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. The value of the box counting dimension of K and its equality with dimH K are also studied. We also obtain a variational formula for the Hausdorff dimensions of some orthogonal projections of K, and for statistically self-affine measures supported on K, we establish a dimension conservation property through these projections.

 dans le cas où k = 2. Nous étudions également la valeur de la dimension de boîte de K et son égalité avec dimH K. Nous obtenons aussi un principe variationnel pour les dimensions de Hausdorff de certaines projections orthogonales de K, et pour les mesures auto-similaires en loi portées par K, nous établissons une propriété de conservation de dimension au travers de ces projections.

Introduction

This paper deals with dimensional properties of a natural class of random statistically self-affine sets and measures in R k (k ≥ 2), namely random Sierpinski sponges and related Mandelbrot measures, as well as certain of their projections and related fibres and conditional measures. These random sponges can be also viewed as limit sets of some percolation process on the unit cube endowed with an (m 1 , . . . , m k )-adic grid, where

m 1 ≥ • • • ≥ m k ≥ 2 are integers.
Until now the Hausdorff dimension of such a set K is known in the deterministic case and only when k = 2 in the random case, while the projections of K and the random Mandelbrot measures to be considered have been studied in the conformal case only. Understanding the missing cases is our goal, with Mandelbrot measures and their projections as a main tool for a variational approach to the Hausdorff dimension of K and its orthogonal projections, together with a "weighted" version of the thermodynamic formalism on symbolic spaces.

Before coming in more details to these objects and our motivations, it seems worth giving an overview of the nature of the main results known in dimension theory of self-affine sets. Recall that given an integer N ≥ 2 and an iterated function system (IFS) {f i } 1≤i≤N of contractive maps of a complete metric space X, there exists a unique non-empty compact set K ⊂ X such that

K = N i=1 f i (K),
(see [START_REF] Hutchinson | Fractals and self-similarity[END_REF]). When X is a Euclidean space and f i are affine maps, due to the above equality K is called self-affine. In particular, K is called self-similar if f i are all similitudes; we will not focus on the self-similar case and refer the reader to [START_REF] Hochman | Dimension theory of self-similar sets and measures[END_REF] for a recent survey of this topic.

The first class of strictly self-affine sets that have been studied in detail are certainly Bedford-McMullen carpets in R 2 , also known as self-affine Sierpinski carpets. They are among the most natural classes of fractal sets having different Hausdorff and box counting dimensions. To be specific, one fixes two integers m 1 > m 2 ≥ 2 and a subset A ⊂ {0, . . . , m 1 -1} × {0, . . . , m 2 -1} of cardinality at least 2; the Bedford-McMullen carpet K associated with A is the attractor of the system

S A = f a (x 1 , x 2 ) = x 1 + a 1 m 1 , x 2 + a 2 m 2 : a = (a 1 , a 2 ) ∈ A
of contractive affine maps of the Euclidean plane; note that by construction K ⊂ [0, 1] 2 .

Set N i = #{(a 1 , a 2 ) ∈ A : a 2 = i} for all 0 ≤ i ≤ m 2 -1 and ψ : θ ∈ R + → log m 2 -1 i=0 N θ i . Bedford and McMullen proved independently [START_REF] Bedford | Crinkly curves, Markov partitions and box dimension in self-similar sets[END_REF][START_REF] Mcmullen | The Hausdorff dimension of general Sierpinsky carpets[END_REF] that

dim H K = ψ(α) log(m 2 )
, where α = log(m 2 ) log(m 1 ) ,

and dim B K = ψ(1) log(m 1 ) + 1 log(m 2 ) - 1 log(m 1 ) ψ(0),
where dim H and dim B respectively stand for the Hausdorff and the box counting dimension, and ψ(1) and ψ(0) are the topological entropy of K and that of its projection to the x 2 -axis respectively. Moreover, dim H K = dim B K if and only if the positive N i are all equal. Note that the possible dimension gap dim H K < dim B K cannot hold for selfsimilar sets (see [START_REF] Falconer | Dimensions and measures of quasi self-similar sets[END_REF]). For a general self-affine Sierpinski sponge K ⊂ [0, 1] k invariant under the action of an expanding diagonal endomorphism f of T k with eigenvalues the integers m 1 > • • • > m k ≥ 2 (we identify [0, 1] k with T k ), similar formulas as in the 2dimensional case hold. In particular, the approach to dimensional properties of compact f -invariant sets developed by Kenyon and Peres [START_REF] Kenyon | Measures of full dimension on affine-invariant sets[END_REF] extends the results of [START_REF] Mcmullen | The Hausdorff dimension of general Sierpinsky carpets[END_REF] and establishes the following variational principle: the Hausdorff dimension of K is the supremum of the Hausdorff dimensions of ergodic measures supported on K, i.e. the Hausdorff and dynamical dimensions of K coincide. Moreover, the dimension of any ergodic measure is given by the Ledrappier-Young formula

(1.1) dim(µ) = 1 log(m 1 ) • h µ (f ) + k i=2 1 log(m i ) - 1 log(m i-1 ) h µ•Π -1 i (Π i • f ),
where Π i : R k → R k-i+1 is the projection defined by (x 1 , . . . , x k ) → (x i , . . . , x k ). Also, in the variational principle, the supremum is uniquely attained at some Bernoulli product measure.

