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Potential anomalies on a sphere: Applications to the
thickness of the lunar crust

Mark A. Wieczorek, and Roger J. Phillips

Department of Earth and Planetary Sciences, Washington University, $t. Louis, Missouri

Abstract. A new technique for calculating potential anomalies on a sphere due to finite amplitude
relief has been developed. We show that by raising the topography to the nth power and
expanding this field into spherical harmonics, potential anomalies due to topography on spherical
density interfaces can be computed to arbitrary precision. Using a filter for downward continuing
the Bouguer anomaly, we have computed a variety of crustal thickness maps for the Moon,
assuining both a homogeneous as well as a dual-layered crust. The crusial thickness maps for
the homogeneous model give plausible results, but this model is not consistent with the seismic
data, petrologic evidence, and geoid to topography ratios, all of which suggest some form of
crustal stratification. Several dual-layered models were investigated, and it was found that only
models with both upper and lower crustal thickness variations could satisfy the gravity and
topography data. These models predict that the entire upper crust has been excavated beneath the
major nearside multiring basins, Additionally, significant amounts of lower crustal material was
excavated from these basins, especially beneath Crisium. This model also predicts that mantle
material should not have been excavated during the South-Pole Aitken basin forming event, and

that lower crustal material should be exposed at the surfacc in this basin.

1. Iniroduction

The thickness of the lunar crust has been a subject of debate
since the Apollo missions. It was quickly realized that both
the lunar gravity and topography were primarily controlled by
the large impact basins and mare flows that subsequently filled
many of these circular depressions. Using Apollo data, there were
several efforts to map the global crustal thickness of the Moon
(Bills and Fervari, 1977; Thurber and Solomon, 1978; Brati et al.,
1985], but these studies were thwarted by the low resolution and
limited coverage of the lunar gravity and topographic data sets.
These studies were also hindered by a limited knowledge of the
thickness of the mare basalt flows, which are presumably denser
than the underlying crust. Consequently, either the gravitational
atiraction due to the mare was ignored or the unknown thickness
of the mare was modeled using a pre-marc isostatic assumption.
These studies also assumed implicitly that the Tunar gravity field
could be explained exclusively in terms of surface topography,
surface basalt flows, and relief along the lunar Moho (which lies
60 km bencath the Apollo 12 and 14 sites [Toksoz ef al., 1974]).

In 1994, the Clementine mission to the Moon [Nozerte er al.,
1994] obtained new lunar gravity data [Lemoine et al., 1997]
and near global topography data [Smith er al., 1997]. Using
these data sets, Zuber er al, [1994] and Neumann et al. [1996]
computed a global crustal thickness map assuming that the crusi
was uniform in composition. Neumann et al. [1996] also noted
that the traditional first-order method of treating finite amplitude
topography as two-dimensiorial infinitesimal surface densities was
not entirely appropriate, given that the crustal thicknesses varicd
dramaticaily across the surface (~20 to [20 km). In order
to rectify this problem, the higher-order Cartesian algorithm of
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Parker [1972] was used to invert for crustal structure beneath
the major impact basins. Downward continuation of the Bouguer
correction was also stabilized by using a filter which minimized
the slope and curvawre of the lunar Moho [Phipps Morgan and
Blackman, 1993]. It was shown that if one were only to use
the first-order theory (in which topography is approximated by
a surface density), then crustal thickness estimates bereath the
basins wouid be grossly underestimated {of the order of 10 to 20
km) when compared to the results of the higher-order theory.

In this study we develop a new method for computing poten-
tial anomalies on a sphere due to finite amplitude topography. We
show that by raising the topography to the nth power and expand-
ing this field into spherical harmonics, potential anomalics due to
topography on a spherical density interface can easily be com-
puted to arbitrary precision. This methodology is the spherical
analog to the Cariesian result of Parker [1972]. We additionally
dertve a smoothing filter to be used when downward continuing
gravity anomalies on a sphere.

Using these techniques, we sel forth to map the crustal thick-
ness variations across the lunar surface. All previous models have
assumed that the crust is uniform in composition and that com-
pensation ogcurs at the lunar Moho, the depth of which has been
scismically constrained at one locale. There is considerable evi-
dence, however, that suggests that this view is not entirely correct
and that the lunar crust is stratified in some scnse: (1) The ex-
istence of a sharp seismic discontinuity 20 km below the Apollo
12 and 14 sites is hard to explain without invoking some form of
compositional change [Tokséz et al., 1974]. (2) The noritic low-K
Fra Mauto (LKFM) irmipact melts have commonly been atiributed
to a lower crustal origin [Ryder and Wood, 1977, Charette et al,
1977]. (3) The composition of basin ejecta blankets becomes in-
creasingly more mafic with increasing basin size [Spudis et al.,
1984, 1996]. (4) The geoid to topography ratios for the nearside
lunar highlands are most consistent with the crust being stratified,
rather than being homogeneous [Wieczorek and Phillips, 1997].
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In the present study we have also uscd improved estimates of
the mare thickness for the nearsikde basing derived from Clemen-
ting altimetry data [Williams and Zuber, 1996]. These estimates,
i general, are considerably less than those of Solemon and Head
[1989], which were used in the analysis of Neumann et al. 11996].

