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[1] A theoretical model for radar scattering from the lunar regolith using the vector
radiative transfer theory for random media has been developed in order to aid in the
interpretation of Mini‐SAR data from the Chandrayaan‐1 and Lunar Reconnaissance
Orbiter missions. The lunar regolith is represented as a homogeneous fine‐grained layer
with rough upper and lower parallel interfaces that possesses embedded inclusions with
a different dielectric constant. Our model considers five scattering mechanisms in the
regolith layer: diffuse scattering from both the surface and subsurface, volume scattering
from buried inclusions, and the interactions of scattering between buried inclusions and the
rough interfaces (both the lunar surface and subsurface). Multiple scattering between
buried inclusions and coherent backscatter opposite effect are not considered in the current
model. The modeled radar scattering coefficients are validated using numerical finite
difference time domain simulations and are compared with incident angle–averaged
Earth‐based radar observations of the Moon. Both polarized and depolarized radar
backscattering coefficients and the circular polarization ratio (CPR) are calculated as a
function of incidence angle, regolith thickness, surface and subsurface roughness, surface
slope, abundance and shape of buried rocks, and the FeO+TiO2 content of the regolith.
Simulation results show that the polarized (opposite sense) radar echo strength at S and
X bands is mostly dominated by scattering from the rough surface and buried rocks, while
the depolarized (same sense) radar echo strength is dominated by scattering from
buried rocks or ice inclusions. Finally, to explore the expected polarimetric signature of ice
in the polar permanently shadowed areas, four parametric regolith models are considered
and the possibility of detecting diffuse ice inclusions by the CPR is addressed. Our study
suggests that detection of ice inclusions at the lunar poles using solely the CPR will
be difficult given the small dielectric contrast between the regolith and ice.

Citation: Fa, W., M. A. Wieczorek, and E. Heggy (2011), Modeling polarimetric radar scattering from the lunar surface: Study
on the effect of physical properties of the regolith layer, J. Geophys. Res., 116, E03005, doi:10.1029/2010JE003649.

1. Introduction

[2] Radar imaging is a powerful tool in lunar and plane-
tary surface and subsurface exploration due to its ability to
penetrate loose desiccated sediments such as dust and reg-
olith, and such observations give information that is com-
plementary to data obtained in the visible, infrared, and
thermal infrared regimes. Since the early 1960s, a series of
radar images of the Moon’s nearside hemisphere have been
obtained using the Earth‐based radars at MIT’s Lincoln
Laboratory, Millstone Hill, Arecibo, Haystack and Goldstone
observatory [e.g., Evans and Pettengill, 1963; Thompson,
1974, 1987; Zisk et al., 1974; Margot et al., 1999; Campbell
et al., 2007]. Extensive past work using these radar data

includes studies of lunar impact crater morphology [Thompson
et al., 1974], mare lava flow ilmenite content [Schaber et al.,
1975], analysis of regional pyroclastic deposits [Zisk et
al., 1977], regolith composition and structure [Campbell et
al., 1997], mapping of the lunar surface topography [Zisk,
1972; Margot et al., 1999] and estimation of the thickness
of the lunar regolith layer [Shkuratov and Bondarenko, 2001].
[3] One particular interest is to use the received radar

circular polarization ratio (CPR) to search for potential ice
depositswhere regions of theMoon are permanently shadowed
near the poles [Stacy et al., 1997; Campbell et al., 2003].
Previously, the Clementine bistatic radar experiment reported
finding evidence of ice in the vicinity of Shackleton crater
[Nozette et al., 1996], whereas Earth‐based Arecibo radar
observations suggested no significant differences between the
sunlit and permanently shadowedwalls of this crater [Campbell
et al., 2006]. Therefore, from a radar standpoint, the presence
of ice deposits at the poles of the Moon is currently unre-
solved. In an attempt to reduce the ambiguities on these
previous observations, two orbital miniature synthetic aper-
ture radars (Mini‐SAR and Mini‐RF) on the Chandrayaan‐1
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and Lunar Reconnaissance Orbiter (LRO) missions, have
imaged the lunar surface (and will continue to do so over the
next two years for LRO), with the principle objective of
detecting the polarimetric signature of ice in the shallow lunar
subsurface in the lunar polar areas [Bussey et al., 2007; Spudis
et al., 2010].
[4] Knowledge about radar wave penetration, reflection,

and scattering in the lunar regolith layer is critical to inter-
preting the received radar echoes and identifying potential
ice deposits. Radar scattering from the lunar surface is com-
plicated, since we must consider the transmission, attenua-
tion, reflection and scattering of radar waves at both the
lunar surface and base of the regolith layer, but also scat-
tering from buried rocks and their interactions with the
surface and base of the regolith. Using Earth‐based
observations of radar echoes and their variation as a function
of the incidence angle, Evans and Hagfors [1964] proposed
an empirical quasi‐specular and diffuse component radar
scattering model, where the quasi‐specular component is the
echo from relatively large and smooth surfaces that are
perpendicular to the radar’s line of sight and the diffuse
component is attributed to scattering from wavelength‐sized
rocks, either on the surface or buried in lunar regolith.
Hagfors [1964] modeled the quasi‐specular component
using the physical optics approximation (i.e., the Kirchhoff
approach, which assumes that the radius of curvature of the
surface relief is large with respect to the incident radar
wavelength). Hagfors [1967] pointed out that rocks were
responsible for the diffuse scattering component, and that
their nonspherical shape led to the observed partial polari-
zation. Burns [1969] suggested that most of the scattering
resulted from single scattering by rocks that were either on
the lunar surface or buried in the regolith. Thompson et al.
[1970] modeled the single scattering behavior of rocks
using Mie theory and suggested that models with single
scattering by surface rocks or multiple scattering between
buried rocks were capable of accounting for several
observed properties of the diffuse component. Pollack and
Whitehill [1972] used Mie scattering theory and the matrix
doubling method [e.g., Fung, 1994, chap. 8] to calculate the
single and multiple scattering from lunar rocks within the
ejecta blanket of fresh young craters, and found that multiple
scattering made a significant contribution to the partial
depolarization of the reflected signal, while single scattering
was also very important. Based on numerical simulations of
radio wave scattering by rocks that were buried, partly
buried, or on top of the regolith using numerical finite dif-
ference time domain (FDTD) techniques, Baron et al. [1996]
found that radar scattering from a buried rock would be
much weaker than the case where the rock was resting on
the surface, although under some conditions partially buried
rocks could scatter more strongly than rocks fully exposed
on the surface. Using a buried substrate model and the
Mie scattering theory, Campbell et al. [1997] analyzed the
influence on the 70 cm radar echoes from the abundance of
rocks in the regolith, the regolith thickness, and the dielec-
tric properties of the regolith and rocks. Thompson et al.
[2011] used a two‐component mixing model with quasi‐
specular and diffuse components to estimate the scattering
differences associated with slopes, surface roughness and
pure ice deposits, and proposed an empirical method for
separating the enhanced diffuse scattering of the near‐

surface ice layer from that due to the rough surface and
buried rocks.
[5] In this study, a theoretical model for radar scattering

from the lunar regolith layer is developed using vector
radiative transfer (VRT) theory of random media [Tsang
et al., 1985; Jin, 1994]. The lunar regolith layer is modeled
as a homogeneous fine‐grained layer possessing rough upper
and lower interfaces with randomly embedded inclusions.
Vector radiative transfer theory is used to give the quanti-
tative relations between polarimetric radar echoes and the
physical properties of the regolith layer. The integral equa-
tion method (IEM) for rough surface scattering [Fung, 1994,
chap. 4] is used to calculate radar wave scattering and pene-
tration at each rough interface. Biaxial ellipsoidal particles
are used to model the buried rocks, with their scattering
properties depending upon their orientation, size and shape.
An iterative method is used to obtain the Mueller matrix
solution of the VRT equation, which gives the fully polar-
imetric radar scattering coefficients for any transmit/receive
polarization. The derived Mueller matrix solution contains
five scattering mechanisms for the regolith layer: diffuse
scattering from both the rough surface and the rough inter-
face between the regolith and underlying bedrock, direct
scattering from inclusions embedded in the regolith, and the
interactions of scattering between inclusions and the rough
upper and lower surfaces of the regolith layer.
[6] Our modeled radar scattering coefficients are validated

by numerical finite difference time domain (FDTD) simu-
lations of radar wave propagation and are compared with
incident angle–averaged Earth‐based radar observation of
the Moon. Polarimetric radar scattering from the lunar sur-
face, as well as CPRs, are calculated using the VRT model
as a function of incidence angle, regolith thickness, surface
and subsurface roughness, surface slope, abundance and
shape of buried rocks, and FeO+TiO2 content in regolith,
among other parameters. Finally, the possibility to detect ice
inclusions in the polar permanently shadowed areas of the
Moon using radar data is analyzed and discussed using our
validated VRT model.
[7] The principal distinction between our radar scattering

model using VRT theory and other previous models is that
our model is an analytical model based on physical wave
propagation principles, whereas most previous models are
empirical in nature. The most widely used approach makes
use of the physical optics approximation for rough surface
scattering [Hagfors, 1964]; while not empirical, this model
cannot take into account volume scattering from buried rocks,
nor the interactions between a rough surface and the buried
rocks. Numerical approaches (such as FDTD or the Method
of Moments [e.g., Harrington, 1993]) can give a rigorous
solution for complex problems, but the extensive computa-
tion usually only allows a limited number of scenarios to be
investigated. In addition, our model is a fully polarimetric
scattering model for both monostatic and bistatic radar
observations, which allows us to calculate both the back-
scattering and bistatic radar scattering coefficient for any
desired transmit/receive polarization.
[8] In section 2, we introduce a two‐layer model of the

lunar surface and discuss the parameters that can affect radar
echoes, such as regolith thickness, regolith bulk density,
surface roughness, dielectric constant, and the size frequency
distribution of buried inclusions. The vector radiative
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transfer (VRT) equation for radar scattering from the lunar
surface is given in section 3, and the Mueller matrix solution
is then derived using an iterative method, from which radar
scattering coefficients and the CPR can be calculated ana-
lytically. A tilted regolith model is also introduced in order
to take into account the influence of large‐scale surface
slopes. In section 4, our radar scattering model is validated
by finite difference time domain (FDTD) numerical simu-
lations of radar wave propagation using the same input
parameters. In section 5, we compare our model predictions
with incident angle–averaged Earth‐based radar observa-
tions of the Moon. Polarimetric radar scattering coefficients
from the lunar surface, including CPRs, are calculated and
discussed as a function of regolith properties in section 6.
To explore the expected polarimetric signature of ice in the
polar permanently shadowed areas of the Moon using radar,
four parametric regolith models are considered and the
possibility of detecting ice inclusions by radar data is ana-
lyzed and discussed using our VRT model in section 7. In
section 8, limitations of our radar scattering model are dis-
cussed and its future applications in lunar exploration are
presented. Several of the more mathematical aspects of this
paper, including the rough surface scattering matrix based
on IEM, some aspects of our Mueller matrix derivation, and
effects of large surface slopes are presented in Appendices A,
B, C and D, respectively.

2. Two‐Layer Lunar Surface Model

[9] Previous investigations have shown that, with few
exceptions, almost the entire lunar surface consists of a
regolith layer that completely covers the underlying bedrock
[e.g., McKay et al., 1991]. In general, the median particle
size of the regolith is from 40 to 130 mm, with an average of
70 mm. These grain sizes are considerably smaller than radar
observation wavelengths, allowing one to treat the regolith
(excluding larger rocks) as a continuous medium. The lunar

regolith is a byproduct of the continuous impact of large
and small meteoroids with the lunar surface, and consists
largely of fragmented materials such as a surface dust layer,
unconsolidated rock materials, breccias, and glass frag-
ments. The physical characteristics of the regolith not only
provide important information concerning significant ques-
tions in lunar geology, but are also critical for quantifying
potential resources for future lunar exploration (such as ice
or helium‐3) and engineering constrains for human out-
posts and rover trafficability.
[10] Figure 1 shows a schematic diagram of our simplified

model of the lunar regolith that consists of a homogenous
fine‐grained layer of thickness d with embedded inclusions
and whose surface and base are rough (a summary of the
parameters in our model is given in Table 1). Though we
will often refer to the embedded inclusions simply as
“rocks,” we emphasize that these could also be composed of
ice. The complex dielectric permittivity of the regolith, in-
clusions and the underlying bedrock are indicated by "1, "s,
and "2, respectively. The roughness of the surface and sub-
surface are characterized by their root mean square (RMS)
height and correlation length, with d1 and l1 for the surface
and d2 and l2 for the interface between the regolith and
bedrock, respectively. The differential fractional volume of
inclusions with radius r to r + dr, dfs(r), or equivalently the
differential number of the inclusions per unit volume dn(r),
is used to describe the population of inclusions in the reg-
olith layer. These two quantities are related by the expres-
sion dfs(r) = dn(r) · v(r), where v(r) is the volume of a single
inclusion with radius r. Given the lower and upper bounds
on the size of inclusions considered, the total fractional
volume of the inclusions fs (or the number of the inclusions
per unit volume n) can be obtained by integrating dfs(r)
(or dn(r)) over r.
[11] The regolith layer has experienced continuous im-

pacting by large and small meteoroids over billions of years
and its thickness is estimated to vary from a few meters to

Figure 1. Schematic diagram of the lunar surface that consists of a regolith, embedded rocks, and under-
lying bedrock. The regolith thickness is d, the roughness of the lunar surface and of the interface between the
regolith and bedrock is described by RMS heights and correlation lengths, d1 and l1 for the surface, and d2
and l2 for the subsurface, respectively. Buried inclusions are described by their shape, size, orientation, and
fractional volume. The dielectric permittivity of the regolith, buried inclusions, and the underlying bedrock
are "1, "s, and "2, respectively. The Stokes vector I i with associated incidence angle �i represents the inten-
sity and polarization state of the incident radar wave, I s represents the intensity and polarization state of the
scattered radar wave with scattering angle �s. Azimuthal scattering angle shown here is �s = 180°.
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tens of meters [e.g., McKay et al., 1991]. In general, the
thickness of the regolith correlates with the age of the lunar
surface: the older the age, the greater the thickness. Based
on direct measurements made during the Apollo and Luna
missions (such as from seismic experiments at the Apollo 11,
12, and 14–17 landing sites [Nakamura et al., 1975] and
multifrequency electromagnetic probing at the Apollo 17
landing site [Strangway et al., 1975]), as well as studies of
impact crater morphology and crater size‐frequency dis-
tributions [Oberbeck and Quaide, 1967, 1968; Quaide and
Oberbeck, 1968], the average thickness of the regolith is
believed to be about 4–5 m in the mare and 10–15 m in the
older highland regions [e.g.,McKay et al., 1991]. A study of
Earth‐based 70 cm radar data for the nearside of the Moon
estimated that the regolith thickness varies from 1.5 to 10 m
for the mare, and from 1 to 18 m for the highlands
[Shkuratov and Bondarenko, 2001]. Recently, an analysis of
the Chang‐E 1 radiometer data suggested that the average
thickness of the regolith is 4.5 m for the mare and 7.6 m for
the equatorial highlands (<60° latitude) [Fa and Jin, 2010].
[12] Surface roughness at scales comparable to the illu-

minating radar wavelength is one of the most important fac-
tors that influence the radar echo. The statistical properties
of a random rough surface are here described by the RMS
height d and the correlation length l (here defined using 1‐D
profiles), which determine the vertical and horizontal scale
of the roughness for a given surface, respectively. Surface
height variations as a function of horizontal scale are
described by the correlation function, with some commonly
used functions being the Gaussian correlation function, the
exponential correlation function, and the 1.5‐power corre-
lation function [e.g., Fung, 1994, chap. 2; Jin, 2005, chap. 5
and 6]. For a Gaussian random rough surface for 1‐D pro-
files, the RMS slope s =