Dimension theory of self-affine sets has been developed to understand the case of more "generic" self-affine IFSs as well. First, given a family {M i } 1≤i≤N of linear automorphisms of R k to itself whose norm subordinated to the Euclidean norm on R k is smaller than 1/2, it was shown [START_REF] Falconer | The Hausdorff dimension of self-affine fractals[END_REF][START_REF] Käenmäki | On natural invariant measures on generalised iterated function systems[END_REF] that for L N k -almost every choice of N translation vectors v 1 , . . . , v N in R k , the Hausdorff dimension of the attractor K of the affine IFS {M i x + v i } 1≤i≤N is the maximum of the Hausdorff dimensions of the natural projections of ergodic measures on ({1, . . . , N } N * , σ) to K (here σ stands for the left shift operation); in addition for such a measure µ, dim(µ) = min(k, dim L (µ)), where dim L (µ) is the so-called Lyapunov dimension of µ [START_REF] Falconer | The Hausdorff dimension of self-affine fractals[END_REF][START_REF] Solomyak | Measure and dimension for some fractal families[END_REF][START_REF] Käenmäki | On natural invariant measures on generalised iterated function systems[END_REF][START_REF] Jordan | Hausdorff dimension for randomly perturbed self affine attractors[END_REF]. A similar result holds for L N k 2 -almost every choice of contractive {M i } 1≤i≤N in some non-empty open set, with a fixed (v 1 , . . . , v N ) [START_REF] Bárány | Dimension of self-affine sets for fixed translation vectors[END_REF]. In these contexts one has dim H K = dim B K = min(k, dim A K), where dim A K stands for the so-called affinity dimension of K (note that for a Bedford-McMullen carpet, the affinity dimension equals ψ (1) log(m 2 ) if ψ(1) ≤ log(m 2 ) and ψ(1) log(m 1 ) + ( 1 log(m 2 ) -1 log(m 1 ) ) log(m 2 ) otherwise, so that in this case the previous equality between dimensions only occurs exceptionally). If both {M i } 1≤i≤N and (v 1 , . . . , v N ) are fixed, the following stronger result appeared recently in the 2-dimensional case: if {M i } 1≤i≤N satisfies the strong irreducibility property and {M i / |det(M i )|} 1≤i≤N generate a non-compact group in GL 2 (R), and if the IFS {f i } 1≤i≤N is exponentially separated, then dim H K is the supremum of the Lyapounov dimensions of the self-affine measures supported on K (it is not known whether this supremum is reached in general); here again for such a measure, the Lyapunov and Hausdorff dimensions coincide, and dim H K = dim B K = dim A K [START_REF] Bárány | Hausdorff dimension of planar self-affine sets and measures[END_REF][START_REF] Hochman | Hausdorff dimension of planar self-affine sets and measures with overlaps[END_REF]. The last two contexts make a central use of the notion of Furstenberg measure associated to a self-affine measure, whose crucial role in the subject was first pointed out in [START_REF] Falconer | Planar self-affine sets with equal Hausdorff, box and affinity dimensions[END_REF]. There are also similar results in the case that the strong irreducibility fails but the M i cannot be simultaneously reduced to diagonal automorphisms [START_REF] Falconer | Dimensions of self-affine fractals and multifractals generated by uppertriangular matrices[END_REF][START_REF] Bárány | On the dimension of triangular self-affine sets[END_REF][START_REF] Bárány | Hausdorff dimension of planar self-affine sets and measures[END_REF][START_REF] Hochman | Hausdorff dimension of planar self-affine sets and measures with overlaps[END_REF].

Let us come back to self-affine carpets. Their study was further developed with the introduction of Gatzouras-Lalley carpets [START_REF] Lalley | Hausdorff and box dimensions of certain self-affine fractals[END_REF] (with an application to the study of some non-conformal nonlinear repellers [START_REF] Gatzouras | Invariant measures of full dimensions for some expanding maps[END_REF]) and Baranski carpets [START_REF] Barański | Hausdorff dimension of the limit sets of some planar geometric constructions[END_REF]. There, the linear parts are no more subject to be equal, but they are still diagonal, and it is not true in general that there is a unique ergodic measure with maximal Hausdorff dimension [START_REF] Käenmäki | Dimension and measures on sub-self-affine sets[END_REF][START_REF] Barral | Non-uniqueness of ergodic measures with full Hausdorff dimension on Gatzouras-Lalley carpet[END_REF] (see also [START_REF] Kolossvary | Triangular Gatzouras-Lalley-type planar carpets with overlaps[END_REF] for a study of Gatzouras-Lalley type carpets when the linear parts are trigonal). It turns out that extending the dimension theory of these carpets to the higher dimensional case raises serious difficulties in general, as it was shown in [START_REF] Das | The Hausdorff and dynamical dimensions of self-affine sponges: a dimension gap result[END_REF] that the attractor may have a Hausdorff dimension strictly larger than its dynamical dimension.

On the side of random fractal sets, one naturally meets random statistically self-affine sets. Such a set K obeys almost surely an equation of the form K(ω) = N i=0 f ω i (K i (ω)), where the f ω i are random contractive affine maps and the sets K i are copies of K. Results similar to those obtained for almost all self-affine sets described above exist in the following situation: the sets K i are mutually independent and independent of the f i , the linear maps of the f i are deterministic, but the translation parts are i.i.d and follow a law compactly supported and absolutely continuous with respect to L d [START_REF] Jordan | Hausdorff dimension for randomly perturbed self affine attractors[END_REF]. Results are also known for random Sierpinski carpets. There are two natural ways to get such random sets. The first one falls in the setting of random dynamical systems. It consists in considering an ergodic dynamical system (Ω, F, P, T ), on which is defined a random non-empty subset A(ω) of {0, . . . , m 1 -1} × {0, . . . , m 2 -1} such that E(#A) > 1. Then one starts with the set of maps S A(ω) , and recursively, at each step n ≥ 2 of the iterative construction of the random attractor K(ω), replace the set of contractions S A(T n-2 (ω)) by S A(T n-1 (ω)) , so that the contractive maps used after n iterations take the form f a 0 • • • • • f a n-1 , with a i ∈ S A(T i (ω) ). By construction, K(ω) = a∈A(ω) f a (K(σ(ω))). The Hausdorff and box-counting dimensions of such sets and their higher dimensional versions have been determined in [START_REF] Kifer | Fractal dimensions and random transformations[END_REF] (in a slightly more general setting); the situation is close to that in the deterministic one.