A variety of single- and dual-lavered crustal models were used
to explain the observed lunar gravity and topographic data. A
uniform composition crust with compensation oceurring entirely
at the Moho was found to give plausible results (i.e., the crustal
thickness was everywhere nonnegative), but as we noted abave,
this mudel is not consistent. with the petralogical and geophysical
data. A modei with upper crustal anerthositic material being com-
pensated entirely at the intracrustal interface was also considered.
This model, however, yielded negative upper grustal thicknesses
beneath the basins and was therefore unphysical for large portions
of the lunar surface. A dual-laycred model in which the lower
crust was constrained to have a consiant thickness was also inves-
tigated. Though this model proved 1o be a substantial improve-
ment over the single-layered intracrustal compensation model, this
model also vielded unphysical results beneath the larger basins,

The only dual-layered model investigated that gave plausible
crustal thicknesses over the entire lunar surface was one in which
both the upper and lower crustal layers were allowed to vary-in
thickness. The results of this model imply thai the entire up-
per crust was excavatéd during the major nearside basin-forming
events. Additionallv, a significant amount of lower crustal mate-
rial was also excavated during many of these events. Though one
may have expecied the South-Pole Aitken basin-forming event to
have excavated mentle matcrial, our resuits suggest that the bagin
floor should be composed entirely of lower crustal material with
an average thickness of about 40 km.

2. Theory

In this section we develop the theoretical aspects of construct-
ing global crustal thickness models for a planet. This encompasses
(1) developing a method of computing potential anomalies due to
finite amplitude relief on a sphere and (2) developing a stabilizing
filter to be used when downward confinuing gravity anomalies on
a sphere. In section 3 we use these methods to compute both
single- and dual-layered crustal thickness models for the Moon,
and in section 4 we discuss some of the more significant features
of these models.

2.1, Paotential Anomalies on a Sphere

The interior structure of a planet can be constrained with
a knowledge of the planet’s gravitational potential and sur-
face topography. Since inverse models of the gravity field are
nonunique, potential anomalies kave traditionally been interpretad
as being due to relief along a small number of density interfaces
within the planei. When the relief along these surfaces is small
in comparison to the size of the region being investigated, a first-
order treatment of the relationsliip between this relief and the
corresponding potential anomaly is usually adequate. In this ap-
proach, one assumes that the finite amplitude relief can be mod-
gled as a two-dimensional surface density, and then the harmonic
coefficients (either Fourier ot spherical) of the topography are
found o be linewrly related to the potential coefficients [e.g.,
Doriman and Lewis, 1970}

When the relief along a density interface becomes lasge, these
first-order approximations break down. Though one could in prin-
ciple integrate the mass distiibution to determine the potential
anomaly at a specific location, this is in general very time con-
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sumirig and difficult to invert for model parameters, Alternatively,
Parker [1972] has shown in Cartesian space that the Fourier trans-
form of the potential due to finite amplitude relicf along a density
interface is given exactly by the infinite sum

FIU (o) = 28 ApGe iK% §:|m
a=l

FlE ] 0

where the operator F is the Fourier transform, v is the position
vector, k& is the wavenumber, G is the gravitational constant, Ag
is the densify contrast, z; is the depth of this interface from the
observation plane, and H ™ is the topography riiscd to the nth
power. Using this formula, potential anomalies can be quickly
computed to arbilrary precision using the fast Fourter transform
{FFT).

Given that the algorithmn of Parker [1972] is only valid in
Cartesian space, wc have developed an analogous formalism for
use on a sphere. We start with Newton’s law of gravitation

den'

Ulr,f,4) = /ﬁr 7 (2)

and the identity

1 7 2, A '
WZ;Z(T) Bylcosy) >

=0

3)

where v and ¢’ are any pair of radius vectors, v is the angle
subtended between these two vectors, and F; is the Legendre
polynomial of degree [ Using the spherical harmonic addition
formula [e.g., Lambeck, 1988], the Legendre polynomials can be
expanded as

PF(COS”}) = zim(g ¢) Im(ﬁ’ f (4)

m=0i=1

where Yy, is the spherical harmonic finction of degree { and
order m normalized to 47

[ Vit (0, 8) Vot (0,89 30 = 8 B bppite. 45)
0

where &;p 18 the Kronecker deita, 402 = sin @ dfd¢b, and 2 and
¢ are colatitude and longitude, respectively.