ffiffiffi
2

p
d/l is often referred to as the

representative statistical property of the roughness [e.g., Jin,
1994, chap. 9; Tsang et al., 2000, chap. 9; Shepard et al.,
2001]. For an exponential correlation function, an analytic
expression for the RMS slope does not exist [Tsang et al.,
2000, chap. 9]; for purposes of comparison, we will use the
same relation as for Gaussian surfaces. The use of this
Gaussian relationship for exponential surfaces does not affect

our roughness scattering calculation using IEM, since this
only requires the correlation length l and RMS height d.
[13] The surfaces of the maria are relatively smooth since

they are relatively young and contain only a few large
impact craters. In contrast, the highlands are more rugged
because they are older and have experienced a larger num-
ber of large impact events. Using bistatic radar observations
during Apollo 14 and 15, Tyler and Howard [1973] sug-
gested that the lunar surface is gently undulating with 1‐D
RMS slopes on the order of 2° to 4° in the maria and 6° to 8°
in the highlands on decimeter to hundred meter scales.
[14] Subsurface roughness is another potential factor that

could affect the received radar echo, and the magnitude of
this effect depends upon the dielectric loss of the incident
radar wave in the regolith, which correlates with both the
FeO+TiO2 content and regolith thickness. Unfortunately,
little is known about the subsurface roughness and in this
study the subsurface roughness is assumed to be of the same
magnitude as that of the lunar surface.
[15] A rough surface can also be considered as a self‐

affine (fractal) surface, which means that the roughness
(both the RMS height and correlation length) depends on the
length scale over which it is measured [Shepard et al.,
2001]. Little is known about the scale dependence of the
lunar surface roughness, though this will certainly change
considerably following the analysis of data from recent and
ongoing missions. Regardless, if the power spectrum of the
surface relief (i.e., the Fourier transform of the surface
autocorrelation function) were to be described by a self‐
affine fractal surface, radar scattering from such a surface
could be calculated using the same approach as described in
Appendix A.
[16] The cumulative size‐frequency distribution of rocks

at the lunar surface is available at certain locations from pho-
tographs taken at the Surveyor landing sites [see Shoemaker
and Morris, 1968]. The differential volumetric rock popu-
lation is obtained by means of Rosiwal’s principle, which
states that the fractional area covered by surface rocks equals
the fractional volume occupied by buried rocks [Rosiwal,
1898]. Table 2 lists the power law fits of the rock popula-
tions at the Surveyor sites, where the first column is the

Table 1. Model Parameters

Parameters Definition Typical Value Reference

d regolith thickness 4–5 m for the maria, 10–15 m
for the highlands

McKay et al. [1991]

d1, l1 root mean square height and correlation
length of surface

not available

d2, l2 root mean square height and correlation
length of subsurface

not available

s1 =
ffiffiffi
2

p
d1/l1 1‐D root mean square slope of surface 2°–4° for the maira, 6°–8° for

the highlands
Tyler and Howard [1973]

s2 =
ffiffiffi
2

p
d2/l2 1‐D root mean square slope of subsurface not available

fs fractional volume of buried inclusions 0–0.1 based on rocks at the
Surveyor landing sites

Thompson et al. [1970]

c, a semimajor and semiminor axes of the
buried inclusions

several mm to tens of cm Thompson et al. [1970]

"1, "2, "s dielectric constant of regolith, underlying
bedrock, and rocks

bulk density and composition
dependent

Carrier et al. [1991]

"ice dielectric constant of ice 3.15 + i(0.0001–0.1) Cumming [1952], Evans [1965],
and Ray [1972]

r regolith bulk density 1.3–2.0 g/cm3 Carrier et al. [1991]
S FeO+TiO2 abundance of regolith 0–30 (wt. %) Lucey et al. [2000], Lawrence et al. [2002],

and Prettyman et al. [2006]
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cumulative distribution of rock per m2, N(r), as a function of
radius r that derived from Shoemaker and Morris [1968]. By
differentiating N(r) with respect to r, the second column
shows the corresponding differential distribution of rock
sizes per m2, dN(r). Finally, using Rosiwal’s principle, the
third column lists the differential number of rocks per m3,
dn(r). The lower bound of the rock debris is 0.05 mm, and
the fourth column lists the upper bound of the rock size r at
each Surveyor landing site. We note both N(r) and dN(r) are
often quoted incorrectly in the literature.
[17] Figures 2a and 2b show the total fractional volume of

buried rocks fs(rl ≤ r ≤ ru) as a function of lower and upper
bounds of the rocks sizes, where ru = 1 m for Figure 2a and
rl = 0.05 m for Figure 2b. Though typical values of the
fractional volume of buried rocks are between 0 and 0.02,
the Surveyor 7 landing site is found to have a relatively larger
number of buried rocks with a fractional volume above 0.1.
Since the fractional volume of buried rocks is generally
below 0.1 (except in the most extreme cases), multiple
scattering between buried rocks in a lossy medium can be
ignored [Tsang et al., 1985, chap. 2; Jin, 1994, chap. 8]. For
our calculations, based on these results, we will consider
fractional volumes of rock between 0 and 0.1. (We note that
this range might not be representative for ice inclusions in
the permanently shadowed craters.)
[18] Rocks on the lunar surface and buried in the regolith

are in general not spherical, as assumed in Table 2. Never-
theless, many studies have treated rocks as spheres since
this is a relatively simple and tractable approach from the
viewpoint of radar scattering [Thompson et al., 1970; Pollack
and Whitehill, 1972; Campbell et al., 1997]. In this study,
we will treat buried and surface rocks as nonspherical oblate
or prolate spheroids, because nonspherical rock shapes
could be a significant source of radar depolarization [Hagfors,

1967]. The sphericity is defined as the ratio of the semimajor
and semiminor axes, c/a, where a value of unity is a sphere,
values larger than unity are prolate spheroids (needles), and
values smaller than unity represent oblate spheroids (flat-
tened disks).
[19] We do not explicitly consider the effects of rocks

lying on the lunar surface in this study, since it is not pos-
sible to calculate the scattering of partly buried rocks with
our analytical approach. Indeed, the only method that can
accurately model this is by direct numerical simulation [e.g.,
Baron et al., 1996; Ye and Jin, 2010]. As an approximation,
we will thus assume that the effect of rocks lying on a
surface is equivalent to an increased surface roughness.
[20] Laboratory measurements of lunar regolith samples

show that the real part of the dielectric permittivity, "′1, is
strongly dependent upon bulk density r and is largely inde-
pendent of chemical composition [Olhoeft and Strangway,
1975]. Above 1 MHz, it is also independent of frequency
and temperature variations within the range of expected lunar
surface temperature variations (∼90 to 400 K). The loss tan-
gent, tan d ≡ "″1/"′1, which is the ratio of the imaginary part "″1
to the real part "′1 of the complex dielectric permittivity, is
strongly dependent on the bulk density, composition (in
particular, the abundance of ilmenite), frequency and tem-
perature [Olhoeft and Strangway, 1975]. According to
Carrier et al. [1991], the real part of the dielectric permit-
tivity and the loss tangent of the lunar regolith can be ex-
pressed as

"′1 ¼ 1:919� ð1aÞ

tan � ¼ 100:038Sþ0:312��3:260 ð1bÞ
where the bulk density, r, is given in g/cm3 and S =
FeO+TiO2 is in wt. %. Based on the Apollo in situ mea-

Table 2. Surface and Volumetric Size Distribution Functions of Rocks at the Surveyor Landing Sitesa

Surveyor N (r) (m−2) dN (r) (m−3) dn(r) (m−4)
Upper Bound of
Rock Size (m)

1 5.4 × 10−4r−2.11 1.1 × 10−3r−3.11 8.6 × 10−4r−4.11 0.50
3 1.2 × 10−4r−2.56 3.0 × 10−4r−3.56 2.2 × 10−4r−4.56 0.35
5 2.2 × 10−5r−2.65 5.9 × 10−5r−3.65 4.4 × 10−5r−4.65 0.20
6 9.9 × 10−5r−2.51 2.5 × 10−4r−3.51 1.9 × 10−4r−4.51 0.32
7, r < 0.25 m 7.8 × 10−3r−1.82 1.4 × 10−2r−2.82 1.1 × 10−2r−3.82 1.74
7, r > 0.25 m 9.1 × 10−4r−2.95 2.7 × 10−3r−3.95 2.0 × 10−3r−4.95 1.74

aN(r) is the cumulative number of rocks per m2 as a function of radius derived from Shoemaker and Morris [1968], dN(r) is the differential number of
rocks per m2, and dn(r) is the differential number of rocks per m3, with radii are in meters. The lower bound of rock debris is 0.05 mm and the fourth
column shows the upper bound of the rock size r. Both N(r) and dN(r) are commonly quoted incorrectly in the literature.

Figure 2. Fractional volume of buried rocks fs as a function of (a) lower rl and (b) upper ru bounds of the
rock sizes.
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surements, the bulk density of the regolith varies from about
1.3 g/cm3 at the lunar surface to a maximum value of about
1.9 g/cm3 at a depth of 3 m [Carrier et al., 1991]. The
regolith bulk density is also expected to depend on com-
position, with a difference of a factor of about 1.2 between
the mare and highlands, but for simplicity, we will here use
a single value for the entire Moon. The FeO+TiO2 content
of the lunar regolith can be obtained using different remote
sensing techniques, such as gamma ray, neutron, X‐ray
and optical spectroscopy. Both Clementine UV‐VIS spec-
tral reflectance and Lunar Prospector gamma ray spec-
trometer data have shown that the FeO+TiO2 content of the
lunar regolith varies from approximately 0 to 30 wt. %
across the lunar surface [Lucey et al., 2000; Lawrence et al.,
2002; Prettyman et al., 2006]. For the polar areas of the
Moon, there is little iron and titanium, and S is predicted
to be less than 5 wt.% for the North Pole and about 10 wt.%
for the South Pole. Finally, we note that the abundances of
metallic iron produced by the space weathering process are
too low to affect the dielectric properties of the regolith in any
significant way.
[21] Figure 3a shows the variation of the real part of

dielectric permittivity as a function of bulk density predicted
from equation (1a), and Figure 3b shows the predicted loss
tangent of the lunar regolith as a function of FeO+TiO2

content for bulk densities of 1.6, 1.8 and 2.0 g/cm3,
respectively, from equation (1b). As the FeO+TiO2 content
of the lunar regolith increases, the loss tangent increases and

this will act to increase the attenuation of the radar wave in
the regolith.
[22] The penetration depth d0 of radar waves in a homo-

geneous medium (i.e., the distance at which the incident
radar power decreases by a factor of e−1) is [e.g., Kong,
2008, chap. 3]

d0 ¼
ffiffiffiffi
"′

p

2�"′′
� ¼ c

ffiffiffiffi
"′

p

2�f "′′
ð2Þ

where l and f are the wavelength and frequency of the radar
wave in free space, "′ and "″ are the real and imaginary part
of the dielectric permittivity of the medium, and c is the
speed of light in vacuum. Figure 4 shows the penetration
depth of radar waves as a function of FeO+TiO2 content
in the lunar regolith layer at 2.38 GHz and 7.14 GHz
(the Mini‐SAR frequencies for Chandrayaan‐1 and LRO,
respectively). It can be seen that this depth decreases as
regolith FeO+TiO2 content increases. The penetration depth
at S band frequencies (2.38GHz for Chandrayaan‐1 and LRO
Mini‐SAR) could be larger than 5 m for low FeO+TiO2

abundances and about 0.5 m for high FeO+TiO2 abundances,
while the penetration depth at X band frequencies (7.14 GHz
for Mini‐SAR) is about 2 m for low FeO+TiO2 abundances
and about 0.1 m for high FeO+TiO2 abundances.
[23] The real part of the dielectric permittivity of rocks has

been measured to lie between about 4 and 8 [Carrier et al.,
1991], while the imaginary part of the dielectric permittivity
is strongly dependent upon the composition of the rock. For
example, rocks with low titanium content can have a loss

Figure 3. (a) Real part of dielectric permittivity of the lunar regolith as a function of bulk density from
equation (1a) and (b) loss tangent of lunar regolith as a function of FeO+TiO2 content in the regolith from
equation (1b).

Figure 4. Penetration depth of radar waves as a function of FeO+TiO2 content in the lunar regolith at
(a) S and (b) X band frequencies.
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tangent as low as 0.0002 [Olhoeft and Strangway, 1975],
whichwould give rise to penetration depths on the order of tens
of meters at S and X band. The difference in dielectric prop-
erties of the lunar soils and rocks is simply due to the fact that
the soils are a mixture of roughly equal parts rock and vacuum.
[24] If there is ice in the permanently shadowed areas near

the lunar poles, the nature of this ice (coherent layers or
particles) and its dielectric permittivity are the two factors that
would most affect the received radar echoes. According to
Cumming [1952], Evans [1965], and Ray [1972], the real part
of the relative permittivity of pure freshwater ice is about 3.2
and the imaginary part varies from 10−4 to 0.05 at microwave
frequencies. The dielectric properties of pure ice also depend
on temperature and frequency, as given by the extended
Debye formula of Sadiku [1985]. The dielectric properties of
mixtures of freshwater ice, brine pockets, air bubbles, solid
salts, rock particles, and organic and inorganic inclusions is
rather complex and depends on the proportion of each con-
stituent. Since brines, salts, and air are not expected to
be present on the Moon in any significant abundance, rock
particles and void space are probably the two major factors
that could affect the effective dielectric constant of lunar ice.
Figure 5 shows the penetration depth of radar waves (at both
S band and X band frequencies) in a pure water‐ice layer as a
function of the imaginary part of the dielectric constant of ice.
The penetration depth is seen to vary from several meters to
several hundreds of meters, depending on the assumed value
of the imaginary part of the dielectric permittivity.
[25] Note that the penetration depths in Figures 4 and 5

calculated from equation (2) are for homogeneous media.
For a regolith with embedded particles such as rock or ice,
the penetration depths will be less than those in Figures 4
and 5 because of additional scattering losses of the radar
wave [see, e.g., Heggy et al., 2006].

3. Mueller Matrix Solution of Vector Radiative
Transfer Equation

[26] Electromagnetic wave propagation and scattering in a
random medium are typically modeled using one of three
approaches: vector radiative transfer (VRT) theory, analytic

wave theory, or randomly rough surface scattering theory
[Tsang et al., 1985; Jin, 1994; Fung, 1994]. Vector radiative
transfer theory is based on the principle of energy conser-
vation, and is not from the Maxwell equations. In particular,
though it takes into account the addition of intensity, it cannot
account for wave coherence such as occurs in the coherent
backscatter opposition effect [e.g., Hapke, 1990]. Analytic
wave theory is developed from the Maxwell equations, and
can explain wave coherence phenomena. Both vector radia-
tive transfer theory and analytic wave theory treat the case of
random heterogeneous media, though VRT is usually used
for the case of discrete scatterers and analytic wave theory is
used for random medium with dielectric fluctuations. Random
rough surface scattering theory treats the case of scattering
from an random interface between two different homogenous
media, and analytical approaches to solving this problem
mainly include the Kirchhoff approximation (physical optics),
small perturbation method (SPM), and the integral equation
method (IEM) (see Appendix A). Numerical approaches to
electromagnetic waves propagation and scattering in ran-
dom media usually include method of moments (MoM),
finite element method (FEM), and finite difference time
domain (FDTD) techniques [Fung, 1994; Tsang et al., 2000;
Jin, 2005].
[27] Given that the lunar regolith layer is well approxi-

mated by a homogenous fine‐grained layer possessing rough
upper and lower interfaces with randomly buried discrete
inclusions, VRT theory combinedwith IEM for rough surface
scattering is a good choice for modeling radar scattering from
the lunar surface. Analytical wave theory requires knowledge
of the correlation function of the dielectric permittivity in the
regolith, and this is not easily constrained from in situ surface
measurements. Besides, to our knowledge, analytic wave the-
ory cannot take into account scattering from a rough surface,
and its mathematical complexity prevents its application to
nonspherical particles. Although numerical approaches (such as
MoM, FEM, and FDTD) can give a rigorous results by directly
solving the Maxwell equations, the large storage requirements
and computational times often only allow one to investigate a
limited range of situations, even with a modern computer.
[28] In this study, we use vector radiative transfer (VRT)

theory of random media to quantify radar scattering from the
lunar regolith layer. Our method is a physical‐mathematical
method that includes scattering, absorption and transmission
of polarized electromagnetic intensity through random scat-
terers, and improves upon most previous radar scattering
models applied to theMoon that are largely empirical in nature.