The other natural way to produce random statistically self-affine carpets is related to branching processes and consists in using a general percolation scheme detailed below; at the moment let us just say that one starts with a possibly empty random subset A(ω) of {0, . . . , m 1 -1}×{0, . . . , m 2 -1}, and again assumes that E(#A) > 1. Then, one constructs on the same probability space the set A(ω) and a random compact set K(ω) ⊂ T 2 , and

m 1 × m 2 random compact sets K(a, ω), a ∈ {0, . . . , m 1 -1} × {0, . . . , m 2 -1}, so that K(ω) = a∈A(ω) f a (K(a, ω))
, where the K(a) are independent copies of K, and they are also independent of A. The set K is non-empty with positive probability. These random sets have been studied in [START_REF] Gatzouras | Statistically self-affine sets: Hausdorff and box dimensions[END_REF], and their self-similar versions have been investigated extensively (see e.g. [START_REF] Graf | The exact Hausdorff dimension in random recursive constructions[END_REF][START_REF] Watanabe | Exact Hausdorff measure on the boundary of a Galton-Watson tree[END_REF][START_REF] Rams | The geometry of fractal percolation[END_REF]). Setting now ψ(θ) = log m 2 -1 i=0 E(N i ) θ and letting t be the unique point at which the convex function ψ attains its minimum over [0, 1] if ψ is not constant, and t = 1 otherwise, one has, with probability 1, conditional on K = ∅,

dim H K = ψ(α) log(m 2 )
where

α = max t, log(m 2 ) log(m 1 ) , (1.2) and dim B K = ψ(1) log(m 1 ) + 1 log(m 2 ) - 1 log(m 1 ) ψ(t).
Moreover, dim H K = dim B K iff t = 1 or all the positive E(N i ) are equal (we note that the value of dim H K was previously obtained in [START_REF] Peyrière | Comparaison de deux notions de dimension[END_REF][START_REF] Nasr | Dimension de Hausdorff de certains fractals aléatoires[END_REF][START_REF] Nasr | Ensembles aléatoires self-affines en loi[END_REF] in the very special case that there is an integer b ≥ 2 such that the law of A assigns equal probabilities to subsets of cardinality b and probability 0 to the other ones). It is worth pointing out that the origin of this different formula with respect to the deterministic case comes from the possibility that E(N i ) < 1 for some i, which makes the situation quite versatile with respect to the deterministic Bedford-McMullen carpets.

The approach developed in [START_REF] Gatzouras | Statistically self-affine sets: Hausdorff and box dimensions[END_REF] to get (1.2) is not based on a variational principle related to a natural class of measures supported on the attractor. To determine the sharp lower and upper bounds for dim H K, the authors of [START_REF] Gatzouras | Statistically self-affine sets: Hausdorff and box dimensions[END_REF] adapted the approach used by Bedford in the deterministic case: the lower bound for dim H K is obtained by taking the maximum of two values, namely dim H Π 2 (K) (where Π 2 still denotes the orthogonal projection on the x 2 -axis) and the maximum of the lower bounds for the Hausdorff dimensions of certain random subsets of K. Each such subset E is obtained by considering the union of almost all the fibres Π -1 2 ({(0, x 2 )} with respect to the restriction to Π 2 (K) of some Bernoulli product measure. The Hausdorff dimensions of Π 2 (E) and that of the associated fibres are controlled from bellow. This yields a lower bound for dim H E thanks to a theorem of Marstrand. The upper bound for dim H K is obtained by using some effective coverings of K. It turns out to be delicate to transfer these methods to the higher dimensional cases. Indeed, for the lower bound, the Hausdorff dimension of the 1-dimfibreensional fibres mentioned above is obtained thanks to statistically self-similar branching measures in random environment, the dimension of which is relatively direct to get, and it yields the dimension of the fibre. Using this approach in the higher dimensional case k ≥ 3, we would have to consider the restriction of Bernoulli measures to Π i (K) for 2 ≤ i ≤ k. Then for i ≥ 3 we would meet the much harder problem to estimate the Hausdorff dimension of fibres which are statistically self-affine Sierpinski sponges in a random environment in R i-1 , a problem not less difficult than the one we consider in this paper; one would have to compute dim H Π i (K) as well, a question that we will naturally consider. Also, for the upper bound, extending to higher dimensions the combinatorial argument used in [START_REF] Gatzouras | Statistically self-affine sets: Hausdorff and box dimensions[END_REF] to get effective coverings seems impossible. However, we will see that it is rather direct to get the box-counting dimension of K in the higher dimensional cases by adapting the arguments of [START_REF] Gatzouras | Statistically self-affine sets: Hausdorff and box dimensions[END_REF] used for the two dimensional case.

We will develop the dimension theory for statistically self-affine Sierpinski sponges in R k , for any k ≥ 2, by studying the statistiscally self-affine measures on K (which are also called Mandelbrot measures on K). We will prove the following Ledrappier-Young type formula: given a Mandelbrot measure µ on K (see Sections 2.2 and 2.6 for the definition),

dim(µ) = 1 log(m 1 ) dim e (µ) + k i=2 1 log(m i ) - 1 log(m i-1 ) dim e (µ • Π -1 i ) = 1 log(m 1 ) dim e (µ) + 1 log(m i ) - 1 log(m i-1 )
• min dim e (µ),

h ν i (Π i • f ) , (1.3)
where dim e (µ) is the entropy dimension of µ, and ν i is the Bernoulli product measure

E(µ • Π -1 i ) (see Theorem 2.2). The fact that dim e (µ • Π -1 i ) = min(dim e (µ), h ν i (Π i • f
)) follows from our previous study of projections of Mandelbrot measures in [START_REF] Barral | Projections of random Mandelbrot measures[END_REF]. To get (1.3), we show that τ µ , the L q -spectrum of µ, is differentiable at 1 with τ µ (1) equal to the right hand side of (1.3); this implies the exact dimensionality of µ, with dimension equal to τ µ (1).