Considering only topography H(8, &) referenced to a radius
I} with density confrast Ap, substituting the above identities into
Newton’s law of gravitation and integrating with respect to r
yiclds

G&P Yitm (6, )
Z 21+1 {14+ 3)

D4H{0') {6)
/ i (87, 6) £1¥2
ﬂ.’

40
for all v > T} 4+ max{ H}. Next, we expand the last term in the
above integral wusing the binomial theorem

Ulr,8,d)=

D

{D7+H(9’,¢f)-|1+3 l+3

g 1{“(9' ¢')

D1+3

+

41
H [44—
T=1

4



WIECZOREK AND PHILLIPS: LUNAR POTENTIAL ANOMALIES

and expand the powers of topography H™ into spherical harmon-
ics
HY0',6') = 37 "hitm Yiem (8.67). ®)
P’

Inserting the above two equations into {6}, utilizing the orthogonal
properties of the spherical harmonic functions, and simplifying
vieids

. GM 2%
v 6= LS (2 et Vim0t ©
im
where
3 143 ny R4 — 5
ot = AmAp D i iz ( i) (10)

M (2+1) = D™ n! a+3

Using the same technique, it can also be shown that for all
r < D+ min{H) )

GM LANS 2 :
06,6y =223 (5) CamYamlb8) (1)

ilm
where

o . 4 Ap L Bt H_?:l {T+35—3) (12)
im T {21+ 1) = Dropl {I—23 ’

Equation (10) is analogous to that of (1), except that instead of
taking successive Fourier transforms of powers of the topography,
powers of topography are expanded into spherical harmonics. We
note that in spherical coordinates the potential coefficients exterior
1o a mass distribution can be compuied exactly by this finite sum.
This is in contrast to the algorithm of Parker [1972] in which the
potential coefficients are expressed in terms of an infinite sum.
Though the process of computing spherical harmonic coefficients
of a field is not as rapid as taking FFTs, this methed does not suffer
from the Cartesian geometry which is implicit in the formalism
of Parker [1972]. Additionally, it is straightforward to show that
the magnitude of each successive term in {10) and (12) is smaller
than the previous term. Therefore, in practice, these sums can be
truncated after a given precision has been achieved.

As shown above, the problem of computing potential anoma-
lies reduces to computing the spherical harmonic cxpansion of the
topography raised to a given power. Though this is most easily
achieved by numerical integrations or least squares fitting, we note
that an exact analytic solution does exist. We start by expressing
the topographic field in complex form [e.g., Kaula, 19671

H{6,8) = > him Yim (6. 9) (13)

Im

and expand the topography to the ath power in spherical harmon-
ics as

1

"him = 1 [ BTN OO HE4) Vin0.6 a0 ()
3

T ar

where ¥}7, is the complex conjugate of the spherical harmonic
function. Expanding A7 and F7~! in (14) results in

1717
& 1 Th—
' h!m - 47 12. EZ 1h1m 1h1m X
17 i2Mm2 {15)
/ Yiim, (8, €3 Yigm, (8, @) Yirm (6, 9) 422
. 0
or
“him = Z Z s M, X
tymy lame "
[@LACLE+1 po o
VTR 10120 Clymatams

where Cf;ﬂmigzmg are the Clebsch-Gordon coefficient [e.g., Far-
shalovich et al., 1988]. _

The results in this section were partially anticipated by previous
researchers. A special case of (1) involving global isostasy
was presented by Rapp [1989]. Additionally, Balmino [1994]
presented a result equivalent to (10) and derived a more complex
form of (16).

2.2. Determination of Subsurface Relief: Downward
Continuation of Potential Anomalies

If global topography for a planet is known, the above method
can be used to determine the Bouguer correction (the gravitational
contribution from the topography) and Bouguer anomaly {the total
gravity field minus the Bouguer correction). The Bouguer anom-
aly can then be used to infer relief along a hypothetical density
interface below the surface. In doing this though, the Bouguer
anomaly needs to be downward continued to this interface, and
this process amplifies noise in the data.

Phipps Morgan and Blackman [1993] addressed this problem
in Cartesian space using an inverse approach, They set forth
to determine the hypothetical relief along an interface which
(1) minimized the misfit between the observed and modeled
gravitational field and (2) minimized the slope and curvature along
this interface. A simple downward continuation filter was derived
that contained iwo adjustable parameters which controlled the
amount of minimization of the slope and curvature, respectively.