3.1. VRT Equation and Mueller Matrix Solution

[29] For an elliptically polarized monochromatic electro-
magnetic wave E = v̂Ev + ĥEh, the four‐column Stokes
vector I = [Iv, Ih, U, V] is defined as [e.g., Tsang et al., 1985,
chap. 2; Jin, 1994, chap. 1]

I ¼

Iv

Ih

U

V

2
666666664

3
777777775
¼

1

�
Evj j2

D E
1

�
Ehj j2

D E
2

�
Re EvEh*
� �

2

�
Im EvEh*
� �

2
666666666664

3
777777777775

ð3Þ

Figure 5. Penetration depth of radar waves as a function of
the imaginary part of the dielectric permittivity of ice at
S and X band frequencies, where the real part of the dielec-
tric constant is assumed to be 3.2.
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where Ev and Eh are the electric field of an electromagnetic
wave with vertical (v̂) and horizontal (ĥ) polarization, h =ffiffiffiffiffiffiffiffi
	="

p
is the wave impedance of the medium in which the

wave propagates, and m and " are the permeability and
permittivity of the medium, respectively. In equation (3) the
asterisk denotes the complex conjugate, the angular brackets
denote the temporal average since the electromagnetic wave
is usually quasi‐monochromatic with Ev and Eh randomly
fluctuating with time, and Re and Im indicate the real and
imaginary components of a complex value. It has been
proved that the amplitude, phase and polarization state of
any elliptically polarized wave can be completely charac-
terized by the Stokes vector [e.g., Tsang et al., 1985; Jin,
1994; Fung, 1994].
[30] As a polarized radar wave with frequency f impinges

upon the lunar surface, as shown in Figure 1, the VRT
equation applicable to the lunar regolith is [e.g., Tsang et al.,
1985, chap. 2; Jin, 1994, chap. 1]

cos �
d

dz
I �; �; zð Þ ¼ �
e �; �; zð Þ � I �; �; zð Þ þ

Z �

0
d�′ sin �′

�
Z 2�

0
d�′P �; �; �′; �′; zð Þ � I �′; �′; zð Þ ð4Þ

where the Stokes vector I (�, �, z) represents the intensity
and polarization state of the radar wave beneath the lunar
surface. In equation (4), the incidence angle � is defined
with respect to the vertical ẑ axis, the azimuthal angle � is
defined in the plane perpendicular to the ẑ axis and the
extinction matrix 
e is expressed as


e �; �ð Þ

¼ 2�

k
n

2 Im f 0vv
� �

0 Im f 0vh
� � �Re f 0vh

� �
0 2 Im f 0hh

� �
Im f 0hv
� �

Re f 0hv
� �

2 Im f 0hv
� �

2 Im f 0vh
� �

Im f 0vv þ f 0hh
� �

Re f 0vv � f 0hh
� �

2Re f 0hv
� � �2Re f 0vh

� �
Re f 0hh � f 0vv
� �

Im f 0vv þ f 0hh
� �

2
6664

3
7775

ð5Þ

where k is the wave number. The phase matrix P, which
couples the incident Stokes vector I(�′, �′, z) to the scattered
Stokes vector I(�, �, z), is expressed as

where n is the number of buried rocks per unit volume,
fpq(�s, �s; �i, �i) (with p, q = v, h, where v is for vertical
polarization and h is for horizontal polarization) are the
scattering amplitude functions of a single scatterer that
couples the incident electric field of the radar wave to the
scattered electric field, and i and s indicate the incident and
scattered directions. The scattering amplitude function
depends on the size, shape and orientation of the scatterer

as well as the frequency of the radar wave, and this could
be obtained using an analytical approach for a simple
scatterer (such as a sphere or cylinder) or numerical
approaches (such as FDTD, MoM or System Transfer
Operator approach (T‐matrix)) for a complex or irregular
scatterer. In this study, buried inclusions are modeled as
biaxial ellipsoidal particles and their scattering amplitude
function is calculated using the T‐matrix approach under
the Rayleigh approximation, which requires the scatterer to
be smaller than one wavelength [Tsang et al., 2000, chap. 2].
The superscript “0” in equation (5) indicates the forward
scattering direction, and the angular brackets in equations (5)
and (6) denote the average taken over all orientations of
the buried nonspherical rocks. With our convention for the
angles � (0 ≤ � ≤ p/2) and � (0 ≤ � ≤ 2p), (�, �) indicates
the upward direction, whereas (p − �, �) indicates the
downward direction.
[31] The first term on the right hand side of equation (4) is

the attenuation of the incident radar wave as it propagates
through the lunar regolith layer, which includes both scat-
tering and absorption attenuation, and the second term is the
contribution of scattering from all directions to the scattering
direction (�, �).
[32] The boundary conditions at z = 0 (the surface) and

z = −d (the base of the regolith) are

I �� �; �; z ¼ 0ð Þ ¼
Z 2�

0
d�′

Z �=2

0
d�′ sin �′R10 �; �; �′; �′ð Þ

� I �′; �′; z ¼ 0ð Þ

þ
Z 2�

0
d�′

Z �=2

0
d�′ sin �′T 01 �; �; �′; �′ð Þ

� I i �� �′; �′; z ¼ 0ð Þ ð7aÞ

I �; �; z ¼ �dð Þ ¼
Z 2�

0
d�′

Z �=2

0
d�′ sin �′R12 �; �; �′; �′ð Þ

� I �� �′; �′; z ¼ �dð Þ ð7bÞ

where equation (7a) indicates that the downward Stokes
vector is the sum of the scattered Stokes vector of the
upward wave at the interface of the regolith (media 1)

and vacuum (media 0) and the transmitted Stokes vector
of the incident wave through vacuum (media 0) to the
regolith (media 1), and equation (7b) indicates that the
upward Stokes vector is given by the scattering of the down-
ward wave at z = −d. The angular integrals in equation (7)
are required as a result of the diffuse scattering and
transmission through the random rough interfaces at z = 0
and z = −d.

P �s; �s; �i; �ið Þ ¼ n

fvvj j2
D E

fvhj j2
D E

Re fvv fvh*
� � � Im fvv fvh*

� �
fhvj j2

D E
fhhj j2

D E
Re fhv fhh*
� � � Im fhv fhh*

� �
2Re fvv fhv*

� �
2Re fvh fhh*

� �
Re fvv fhh*þ fvh fhv*
� � � Im fvv fhh*� fvh fhv*

� �
2 Im fvv fhv*

� �
2 Im fvh fhh*

� �
Im fvv fhh*þ fvh fhv*
� �

Re fvv fhh*� fvh fhv*
� �

2
666664

3
777775 ð6Þ
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[33] The received Stokes vector (in region 0) is

I �; �; z ¼ 0ð Þ ¼
Z 2�

0
d�′

Z �=2

0
d�′ sin �′T 10 �; �; �′; �′ð Þ

� I �′; �′; z ¼ 0ð Þ

þ
Z 2�

0
d�′

Z �=2

0
d�′ sin �′R01 �; �; �′; �′ð Þ

� I i �� �′; �′; z ¼ 0ð Þ ð8Þ

In equations (7) and (8), Rij and T ij are the scattering and
transmission matrices (from layer i to j), and they are obtained
by using IEM for rough surface scattering (see Appendix A for
more details). I i (p − �, �, z = 0) = I id(cos� − cos�i)d(� − �i) in
equation (8) is the incident Stokes vector, where the incident
angle (p − �) is defined with respect to the vertical ẑ axis.
The Kronecker delta functions denote the incident direction,
where the angles �i and �i denote the incidence and azimuthal
angle of the incident radar wave.
[34] Using an iterativemethod to solve theVRT equation (4)

with boundary conditions (7), the scattered Stokes vector
I s(�, �, z = 0) above the surface (in region 0) is (see
Appendix B for details)

I s �; �; z ¼ 0ð Þ ¼ I sur �; �; z ¼ 0ð Þ þ Ibedrock �; �; z ¼ 0ð Þ
þ I vol �; �; z ¼ 0ð Þ þ Ibedrock vol �; �; z ¼ 0ð Þ
þ I vol bedrock �; �; z ¼ 0ð Þ ð9Þ

where the subscript “s” indicates the scattered signal. Figure 6
shows schematically the five scattering mechanisms that
are considered in the above equation. The first term (I sur) is
diffuse scattering from the rough surface, the second term
(Ibedrock) is scattering from the bottom rough interface, the
third term (Ivol) is the scattering from individual buried
rocks, the fourth term (Ibedrock_vol) is scattering at the lower
interface followed by scattering from a single rock, and the
fifth term (Ivol_bedrock) is the scattering from a single rock
followed by scattering at the base of the regolith. Note that

the second through fifth terms are also affected by the
properties of the top interfaces. For convenience, here-
after we refer to these five terms as surface scattering,
subsurface scattering, volume scattering, subsurface‐volume
scattering, and volume‐subsurface scattering. As will be
discussed more in section 4, our model does not take into
account multiple scattering among rocks and is incapable
of modeling the coherent backscatter opposition effect
(CBOE) [e.g., Hapke, 1990; Jin and Lax, 1990; Peters,
1992].
[35] The five scattering terms in equation (9) are expressed

as

I sur �; �; z ¼ 0ð Þ ¼ R01 �; �; �i; �ið Þ � I i ð10aÞ

Ibedrock �; �; z ¼ 0ð Þ ¼
Z 2�

0
d�′

Z �=2

0
d�′ sin �′T 10 �; �; �′; �′ð Þ

� E �′; �′ð ÞD �� �′; �′ð Þd sec �′½ �

� E�1
�′; �′ð Þ

Z 2�

0
d�′′

Z �=2

0
d�′′

� sin �′′R12 �′; �′; �′′; �′′ð ÞE �� �′′; �′′ð Þ
� D �� �� �′′; �′′ð Þd sec �′′½ �
� E�1

�� �′′; �′′ð ÞT01 �′′; �′′; �i; �ið ÞI i ð10bÞ

I vol �; �; z ¼ 0ð Þ ¼
Z 2�

0
d�′

Z �=2

0
d�′ sin �′T 10 �; �; �′; �′ð Þ

� sec �′
Z 0

�d
dz′E �′; �′ð Þ

� D � �′; �′ð Þz′ sec �′½ �E�1
�′; �′ð Þ

�
Z 2�

0
d�′′

Z �=2

0
d�′′ sin �′′P �′; �′; �� �′′; �′′ð Þ

� E �� �′′; �′′ð ÞD � �� �′′; �′′ð Þz′ sec �′′½ �
� E�1

�� �′′; �′′ð ÞT01 �′′; �′′; �i; �ið ÞI i ð10cÞ

Figure 6. Five radar scattering mechanisms involving the lunar regolith. (left to right) The first term
(I sur) represents diffuse scattering from the rough surface, the second term (Ibedrock) is scattering from
the bottom rough interface, the third term (I vol) is scattering from a single buried inclusion, the fourth
term (Ibedrock_vol) is scattering at the lower interface followed by scattering from an inclusion, and the
fifth term (Ivol_bedrock) shows the scattering from a single inclusion followed by scattering at the base
of the regolith. Note that the second through fifth cases are also affected by the properties of the top
interface.
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Ibedrock vol �; �; z ¼ 0ð Þ ¼
Z 2�

0
d�′

Z �=2

0
d�′ sin �′T10 �; �; �′; �′ð Þ

� sec �′
Z 0

�d
dz′E �′; �′ð Þ

� D � �′; �′ð Þz′ sec �′½ �E�1
�′; �′ð Þ

�
Z 2�

0
d�′′

Z �=2

0
d�′′ sin �′′P �′; �′; �′′; �′′ð Þ

� E �′′; �′′ð ÞD �� �′′; �′′ð Þ z′þ dð Þ sec �′′½ �

� E�1
�′′; �′′ð Þ

Z 2�

0
d�′′′

Z �=2

0
d�′′′ sin �′′′

� R12 �′′; �′′; �′′′; �′′′ð ÞE �� �′′′; �′′′ð Þ
� D �� �� �′′′; �′′′ð Þd sec �′′′½ �
� E�1

�� �′′′; �′′′ð ÞT01 �′′′; �′′′; �i; �ið ÞI i
ð10dÞ

I vol bedrock �; �; z ¼ 0ð Þ ¼
Z 2�

0
d�′

Z �=2

0
d�′ sin �′T10 �; �; �′; �′ð Þ

� E �′; �′ð ÞD �� �′; �′ð Þd sec �′½ �

� E�1
�′; �′ð Þ

Z 2�

0
d�′′

Z �=2

0
d�′′ sin �′′

� R12 �′;�′;�′′;�′′ð Þsec �′′
Z 0

�d
dz′E ���′′;�′′ð Þ

� D �� �� �′′; �′′ð Þ z′þ dð Þ sec �′′½ �

� E�1
���′′; �′′ð Þ

Z 2�

0
d�′′′

Z �=2

0
d�′′′ sin �′′′

� P �� �′′; �′′;�� �′′′; �′′′ð ÞE �� �′′′; �′′′ð Þ
� D � �� �′′′; �′′′ð Þz′ sec �′′′½ �
� E�1

�� �′′′; �′′′ð ÞT 01 �′′′; �′′′; �i; �ið ÞI i
ð10eÞ

where D [b(�, �)zsec�] is a 4 × 4 diagonal matrix with the
diagonal elements given by exp[bi(�, �)zsec�], and E and
bi(�, �) (i = 1, 2, 3, 4) are the eigenvector matrix and eigen-
values of the extinction matrix Ke, respectively. For addi-
tional details related to the calculation of these terms, the
reader is referred to Tsang et al. [1985] and Jin [1994].
[36] Equation (9) contains multiple integrals (as high as

sevenfold) and these angular integrals are required because
of the diffuse scattering and transmission through the ran-
dom rough interfaces. Scattering and transmission at a rough
surface can be decomposed into coherent and noncoherent
parts, and the reflection and transmission matrices R12, T01,
T10 can be written as [Fung, 1994, chap. 2]

R �; �; �i; �ið Þ ¼ R
n
�; �; �i; �ið Þ þ R

c
�; �; �i; �ið Þ

� � cos �� cos �ið Þ� �� �ið Þ ð11aÞ

T �; �; �i; �ið Þ ¼ T
n
�; �; �i; �ið Þ þ T

c
�; �; �i; �ið Þ

� � cos �� cos �þi
� �

� �� �þ
i

� � ð11bÞ

where the Kronecker delta functions d(cos� − cos�i)d(� − �i)
and d(cos� − cos�i

+)d(� − �i
+) denote coherent scattering and

transmission at specular or diffraction directions, respec-
tively. (�i

+, �i
+) indicates the diffraction angle of the incident

wave (�i, �i) and the superscripts c and n denote the coherent
and noncoherent components, respectively. The first term
on the right hand side of equation (11) dominates if the sur-
face boundary is very rough, while the second term dominates
for a smooth surface with a low‐dielectric contrast at the
boundary interface.
[37] Because the lunar surface is relatively flat over large

scales (with RMS slopes of 2–4° for the maria and 6–8° for
the highlands on the scales of decimeters to a hundred
meters) and because the regolith dielectric permittivity is
small ("′1 ∼ 3), noncoherent scattering from the surface is
negligible compared with coherent scattering. Substituting
equation (11) into equation (9), and ignoring the scattering
mechanisms that involve more than one noncoherent scat-
tering event, the Stokes vector of the received radar echo
I s(�, �, z = 0) can be expressed as

I s �; �; z ¼ 0ð Þ ¼ M �; �;�� �i; �ið Þ � I i �� �i; �ið Þ ð12Þ

where the Mueller matrix M (�, �; p − �i, �i) is

M �; �;�� �i; �ið Þ ¼ Msur �; �;�� �i; �ið Þ
þMbedrock �; �;�� �i; �ið Þ
þMvol �; �;�� �i; �ið Þ
þMbedrock vol �; �; �� �i; �ið Þ
þMvol bedrock �; �; �� �i; �ið Þ ð13Þ

where M sur, Mbedrock, M vol, Mbedrock_vol, and M vol_bedrock

are the Mueller matrices for the surface scattering, sub-
surface scattering, volume scattering, subsurface‐volume
scattering and volume‐subsurface scattering terms, respec-
tively. Appendix C gives the expressions of the Mueller
matrices for these five scattering terms.