Optimising (1.3) yields the sharp lower bound for the Hausdorff dimension of K (see Theorem 4.5); the supremum is uniquely attained, and the optimisation problem is nonstandard; the presence of the k-1 minima in the sum gives rise to k possible simplifications of the formula separated by what can be thought of as k -1 phase transitions according to the position of dim e (µ) with respect to the entropies h ν i (Π i • f ), hence k distinct optimisation problems must be considered, of which the optima must be compared. This study will use the thermodynamic formalism as well as a version of von Neumann's minmax theorem, and the optimal Hausdorff dimension will be expressed as the "weighted" pressure of some deterministic potential (see Theorem 2.3). Our sharp upper bound for dim H K proves that this maximal Hausdorff dimension of a Mandelbrot measure supported on K yields dim H K. This bound is derived from a variational principle as well, namely we optimise over uncountably many types of coverings of K, each of which provides an upper bound for dim H K (see Theorem 4.10); when k = 2, this does not reduce back to the argument developed in [START_REF] Gatzouras | Statistically self-affine sets: Hausdorff and box dimensions[END_REF]. As a by-product, we get an alternative approach to the proof by Kenyon and Peres [START_REF] Kenyon | Measures of full dimension on affine-invariant sets[END_REF] of the sharp upper bound in the deterministic higher dimensional case. One may wonder if the approach by Kenyon and Peres, which in the deterministic case uses a uniform control of the lower local dimension of the unique Bernoulli measure of maximal Hausdorff dimension on K, can be extended to the random case by using the unique Mandelbrot measure of maximal Hausdorff dimension on K. We met an essential difficulty in trying to follow this direction, except in special cases (see the discussion at the beginning of Section 4.4).

Our result regarding the box-counting dimension of K is stated in Theorem 2.4. Another difference between the deterministic or random dynamical Sierpinski sponges, and the random Sierpinski sponges studied in this paper is that for the first two classes of objects, their images by the natural projections Π i , 2 ≤ i ≤ k, are lower dimensional objects of the same type (e.g. Sierpinski sponges project to 2-dimensional Sierpinski carpets via Π k-1 ), while this is not the case for the third one. Our approach will also provide dim H Π i (K) (via a variational principle) and dim B Π i (K) for the third class of random attractors (see Section 2.4; we note that the case of Π k (K) reduces to that of Π 2 (K) when k = 2 and K is a statistically self-similar set, a situation which is covered by [START_REF] Dekking | Superbranching processes and projections of random Cantor sets[END_REF][START_REF] Falconer | Projections of random Cantor sets[END_REF]). Finally, we determine the dimension of the conditional measures associated with the successive images of any Mandelbrot measure by the projections Π i (Section 2.5), which for each i equals dim(µ) -dim(Π i µ), hence the conservation dimension formula holds.

Since using symbolic spaces to encode the Euclidean situation is necessary, we will work on such spaces and endow them with adapted ultrametrics, so that the case of random statistically self-affine Euclidean sponges and their projections will be reducible to a particular situation of a more general framework on symbolic spaces and their factors.

Our framework and main results are presented in the next section.

Main results on self-affine symbolic spaces, and application to the Euclidean case

We start with defining the symbolic random statistically self-affine sponges, which will be studied in this paper.

2.1. Symbolic random statistically self-affine sponges. Let us first recall the notion of self-affine symbolic space.

Let N, N * , R + and R * + stand for the sets of non-negative integers, positive integers, non-negatice real numbers, and positive real numbers respectively.

Let k ≥ 2 be an integer. Assume that (X i , T i ) (i = 1, . . . , k) are one-sided full-shift spaces over finite alphabets A i of cardinality ≥ 2 and such that X i+1 is a factor of X i with a one-block factor map π i : X i → X i+1 for i = 1, . . . , k -1. That is, π i is extended from a map (which is also denoted by π i for convenience) from A i to A i+1 by

π i ((x n ) ∞ n=1 ) = (π i (x n )) ∞ n=1 for all (x n ) ∞ n=1 ∈ X i .
For convenience, we use π 0 to denote the identity map on X 1 . Define Π i : X 1 → X i by

Π i = π i-1 • π i-2 • • • • • π 0 for i = 1, . . . , k. Define A * i = n≥0 A n i
, where A 0 i consists of the empty word . The maps π i and Π i naturally extend to A * i and A * 1 respectively, that is,

π i (x 1 • • • x n ) = π i (x 1 ) • • • π i (x n ), Π i (x 1 • • • x n ) = Π i (x 1 ) • • • Π i (x n ). If u ∈ A *
i , we denote by [u] the cylinder made of those elements in X i which have u as prefix. If x ∈ X i and n ≥ 0, we denote by x |n the prefix of x of length n. For x, y ∈ X i , let x ∧ y denote the longest common prefix of x and y.