Since Phipps Morgan and Blackman [1993] oniy considered
Cartesian geometry, we derive a downward continuation filter
te be used in spherical coordinates, Instead of minimizing the
slope and curvature of the model solution, we only attempt to
minimize the total relief along this surface on a degree by degree
basis. Though this approach may not appear o be as robust as
that of Phipps Morgar and Blackman [1993], we show that 1t 15
numerically indistinguishable from their minimum slope soluiion.

We start by constructing the function

2
oy'|”
= [C;-‘?;iw{?m(ﬁ” +Alhan)* (1)

which is a combined measure of the potential misfit and topo-
graphic relief. In this cxpression, *;?;,;3 are the Bouguer anomaly
coefficients, Cé‘zn are the potential coefficients due to relief A,
along an interface referenced to radius £, and A is a Lagrange
multiplier.

Substituting in (10) for CY, minimizing this function with
respect to gy, and ignoring higher-order terms yields
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B4 M) (E)i

h'ifm = Wy [ AT Aﬂ PE 5}

143 np n;?:l (i+4-7)
« D7l {1+3%)

n=3z

D

] (18)

(19)

where

1+ A

wy =

M@ +1) 7 RY
arAp DT\ D

is the downward continuation filier. The last tomm in (18) is the
higher-order correction that takes into account the finite amplitnde
nature of reliel along this interface. Since each successive term in
this sum 1s decreased in magnitude, this sum can be truncated after
the correction terms become smaller than the measurement error
in the Bouguer anomaty. Equations (18) and {19) can then be used
0 iteratively determine the hypothetical relief along a subsurface
density interface. This spherical algorithm is analogous to the
Cartesian algorithim of Perker and Huestis [1974] and Oldenbwg
[1974].

The Lagrange multiplier A determines how much the relief will
be minimized. Clearly, if A = 0, then ihe relief is not filtersd
ai all, whereas the larger the value of A, the more the short-
wavelength topography will be filtered. Choosing a value for A
is a subjeciive process, and we use the power spectrum of the
potential coefficients and their associaied errors as an appropriaie
guide. In this study, we choose A such that w; = 0.5 for the
degree where the power of the error spectrum of the potential
ficld equals the power of the potential spectrum. For the Moon,
this occurs at degree 30

Figure 1 shows a plot of the dewnward continuation filier
as a function of spherical harmonic degree, where the filter is
constrained to be 0.5 ai degree 30. Also plotted are the two
end-members {minimum slope and minimum curvature} of the
Phipps Morgan and Blackman [1993] filter where the Cartesian
wavenumber & has becn replaced by the spherical approximation
{/R. As can be seen, the spectral response of (19) is nearly
indistinguishable from the Cartesian minimum slope filter.

3. Lunar Crustal Thickness Models

In this section we use the above technique te constrain the
thickness of the lunar crust. It will be assumed that the lunar
gravitational perturbations are due to surface topography and
surface basalt flows, as well as intracrustal and/or Moho relief.

10 T ; IR T
‘| = Minimum Ampiiws [This Swdy)
08 & Phipes Mergan and Blackman {1953) Minimum Slops
— = Phipps Mezgan and Blackemnas (1993) Minkrum Curvaiure
08 - -
04 [ -
02 | —
" e

0.0 | ! 1 | i

0 10 20 30 a0 50 80 70

Spherical Harmonic Degree

Figure 1. Plot of the downward continuation filter as a function
of degree, where the filter is constrained to be 0.5 at degrec 30.

WIECZOREK AND PHILLIPS: LUNAR POTENTIAL ANOMALIES

&
LN saans ans TGS PG nauks A Rl R o e

“ m— Lunar Potential
10-* | s - = Uncompensated Topography _
% s OMpERSALEC TOROGrapHY
~)\ . - Filtered Compensaled Topography

SQRT(V])

TS PP IS P ]
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Figure 2. Squarc root of the power spectrum as a function
of spherical harmenic degree, with pe = 2900 kg!m3 and
pm = 3400 kg/m’.

The first step of the present analysis is to compute the com-
piete Bouguer correciion which is due to the surface relief and.
surface basalt flows. In taking into account the gravitational at-
traction of surface basalt flows, we only considered the circular
mare which reside within the large muitiring basins. The itregular
mare are generally inferred to be thin (approximatcly 0.5 ki [De-
Hon and Waskom, 1976; DeHon, 1979]) and should not have a
considerable effect on the Bouguer correction, nor the subsequent
crustal thickness determtinations. Cuur primary source to the thick-
ness of the circular mare is the disk model of Solomon and Head
[1980]. Their study, however, attempted to explain the magni-
tude of the “mascons” (positive gravity anomalics associated with
some basins) exclusively as superisostatic suiface basalt flows and
did not take into account possible nonisostatic Moho relief and/or
flexure of the lithosphere. Additionally, the gravity model that
was used in their study possessed significant uncertainties.