3.2. Influence of Surface Slope

[38] Lunar surface slopes, such as those resulting from
crater walls and lava channels, can change the received radar
echoes and CPR values since the surface slope affects both
the local incidence angle and the polarization state of the
incident radar wave in the local coordinate frame. Figure 7a
shows a surface that is tilted with respect to our (x̂, ŷ, ẑ)
coordinate system, and where the locally flat surface is
expressed by the coordinates (x̂l, ŷl, ẑl).
[39] In the local coordinates (x̂l, ŷl, ẑl) the Mueller matrix

is expressed by equation (13), but with a transformation of
the incident and scattering angles from the principal co-
ordinates (x̂, ŷ, ẑ) to the local coordinates (x̂l, ŷl, ẑl). The
polarization bases (i.e., the polarization base vectors v̂ and ĥ)
of the Mueller matrix in local coordinates are rotated (see
Figure D1) in order to obtain the Mueller matrix in the
principal coordinates, as follows [e.g., Jin et al., 2007]:

M �; �; �i; �ið Þ ¼ U Dsð Þ �M l
�l; �l; �li; �

l
i

� � � U�1
Dið Þ ð14Þ

where the superscript l denotes the Mueller matrix, incident
and scattered angles in the local coordinates, Di and Ds are
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the rotation angles of the incident and scattered polarization
bases, and U is the rotation matrix of the polarization bases
of the Stokes vector:

U Dð Þ ¼

cos2 D sin2 D
1

2
sin 2D 0

sin2 D cos2 D � 1

2
sin 2D 0

� sin 2D sin 2D cos 2D 0

0 0 0 1

2
6666664

3
7777775

ð15Þ

Appendix D describes the details concerning the calculation
of the local incident and scattering angles, and the rotation
angles Di and Ds.

3.3. Polarimetric Radar Scattering Coefficient
and CPR Calculation

[40] The Stokes vector in the VRT equation is a four‐
column vector that represents the intensity and polarization
state of an arbitrary electromagnetic wave. For an incident
wave with any arbitrary elliptical polarization with elliptic
angle c (c 2 [−p/4, p/4]) and orientation angle y(y 2 [0, p]),
the Stokes vector I i = [Iv, Ih, U, V]

T can also be written as [e.
g., Tsang et al., 1985, chap. 2; Jin, 1994, chap. 1]

I i ¼

Iv

Ih

U

V

2
66664

3
77775 ¼

1

2
I0 1� cos 2� cos 2yð Þ

1

2
I0 1þ cos 2� cos 2yð Þ
�I0 cos 2� sin 2y

I0 sin 2�

2
6666664

3
7777775

ð16Þ

where I0 = Iv + Ih is the intensity of the incident radar wave.
By changing the value of the elliptic and orientation angles
c and y , we can obtain the Stokes vector for different
polarization states. c < 0 indicates a right‐hand polarized
wave and c > 0 indicates a left‐hand polarized wave. For
example, the Stokes vector for a right circular polarization

(RCP) radar wave with c = −45° is IR = [0.5, 0.5, 0, −1.0]T,
and for a left circular polarization (LCP) wave with c = 45°
is IL = [0.5, 0.5, 0, 1.0]T. Inserting the incident Stokes vector
I i with any arbitrary polarization state into equation (12) we
can compute the intensity of the received radar echo from
the lunar surface.
[41] Following Jin [1994], the copolarized (that is, the

opposite sense as the transmitted polarizations, here labeled
“OC”) scattered power is

Pn ¼ 1

2
Ivs 1� cos 2� cos 2yð Þ þ 1

2
Ihs 1þ cos 2� cos 2yð Þ

þ 1

2
Us cos 2� sin 2y þ 1

2
Vs sin 2� ð17Þ

where the subscript n denotes that the incident intensity
is normalized, i.e., I0 = 1 in equation (16). Therefore, the
copolarized radar backscattering coefficient is

oc ¼ 4� cos �iPn ð18Þ

and the depolarized (same sense as the transmitted polari-
zation, here labeled “SC”) radar backscattering coefficient is

sc ¼ 4� cos �i Ivs þ Ihs � Pnð Þ ð19Þ

where �i is the incidence angle. From equations (18) and
(19), for an incident radar wave with right circular polariza-
tion, the circular polarization ratio (CPR) mc can be written
as

	c ¼ sc

oc
¼ Ivs þ Ihs � Vs

Ivs þ Ihs þ Vs
ð20Þ

Our CPR expression of equation (20) follows the same
convention as Raney [2007]. The CPR is an index that
shows how the received radar energy is allocated between
different polarization states. We note that when circularly
polarized radar waves are transmitted, a single specular
reflection from the surface of a planet will result in
receiving a polarization with the opposite sense (i.e., the
sign of c will change).

4. Model Validation

[42] We assess the accuracy of our VRT radar scattering
model by directly comparing the predicted polarimetric
radar scattering coefficients with those obtained from
numerical finite difference time domain (FDTD) [Yee, 1966]
simulations of the radar wave equation with the same input
parameters. FDTD is a full wave approach that solves
directly Maxwell’s equations of wave propagation in dis-
crete time and space steps. In addition to allowing for the
use of complex surface and subsurface geometries, this
method implicitly accounts for multiple scattering among
buried rocks and the coherent backscatter opposition effect
[Hapke, 1990; Jin and Lax, 1990; Peters, 1992]. For our
simulations, we used the commercial software XFDTD
developed by Remcom company, which is a powerful tool
for 3D electromagnetic simulations. Before attempting a
validation, several simulations were run in order to verify
existing analytical solutions, such as for Mie scattering from
a sphere.

Figure 7. Schematic diagram showing the relation between
local (x̂l, ŷl, ẑl) and principle coordinates (x̂, ŷ, ẑ) for a sur-
face with a large‐scale slope.
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[43] For our simulations, the frequency of the incident
radar wave was set to 2.38 GHz, which corresponds to the
12.6 cm wavelength of the Chandrayaan‐1 Mini‐SAR. The
FDTD simulation space was chosen as a box with dimen-
sions 1.5 × 1.5 m in the horizontal directions and 1.0 m in
vertical direction. The lunar surface and subsurface were
generated numerically for the case of a 3‐D Gaussian rough
surface according to Kuang and Jin [2007], where the cor-
relation length of both surfaces was set equal to l1 = l2 = 0.1m,
and the RMS height of the lunar surface and subsurface was
set to d1 = 0.15 m and d2 = 0.1 m, respectively. The regolith
thickness was set to 0.85 m, and the bedrock layer
was therefore 0.15 m thick. Buried rocks were modeled as
ellipsoids with semimajor and semiminor axes of 0.03 m and
0.015 m, respectively, where the orientation of each ellip-
soid was chosen randomly. The fractional volume of buried
rocks for this simulation was 0.005, corresponding to 398
ellipsoids in the simulation space. The dielectric constant of
the regolith, buried rocks and underlying bedrock were set to
"1 = 2.7 + i0.003, "s = 6.0 + i0.01 and "2 = 6.0 + i0.05,
respectively [e.g., Olhoeft and Strangway, 1975]. Given the
FDTD stability criterion that the cell size must be less than
1/10 of the shortest radar wavelength, the cell dimension
was set to 0.5 cm. Three absorbing layers (10 cells for each
layer) were added to the edges of the simulation box (in both
horizontal directions and the bottom of the simulation space)
in order to eliminate diffraction effects from the truncated
surface edges. The perfectly matched layer (PML) absorbing
boundary condition was further used for absorbing the
outward‐propagating waves. Regardless of our attempt to
minimize the influence of the finite boundary conditions on
our results, we note that our radar scattering coefficients
contain a minor contribution from the tops of the vertical
boundary layers. After the wavefield in the simulation space
(near‐field zone) reached steady state, scattered fields in the
far‐field zone were calculated using the Huygens principle,
from which the scattering coefficients were calculated.
[44] The incidence angle of the radar wave for our

simulations was set equal to 35° (with an azimuthal angle of
0° with respect to the normal of one of the vertical faces of
the simulation space), and the incident radar wave was
vertically polarized. Figure 8 shows a comparison of the
bistatic radar scattering coefficients for VV and HV polar-
izations for one realization (red) of the random processes
(i.e., surface roughness and rock distributions), the average
of 10 realizations (blue) and the average of 40 realizations
(dark cyan). In Figure 8, the abscissa axis is the scattering
angle �s and the azimuthal angle is 180° (see Figure 1), with
�s = 35° indicating the backscattering direction. It should be
noted that the VRT model represents a statistically averaged
result (as is evident from the expectations in equations (4)
and (5)), while each FDTD simulation result (e.g., the red
curve in Figure 8) is only for a single realization of the
random process generating the surface relief, subsurface
relief, and buried rock positions and orientations. In the
FDTD calculation, the lunar surface is divided into a large
number of discrete meshes. For a given mesh, the scattering
would be strong in the direction for which the radar obser-
vation direction happens to be in the specular direction of
the local incident radar wave. As a single realization of a 3D
random rough surface with a finite size is not totally ran-
dom, the number of meshes with a given orientation angle

could be larger (or smaller) than that of another given ori-
entation angle. This effect, together with the not perfectly
random orientations of the buried rocks and subsurface
roughness, causes the oscillations in the FDTD simulation
result. As the number of FDTD realizations that are aver-
aged becomes larger, the oscillations become smaller and
the average of the FDTD simulation approaches that of the
VRT solution, as seen by the blue and cyan curves in Figure 8.
We can see that the VRT model matches well with the
average of 40 realizations of FDTD simulation for scattering
angles less than about 60°. At larger scattering angles, the
FDTD simulation result is unreliable (the gray area in
Figure 8) because of the influence of our artificial absorbing
layers surrounding the simulation domain and since the
perfectly matched layer boundary condition is not perfectly
absorbing. A smaller number of simulations were run using
a larger domain size (5.0 m × 5.0 m), and these were found
to more closely approximate the VRT solution than those
presented here for the same number of realizations.
[45] We note that the computational time associated with

one FDTD simulation was about one day on a modern
computer, while it takes no more than one second to obtain
the comparable result with the VRT model. As the radar
frequency increases, the FDTD simulations would require a
smaller cell size and, hence, longer computation times.
[46] Finally, we note that two potentially important scat-

tering mechanisms were neglected in our VRT model:
multiple scattering between buried rocks and the coherent
backscatter opposition effect [e.g., Hapke, 1990] that occurs
near zero phase angles. Since our VRT model matches the
FDTD simulations to within a few dB (which is about the
same as the radiometric calibration of radar measurements),
this suggests that we were justified in neglecting these effects
in the VRT model. The maximum expected enhancement
resulting from the CBOE is only a factor of 2 at zero phase
for the same sense echo strength (i.e., 3 dB), and no such
enhancement is apparent in our simulations (though it should
be noted that the statistical variance of our simulations is
comparable to the magnitude of this effect). Nevertheless, as
discussed in section 7, these scattering mechanisms could be
important for nearly pure low‐dielectric loss ice deposits.

5. Comparison With Earth‐Based Radar Data

[47] In this section, we compare our VRT model with
Earth‐based radar observations of the Moon and show that
VRT model is capable of reproducing the average scattering
properties of the lunar surface using a reasonable set of input
parameters.
[48] By transmitting a radar signal from the 305 m Arecibo

telescope in Puerto Rico and receiving the radar echoes
using the 100 m Robert C. Byrd Green Bank Telescope in
West Virginia, Campbell et al. [2007] obtained radar images
of the lunar nearside at 70 cm wavelength (430 MHz fre-
quency) via a synthetic aperture radar patch‐focusing reduc-
tion technique with a spatial resolution of about 400 m. The
radiometric uncertainty in the absolute backscattering coeffi-
cients is quoted as being ±3 dB, which is due primarily to
the uncertainty in the transmitted power at Arecibo. Using
the FeO+TiO2 abundances from the Lunar Prospector gamma
ray spectrometer [Prettyman et al., 2006] and taking 10 wt.%
FeO+TiO2 as the dividing line between the maria and the
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highlands, the average radar backscattering coefficients for
each of these terrains as a function of incidence angle were
compared with the predictions of our VRT model.
[49] Statistical results of the 70 cm Arecibo radar data

show that, for both global and regional areas, the back-
scattering coefficients follow a lognormal distribution at any
given incidence angle. Simulated radar images of impact
craters, which change the local incidence angle of the radar
wave (as will be discussed in section 6.6), also show that the
backscattering coefficients are lognormally distributed about
the value for a flat surface. Since the effect of local inci-
dence angles is not taken into account in the processing of
the Arecibo radar data, the average value of the backscat-
tering coefficient is hence obtained by averaging the loga-
rithm of the backscattering coefficients (in dB) instead
of the backscattering coefficient itself. Taking the average
of the backscattering coefficients in absolute units would
bias the average value upward from that of a flat surface by
about 3–5 dB.
[50] The black squares in Figure 9 show the incident

angle–averaged polarized (opposite sense) and depolarized
(same sense) radar backscattering coefficients of all the
data for the maria (Figure 9, top) and highlands (Figure 9,
bottom). We found that the same sense radar echoes are
more sensitive to multiple scattering processes (such as
rocks on the lunar surface or within the regolith). In par-
ticular, multiple scattering yields high CPRs [e.g., Campbell
et al., 2009], and the blue squares show the incident angle
behavior for all pixels where the CPR is less than 0.25. As
can be seen, the average of the depolarized backscattering
coefficients with low CPRs is in general about 3–5 dB lower
than the average of all the data for incidence angle greater
than 30°. In contrast, for the polarized data, the incidence
angle dependence is the same, regardless of the value cho-
sen for the CPR cutoff value, indicating that the polarized
returns are relatively insensitive to multiple scattering pro-
cesses. Since we cannot easily remove the multiple scat-

tering signals from the observed depolarized same sense
data, we will only compare the polarized opposite sense
backscattering coefficients with our VRT model.
[51] The imaginary part of the dielectric constant of the

regolith for our VRT calculations was calculated from
equation (1) using the FeO+TiO2 abundances from the
Lunar Prospector gamma ray spectrometer [Prettyman
et al., 2006] with a regolith bulk density of 1.5 g/cm3 (corre-
sponding to "′1 = 2.7). The dielectric constants of buried
rocks and bedrock were taken to be "s = 8.0 + i0.01 and "2 =
8.0 + i0.05, respectively. The regolith thickness over the
lunar nearside was taken from the Chang‐E 1 radiometer
inversion of Fa and Jin [2010], and an exponential corre-
lation function was used for both the lunar surface and
subsurface, with a subsurface RMS slope equal to 1° (as
will be shown in the following section this value does not
change the radar echo significantly). As will be discussed in
section 6, surface roughness and the fractional volume and
size distribution of buried rocks are the two main factors that
affect the radar echo strengths. Since information about
these two parameters at a scale of 400 m (the spatial reso-
lution of Arecibo radar image) over the lunar nearside is not
available, best fitting values were obtained from an
exhaustive search of surface RMS slopes between 1° and
10°, fraction volume of buried rocks from 0.0005 to 0.01,
and semimajor and semiminor axes of the buried rocks from
0.01l to 0.2l (corresponding from 0.7 cm to 14 cm).
The red line in Figure 9 shows one of the best fits to the
polarized opposite sense radar echoes strengths. For the
maria, the RMS slope is 4°, the fractional volume of buried
rocks is equal to 0.0065, and the semimajor and semiminor
axes are 0.01l and 0.2l. For the highlands, the RMS slope
is 3°, the fractional volume of buried rocks is 0.001, and the
semimajor and minor axes are 0.1l and 0.01l. We note that
different combinations of fractional volume of buried rocks
and average rock size can produce a similar radar echo, and
that these values are hence not unique. For example, a small

