 1 s and 2 s confidence
intervals, respectively.

HUANG AND WIECZOREK: DENSITY AND POROSITY OF THE LUNAR CRUST E05003E05003

5 of 9



about �100 kg m�3, and although the elastic thickness
estimates are somewhat variable, those analyses with the
smallest uncertainties have values close to 10 km.
[20] We have verified that the crustal densities presented in

Tables 1 and 2 are robust in several ways. First, we have
tested crustal thicknesses that differ by �15 km with respect
to our reference model, and found that our crustal densities
only varied by �50 kg m�3 and that the loading ratio only
varied by about �0.04. Given that the admittance does not
depend upon crustal thickness in the short-wavelength
asymptotic limit, the insensitivity of crustal thickness on our
results should not be too surprising. The mantle density is
relatively well constrained as a result of the Moon’s high
moment of inertia factor [e.g., Khan et al., 2007]. To test our
results to the sensitivity of the chosen value, we have varied
our mantle density by �50 kg m�3 with respect to our
reference value and found that the inverted crustal density
varied by less than �10 kg m�3. Slightly different window
sizes and neighboring locations were used, as were different
gravity models, such as SGM100h [Matsumoto et al., 2010].
The inversion results for these analyses were found to be

similar to those presented here. Higher-resolution gravity
data over the nearside hemisphere from the LP150Q model
[Konopliv et al., 2001] did not improve in any significant
way our inversions over the nearside as a result of the strong
regularization constraint that was used to obtain this global
gravitational model with no farside coverage.

4. Grain Density and Crustal Porosity

[21] Based on the 26 localized admittance analyses that
neglect subsurface loads (Table 2), the average bulk density
of the lunar highlands crust is estimated to be 2694 kg m�3.
This value is somewhat lower than the values of 2860
and 2930 kg m�3 that have been advocated for the upper
and lower crust of the Moon, respectively, based on the
mineralogy of central peaks [e.g., Wieczorek et al., 2006;
Wieczorek and Zuber, 2001]. Given that the upper crust of
the Moon is expected to be highly fractured [e.g., Toksöz
et al., 1974] and that the gravity analyses are only sensitive
to the bulk density, and not grain density, we attribute this
difference to the presence of porosity in the crust. In this
section, we develop an independent method to estimate the
grain density of the crust based on analyses of Apollo sam-
ples and orbital remote sensing data, and then compare these
to the values obtained from the gravity analyses to determine
the crustal porosity.
[22] We start with the lunar rock compositions as sum-

marized in Wieczorek et al. [2006, Tables A3.1–A3.9,
A3.11, and A3.12]. A standard CIPW mineralogical norm
was performed [Best, 2002, Appendix B] for each bulk
chemical composition, and the pore-free grain density of the
rock was estimated using the known density of the com-
ponent minerals. After neglecting 4 analyses that were not
amenable to the mineralogical norm, 236 rock densities were
obtained that are representative of the ferroan anorthosite,
Mg suite, alkali suite, KREEP basalt, impact melt, granulitic
breccia, mare basalt and volcanic glass compositions.
[23] The iron and titanium abundances of lunar samples are

known to vary dramatically, and this is simply a consequence
of the variable quantities of mafic phases and the mineral
ilmenite. We performed a least squares analysis between the
estimated rock density and these two oxides and found a very
good empirical correlation, as shown in Figure 4a [see also
Solomon, 1978; Wieczorek and Phillips, 1997]:

rFe�Ti ¼ 27:3FeOþ 11:0TiO2 þ 2773: ð8Þ

[24] The root mean square misfit with respect to the best
fitting line is only 45 kg m�3, and only 8 of the 236 samples
have misfits greater than 100 kg m�3. Those samples with the
greatest misfits correspond to atypical compositions (such as
spinel troctolites, dunites, and granites), and since these
compositions are not expected to be volumetrically important
in the lunar crust, knowledge of only the abundance of iron
and titanium as measured from orbit are necessary to obtain a
very good estimate of the pore-free crustal density. Though it
is not strictly appropriate to apply this correlation to the lunar
regolith, as this contains glass that is not taken into account in
our mineralogical norm, the regolith is only about 10 m thick
[e.g., Fa and Wieczorek, 2012] and is volumetrically insig-
nificant with respect to our gravity analyses. Nevertheless,
the bulk composition of the regolith should be representative

Figure 4. (a) Estimated pore-free grain densities of lunar
samples as a function of the combined weighted concentra-
tions of FeO and TiO2 in wt. %. (b) Global estimates of the
pore-free surface density derived from the relationship in
Figure 4a combined with the iron and titanium abundances
obtained from the Lunar Prospector gamma ray spectrometer.
This map is presented in a simple cylindrical projection cen-
tered on the farside hemisphere. The high densities on the
nearside hemisphere correspond to the mare basalts, and the
slight enhancement in density in the southern farside high-
lands corresponds to the South Pole-Aikten basin.
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of the composition of the underlying crust, except in regions
where the composition changes rapidly, such as at the
boundaries between the highlands and maria.
[25] We note that Kiefer et al. [2012] have directly mea-

sured the grain densities of 13 lunar rocks using helium
pycnometry and bead techniques. When compared with grain
densities estimated by mineralogical norm approaches, the
difference was found to be about 20 kg m�3, which is less
than the variation about our best fit empirical correlation. For
the samples analyzed in their study, the RMS difference
between the measured grain densities and the estimates from
our correlation is 64 kg m�3, which is smaller than the
uncertainty in the majority of our gravity-based bulk density
determinations. Though our estimated grain densities corre-
late best with TiO2 and FeO, we note that the pairs TiO2 and
Al2O3, and TiO2 and CaO, also correlate well with grain
density, but with larger RMS misfits of 67 and 122 kg m�3,
respectively.
[26] Lunar Prospector gamma ray spectrometer global iron