Using newly obtained Clementine altimetry data, Williams and
Zuber [1996] have been able to constrain the maxiraum basalt fill
for the nearside basins by reanalyzing the depth-diameter relation-
ship of large lunar basins. They have found that the maximum
basalt fill is generally considerably less than was inferred in the
maodel of Solomon and Head [1980]. For instance, the maximum
thickness of basalt flows in the Imbrium basin was found to be
just under 6 km, as opposed to 10 km from ihe model of Solomon
and Head [1980]. In this study we have used the disk model of
Solomon and Head [1980] constrained by the revised maximum

T 1

— — Nearside Minanum Gravity Error
O —— Nearside Moho Reliet
A — = Negarside Intracrusial Relief
O —— Bouguer Correclion

Maximum Error {mgals)

3
Order (n}

Figure 3. Maximum erfor associated with truncating (10} at
order » when compared o the n = 10 selution.
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Plate 1, Basalt thickness model of Solomon and Head [1980] constrained by the revised maximum thicknesses
of Williamms and Zuber [1996].
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Plate 2. Crustal thickness minus mare fill for a uniform density crust with compensation occurring at the
seismically determined Moho.
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Plate 3. Upper crustal thickness minus mare fill for an anorthositic upper crust compensated entirely at an
intracrustal density interface.
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Plate 4. Upper crustal thickness minus mare fill for a dual-layered model with a constant thickness lower crust.
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Plate 5. Upper crustal thickness minus mare fill for the dual-layered model with both upper and lower crustal
thickness variations.
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thicknesses from K. K. Williams and M. T. Zuber (Measurement
and analysis of lunar basin depths from Clementine altimetry,
manuscript in preparation, 1997) (see Plate 1). In the following
models, we use a basalt density of pmare = 3300 kg:‘m3.

As was noted by Newmann et al. [1996], the Bouguer cor-
rection has substantial short-wavelength power which is not re-
solvable in the current lunar gravity model (GLGM-2), and hence
needs io be filtered in some sense before the Bouguer anomaly is
computed. This is illustrated in Figore 2. Plotted in this figure
are the root power spectium of the observed lunar potential, the
first-order Bouguer correction due to topography alone, and the
rool power spectium assuming that the topography is perfectly
compensated by an Airy mechanism al 60 km depth, As can be
seen, both the uncompensated topography and Airy-compensated
models have substantially more short-wavelength power than the
observed lunar spectium. This is most likely an artifact of using
an a priori power law (Kaula’s rule) to limit the short-wavelength
gravitational power when computing the gravity field [Lemoine et
al., 1997]. We comected for this effect by applying the posteriori
filicr to the Bouguer comection

RN 18200
=) (%)

which forced the power of the Airy-compensated mode] {0 approx-
imately match the observed potential spectrum. Since a downward
continuation filter which attenuaies the short-wavelength topog-
raphy is additionally applied to the Bouguer anomaly when com-
piiting the crustal siructure, the form of the above filter does not
significantly affect the crustal thickness results.

We next determine the number of terms in (10} that need to
be reteined in order to accurately rcpresent the potential due to
relief along a density interface. Since (10) is only strictly valid
when the observation plane is greater than the maximum relief
along this interface, all errors were computed at § km above the
mean planetary radius. Figure 3 shows the maximum error that is
associated with truncaiing the series at order w», when compared
to the n = 10 solution. Also shown for comparison in this plot
is the minimum nearside gravity error of 13.7 mgai.

As can be seen, the complete Bouguer correction is adequately
represented by the first two ferms. In order to assess how
many terms need to be retained when computing the potential for
intracrustal refief (upper and lower crustal densities of gy, = 2800
and p; = 3100 kg/m”, respectively), or Moho relief {crustal
and mantle densities of pe = 2900 and pm = 3400 kg;‘m3,
respectively) we have used the first-order version of (18} to obiain
an approximation of the relief along these interfaces. Using this
relief, the maximum gravity crror for the lunar nearside was
computed for order » when compared to the n = 10 solution,
In order to obtain the maximum resotution {the maximum model
error is less than the minimum lunar gravity error), terms up to
n = 4 need to be refained. In the following analysis, all potential
anomalies were computed to » = 5.