Figure 8. Comparison between one FDTD realization (red line), the average of 10 realizations (blue
line), and the average of 40 realizations (dark cyan) with the VRT model (black line) of this study.
(left) The vv polarization backscattering coefficient, and (right) hv polarization backscattering coefficient.
The FDTD contribution from the vertical three absorbing layers becomes larger as the scattering angle
increases beyond about 40°, and this contribution makes the results unreliable for scattering angles greater
than about 60° (gray shaded area). The incident angle �i is 35° and (�s = 35°, �s = 180°) corresponds to
the backscattering direction. The regolith thickness is d = 0.85 m, RMS heights and correlation lengths
of the surface and subsurface are d1 = 0.15 m, l1 = 0.1 m, d2 = 0.1 m, and l2 = 0.1 m, the semimajor and
semiminor axes of buried rock are c = 0.03 m and a = 0.015 m, the dielectric permittivity of the regolith,
buried rocks, and underlying bedrocks are "1 = 2.7 + i0.003, "s = 6.0 + i0.01, and "2 = 6.0 + i0.05,
respectively.
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fractional volume combined with a large rock size would
produce the same radar echoes as for a large fractional
volume with small rock sizes.
[52] As can be seen, given our prior information on reg-

olith properties, the VRT model shows a good comparison
with the polarized opposite sense backscattering coefficients
for both maria and highlands for incidence angles smaller
than 80°. Better fits could be obtained if the RMS slopes,
rock abundances, and rock shapes were allowed to vary
with position. Nevertheless, the predicted depolarized radar
echo strengths from the VRT model are roughly 6–8 dB
smaller than the average Earth‐based Arecibo 70 cm radar
data. Parameters could be found that fit the depolarized
same sense radar data as well as the opposite sense data, but
in this case, the predicted polarized opposite sense echo
strengths would be 6–8 dB higher than the observations. It
was not possible to find acceptable parameter values that fit
both the opposite and same sense data simultaneously. The
most probable reason for this, as discussed above, is that the
VRT model does not take into account multiple scattering

between buried rocks or surface rocks, and that this is much
more sensitive to the same sense radar echoes [Pollack and
Whitehill, 1972; Baron et al., 1996; Campbell et al., 2009].
Another possible reason could be the calibration of the
Arecibo data. In particular, we note that for observations at
the same wavelength made by Evans and Pettengill [1963],
the ratio of the polarized to depolarized radar echo strengths
is more than 10 dB at incidence angle 30°, whereas it is only
5 dB for the newly acquired Arecibo radar data. Another
reason might be the Faraday rotation effect that is caused by
the Earth’s ionosphere at P band frequencies (this effect can
be ignored at higher frequencies, such as S band), and which
could enhance the depolarized radar echo strength and
reduce the polarized radar echo strength [e.g., Qi and Jin,
2007]. Though Faraday rotation has little or no effect on
circular polarized radar wave, as for the transmitted wave
from the Arecibo telescope, the reflected radar wave from
the lunar surface is not circular any more. The reflected
radar signal with elliptical polarization could be affected by
Faraday rotation as it passes through the Earth’s ionosphere.

Figure 9. Comparison of (left) polarized (opposite circular, OC) and (right) depolarized (same circular,
SC) radar backscattering coefficients as a function of incidence angle for the VRT model (red line) and
Earth‐based 70 cm Arecibo radar observations for (top) maria and (bottom) highlands. The black squares
represent the average of the Arecibo data for a given incidence angle, whereas the blue squares represent
the average of the data with circular polarization ratios (CPRs) less than 0.25. The average of the depo-
larized backscattering coefficients with CPR < 0.25 is about 3–5 dB smaller than the average of all data
for incidence angles greater than 30°; for the polarized data the average is unchanged when the CPR <
0.25 values are calculated alone. VRT model parameters were chosen to provide best fit to the polarized
OC data (left) since they are believed to include less multiple scattering. The calibration uncertainty of the
Arecibo radar data is ±3 dB.
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[53] We also note that our VRT model is inconsistent with
the observations at large incidence angles (>80°) and this is
probably because the VRT model does not take into account
the shadowing effect of scattering from rough surfaces,
which becomes increasingly important at large incidence
angles [Fung, 1994, chap. 4; Jin, 1994, chap. 9; Tsang et al.,
2000, chap. 9]. For this reason, our VRT model should
probably be considered accurate only at incidence angles
less than about 80°.
[54] We also compared the opposite sense Earth‐based

radar data of the lunar nearside from Hagfors [1970] at
wavelengths of 3.8, 23 and 68 cm with our VRT model.
Simulation results show that these multifrequency data are
best fit using a lunar surface that is described by an expo-
nential correlation function in comparison to a Gaussian
correlation function [see also Hagfors, 1970; Shepard and
Campbell, 1999]. With a set of typical input parameters in
our VRT model, a lunar surface with an exponential cor-
relation function matches the polarized (opposite sense)
backscattering coefficients with a difference of 1 dB for
incidence angles less than 60°. In contrast, a lunar surface
with a Gaussian correlation function overestimates the
backscattering coefficients by about 2–3 dB for incidence
angles less than 20° and underestimates the backscattering
coefficients by about 2–5 dB for incidence angles beyond
20°. This is consistent with the previous studies of Hagfors
[1970] (at 23 cm and 68 cm) and Thompson [1978] (at 7.5 m).
Thus, for the following calculations, we will use an expo-
nential correlation function to describe the lunar surface.

6. Simulation Results and Analysis

[55] In the calculations that follow, if not mentioned
specifically we will use a radar frequency of 2.38 GHz (cor-
responding to the 12.6 cm wavelength of the Chandrayaan‐1
Mini‐SAR) with a transmitted right circular polarization and
an incidence angle of 35°, and the radar echo will be
received in both left‐hand (opposite sense) and right‐hand
(same sense) polarizations. Furthermore, we will use RMS
slopes of the surface and subsurface of 5° and 1°, respec-
tively, the fractional volume of the buried rocks will be set to
0.001 (similar to that of the Surveyor 5 landing site), the
semimajor and semiminor axes of the buried rocks will be
set equal to 0.1l and 0.05l (corresponding to 1.26 and
0.63 cm), a regolith thickness of 5 m will be assumed, and
the dielectric constants of the regolith, buried rock and
underlying bedrock will be set to "1 = 2.7 + i0.003, "s = 6.0 +
i0.01 and "2 = 6.0 + i0.05, respectively. The following results
for the polarized (OC) and depolarized (SC) radar echoes, as
well as the CPR, will be calculated in the backscattering
direction, although we note that our model can also calculate
the bistatic radar scattering coefficient with an arbitrary
transmit/receive polarization state.
[56] For a given frequency of the incident radar wave, the

radar backscattering from a rough surface is highly depen-
dent on the surface roughness, which is proportional to the
ratio of RMS height and correlation length d/l (a larger value
indicates a rougher surface). As information concerning
the RMS height and correlation length on the scale of the
Mini‐SAR spatial resolution (about 100 m) is not yet
available, we will assume that the correlation length is equal
to the wavelength of the incident radar wave, and then

obtain different surface roughness by changing the RMS
height. In the following simulations, the exponential corre-
lation function is chosen as the correlation function for both
the lunar surface and subsurface, since it matches the Earth‐
based observations better than a Gaussian correlation func-
tion. We note that for a rough surface with an exponential
correlation function, the relation of s =

ffiffiffi
2

p
d/l between RMS

slope s, RMS height d and the correlation length l does not
hold. Nevertheless, for comparative purposes we here use
this relation to describe the roughness.

6.1. Incidence Angle

[57] Figure 10 shows the polarized (OC) and depolarized
(SC) radar backscattering coefficient and the corresponding
CPR as a function of incidence angle for each of the five
scattering terms (the vertical gray areas indicate the range
of incidence angles expected for the Mini‐RF data on
Chandrayaan‐1 (∼35°) and LRO (∼49°)). In Figure 10,
the black line indicates the total contribution, the red line
indicates the contribution from the lunar surface, the blue
line indicates the contribution from the interface between
regolith and underlying bedrock, the dark cyan line indicates
the contribution from the buried rocks, and the magenta line
indicates the contribution from the interaction of buried
inclusions (in this case rocks) with the subsurface, i.e.,
subsurface‐volume and volume‐subsurface scattering terms.
From a statistical viewpoint, we note that the backscattering
coefficients for the interactions of rocks with the subsurface
are identical and the magenta line (labeled as “subsurface‐
volume”) is thus the sum contribution of these two scatter-
ing mechanisms. It can be seen that as the incidence angle
increases, the polarized radar echo from the entire lunar
regolith layer decreases, while the depolarized radar echo
only increases slightly, and that this causes the CPR to
increase with increasing incidence angle.
[58] For the polarized (OC) radar echo in Figure 10a, all

five of the scattering terms decrease with increasing incidence
angle. The polarized radar echo is dominated by surface
scattering at small incidence angles (<20° in Figure 10a),
while it is dominated by scattering from buried rocks (i.e.,
volume scattering) at larger incidence angles. At the smallest
incidence angles (<7° in Figure 10a), scattering from the
base of the regolith layer is even more important than vol-
ume scattering, though the subsurface scattering contribu-
tion drops dramatically with increasing incidence angles.
Because the path of the radar wave in the regolith becomes
larger with increasing incidence angles, this causes the radar
wave to become increasingly attenuated for all subsurface
scattering mechanisms. Since the subsurface volume inter-
action terms involve more than one scattering process, the
scattering contribution of these terms is small.
[59] The depolarized radar echo is dominated by scatter-

ing from buried rocks at all incidence angles. Both surface
and subsurface scattering are negligible at incidence angles
near 0° but they increase somewhat with increasing incidence
angle, and then decrease with incidence angles beyond 50°.
[60] The CPR increases with increasing incidence angle

for all five of the scattering terms. The CPR resulting solely
from the subsurface‐volume (or volume‐subsurface) inter-
action term is the largest among the five scattering terms for
incidence angles less than 67°. Nevertheless, it should be
noted that the backscattering coefficients associated with
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this scattering mechanism are small, so this makes only a
small contribution to the total CPR. CPRs corresponding to
the surface and subsurface scattering terms are extremely
small at incidence angles near 0°, but increase dramatically
with increasing incidence angle. The volume scattering term
has the second largest CPR value at small incidence angles
(<27° in Figure 10c), and then becomes the smallest among
the five terms at larger incidence angles. We note that the
subsurface‐volume and volume‐subsurface interactions that

involve multiple scattering of the incident radar wave has a
large CPR value because of the reallocation of power that
occurs each time a scattering process occurs. We also note
that when the CPR corresponding to either the surface,
subsurface, volume‐subsurface or subsurface‐volume inter-
action is taken in isolation, that it can be larger than the total
CPR. This is simply because the total CPR is not a simple
addition of the component CPRs, but is rather the ratio of
the entire depolarized radar echo to the polarized radar echo.
[61] As the penetration depth of the radar wave at X band

frequencies is smaller than that at S band frequencies, the
contributions from subsurface scattering will be relatively
smaller for X band observations. On the other hand, volume
scattering from the smaller‐sized inclusions, which are
invisible at longer wavelengths, will increase as the radar
frequency increases. It can thus be expected that surface
and volume scattering will also be the two dominant scat-
tering terms for X band observations. We note that the inci-
dence angle behaviors of the polarized and depolarized radar
echo strengths and CPR at X band frequencies are similar
to those at S band frequencies, which is consistent with
Earth‐based observations of the Moon [Thompson, 1987].

6.2. Regolith Thickness

[62] Figures 11a–11c show how the polarized (OC) and
depolarized (SC) radar backscattering coefficients and
associated CPR vary with regolith thickness for the five
scattering terms shown in Figure 6 for an incidence angle
of 35°. As can be seen, both polarized and depolarized
backscattering coefficients increase as regolith thickness
increases, approaching an asymptotic value for thickness
beyond about 10 m. This behavior is mainly caused by
the increased contribution of volume scattering, since the
number of buried rocks increases as the regolith thickness
increases. In a similar manner, as the regolith thickness
increases, the contribution from the subsurface‐volume (or
volume‐subsurface) scattering mechanisms increases as well.
Nevertheless, the subsurface‐volume (or volume‐subsurface)
contribution is seen to eventually decrease with increasing
regolith thickness as the radar wave eventually becomes
attenuated as it traverses the thick regolith layer. Because of
these two factors, scattering resulting from the subsurface‐
volume (or volume‐subsurface) interaction first increases
and then decreases with increasing regolith thickness. As
shown in Figure 11c, the CPR of each term is insensitive
to regolith thickness. Regardless, the CPR of the entire

Figure 10. Plot of the (a) polarized and (b) depolarized
radar backscattering coefficients and (c) the corresponding
CPR as a function of radar incidence angle for each of the
five scattering terms. The vertical gray areas indicate the
range of expected Mini‐SAR incidence angles (approxi-
mately 35° for Chandrayaan‐1 and 49° for LRO). The black
line indicates the total contribution of the five terms, the red
line indicates the contribution from the lunar surface, the
blue line indicates the contribution from the interface
between regolith and underlying bedrock, the dark cyan line
indicates the contribution from the buried rocks, and the
magenta line is the summed contribution from both interac-
tions of buried rocks with the subsurface (compare with
Figure 6).
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regolith layer (black line in Figure 11c) decreases with
increasing regolith thickness.
[63] Both the polarized and depolarized radar echoes

increase as the regolith thickness increases, while the CPR
decreases slightly with increasing thickness of the regolith.
As a result of this, the lunar highlands, whose regolith
thickness is greater than the maria by about a factor of two,
should have relatively strong radar echoes and a relatively
small CPR when compared to the mare. This is consistent
with the difference in radar echo strengths observed between
the mare and highland from Earth‐based radar images of the
Moon [Thompson, 1987; Campbell et al., 2007].