and titanium abundances [Prettyman et al., 2006] are used
to estimate the pore-free grain density of the lunar crust in
Figure 4b. The Lunar Prospector data products used here
have a 5� spatial resolution (�150 km), which is more than
sufficient for comparison to our admittance analyses that
cover regions several times larger. As shown in this map,
the pore-free density of the lunar crust is expected to vary
laterally, from about 2860 kg m�3 in the highlands, to about
3000 kg m�3 in the South Pole-Aitken basin, to up to 3500 kg
m�3 for the high-titanium mare basalts on the nearside
hemisphere. Variations of only 100 kg m�3 are expected
within the relatively homogeneous farside highlands. Figure 5a
shows the locations of our analysis regions superposed
on a map of estimated grain density, and for comparison,
Figure 5b shows our estimated bulk densities for the same
regions.
[27] Assuming that the composition of the lunar surface is

representative of the underlying crust, the porosity is calcu-
lated for each region in Tables 1 and 2. Negative porosities
are unphysical, but are quoted in order to aid in interpreting
the significance of these values. In calculating the porosity,
we have ignored the inherent uncertainty in the estimated
grain density from equation (8), given that the uncertainty of

45 kg m�3 of this relationship is considerably less than the
bulk density uncertainties from the gravity and topography
analyses. Using all those analyses that neglect subsurface
loads, the porosity is found to be 7.7 � 2.8%, with permis-
sible values (1s) from 0 to 14% (Figure 6).
[28] Given that the admittance at the highest degrees in our

analyses is not affected significantly by subsurface loads,
and that the lithosphere is effectively rigid at these short
wavelengths, our bulk crustal densities and porosities should
be considered representative over the same depth scale as
the topographic surface load, which is on the order of 2 to
3 km. Though significant porosity is likely to exist beneath
these depths, the present analysis cannot provide any quan-
titative constraints on this magnitude of this value. Apollo
seismic data show that seismic velocities gradually increase
with depth in the crust [e.g., Khan and Mosegaard, 2002;

Figure 5. Grain densities and estimated bulk densities. (a) Global grain density plot showing the regions
analyzed in Table 2, and (b) plot of our inverted bulk densities from gravity and topography. Numbers in
Figure 5a are the best fitting porosities. Both Figures 5a and 5b have the same projection as Figure 1.

Figure 6. Crustal porosity as a function of the estimated
pore-free grain density.
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Gagnepain-Beyneix et al., 2006], perhaps all the way into the
upper mantle, and this has been attributed to the closure of
impact-generated porosity with increasing lithostatic pres-
sure [Toksöz et al., 1972; Simmons et al., 1973]. This picture
is generally consistent with measurements of seismic veloc-
ity of lunar samples as a function of confining pressure [Todd
et al., 1973; Wang et al., 1973; Simmons et al., 1975]. The
Apollo seismic measurements have been used to suggest that
crustal porosity may decrease exponentially with depth,
perhaps with an e-folding length scale of about 6 km [Binder
and Lange, 1980].
[29] Our estimated porosities are broadly consistent with

what is known about the porosities of extra-terrestrial mate-
rials and impact-fractured terrestrial impact craters. Ordinary
chondrite falls have porosities of 7.4 � 5.3% [Consolmagno
et al., 2008, and references therein], and lunar meteorites
have measured porosities of 7.5 � 3.2% [Warren, 2001] and
6.5 � 4.7% [Kiefer et al., 2012]. Apollo samples collected at
the surface can have significantly higher porosities (�20%
[see Warren, 2001; Kiefer et al., 2012]), but these porosities
are unlikely to be representative of the materials underlying
the impact-processed regolith. Though shock appears to
compact and remove porosity in meteorites, a baseline
porosity of about 5–10% was found for even the most highly
shocked chondrite meteorites [Consolmagno et al., 2008].
Most of the void space in these meteorites is not due to
macroscopic pores, but is rather a result of shock-related
microfractures that cut grain boundaries. Based on the grav-
ity anomaly associated with the Reis impact crater, about 5%
porosity is predicted in the rocks that underlay this crater
[Pohl et al., 1977], which is similar to the meteorite
porosities.

5. Conclusions

[30] Localized spectral admittance analyses using newly
obtained gravity and topography of the Moon show that it is
possible to invert for the density of the lunar crust. When
neglecting subsurface loads, an average density of 2691 �
71 kg m�3 is found for the farside highlands, and based on
geochemical constraints and global remote sensing data, the
porosity of the upper few kilometers of the crust is calculated
to be 7.7 � 2.8%. This porosity is similar to that found in
both lunar and chondritic meteorites, and in analogy to the
meteorite results, we suggest that this porosity is a result of
microfractures created by the cumulative effect of billions of
years of impact generated shock waves.
[31] The presence of significant crustal porosity over

kilometer scale depths has many implications for lunar
evolution. First, thermal conductivity is known to be highly
sensitive to porosity [Warren and Rasmussen, 1987], and
reduced thermal conductivities in the upper crust imply hotter
temperatures at depth. Second, impact crater scaling laws
depend upon the porosity of the target material [Holsapple
and Housen, 2007], and for several kilometers of fractured
crust, we would expect craters smaller than a few tens of
kilometers to form in a slightly porous material. The change
from porous to nonporous scaling has important implica-
tions for the relationship between impact crater and asteroid
size-frequency distributions [Ivanov, 2006; Le Feuvre and
Wieczorek, 2011]. Finally, porosity in the upper crust would
reduce the strength of the lithosphere. Using future data from

NASA’s Gravity Recovery and Interior Laboratory (GRAIL)
mission, it will be possible to extend the results of this anal-
ysis globally.
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