After the Bouguer anomaly has been calculated, (18) and
(19) or equivalenis (see below), were uscd to calculaie the relief
along a subswiface density interface. Equation {18} was iterated
until the difference between successive gravity solutions was
less than 107* mgal, and the resulting crustal models were
constrained to match the scismically determined structure beneath
the Apollo 12 and 14 sites [Toksdz er al, 1974; Goins et al.,
1981]. Spccifically, when intracrustal compensation models were
considered, the uppet crust was constrained to be 20 km thick at
the Apollo 12/14 site, and when compensation at the Moho was

{>20 (20}
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considered, the total crustal thickness was constizined 0 be 60
km thick at this site. '

Since the Bouguer anomaly was filtered in the downward
continuation process, the model and observed gravity solutions
were not expected to match exactly. Additionally, when taking
into account finite amplitude relief along a single density interface,
there is no guarantee that a madel exists which exactly maiches
the observed potential. The RMS misfit between the model
gravity solations and the observed GLGM-2 solution were found
1o be approximately 20 mgal, which is comparable to the formal
gravity uncertainties in the GLGM-2 solution {~20 mgal over
the cquatorial nearside, 30 mgal over the squatorial farside, and
40 mgal over the polar farside). We next present our results for
both single- and dual-layered models!.

3.1. Single Layered Model: Compensation at Moho

The first crustal model that will be considered is one with a
uniform dessity crust and with compensation occuring at the scis-
mically determined tunar Moho. This is the traditional model that
was previously considered by Bills and Ferrari [1977), Thurber
and Solomon [1978], Bratt et al. [1983], Zuber er al £1994],
and Newmann et af. [1996]. 1In this model we have used
pe = 2900 kg/m’ and pm = 3400 kg/m®.

Plaie 2 shows an image of the crusial thickness minus the
mare fill of Plate 1. Crustal thicknesses runge from a minimum
of ~13 km beneath Orientale to a maximum of ~ 148 km on
the northeastern rim of the South-Pole Aitken (SPA}) basin. The
crustal structure of the major basins do not differ significantly
from that of Neumann et al. [1996] which was derived using a
regional higher-order Cartesian algorithm, As has been previously
recognized, this mode] predicts that mantle material should not be
exposed at the surface of any of the major impact basins.

Though this modc] represents a plausible interpretation of the
lunar gravity field, as stated in the introduction, therc are several
geophysical and petrological lines of evidence which suggest that
the lunar crust is stratified in some sense. For this reason, the
implications of a stratified crust with two layers will be considered
in the following models.

3.2. Dual Layered Modeis

Intracrustai compensation. The next simplest crusial model
is to assume that the crust is stratified and that the entire Bouguer
anomaly is due to relief along an intracrustal density interface.
This model is consistent with the relationship between the lu-
nar highland geoid to topography ratios [Wieczorek and Phillips,
19971, For this model we have taken p, = 2800 kg/m’®,
pr = 3100 kg/m3 {see Wieczorek and Phillips {19977 for a discus-
sion of the density of lower crustal material), and Plate 3 shows a
plot of the upper crustal thickness minus the mare fill. As can be
seen, all of the major nearside basins, as well as SPA basin, have
negative crustal thicknesses (by up to 25 km), which is clearly
unphysical. Though this model of compensation may be viable
for the lunar highlands, relief along the Moho clearly needs to be
taken into account when describing the structure of the basins.

Supporting spherical harmonic coefficient files, ASCIT raster image
files, and FORYRAN program to generate images are available on disketie
of via Anonymous FTP from kosmos.agu.org, directory APEND {User-
name=anonymous, Password=guest). Diskette may be ordered from
American Geophysical Union, 2000 Fiorida Avenue, N.W., Washington,
DC 20009 or by phone at 800-966-2481; 515.00. Payment must accom-
pany order. .
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Constant thickness lower crust. The next mode! to be
considered is a dual-layered crust in which the upper crust is
allowed to vary in thickness, while the lower crust has a constant
thickness. This model is consistent with the Tupar highland geoid
to topography ratios [Wieczorek and Phillips, 1997}, and {18)
and (19) were casily modified to take into account the second
layer. The lower crust was constrained to be 40 km thick,
pu = 2800 kg/m’, p; = 3100 kg/m®, and prm = 3400 ke,

The results of this model are shown in Plate 4 where the
upper crustal thickness minus mare fill is ploed. This model
represents a substantial improvement over the previous model
with compensation occurring entirely at an intracrustal interface,
but this dual-layered model still has unphysical negative upper
crustal thicknesses beneath the basins (by up to 14 km). Though
the fit can be improved by altering the Apolle 12/14 reference
thickness, as well as by modifying the density contrasts across
the intracrustal interface and Moho, for reasonable parameters
this model always remains unphysical beneath Crisium basin.

Upper and lower crustal variations.  The last model to
be considered allows both the upper and lower crust to vary
in thickness. Since this model is underdetermined, we take an
end-member approach and assume that upper crustal thickness
variations are the primary cause of the Bouguer anomaly. This
is a reasonable assumption since exogenic tmpact events arc the
most prominent process which redistribute crustal materials.