Let γ = (γ 1 , . . . , γ k ) ∈ R * + × (R + ) k-1 . Define an ultrametric distance d γ on X 1 by (2.1) d γ (x, y) = max e - |Π i (x)∧Π i (y)| γ 1 +•••+γ i : 1 ≤ i ≤ k ,
where

|u ∧ v| = 0, if u 1 = v 1 , max{n : u j = v j for 1 ≤ j ≤ n} if u 1 = v 1 for u = (u j ) ∞ j=1 , v = (v j ) ∞ j=1 ∈ X i . The metric space (X 1 , d γ ) is called a self-affine symbolic space.
It is a natural model used to characterize the geometry of compact invariant sets on the k-torus under a diagonal endomorphism [START_REF] Bedford | Crinkly curves, Markov partitions and box dimension in self-similar sets[END_REF][START_REF] Mcmullen | The Hausdorff dimension of general Sierpinsky carpets[END_REF][START_REF] Kenyon | Measures of full dimension on affine-invariant sets[END_REF][START_REF] Barral | Weighted thermodynamic formalism on subshifts and applications[END_REF].

If f is a measurable mapping between a measured space (X, T , ν) and a measurable space (Y, S), the image ν • f -1 of ν will be simply denote by f ν. Now, we can define symbolic random statistically self-affine sponges. Let A = (c a ) a∈A 1 be a random variable taking values in {0, 1} A 1 . It encodes a random subset of A 1 , namely {a ∈ A 1 : c a = 1}, which we identify with A. Suppose that E( a∈A 1 c a ) > 1. Let (A(u)) u∈A * 1 be a sequence of independent copies of A. For all n ∈ N, let

K n = {x ∈ X 1 : c x i (x |i-1 ) = 1 for all 1 ≤ i ≤ n} = u∈A n 1 : n i=1 cu i (u |i-1 )=1 [u]. (2.2)
Due to our assumption on A, with positive probability, the set

K = n≥1 K n ,
is the boundary of a non-degenerate Galton Watson tree with offspring distribution given by that of the random integer a∈A 1 c a . The set K satisfies the following symbolic statistically self-affine invariance property:

K = a∈A a • K a , where (2.3) K a = n≥1 K a n = u∈A n 1 : n i=1 cu i (au |i-1 )=1 [u] .
We call K a symbolic statistically self-affine Sierpinski sponge. The link with the Euclidean case will be made in Section 2.6.

Next we recall the definition and basic properties of Mandelbrot measures on K, and state our result on their exact dimensionality.

2.2. Mandelbrot measures on K. These measures will play an essential role in finding a sharp lower bound for dim H K. Let W = (W a ) a∈A 1 be a non-negative random vector defined simultaneously with A and such that {W a > 0} ⊂ {c a = 1} for all a ∈ A 1 . Let

T (q) = T W (q) = -log E a∈A 1 W q a , q ≥ 0,
and suppose that T (1) = 0, i.e. E( a∈A 1 W a ) = 1. Let ((A(u), W (u)) u∈A * 1 be a sequence of independent copies of (A, W ).

For each u, v ∈ A * 1 let Q u (v) = |v| k=1 W v k (u • v |k-1 ),
and simply denote Q (v) by Q(v). Due to our assumptions on W , for each

u ∈ A * 1 , setting Y n (u) = |v|=n Q u (v) the sequence (Y n (u), σ(W a (uv) : a ∈ A 1 , v ∈ A n 1 )) n≥1
is a non-negative martingale. Denote its limit almost sure limit by Y (u). The mapping

µ : [u] → Q(u)Y (u)
defined on the set of cylinders {[u] : u ∈ A * 1 } extends to a unique measure µ on (X 1 , B(X 1 )). This measure was first introduced in [START_REF] Mandelbrot | Intermittent turbulence in self-similar cascades, divergence of high moments and dimension of the carrier[END_REF], and is called a Mandelbrot measure. The support of µ is the set

K µ = n≥0 u∈A n 1 : Q(u)>0 [u] ⊂ K,
where the inclusion K µ ⊂ K follows from the assumption

{W a (u) > 0} ⊂ {c a (u) = 1}
for all u ∈ A * 1 and all a ∈ A 1 . Moreover, if T (1-) > 0, then (Y n (u)) n≥1 is uniformly integrable (see [START_REF] Kahane | Sur certaines martingales de B. Mandelbrot[END_REF][START_REF] Biggins | Martingale convergence in the branching random walk[END_REF][START_REF] Durrett | Fixed points of the smoothing transformation[END_REF]), and in this case K µ is a symbolic statistically self-affine set as well. Also, K µ = K almost surely if and only if {c a (u) = 1} \ {W a > 0} has probability 0 (see [START_REF] Barral | Projections of random Mandelbrot measures[END_REF]Proposition A.1]). If T (1-) ≤ 0, either µ = 0 almost surely (in such case one says that µ is degenerate), or P(∃ a ∈ A 1 such that W a = 1 and W a = 0 for a = a) = 1 (see [START_REF] Kahane | Sur certaines martingales de B. Mandelbrot[END_REF][START_REF] Biggins | Martingale convergence in the branching random walk[END_REF][START_REF] Durrett | Fixed points of the smoothing transformation[END_REF] as well), and in this later case T (1-) = 0, K µ is a singleton and µ is a Dirac measure [START_REF] Durrett | Fixed points of the smoothing transformation[END_REF].

The measure µ is also the weak-star limit of the sequence (µ n ) n≥1 defined by distributing uniformly (with respect to the uniform measure on X 1 ) the mass Q(u) on each u ∈ A n 1 . It is statistically self-affine in the sense that

µ(B) = a∈A 1 W a µ a (σ(B ∩ [a]))
for every Borel set B ⊂ X 1 , where µ a is the copy of µ constructed on K a with the weights (W (au)) u∈A * 1 .