6.3. Regolith Dielectric Permittivity

[64] The polarized (OC) and depolarized (SC) backscat-
tering coefficients and CPR are shown in Figures 11d–11f
as a function of the real part of the complex dielectric per-
mittivity of the regolith, "′1. In Figures 11d–11f, "′1 varies
from 2.0 to 6.0 (corresponding to a regolith bulk density
from 1.1 to 2.8 g/cm3) for a fixed imaginary part of 0.003.
Since the Fresnel reflection coefficient increases with increas-
ing "′1, surface scattering is seen to increase with increasing
dielectric permittivity "′1. As "′1 increases, less radar energy
penetrates into the subsurface, and the dielectric contrast
between the regolith and the buried rocks also decreases.
Therefore, both volume scattering and subsurface‐volume
interactions decrease with increasing "′1. As a result of these
two factors, the polarized radar echo strength decreases
slightly with increasing "′1, while the depolarized echo
strength at first decreases and then increases with increas-
ing "′1. The total CPR decreases with increasing "′1, obtaining
a minimum value near "′1 = 3.0, and then increases with
increasing "′1.
[65] The loss tangent of the lunar regolith increases as the

abundance of FeO+TiO2 increases, and this causes an
increase in the attenuation of the radar wave and hence a
corresponding decrease of the received radar echo strength.
The polarized (OC) and depolarized (SC) backscattering
coefficients and CPR are shown in Figures 11g–11i as a
function of the abundance of FeO+TiO2, where the dielec-
tric constant of the regolith is calculated from equation (1)
using a bulk density of 1.5 g/cm3 (corresponding to "′1 = 2.7).
Surface scattering shows no sensitivity to the FeO+TiO2

content, since the surface reflectivity only correlates with
the real part of the dielectric constant of the regolith. As
the FeO+TiO2 content increases, the increased attenuation
causes a decrease of the volume, subsurface, subsurface‐
volume, and volume‐subsurface scattering. These factors
cause a decrease of the received radar echoes and an increase
of the CPR. Therefore, the mare, with high FeO+TiO2 con-
tent, will have lower radar echoes and higher CPRs than
the highlands, which is consistent with Earth‐based radar
observations [Thompson 1987; Campbell et al., 2007].

6.4. Buried Rocks

[66] Figures 11j–11l show how the polarized (OC) and
depolarized (SC) radar backscattering coefficients and the
CPR vary as a function of the fractional volume of buried
rocks for the five scattering terms. The fractional volume of
buried rocks here varies from 0 to 0.1, as implied by the
observed rock population at the Surveyor landing sites as

shown in Figure 2, and volume scattering is seen to be
the dominant scattering mechanism. Scattering from the
buried rocks increases as the rock abundance increases and
eventually reaches a saturation value. Increasing the rock
abundance causes an increase in the scattering loss of the
radar wave, and therefore scattering from the subsurface
is reduced (blue line of in Figures 11g and 11h). By
the influence of these two factors, the subsurface‐volume
(or volume‐subsurface) interaction first increases and then
decreases with increasing fractional volume of buried rocks.
Also, as can be seen, the number of buried rocks does not
change the CPR for each individual scattering term. Under
the condition of single scattering from rocks, the total radar
echo strength increases as the abundance of buried rocks
increase, while the CPR decreases only slightly as the rock
abundance increases.
[67] Polarimetric radar scattering is sensitive to the shape

and orientation of the subsurface rocks. The polarized (OC)
and depolarized (SC) radar backscattering coefficients and
CPR are shown in Figures 11m–11o as a function of the
shape of the buried rocks, indicated by c/a (the ratio of
the semimajor and semiminor axes of the buried rocks).
A value of c/a of unity indicates a sphere, whereas a value
greater than one indicates a prolate spheroid and a value
less than one represents an oblate spheroid. As can be seen,
the shape of the rocks mainly affects the volume scatter-
ing, subsurface‐volume and volume‐subsurface interactions.
The polarized radar echo arising solely from the buried
rocks is a monotonically increasing function of c/a, whereas
the depolarized radar echo is relative constant for c/a less
than 1, and increases sharply for c/a greater than 1. Both the
polarized and depolarized radar echoes from the subsurface‐
volume (or volume‐subsurface) interactions increase with
increasing c/a. The CPR resulting solely from scattering
by the buried rocks is a minimum for spherical particles,
and increases with increasing rock oblateness, and the CPR
resulting solely from the subsurface‐volume (or volume‐
subsurface) interactions has a similar behavior. The total
polarized backscattering coefficient is seen to monotonically
increase with increasing c/a, whereas for the depolarized
signal, the backscattering coefficient only varies slightly for
c/a less than 1 and increases for c/a greater than 1. As a
result of this behavior, the total CPR has a distinct minimum
for spherical rocks.

6.5. Surface and Subsurface Roughness

[68] As the surface roughness increases, more radar energy
is reflected in the backscattering direction. Figures 12a–12c
show the polarized (OC) and depolarized (SC) radar back-
scattering coefficients and CPR as a function of surface
RMS slope for the five scattering terms, where the RMS
slope of the subsurface has been set to 1°. It can be seen that
both the radar echoes and CPR increase with increasing
surface roughness. As surface roughness increases, less
energy penetrates into the regolith layer, and therefore
scattering from the buried rocks and surface‐volume inter-
action decreases.
[69] Figures 12d–12e show the variation of the polarized

(OC) and depolarized (SC) radar backscattering coefficients
and CPR as a function of the subsurface roughness for the
five scattering terms, where the RMS slope of the surface
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Figure 11. Polarized (soc) and depolarized (ssc) radar backscattering coefficients and the CPR as a func-
tion of (a–c) regolith thickness, (d–f) real part of the dielectric permittivity, (g–i) the abundance of
FeO+TiO2, (j–l) the fractional volume of buried rocks, and (m–o) the shape of the buried rocks. The model
calculations were carried out in the backscattering direction with an incidence angle 35°. The black lines
indicate the total contribution from the five scattering terms, the red line indicates the contribution from
the lunar surface, the blue line indicates the contribution from the interface between regolith and underlying
bedrock, the dark cyan line indicates the contribution from the buried rocks, and the magenta line is the
summed contribution from both interactions of buried rocks with the subsurface (compare with Figure 6).
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has been set to 1°. It can be seen that both polarized
and depolarized radar echo strengths from the subsurface
increase as subsurface roughness increases, whereas radar
echo strengths from the surface‐volume interaction strongly
decreases with increasing subsurface roughness. The CPR
resulting solely from the subsurface decreases with increasing
subsurface roughness, and this causes the CPR from the entire
regolith layer to decrease with increasing subsurface rough-
ness. Regardless it should be noted that the backscattering
contribution from the subsurface is generally very small, and
that this makes only a minor contribution to the total signal
except for an extremely rough subsurface.

6.6. Surface Slope

[70] Since large‐scale surface slopes change the local
incidence angle and polarization state of the incident radar
wave, they also modulate the received radar echoes and
CPRs. We define the plane of incidence as the plane formed
by the normal to the principle coordinates of the lunar sur-
face ẑ and the incident direction of the radar wave I0 (see
Figure 1), and define �l as the large‐scale surface slope in
the plane of incidence, and �l as the large‐scale surface
slope perpendicular to this plane. Figures 12g–12i show
how the polarized (OC) and depolarized (SC) radar back-
scattering coefficients and CPR vary with surface slope in
the plane of incidence for the five scattering terms, where a
positive surface slope indicates a local surface tilted toward
the radar antenna and a negative value indicates a local
surface tilted away from the antenna. As can be seen, areas
with regional tilts toward the radar will have a stronger
polarized echo strength and a weaker depolarized radar echo
strength, and therefore a smaller CPR. The opposite behavior
occurs for regions that are titled away from the radar antenna.
[71] As to be expected, the influence on radar echo strength

caused by slopes perpendicular to the radar incidence plane
�l is symmetrical with respect to �l = 0. The variation of the
polarized (OC) and depolarized (SC) radar echo strength and
CPR as a function of �l is shown in Figures 12j–12l.
Compared with radar echoes for no out of plane slopes, a
nonnegative slope produces only a slightly smaller polarized
radar echo and a slightly larger depolarized radar echo,
which causes a very small increase of the CPR. Compared to
in plane slopes, out of plane slopes have little effect on the
received echo strengths.
[72] Impact craters are common features of the lunar

surface that give rise to variations in surface slope, espe-
cially within the older highlands. Craters walls will create
highlights and lowlights in the radar images that depend on
the incident direction of the radar wave and the local slope
of the crater walls. As an example, Figure 13a shows the
surface topography of an idealized bowl‐shaped crater with
a radius of 3 km (generated as in Fa et al. [2009]). For the
case where the radar moves in the vertical y direction (along
track) and transmits radar waves in the x direction (cross
track), Figures 13b, 13c, and 13d show our simulated
polarized (OC), depolarized (SC) and CPR images associ-
ated with this crater, respectively. The surface slope at the
crater center is 0, therefore a direct comparison between this
and any other point shows how the local surface slopes
influence the radar echo strengths and CPR. As can be seen,
portions of the crater wall that tilt toward the radar have a

large polarized radar echo strength and a small depolarized
radar echo strength, and therefore a small CPR. The situa-
tion is opposite for those portions of the crater wall that tilt
away from the radar.
[73] Figure 13a is an idealized bowl‐shaped crater, and no

geometric distortion effects (i.e., foreshortening, layover and
shadowing) have been considered in generating Figures 13b,
13c, and 13d. For a bowl‐shaped crater, shadowing effects
should occur only for the incidence angles greater than 65°
[Fa et al., 2009]. Since most surface slopes are less than
30°, the incidence angles associated with the Chandrayaan‐1
and LRO Mini‐SARs are not large enough to cause sha-
dowing effects for typical lunar features. Radar images of
actual craters are expected to be much more complicated
than that of Figure 13, since the distribution of buried rocks
and surface roughness are expected to correlate with posi-
tion in the crater as well. Finally, we note that the distri-
bution of backscattering coefficients associated with our
simple geometric crater appears to be lognormally distrib-
uted about the average value expected for a flat plane. This
implies that the effects of surface slopes resulting from
impact craters larger than the radar’s spatial resolution can
be removed by taking the average of the backscattering
coefficients in log units (or dB) over an extended region.
Averaging the backscattering coefficients in absolute units
would bias the average value upward in comparison to that
of a flat plane.

6.7. Summary

[74] From the simulation results above, we find that the
most important factor that influences the radar backscatter-
ing coefficients and CPR is the radar incidence angle.
Other factors that affect primarily the radar backscattering
coefficients are the abundance of buried rocks, rock shape,
large‐scale surface slope, regolith thickness, FeO+TiO2 abun-
dance, and surface roughness. Factors that influence primarily
the returned CPR are rock shape, large‐scale surface slope,
real part of the dielectric constant of the regolith, surface
roughness, regolith thickness, and FeO+TiO2 abundances.
The CPR resulting solely from buried rocks does not change
with regolith thickness or rock abundance, and this implies
that the CPR is not sensitive to the number of the buried
rocks, but is sensitive rather to the shape of the rocks (also
the orientation of the buried rocks, which is assumed to be
random in this study).
[75] Note that in the above calculations, the radar frequency

is 2.38 GHz (S band) and the incidence angle is 35°, and that
in such a radar configuration, the subsurface, subsurface‐
volume and volume‐subsurface scattering contributions are
for the most part found to be insignificant. Neglecting these
contributions would only affect the backscattering coeffi-
cients and CPR by a factor of no more than 10%. However,
when considering a radar frequency of 430 MHz (P band)
or near‐nadir incidence angles, contributions from subsur-
face and subsurface‐volume scattering will increase and
cannot be neglected.
[76] For the analysis of Earth‐based and orbital radar data,

several regolith parameters can be estimated using other data
sets. For example, the FeO+TiO2 content (and hence the loss
tangent) of the lunar regolith can be obtained from gamma
ray, X‐ray or optical spectroscopy data [Lucey et al., 2000;
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Lawrence et al., 2002; Grande et al., 2009], and the large‐
scale surface slope and roughness can be obtained by high‐
resolution surface topography, such as from laser altimetry
[Araki et al., 2009; Huang et al., 2010; Smith et al., 2010].
The most difficult parameters to constrain from nonradar
observations are the size‐frequency distribution of buried
rocks, the shape of the buried rocks, the subsurface
roughness, and regolith thickness. It is the investigation of

these parameters where radar investigations will be the
most fruitful.

7. Implications for Ice Detection Using
Polarimetric SAR

[77] To investigate the possible polarimetric signatures of
ice in the polar permanently shadowed areas of the Moon

Figure 12. Plot of the polarized (soc) and depolarized (ssc) radar backscattering coefficients and the
CPR as a function of (a–c) surface roughness, (d–f) subsurface roughness, (g–i) regional in‐plane surface
slope �l, and (j–l) out‐of‐plane surface slope �l. The model calculations were carried out in the backscat-
tering direction with an incidence angle 35°. The black line indicates the total contribution from the five
scattering terms, the red line indicates the contribution from the lunar surface, the blue line indicates the
contribution from the interface between regolith and underlying bedrock, the dark cyan line indicates the
contribution from buried rocks, and the magenta line is the summed contribution from both interactions of
buried rocks with the subsurface (compare with Figure 6).
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using orbital SAR, four parametric regolith models were
considered. The first (nominal) model does not contain any
ice, and is represented simply by a desiccated regolith with
buried rocks overlying bedrock (Figure 14a). The second
model contains an ice layer of thickness d with embedded
rocks overlying bedrock (Figure 14b). The third model
contains a regolith layer with buried rocks that overlays a
pure homogenous ice “bedrock” (Figure 14c). The last
model contains a regolith layer with buried ice “rocks”
overlying bedrock (Figure 14d). For these models, we use a
dielectric constant of "regolith = 2.7 + i0.003 for regolith, "ice =
3.15 + i0.001 for ice, and "rock = 6.0 + i0.01 for both buried
rocks and bedrock.
[78] Figure 15 shows our predicted variations of the

polarized and depolarized radar echo strengths and CPR as a
function of radar incidence angle for the four different
models. For the Mini‐SAR instrument onboard LRO, the

nominal incidence angle is 49°, whereas for the Mini‐RF on
Chandrayaan‐1, the nominal incidence angle is 35°, as
indicated by the vertical gray regions. As can be seen, given
the small contrast of dielectric permittivity between ice and
silicate regolith, it is difficult to discriminate the polarized
and depolarized radar echoes and CPR for models shown in
Figures 14a–14c. In other words, it is difficult to distinguish
the nominal model where no ice is present from the model
where ice is present as a thick layer with embedded rocks or
the model where a regolith with embedded rocks overlays a
pure ice layer. Nevertheless, if buried rocks in the regolith
are simply replaced by “rocks” of ice of the same size, radar
echo strengths will decrease whereas the CPR will increase
at large incidence angles (>27°). While this model yields
distinctive radar backscattering coefficients and CPRs, the
difference between this model and the previous three is not
due to the presence of ice, but rather the absence of rocks.