In computing the intracrustal and Moho relief, we used the
following approach: (1} Using the Bougucr anomaly, the upper
crustel thickness was computed assuming that compensation oc-
curred entirely at the intracrustal interface. (2) If the upper crustal
thickness was less than zero, the iniracrustal relief was meodified
such that the upper crustal thickness was equal to zero. (3) The
potential anomaly due o the modified intracrustal relief was com-
puted and the remainder of the gravity ficld was explained in terms
of relief along the Mcho. This approach worked well except north
of SPA basin, where the upper crust is extremely thick. In this
region, negative lower crustal thicknesses were obtained. To rec-
tify this situation, the upper crustai thickness was reduced in this
region and the above procedure was continued at step 3 until the
lower crustal thickness was zero.

The upper crustal thickness minus mare fill for this model
is shown in Plate 5, and the lower crustal thickness is shown
in Plate 6 wsing pu = 2800 kg/m3, p; = 3100 ke/m’, and
pm = 3400 kg/m>. As can be seen, this model predicts that the
entire upper crust has been excavated beneath the major basins
and that lower crustal material was additionally excavated beneath
many of these basins, Additivnally, this model predicis that there
should be no lower crustal material to the northeasi of SPA basin.

4. Discussion

In none of the above models have we considered the pos-
sible gravitational contribution of density heterogeneities within
the Iunar mantle. Though this effect couid substaniially effect our
model results, there arc at present no constraints on the location
nor magnitude of these postulated anomalies. Without an exten-
sive seismic network, the existence of mantle helerogeneitics will
remain purely speculative.

Of the four crustal thickness models prescnted above, only
two give physically meaningful results: a single-layered uniform
density crust and a dual-layered model with both upper and lower
crustal thickness variations. Since there is much evidence which
suggesis that the lunar crust is vertically stratified, the dual-layered
compensation maodel is our preferred model. In the following
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sections we discuss some of the implications of this mode! for
the global structure of the Moon, as well as for the structure of
the large impact basins.

4.1. Global Siructure

This model of lupar structure has an average 31 km thick upper
crust and a 29 km thick lower crust (total crustal thickness of 60
km, see Table 1). This is entirely consistent with the model of
Spudis and Davis [ 1986], who used geochemical data io infer that
the upper half of the crust was anorthositic and that the lower half
was noritic in composiiion. We note also that a 31 km thick upper
crustis consistent with it having been formed by the crystallization
of a global magma ocean [e.g., Warren, 1985].

The degree-1 spherical harmonic coefiiciens of the crustal
thickness maps give an indication of hemispheric differcnces
in the distribution of crustal material. The 1.9 km center-of-
massicenter-of-figure offset directed toward 205°E [e.g., Smith et
al., 1997] has most often been explained in terms of hemispheric
differences in crustal thickness [e.g, Lingenfelter and Schubert,
1973; Haines and Metzger, 1980], though hemispheric differences
in crustal or mantlc density are also possible {e.g., Wasson and
Warren, 19807, Most rccently, assuming a unifonn density crust,
Neumann et al, [1996] have shown that the thickeess of the farside
crust is approximately 12 km greater than the nearside crust.

Our dual-layered model of crustel structure also predicts that
the entire crusi is thickened toward the farside but only by about
4 km (sce Table 1), The behavior of the upper and lower
crustal layers, however, are quite different. The upper crust is
significantly thickened toward the farside by 20 km, while the
lower crusi is thinned toward the farside by 16 km. This dramatic
thinmning of lower crustal material on the farside is evident in
Plate 6 where it is scen that no lower crustal material is present
directly north of the Scuth-Pole Aitken basin. If this hemispheric
thickness dichotomy is real, and not an artifact of the assumptions
that went into the model (namely, the wniform density mantle
and crustal layers), two processes may be capable of explaining
this feature. Weod [1973] has suggested that the Earth may
have gravitationally focussed projectiles such that the Moon was
asymmeitrically bombarded early W its history, Altermatively,
Lingenfelter and Schubert [1973] have suggested that convective
processes may be capable of redisiributing large quantities of
crustal material. In either case, the gravity and topography data
are unable 1o distinguish between these two hypothesis.

The Clag spherical harmonic coefficient of the crustal thickness
maps gives an indication of whether crustal material is concen-
trated at the poles or equater, Using a single-layered model,
Newmann ef al. [1996] showed that the crust was on average 9.5
km thicker at the equator than at the poles. Our results are simi-
lar in that the total crustal thickness is about 5 kin thicker at the
cquator than at the poles. The structure of the upper and lower
crust are again quite different, in that the upper crust is about
15 km thicker and the equaior, and the lower crust is about 10
km thicker at the poles (see Table 1). If this effect is real, the
latirudinal dependence on crustal thickness may be the resuli of
a global magma ocean cooling in the presence of a much faster
paleorotation rate,