We will make a systematic use of the notion of entropy dimension of measures on X i . Given a finite Borel measure ν on X i , the entropy dimension of ν is defined as

(2.4) dim e (ν) = lim n→∞ - 1 n u∈A n i ν([u]) log ν([u]),
whenever the limit exists. If ν is T i -invariant, one has dim e (ν) = h ν (T i ), the entropy of ν with respect to T i (see e.g. [START_REF] Bowen | Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms[END_REF]).

Due to the results by Kahane and Peyrière [START_REF] Kahane | Sur certaines martingales de B. Mandelbrot[END_REF][START_REF] Kahane | Multiplications aléatoires et dimensions de Hausdorff[END_REF], when a Mandelbrot measure µ is non-degenerate (that is, when P(µ = 0) > 0), with probability 1, conditional on µ = 0, one has

lim n→∞ log(µ([x |n ])) -n = T (1-) = - a∈A 1 E(W a log W a ), for µ-a.e. x.
It then follows that dim e (µ) exists [START_REF] Fan | Relationships between different dimensions of a measure[END_REF] and dim e (µ) = T (1-). In particular,

(2.5) dim e (µ) ≤ log E(#A),
with equality if and only if µ is the so called branching measure, i.e. it is obtained from the random vector (1 A (a)/E(#A)) a∈A 1 (see Remark 4.1 for a justification of this uniqueness).

Before stating our first result, we present a result deduced from [START_REF] Barral | Projections of random Mandelbrot measures[END_REF] about the entropy dimension of Π i µ (in [START_REF] Barral | Projections of random Mandelbrot measures[END_REF] we proved the exact dimensionality of the projection of a Mandelbrot measure on X 1 × X 1 to the first factor X 1 , in the case that X 1 is endowed with d γ , where γ = ((log #A 1 ) -1 ); but projecting from X 1 to X i and considering the entropy dimension do not affect the arguments): Theorem 2.1. [7, Theorem 3.2] Let µ be a non-degenerate Mandelbrot measure on K. Suppose that T (q) > -∞ for some q > 1. With probability 1, conditional on µ = 0, for all 2 ≤ i ≤ k, one has dim e (Π i µ) = min(dim e (µ), h ν i (T i )), where ν i is the Bernoulli product measure on X i obtained as ν i = E(Π i µ).

Hence, dim e (µ) and h ν i (T i ) compete in the determination of the entropy dimension of the i th projection of µ.

Recall that a locally finite Borel measure ν on a metric space (X, d) is said to be exact dimensional with dimension D if

lim r→0+ log(ν(B(x, r))) log(r) = D
for ν-almost every x. We denote the number D by dim(ν) and call it the dimension of ν.

Our result on the exact dimensionality of the Mandelbrot measure µ on (X 1 , d γ ) is the following.

Theorem 2.2 (Exact dimensionality of µ). Let µ be a non-degenerate Mandelbrot measure on K. Suppose that T (q) > -∞ for some q > 1. With probability 1, conditional on µ = 0, the measure µ is exact dimensional and dim(µ) = dim γ e (µ), where

(2.6) dim γ e (µ) := k i=1 γ i dim e (Π i µ) = γ 1 dim e (µ) + k i=2 γ i min(dim e (µ), h ν i (T i )).
This result will follow from the stronger fact that the L q -spectrum of µ is differentiable at 1 with derivative dim γ e (µ) (see Theorem 3.1).

2.3.

The Hausdorff and box counting dimensions of K. To state our result on dim H K, we need to recall some elements of the weighted thermodynamic formalism.

For 1 ≤ i ≤ k and b ∈ A i = Π i (A 1 ), let (2.7 
)

N (i) b = #{a ∈ A 1 : [a] ⊂ Π -1 i ([b]) and [a] ∩ K = ∅}. Then set ‹ A i = {b ∈ A i : E(N (i) b ) > 0}.
Without loss of generality we assume that #

‹ A k ≥ 2. Indeed, if ‹ A k is a singleton, then X k plays no role in the geometry of K since Π k (K) is a singleton when K = ∅. As a consequence, # ‹ A i ≥ 2 for all 2 ≤ i ≤ k.
For 1 ≤ i ≤ k, let ‹ X i denote the one-sided symbolic space over the alphabet

‹ A i . If φ : ‹ X i → R is a continuous function on ‹ X i , β = (β i , β i+1 , . . . , β k ) ∈ R * + × R k-i + , and ν ∈ M(X i , T i ), let (2.8) h β ν (T i ) := k j=i β j h Π i,j ν (T j ),
where

(2.9) Π i,j = π j-1 • • • • • π i if j > i
and Π i,i is the identity map of X i , and define the weighted pressure function (2.10)

P β (φ, T i ) = sup ν(φ) + h β ν (T i ) : ν ∈ M( ‹ X i , T i ) ,
where ν(φ) = X i φ dν. It is known ( [START_REF] Barral | Weighted thermodynamic formalism on subshifts and applications[END_REF]) that if φ is Hölder-continuous, then the supremum in defining P β (φ, T i ) is reached at a unique fully supported measure ν φ , called the equilibrium state of φ for P β (φ, T i ). Moreover, the mapping θ → P β (θφ, T i ) is differentiable, and

(2.11) dP β (θφ, T i )) dθ = X i φ(x) dν θφ (x) = ν θφ (φ). For 2 ≤ i ≤ k let γ i = ( γ i j ) i≤j≤k = (γ 1 + • • • + γ i , γ i+1 , .
. . , γ k ) and let φ i be the Hölder-continuous potential defined on ‹ X i by (2.12)

φ i (x) = (γ 1 + • • • + γ i ) log E(N (i) x 1 ).
For this potential and β = γ i , we set (2.13)

P i (θ) = P γ i (θφ i , T i ), θ ∈ R.
We also define P k+1 = P k .

The equilibrium state of θφ i for P γ i will be also called the equilibrium state of P i at θ.