Figure 13. Influence of surface slope on radar signals for a bowl‐shaped impact crater. (a) Shaded relief
map of an idealized bowl‐shaped crater with a 3 km radius (generated as in the work of Fa et al. [2009]),
(b) polarized radar echo strength, (c) depolarized radar echo strength, and (d) circular polarization ratio.
The radar signal is transmitted from left to right, and the model calculations were carried out in the
backscattering direction with an incidence angle of 35°.
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[79] Next we quantify how the dielectric constant and CPR
vary as a function of the abundance of ice in the regolith for
two different models. For our nominal model, the regolith is a
50:50 mixture of silicate grains and vacuum. For our first ice
model, the surface layer is modeled as a pure ice layer that
contains embedded silicate grains, whereas for our second ice
model, the surface layer is a mixture of silicate grains, ice
grains, and 50% vacuum. The size of the ice and silicate
grains is assumed to be much smaller than the radar wave-
length, and hence these components only act to change the
effective dielectric permittivity of the regolith (or ice) layer
(the effects of buried rocks will be quantified later). The
complex dielectric permittivity of the mixture of ice, silicate,
and vacuum "mix is calculated using Lichtenecker’s mixing

rule log"mix =
Pn
i¼1

fvi log"i, where "i and fvi are the complex

dielectric permittivity and fractional volume of the ith com-
ponent, respectively [Lichtenecker, 1926; Simpkin, 2010].
The relative dielectric permittivity of vacuum is identically
unity, and the dielectric permittivity of the ice and silicate
grains is here set as "ice = 3.15 + i0.001 and "silicate = 8.0 +
i0.07, respectively (the latter being the same as that of a solid
rock with a density of 3.2 g/cm3 with 5 wt.% FeO+TiO2).
Given that the maximum fractional volume that can be
occupied by spherical particles is about 74% under hexagonal
close packing conditions, for the mixture of pure ice and
silicate grains, the minimum ice content considered is 26%.
[80] Figures 16a and 16b show the variation of the real

and imaginary parts of the dielectric permittivity of the three
mixtures as a function of the fractional volume of ice. The
black line indicates the nominal ice‐free model which is a
50:50 mixture of silicate grains and vacuum, the red line
indicates the mixture of a pure ice layer with embedded
silicate grains, and the blue line indicates the mixture of ice
grains, silicate grains and 50% vacuum. Figure 16c shows
the predicted CPRs of these three mixtures from our VRT

model, for the case where there are no embedded rocks that
can act as radar scatters. As can be seen, for the case of a
mixture of ice grains, silicate grains and vacuum, the CPR
first decreases by about 7% and then increases by a maximum
of 32% as the fractional volume of ice grains increases. For
the case of the mixture of a pure ice layer with silicate grains,
the CPR is seen to be larger than the nominal ice‐free model
by 67% for 26% ice. The CPR decreases to only a 30% dif-
ference for a pure ice layer. Given the 2.5 dB uncertainty of
the Mini‐SAR data, and our maximum predicted signal of
67% in the CPR, the detection of ice will be challenging
using the Mini‐SAR data.
[81] Similar results are shown in Figure 16d, but for the

case where buried rocks are also present. For these calcu-
lations, the fractional volume of the buried rocks is set to 0.1
and their size is set to 1.0 cm. The solid lines represent
oblate spheroid rocks with c/a = 0.5, the dotted lines rep-
resent spherical rocks, and the dashed lines represent prolate
rocks with c/a = 2.0. With large buried nonspherical rocks in
a mixture of ice grains, silicate grains and 50% vacuum, the
CPR increases with the fractional volume of ice grains,
whereas the CPR decreases with the fractional volume of ice
grains for spherical buried rocks. For the second ice model,
if there are embedded nonspherical rocks, the CPRs first
decrease and then increase with increasing abundances of
ice, whereas the CPR monotonically decreases with the
increasing of ice abundance for spherical rocks. Compared
with the nominal ice‐free model with a 50:50 mixture of
silicate grains and vacuum, the presence of ice could cause
an enhancement of CPR by several times when there are
buried rocks. Nevertheless, since it is not easy to quantify
the fractional volume, size and shape of buried rocks within
the lunar regolith, identification of ice using solely radar
CPRs will be difficult.
[82] Radar scattering from the icy Galilean satellites

(Europa, Ganymede, and Callisto), the south polar ice cap of
Mars, the poles of Mercury, and the Greenland ice sheet are

Figure 14. Four hypothetical regolith models: (a) a desiccated regolith layer with rock inclusions over-
lying bedrock, (b) an ice layer with rock inclusions overlying bedrock, (c) a desiccated regolith layer with
rock inclusions that overlays pure homogenous ice, and (d) a regolith layer with ice inclusions overlying
bedrock.
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all characterized by unusual and unanticipated high back-
scattering coefficients and polarization ratios relative to
the more familiar and extensively studied terrestrial planets
[e.g., Ostro and Shoemaker, 1990; Baron et al., 2003, and
the references therein]. Among the various models that have

been proposed to explain these “bizarre” phenomena, one of
the most probable explanations is the coherent backscatter
opposition effect (CBOE) that occurs near zero‐phase back-
scattering conditions [e.g., Hapke, 1990; Jin and Lax, 1990;
Peters, 1992]. The coherent backscatter opposition effect is
traditionally explained as being caused by multiple scatter-
ing from subsurface heterogeneities that add coherently near
zero‐phase angles [Hapke, 1990]. In particular, as radar
waves propagate in a weakly absorbing medium with ran-
dom scatterers (such as rocks imbedded in an icy matrix, or
a regolith consisting of voids), those waves that undergo
random scattering along identical paths, but in opposite
directions, add coherently, resulting in (at most) a twofold
power increase over the diffuse background near the back-
scattering direction [Hapke, 1990]. A critical prediction of the
CBOE model is that the depolarized radar return will be
enhanced by no more than a factor of two at zero‐phase
backscattering conditions, resulting in CPRs as high as two.
A test of this model would be to observe the bistatic scat-
tering properties of the lunar surface, such as by using a
radar transmitter in lunar orbit in combination with a ter-
restrial receiver (or vice versus). Such an experiment was
attempted with the Clementine mission [Nozette et al., 1996],
but the interpretations of these results are ambiguous
[Simpson and Tyler, 1999].
[83] Double scattering from a rough surface can also give

rise to a coherent backscatter effect near zero‐phase angles
[e.g., Jin and Lax, 1990]. Since double scattering from a
sufficiently rough surface can also account for high CPRs,
the presence of CPRs higher than 1 does not necessarily
imply thick deposits of nearly pure ice. Even with the CBOE
effect, it will still not be easy to discriminate a coherent ice
layer with a rough surface at the permanently shadowed area
at the poles of the Moon. Nevertheless, by comparing the
statistical properties of radar data acquired over permanently
shadowed craters near the poles with more equatorial cra-
ters, it might be possible to detect an ice signature [e.g.,
Spudis et al., 2010].
[84] Since multiple scattering between buried inclusions

has not been considered in this study, our VRT model
cannot account for any coherent backscatter opposition
effect. Despite not taking into account multiple scattering,
our model suggests that it will be very difficult for radar to
detect ice mixed into the regolith. To improve our ability to
detect concentrations of ices, both the radar backscattering
coefficients and CPR should be analyzed simultaneously (as
opposed to solely the CPR, as in the work of Campbell et al.
[2006] and Spudis et al. [2010]). Fully polarimetric radar
scattering theory might be another alternative to detect ice
since it contains all the scattering information for any arbi-
trary polarization state (e.g., circular, linear and hybrid
modes), which also contains more information than a single
parameter of the CPR. Moreover, the use of remote sensing
data sets, such as laser altimeter data and radiometer data, will
be crucial to constraining the ambiguities in detecting ice.

8. Discussion and Applications

8.1. Discussion on Regolith Model

[85] In this study, the regolith was modeled as a homo-
geneous fine‐grained layer possessing rough upper and
lower interfaces, with buried rocks smaller than one wave-

Figure 15. Radar backscattering coefficients and CPR
as a function of radar incidence angle for the four rego-
lith models shown in Figure 14: (a) polarized radar echo
strength, (b) depolarized radar echo, and (c) CPR.
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length. This idealized two‐layer model could be criticized in
two regards. First, the lower interface between the regolith
and the underlying bedrock might not be distinct, especially
for the lunar highlands where a deeper megaregolith may
exist [Heiken et al., 1991, Figure 4.22], and second the
buried rocks in the regolith layer might have a distribution
of sizes, with some being comparable in size or larger than
the radar wavelength. With regard to the first point, we note
that scattering from the subsurface layer, as well as the
scattering between rocks and the subsurface layer, generally
only makes a small contribution to the observed signals. As
for the second point, it would be a simple matter to include
a size‐frequency distribution of rocks in our model if they
were all smaller than the radar wavelength. Nevertheless,
for larger rock sizes, our T‐matrix approach under the
Rayleigh approximation [Tsang et al., 2000, chap. 2] is no
longer appropriate for modeling scattering from rocks, and
numerical approaches, such as FDTD or MoM would have
to be used.
[86] We note that most previous radar scattering models

only consider either surface or volume scattering [e.g.,

Hagfors, 1964; Campbell et al., 1997]. Though our model is
still an idealization, it is more realistic than previous models,
and in many cases can reproduce the results of these simpler
scattering models. For example, if only scattering from a
rough surface was considered, the integral equation model
(IEM) that we used is in fact more accurate than the physical
optics model of Hagfors [1964]. If there were no rocks
buried in the regolith layer, our model would be very similar
to the model of Shkuratov and Bondarenko [2001]. For a
thick regolith layer or a higher radar frequency, the incident
radar wave would not reach the subsurface. In this case, our
model would be similar to the scattering model of Campbell
and Hawke [2005], although we noticed that different
approaches are used to take into account the scattering from
buried rocks.
[87] Analyses of the Apollo and Luna core samples show

that the majority of regolith grains fall in a relatively narrow
range of sizes, with a mean particle size of 70 mm [e.g.,
McKay et al., 1991]. At S and X band, the regolith particles
are too small to act as good radar scatterers. In our model,
the scattering amplitude matrix for rocks in equation (6) is

Figure 16. (a) Real and (b) imaginary parts of the dielectric permittivity as a function of ice abundance for
a 50:50 mixture of silicate grains and vacuum with no ice (black line); a mixture of pure ice and silicate
grains (red line); and a mixture of ice grains, silicate grains, and 50% vacuum (blue line). The complex
dielectric permittivity of the mixtures is calculated using Lichtenecker’s mixing rule [Lichtenecker,
1926; Simpkin, 2010]. (c) CPR of the three mixtures as a function of ice abundance and (d) CPR of the
three mixtures as a function of ice abundances with the presence of buried rocks. For the latter, the fractional
volume of buried rocks is 0.1 and the size of the buried rocks is 1.0 cm. The solid lines represent oblate
spheroid rocks with c/a = 0.5, the dotted lines represent spherical rocks, and the dashed lines represent rocks
prolate with c/a = 2.0.
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calculated using T‐matrix approach under the Rayleigh
approximation, which requires the rock size to be smaller than
one wavelength. For the case of rocks with sizes comparable
to the wavelength, the scattering amplitude function in
equation (6) would have to be obtained using numerical
approaches such as FDTD or the Method of Moments,
though all the other parts in our VRT method would remain
the same. It is to be expected that a large buried rock will
enhance the radar echo strength, but that the polarization
state of the received echo and therefore the CPR value
would remain the same as a smaller rock with the same
shape. On the other hand, if the sizes of the buried rocks
were much larger than the incident wavelength, buried
rocks would act as a part of regolith substrate, and their
scattering behaviors could be approximated as that from a
rough subsurface.
[88] If the lunar regolith contains a size‐frequency distri-

bution of buried inclusions represented by the factional
volume of size fsi, the Mueller matrix can be written as the
weighted sum of Mueller matrices for each rock size [Jin,
1994, chap. 4]

M ¼
Xn
i¼1

fsi
fst
Mi ð21Þ

where fst =
Pn
i¼1

fsi and M i is the Mueller matrix of the ith type

of inclusions that can be calculated from equation (13), and
n is the number of types of inclusions. This equation is only
valid under the condition of independent scattering (the
scatterers are uncorrelated and the interactions of the scat-
tering fields can be ignored), which requires that fsi < 0.1.
[89] As we do not consider rocks that are perched on the

lunar surface and multiple scattering from buried rocks in
this study, the predictions of the radar echo strength from
our model for young craters that possess a large number of
near‐surface rocks could be incorrect. It is very difficult to
deal with half‐buried rocks on the lunar surface using an
analytical approach, and the only method that can accurately
account for this is a numerical approach such as in the work
of Baron et al. [1996] and Ye and Jin [2010]. Though we can
treat perched rocks approximately by increasing the surface
roughness in our models, our model cannot explicitly account
for a difference in dielectric constant between these rocks
and the underlying regolith.
[90] Our radar scattering model is based on vector radi-

ative transfer theory and the Mueller matrix solution of
equation (13) is of first order, which means that it only takes
into account the scattering from the surface, the subsurface,
buried inclusions in the upper layer and surface‐rock inter-
actions. Usually, these first‐order scattering terms dominate
the observed radar echoes, but higher‐order scattering that
involves more than one scattering event could possible change
the polarization state of radar wave and hence the CPR (Note
that in our simulations the surface‐volume interaction has a
high CPR value). To treat double (or multiple) scattering
from a rough surface or buried rocks, we would need to derive
a higher‐order Mueller matrix solution using the same
approach as in Appendix B. In this case, however, the
Mueller matrix would be very cumbersome. The only feasible
approach would be to solve numerically the VRT equation

[Liang and Jin, 2003], which is somewhat time consuming.
Since the fractional volume of buried rocks in the lunar
regolith is generally less than 0.1 (except in the most
extreme cases) as shown in Figure 2, multiple scattering can
be ignored under the assumption of independent scattering
[Tsang et al., 1985, chap. 2; Jin 1994, chap. 8], especially for
the opposite sense radar backscattering coefficient. There-
fore, it is probably safe to apply this first‐order scattering
model to the majority of the lunar surface. However, when
considering young rocky craters, the fractional volume of
buried rocks can be larger than 0.1 (e.g., Surveyor 7 landing
site, which is close to Tycho Crater), and our first‐order
solution will underestimate the radar echo strength.

8.2. Future Applications

[91] Of the various techniques used in lunar exploration,
radar is by far one of the most powerful tools for obtaining
lunar subsurface properties because of its superior pene-
tration. Recently, with a renewed interest in lunar exploration,
a variety of radar instruments, including the Earth‐based
Arecibo radar [Campbell et al., 2007], the Kaguya lunar
radar sounder (LRS) [Ono et al., 2009], and the Mini‐SARs
onboard Chandrayaan‐1 and LRO [Bussey et al., 2007;
Spudis et al., 2010], with different radar techniques, fre-
quencies and polarizations, have been used to investigate the
lunar surface and subsurface properties. With the radar scat-
tering model developed in this study, a significant range
of lunar surface and subsurface properties can be studied
quantitatively, such as lunar surface roughness, subsurface
rock abundance, regolith thickness, and regolith dielectric
properties. By quantifying these properties, it will be pos-
sible to address important geologic questions, such as the
origin of dark haloed craters [Ghent et al., 2005], the thick-
ness of pyroclastic deposits [Carter et al., 2009], and the
distribution of impact melt on the lunar surface [Campbell
et al., 2010].
[92] Knowledge of the regolith thickness is important for

several other reasons as well. Regolith thickness is an
indication of the age of lunar surface [McKay et al., 1991;
Shkuratov and Bondarenko, 2001], the regolith contains
potentially valuable resources and volatiles (helium‐3) [Fa
and Jin, 2007], and all future human activates will use
regolith as building materials and shielding. Furthermore,
heat flow experiments need to drill or penetrate several
meters below lunar surface and this is only possible to do in
the regolith. One potential application of our model is to
investigate the surface roughness and subsurface rock abun-
dance at the Apollo landing sites, where the regolith thick-
ness and composition are known [e.g., Nakamura et al.,
1975]. From these estimated parameters it will be possible
to invert globally for the regolith thickness using Earth‐
based 70 cm radar or Mini‐SAR data. Although Shkuratov
and Bondarenko [2001] obtained a global regolith map for
the lunar nearside using the Earth‐based Arecibo 70 cm
radar image, the uncertainty in the calibration of these data
combined with their simplified regolith model (it did not
consider buried rocks) have limited the applicability of this
technique [Campbell, 2002]. With newly acquired well‐
calibrated radar data combined with our radar scattering
model, it should be possible to obtain a much more accurate
regolith thickness map with higher spatial resolution.
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[93] Knowledge of the variation of dielectric properties
over the lunar surface and its role in surface scattering and
subsurface penetration is crucial for the interpretation of
radar data, radar sensor design, and landing site selection for
future missions. Most of our previous knowledge about
lunar dielectric properties is based on laboratory measure-
ments of the lunar regolith samples, which were collected at
only a few sites on the lunar nearside [Olhoeft and Strangway,
1975; Carrier et al., 1991], and inferences from Earth‐based
and bistatic radar and radio emission observations [Hagfors,
1970; Tyler and Howard, 1973]. For smooth lunar regions
with few buried rocks, such as pyroclastic deposits, the ratio
of the radar echo strengths in orthogonal polarizations is
sensitive to the real part of the dielectric constant. In com-
bination with our model, the real part of the dielectric con-
stant could potentially be estimated over large regions from
orbit. The loss tangent of the same regions could then be
obtained from radar observations at two different frequen-
cies. With the derived dielectric properties, it might be
possible to study how FeO and TiO2 abundances vary with
depth, which is not easily investigated using other remote
sensing techniques.
[94] In summary, with the radar scattering model devel-

oped in this study and the radar data from the current mis-
sions, a variety of surface and subsurface properties can be
investigated quantitatively. As other complementary geo-
physical and ground truth information becomes available,
they can be incorporated into this model, increasing the
accuracy and robustness of the results.