4.2. Impact Basins

The dual-layered model of crustal structure predicts that the
entire upper crust was removed beneath the Orientale, Humorum,
Imbrium, Serenitatis, Crisium, Ncctaris, Smythii, and South-Pole
Aitken basins. Additionally, most of thess basins show evidence
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Table 1. Global Properties of Crustal Thickness Modeis

Average Crustal

Hemispheric Thickness

Dircction of Thickened  Equatorial - Polar

Thickness, km Difference, ux Crust, deg Thigkess, km
Dual-Layered Model: '
Upper crust 30.6 168 (3.9 N, -137.6 E) 143
Lower crust 202 158 (3.ON,21.2E) -9.6
Total crust 59.8 4.0 {7.4 N, -1530 E) 49
Single-Layered Model:
Total crust 639 12.5 11.8

for thinning of the lower crust, suggesting that lower crustal
material was also cxcavated, With the exception of the SPA basin,
all of these basins have gjecta blankets that are considerably more
noritic than typical highlands material [Spudis et al., 1984, 1996]
confirming that lower crustal material was indeed excavated.

It may have been expected that since SPA is the Jargest known
basin on the Moon that mantle material would have been exca-
vated in this event. Somewhat surprisingly, 8PA basin has an
~40 km thick lower crust present. Given this considerable thick-
ness of crusit in this basin, 1t appears that mantle material was not
excavated, ThlS surprlsmg observation is consistent with spec-
tral refiectance studies of SPA which suggest that the regolith is
primarily composed of noritic lower crustal material [Pieters ef
al, 1997].

It could be argued that since our models do not take into
account a possibly large differentiated melt sheet which formed
during the SPA basin-forming event, our model does not preclude
mantle material from being excavated. As evidence against this
interpretation, we note that the iron concentration of the highlands
surrounding this basin is swrprisingly low and consistent with
being composed of upper crustal anorthositic materials. In fact,
if the thickened crust north of SPA represents basin ejecta from
an oblique impact (as suggested by Zuber et al. [1994]), then the
extremely low iron concentration of this region suggest that not
only was mantle material not excavated, but lower ¢rustal material
was nof even cxcavated in this event!

The thinnest ciust for our medel is found below Crigium basin,
in which the tofal crustal thickness (minus mare fiil) is found
to be about 5 km. By adjusting the parameters of our model
and recognizing that the only crustal thickness constraint is at
the Apollo 12 and 14 site, it is possible to model the Crisium
basin with a zero crustal thickness. Thus it is possible that the
Crisium impact event excavated the entite crustal column, as
well as upper manile material. Given this posmblhty, it would
seem prudent to reanalyze the composition of Crisium’s gjecta’
blanket, as well as material excavated by smaller craters within
Crisium, with this prediction in mind. For instance, the high
Mg concentrations found in the vicinity of Picard and Pierce
craters [Andre et al., 1978] may represent excavated upper mantle
material, or an impact melt sheet composed of lower crust and
upper mantle material.

Another feature of this model is that there is an annulus of
thickened crust (both upper and lower) surrounding most of the
major impact basins. This was previously recognized by Neumann
et al. [1996). Though the thickened crust surrounding these
basins may be real and due to the deposition of basin ejecta and/or
relaied 1o the excavation flow set up following the impact, it is
also possible that it is ap artifact of our assumptions about crustal
structure. For instance, if the region surrounding the basin was

(44 N, -1570E)

extensively breceiated or if the ejecta deposits were of a much
lower density than the surrounding highland crust, the thickness
of ihese annuli would be decreascd [c.g., Phillips and Dvorak,
1981]. Clearly, this is a topic which deserves further study.

5. Summary

In this paper we have presented a new technique of analyzing
potcntial anomnalics on a sphere due to finite amplitude topogra-
phy. We have shown that potential anomalies can be computed to
arbitrary precision by expanding the topography to the nth power
into spherical harmonics. A filter was also derived which stabi-
lized the process of downward continuing the Bouguer anomaly,

We have used this technique to evaluate several single- and
dual-lavered crustal thickness models for the Meon, and it was
found that only z singie-layered model with compensation occur-
ring at the Moho and a dual-layered model with both ypper and
lower crustal thickness variations gave plausible results. Given
that there is much petrologic, seismic, and geophysical evidence
which suggests that the crust is stratified, our preferred model
is the dual-layered model with upper and lower crustal thickness
variations. These crustal thickness maps have many important
implications for large-scale global structure, as well as for the
large impact basins. Our results suggest that the crust is on av-
erage about 60 km thick ard that half of this is composed of
anorthositic material. In addition, we find that the major nearside
basins have excavated the entire upper crust and that lower crustal
material was also likely excavated. With the possible exception
of Crisium basin, there is no evidence which suggests that mantle
material was ever excavated.
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