9. Conclusions

[95] In this study, we have developed a quantitative radar
scattering model that is applicable to planetary regoliths
using the vector radiative transfer (VRT) theory of random
media. From this model, the transmission, attenuation,
reflection and scattering of radar waves at both the lunar
surface and the base of the regolith, scattering from buried
rocks, and the interaction between rocks with the surface
and subsurface have been taken into account. Using this
model, both the radar backscattering coefficients and the
circular polarization ratio (CPR) can be predicted analyti-
cally as a function of regolith parameters. Our results imply
the following:
[96] 1. Polarized radar backscattering coefficients at S and

X band frequencies are mostly dominated by scattering from
the surface and shallow buried rocks, while the depolarized
radar backscattering coefficients are dominated by scattering
from buried rocks.
[97] 2. Both the polarized and depolarized radar back-

scattering coefficients increase as the regolith thickness
increases, while the CPR decreases with an increase of
regolith thickness. As a result of this, the lunar highlands,
whose regolith thickness is greater by about a factor of two
than the maria, should have relatively stronger radar back-
scattering coefficients and a relatively smaller CPR when
compared to the maria, which is consistent with observations
[Thompson, 1987; Campbell et al., 2007].
[98] 3. The loss tangent of the lunar regolith increases as the

abundance of FeO+TiO2 increases, and this causes a decrease
of the radar backscattering coefficients and an increase in the
CPR. Therefore, the maria, with high FeO+TiO2 content,

will have relatively lower radar backscattering coefficients
and higher CPRs than the highlands, which is consistent with
observations.
[99] 4. Under the condition of single scattering from

buried rocks, the radar backscattering coefficients increase
as the abundance of buried rocks increase, while the CPR
decreases as rock abundances increase.
[100] 5. Areas with regional tilts toward the radar antenna

will have stronger backscattering coefficients and smaller
CPRs than regions that are titled away from the radar
antenna.
[101] 6. Both radar backscattering coefficients and the

CPR increase as surface roughness increases. In contrast,
the radar backscattering coefficients increase and the CPR
decreases as subsurface roughness increases.
[102] 7. Simulation results suggest that it will be a difficult

task to identify ice mixed in the lunar regolith given the
small contrast of dielectric permittivity between ice and the
silicate regolith.
[103] The radar scattering model in this paper will be

helpful in the analysis of both Earth‐based and orbital radar
data, including the study of the physical properties of the
lunar surface and the possible detection of ice inclusions in
the permanently shadowed area at the lunar poles. The radar
scattering model can be applied also to the analysis of radar
data obtained from Mercury, Venus, Mars and Titan.

Appendix A: Scattering Matrix for a Rough
Surface Based on IEM

[104] Analytical approaches for random rough surface
scattering are usually based on Huygens’ principle, where
the scattering field at an observation point can be expressed
in terms of fields at the boundary surface. According to the
magnitude of roughness (i.e., the RMS height and correlation
length) compared to the radar wavelength, two traditional
approaches are the Kirchhoff approximation (KA) that is
valid for gently undulating surfaces with radius of curvature
larger than a wavelength and the small perturbation method
(SPM) that is valid for a slightly rough surface with RMS
height much smaller than the wavelength. The first approach
approximates the surface fields using the tangent plane
approximation, that is, the surface fields at any point of the
surface are approximated by the field that would be present
on the tangent plane at that point [Tsang et al., 1985; Jin,
1994]. In SPM, the surface fields are expanded as a pertur-
bation series, which can be obtained from the boundary
conditions under the Rayleigh hypothesis [Tsang et al.,
1985, 2000]. The KA solution is usually applied to high‐
frequency waves with small incident angles, and the SPA
solution is generally applied to low frequencies with large
incident angles. One of the most comprehensive models to
date is the integral equation method (IEM), which unites
the small perturbation model for slightly rough surfaces
with the Kirchhoff approximation for very rough surfaces.
[105] In the integral equation method for rough surface

scattering, the tangential surface fields are split to the
standard Kirchhoff surface field (the same as in the physical
optics approximation) and a complementary surface field,
from which the far‐zone scattered field can be calculated
with the Stratton‐Chu integral [Fung et al., 1992]. With the
introduction of the complementary surface field, the tangential
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surface fields are more general and accurate than the tradi-
tional physical optics approximation. According to Fung
[1994], the bistatic single‐scatter scattering coefficient matrix
in the upper medium is given by

where the incidence angle p − �i is defined with respected to ẑ
in Figure 1. Each of the above matrix elements has the form
[Fung, 1994, chap. 4]

SqpSrs*
� � ¼ k2

8�
exp ��2 k2z þ k2sz

� �� �
�
X∞
n¼1

�2n InqpI
n
rs
*

	 
W nð Þ ksx � kx; ksy � ky
� �

n!
ðA2Þ

where

In�� ¼ ksz þ kzð Þnf�� exp ��2kzksz
� �

þ kszð ÞnF�� �kx;�ky
� �þ kzð ÞnF�� �ksx;�ksy

� �
2

ðA3Þ

and where q, p, r, s, a, and b are either v or h for vertical
polarization and horizontal polarization, respectively. In
equation (A3), fab and Fab are the Kirchhoff and the com-
plementary field coefficients, which are used to calculate
the Kirchhoff and the complementary surface fields (see
Fung et al. [1992] for more details about their calculation).
d denotes the RMS height of the rough surface, kx, ky, kz
are the components of the incident wave number k in x, y
and z directions, and ksx, ksy, ksz are the components of the
scattered wave number ks in x, y and z directions.W

(n)(Kx, Ky)
is the Fourier transform of the nth power of the surface cor-
relation function. For a Gaussian correlation function

C x; yð Þ ¼ exp � x2

l2x
� y2

l2y

 !
ðA4Þ

the nth power spectrum is [Fung, 1994, chap. 2]

W nð Þ Kx;Ky

� � ¼ lxly
2n

exp �K2
x l

2
x þ K2

y l
2
y

4n

 !
ðA5Þ

where lx and ly are the correlation lengths in the x and
y directions, respectively. For an exponential correlation
function

C x; yð Þ ¼ exp � xj j
lx

� yj j
ly

� �
ðA6Þ

the nth power spectrum is [Fung, 1994, chap. 2]

W nð Þ Kx;Ky

� � ¼ lxly
n2

1þ K2
x l

2
x þ K2

y l
2
y

n2

 !�1:5

ðA7Þ

The transmission matrix T has a similar set of expressions
as equation (A1). For more discussion on the derivation of
these equations, see Fung [1994].

Appendix B: Derivation of Five Scattering
Mechanism Terms of Equation (9)

[106] The extinction matrix 
e(�, �) in equation (4) is in
general not diagonal for nonspherical particles (for a sphere,
the matrix 
e(�, �) reduces to a scalar 
e). It is desirable to
find a matrix E(�, �) and its inverse matrix E−1(�, �) that
diagonalize 
e(�, �) as follows [Jin, 1994, chap. 4]:

� �; �ð Þ ¼ E
�1

�; �ð Þ � 
e �; �ð Þ � E �; �ð Þ ðB1Þ

where the ith diagonal element of �, which is the eigenvalue
of 
e, is denoted as bi, and the matrix E is composed of
the eigenvectors of 
e [e.g., Jin, 1994, chap. 4].
[107] By multiplying E(�, �) with equation (4), the vector

radiative transfer equation can be expressed as

cos �
d

dz
I
E
�; �; zð Þ ¼ �� �; �; zð Þ � I E �; �; zð Þ

þ
Z �

0
d�′ sin �′

Z 2�

0
d�′P

E
�; �; �′; �′; zð Þ

� I E �′; �′; zð Þ ðB2Þ

where

I
E ¼ E

�1 � I

P
E ¼ E

�1 � P � E
ðB3Þ

[108] Next, we split the Stokes vector IE(�, �, z) into the
upward going IE(�, �, z) and downward going vectors
IE(p − �, �, z), respectively, where 0 ≤ � ≤ p/2, which
allows equation (B2) to be written as

cos �
d

dz
I
E
�; �; zð Þ ¼ �� �; �; zð Þ � I E �; �; zð Þ þ

Z �=2

0
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�
Z 2�

0
d�′ P

E
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h
� I E �′; �′; zð Þ

þ P
E
�; �;�� �′; �′ð Þ � I E �� �′; �′; zð Þ

i
ðB4aÞ
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D E
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� cos �
d

dz
I
E
�� �; �; zð Þ ¼ �� �� �; �; zð Þ � I E �� �; �; zð Þ

þ
Z �=2

0
d�′ sin �′

�
Z 2�
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E
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h
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E
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i

ðB4bÞ

We solve this equation by noting that the ordinary differential
equation

d

ds
I ¼ �p sð ÞI þ q sð Þ ðB5Þ

has the solution

I ¼ Ae�
R
p sð Þds þ e�

R
p sð Þds

Z s

q s′ð Þe
R s′

p tð Þdtds′ ðB6Þ

where A is an unknown coefficient to be determined by the
boundary conditions.
[109] According to equation (B6), the upward going and

downward going Stokes vectors can be written as

I �; �; zð Þ ¼ E �; �ð ÞD �sec �� �; �ð Þz½ �A
þ sec �E �; �ð ÞD �sec �� �; �ð Þz½ �
�
Z z

�d
dz′D sec �� �; �ð Þz′½ �

� E�1
�; �ð Þ

Z 2�

0
d�′

Z �=2

0
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h

þ P �; �;�� �′; �′ð Þ � I �� �′; �′; z′ð Þ
i

ðB7aÞ

I �� �; �; zð Þ ¼ E �� �; �ð ÞD sec �� �� �; �ð Þz½ �B
� sec �E �� �; �ð ÞD sec �� �� �; �ð Þz½ �
�
Z z

0
dz′D �sec �� �� �; �ð Þz′½ �

� E�1
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0
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Z �=2

0
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h
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i

ðB7bÞ

where A and B are unknown coefficients (four‐column
vectors) to be determined by the boundary conditions.
Using the boundary condition (7a) and (7b), A and B can
be written as

A ¼ D �sec �� �; �ð Þd½ �E�1
�; �ð Þ

�
Z 2�

0
d�′

Z �=2

0
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B ¼ E
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and the upward going and downward going Stokes vectors
can be expressed as
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[110] Neglecting multiple scattering terms in equation
(B8), the zeroth‐order coefficients are obtained as

A
0 ¼ D �sec �� �; �ð Þd½ �E�1
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Taking the first term of equation (B9b) as the zeroth‐order
solution for the downward going Stokes vector,

I
0
�� �; �; zð Þ ¼ E �� �; �ð ÞD sec �� �� �; �ð Þz½ �

� E�1
�� �; �ð ÞT 01 �; �; �i; �ið ÞI i ðB11aÞ

and the zeroth‐order upward going Stokes vector can be
obtained from equation (B9a) as

I
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Inserting equation (B10) into (B9a), we get the first‐order
coefficient A1 as
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and the first‐order solution
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The scattered Stokes vector at z = 0 in the regolith layer is
thus
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Finally inserting equation (B14) into equation (8), we obtain
the first‐order upward going Stokes vector that is measured
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by the radar antenna as equation (9). Theoretically, the
higher‐order upward going Stokes vector could be obtained
using the same approach. Nevertheless, in practice, the
expression would be too complicated and the only feasible
way to obtain it would be numerically [Liang and Jin,
2003].

Appendix C: Expression of Mueller Matrix

[111] In this appendix, we give the expressions of the
Muller matrices for the five scattering terms in equation (13).
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where the angles (�−, �−) are defined to be the diffraction
angle of incident wave (�, �).

Appendix D: Mueller Matrix of an Arbitrarily
Oriented Rough Surface

[112] As shown in Figure D1, the reference lunar surface
is given by the principal coordinate system (x̂, ŷ, ẑ) and the
tilted lunar surface is described using the local coordinates
(x̂l, ŷl, ẑl). The relation between these two coordinate frames
is described by the Euler angles (a, b, g) [Tsang et al.,
1985, chap. 2; Jin, 1994, chap. 2], which are defined as
(1) a rotation a(0 ≤ a ≤ 2p) of (x̂l, ŷl) about ẑl, where the
ŷl axis becomes ŷ′l on the plane (x̂, ŷ), (2) a rotation b(0 ≤
b ≤ p) about ŷ′l, where the ẑl axis becomes ẑ and (3) a rotation
g(0 ≤ g ≤ 2p) about ẑ, and the (x̂l, ŷl, ẑl) is rotated to (x̂, ŷ, ẑ). In
the principal coordinates, the incident wave vector is k̂ i with
the incident angles �i and �i, the scattered wave vector is k̂s
with the scattered angles �s and �s. The corresponding hori-
zontal and vertical polarization bases are ĥi, v̂i and ĥs, v̂s,
respectively. For simplicity and without loss of generality,
suppose ŷl lies in the plane xoy, and therefore a = 0.
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[113] In the principal and local coordinates, the incident
wave vector k̂i can be written as

k̂i ¼ sin �i cos�ix̂ þ sin �i sin�iŷ þ cos �i ẑ

k̂i ¼ sin �li cos�lix̂ þ sin �li sin�liŷ þ cos �li ẑ
ðD1Þ

where �li and �li are the incidence angles in the local
coordinate system. From the geometry in Figure D1 and
equation (D1), the local incident angle can be calculated as

cos �li ¼ �k̂i � ẑ ðD2Þ

cos�li ¼ sin �i cos�i cos� cos �ð � sin �i sin�i cos � sin �

þ sin� cos �iÞ= sin �li ðD3Þ

[114] In the principal and local coordinates, the horizontal
and vertical polarization bases are defined as

ĥi ¼ k̂i � ẑ

k̂i � ẑ
  ; v̂i ¼ ĥi � k̂i ðD4Þ

ĥli ¼ k̂i � ẑl

k̂i � ẑl
  ; v̂li ¼ ĥli � k̂i ðD5Þ

Let Di denote the angle between the different bases in the
two coordinates. It can be derived from the geometrical
relationships in Figure D1 that

cosDi ¼ ĥ � ĥl ¼
k̂i � ẑ
	 


k̂i � ẑl
	 


k̂i � ẑ
  k̂i � ẑl

  ¼ cos� � cos �i cos �li
sin �i sin �li

ðD6Þ

sgn Dið Þ ¼ sgn ĥl � ĥ
	 


� k̂i
h i

¼ sgn sin �i þ �ð Þ½ � ðD7Þ

For the scattered wave, the subscript should be changed to s.
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