By (2.11), we have

(2.14) P i (θ) = (γ 1 + • • • + γ i ) b∈ A i ν θφ i ([b]) log E(N (i) b ) (θ ∈ R).
We now define some parameters involved in the next statement. In order to slightly simplify the exposition, we assume that all the γ i are positive. The general situation will be considered in Section 8.

Set I = {2, . . . , k} (introducing this convention will simplify the discussion in Section 8), (2.15)

θ i = γ 1 + • • • + γ i-1 γ 1 + • • • + γ i if 2 ≤ i ≤ k,
and define

I = i ∈ I : P i (1) ≥ 0 . Moreover, define (2.16) i 0 = min( I) if I = ∅ k + 1 if I = ∅ and
(2.17)

θ i 0 = min θ ∈ [ θ i 0 , 1] : P i 0 (θ) ≥ 0 if i 0 ≤ k 1 if i 0 = k + 1 . Theorem 2.3 (Hausdorff dimension of K). With probability 1, conditional on K = ∅, dim H K = sup{dim γ e (µ) : µ is a positive Mandelbrot measure supported on K} = P i 0 (θ i 0 ) if i 0 ≤ k P k (1) if i 0 = k + 1 (2.18) = inf P i (θ) : i ∈ I, θ i ≤ θ ≤ 1 .
Moreover, there is a unique Mandelbrot measure jointly defined with K at which the supremum is attained, conditional on K = ∅.

The Mandelbrot measure at which the supremum is attained will be specified in Section 4.2. It is constructed from the equilibrium state of P i 0 at θ i 0 .

Theorem 2.4 (Box counting dimension of K). With probability 1, conditional on

K = ∅, dim B K = γ 1 log E(#A) + k i=2 γ i min θ∈[0,1] log b∈ A i E(N (i) b ) θ .

Next we give a necessary and sufficient condition for dim

H K = dim B K. Define (2.19) ψ i : θ ∈ [0, 1] → log b∈ A i E(N (i) b ) θ (2 ≤ i ≤ k). For each 2 ≤ i ≤ k, denote by θ i the point in [0, 1] at which ψ i reaches its minimum if ψ i is not constant (i.e. there is b ∈ ‹ A i such that E(N (i) b ) = 1)
, and θ i = 0 otherwise. We will need the following lemma to state and prove Corollary 2.6 about the necessary and sufficient condition for the equality dim

H K = dim B K to hold. Lemma 2.5. For each 2 ≤ i ≤ k, ψ i takes the value log E(#A) at θ = 1. Moreover if 2 ≤ i ≤ k -1, then ψ i ≥ ψ i+1 , and θ i < 1 implies θ i+1 < 1.
Proof. The first property is due to the relation E(N

(i+1) b ) = b∈ A i : π i (b)= b E(N (i) b ) for any b ∈ ‹ A i+1
, and the second one is due both to this property and the subadditivity of y ≥ 0 → y θ . The third property is a direct consequence of the first two properties. Indeed if θ i+1 = 1, then by the definition of θ i+1 and the convexity of ψ i+1 , we have for every θ ∈ [0, 1), ψ i+1 (θ) > ψ i+1 (1) = log E(#A) and so

ψ i (θ) ≥ ψ i+1 (θ) > log E(#A) = ψ i (1), which implies that θ i = 1. Corollary 2.6. It holds that dim H K = dim B K with probability 1, conditional on K = ∅, if and only if E(N (i) b ) does not depend on b ∈ ‹ A i for all i ∈ I such that θ i < 1.
2.4. Dimensions of projections of µ and K. We still assume that all the γ i are positive and will discuss the general case in Section 8. In the next statement µ is assumed to be a non-degenerate Mandelbrot measure such that K µ ⊂ K almost surely.

Theorem 2.7 (Dimension of Π i µ). Let 2 ≤ i ≤ k. Suppose that T (q) > -∞ for some q > 1. With probability 1, conditional on µ = 0, the measure Π i µ is exact dimensional and dim(Π i µ) = dim γ i e (Π i µ),
where

dim γ i e (Π i µ) := k j=i γ i j dim e (Π j µ) = k j=i γ i j min(dim e (µ), h ν j (T j )).
Next we consider dim H Π i (K). For this purpose, let i ∈ {2, . . . , k}. Define θ i i = 0 and θ i j = θ j for j = i + 1, . . . , k (cf. (2.15) for the definition of θ j ). Set I i = {i, . . . , k} and define

I i = {j ∈ I i : P j (1) ≥ 0}.
Then define

j 0 := j 0 (i) = min( I i ) if I i = ∅ k + 1 otherwise . Also, set (2.20) θ i j 0 = min θ ∈ [θ i j 0 , 1] : P j 0 (θ) ≥ 0 if j 0 ≤ k 1 if j 0 = k + 1 . Theorem 2.8 (Hausdorff dimension of Π i (K)). Let 2 ≤ i ≤ k.
Let j 0 = j 0 (i) and θ i j 0 be defined as above. Then, with probability 1, conditional on K = ∅,

dim H Π i (K) = sup{dim γ i e (Π i µ) : µ is a positive Mandelbrot measure supported on K} = P j 0 (θ i j 0 ) if j 0 ≤ k P j 0 (1) if j 0 = k + 1 , (2.21)
and the supremum is uniquely attained at a Mandelbrot measure jointly defined with K if and only if one of the following conditions is fulfilled:

(a) j 0 > i; (b) j 0 = i and θ i j 0 > 0; (c) j 0 = i, θ i j 0 = 0 and P j 0 (0) = 0.
Remark 2.9. We deduce from Theorems 2.3 and 2.8 that:

(i) if 2 ≤ i < i 0 then dim H Π i (K) = dim H K. (ii) dim H K = dim H Π i 0 (K) if and only if i 0 ≤ k and P i 0 (θ i 0 ) = 0, or if i 0 = k + 1. Indeed, it is clear that the condition is sufficient. Now suppose that dim H K = dim H Π i 0 (K). If i 0 ≤ k and P i 0 (θ i 0 ) > 0 then θ i 0 = θ i 0 > 0. Moreover, j 0 (i 0 ) = i 0 and P i 0 ( θ i 0 ) > 0 implies that θ i 0 i 0 < θ i 0 , so dim H Π i 0 (K) = P i 0 (θ i 0 i 0 ) < dim H K = P i 0 ( θ i 0 ). Thus, if i 0 ≤ k then P i 0 (θ i 0 ) = 0. (iii) If 2 ≤ i < j ≤ k, then (a) if 2 ≤ i < j < j 0 (i), then dim H Π j (K) = dim H Π i (K); (b) dim H Π j 0 (i) (K) = dim H Π i (K) if and only if j 0 (i) ≤ k and P j 0 (i) (θ j 0 ) = 0, or j 0 (i) = k + 1.
This can be proven like (ii).

Theorem 2.10 (Box counting dimension of Π i (K)). Let 2 ≤ i ≤ k. With probability 1, conditional on K = ∅, dim B Π i (K) = k j=i γ i j min θ∈[0,1] log b∈ A j E(N (j) b ) θ . Corollary 2.11. Let 2 ≤ i ≤ k. It holds that dim H Π i (K) = dim B Π i (K) with prob- ability 1, conditional on K = ∅, if
and only if either of the following three conditions hold:

(1) θ i = 1 and E(N

(j)
b ) does not depend on b ∈ ‹ A j for all j ∈ I i \ {i} such that θ j < 1. (2) 0 < θ i < 1, or θ i = 0 and ψ i (0) = 0. Moreover setting j 0 = max{j ∈ I i : for all j ≤ j in I i , either 0 < θ j < 1, or θ j = 0 and ψ j (0) = 0}, then the following properties hold:

(i) For all j ∈ I i such that j ≤ j 0 , for all b ∈ ‹ A j , Π -1 i,j (b) ∩ A i is a singleton (in particular θ j = θ i );
(ii) For all j ∈ I i such that j > j 0 one has θ j = 0 and ψ j (0) > 0, and

b ∈ A i : [b ]⊂Π -1 i,j ([b]) E(N (i) b ) θ i does not depend on b ∈ ‹ A j . (3) For all j ∈ I i , θ j = 0, ψ j (0) > 0, and #Π -1 i,j (b) ∩ A i does not depend on b ∈ ‹ A j .
In the random case, Theorem 2.8, Theorem 2.10 and Corollary 2.11 are new except in the case i = k, which is reducible to the two dimensional case considered in [START_REF] Dekking | Superbranching processes and projections of random Cantor sets[END_REF][START_REF] Falconer | Projections of random Cantor sets[END_REF][START_REF] Barral | Projections of random Mandelbrot measures[END_REF].

2.5. Dimensions of conditional measures. Given a non-degenerate Mandelbrot measure µ, conditional on µ = 0, for each 2 ≤ i ≤ k, the measure µ disintegrates as the skewed product of Π i µ(dz) µ z (dx), where µ z is the conditional measure supported on Π -1 i ({z})∩K for Π i µ-almost every z. We will prove the exact dimensionality of the measures µ z and the value for their dimensions.

Let us start with a consequence of [7, Theorems 3.1 and 3.2]: Theorem 2.12. Let µ be a non-degenerate Mandelbrot measure supported on K and 2 ≤ i ≤ k. Let ν i be the Bernoulli product measure equal to E(Π i µ). With probability 1, conditional on µ = 0, Π i µ is absolutely continuous with respect to ν i if dim e (µ) > h ν i (T i ), otherwise Π i µ and ν i are mutually singular. Moreover, if T (q) > -∞ for some q > 1, then for Π i µ-a.e. z ∈ Π i (K) and µ z -a.e. x ∈ K,

lim n→∞ log(µ z ([x |n ])) -n = dim e (µ) -dim e (Π i µ), which is equal to dim e (µ) -h ν i (T i ) if dim e (µ) > h ν i (T i
) and 0 otherwise; in particular the entropy dimension of µ z exists and equals dim e (µ) -dim e (Π i µ).

It is worth mentioning that the existence of the local entropy dimension for µ z and the entropy dimension conservation formula comes from the study achieved in [START_REF] Falconer | Exact dimensionality and projections of random self-similar measures and sets[END_REF] for the selfsimilar case, while the alternative between singularity and absolute continuity regarding Π i µ, as well as the value of dim e (Π i µ) and so that of dim e (µ z ) are obtained in [START_REF] Barral | Projections of random Mandelbrot measures[END_REF].

For the Hausdorff dimension of the conditional measures, we prove the following result: Theorem 2.13. Let µ be a non-degenerate Mandelbrot measure supported on K and 2 ≤ i ≤ k. Let ν i be the Bernoulli product measure equal to E(Π i µ). Suppose that T (q) > -∞ for some q > 1. With probability 1, conditional on µ = 0:

(1) If dim e (µ) ≤ h ν i (T i ), then for Π i µ-a.e. z ∈ Π i (K), the measure µ z is exact dimen- sional with Hausdorff dimension equal to 0. (2) If dim e (µ) > h ν i (T i ), then for Π i µ-a.e. z ∈ Π i (K), the measure µ z is exact dimen- sional with (2.22) dim(µ z ) = γ 1 (dim e (µ) -h ν i (T i )) + i-1 j=2 γ j min(dim e (µ), h ν j (T j )) -h ν i (T i ) .
(3) In both the previous situations, the Hausdorff dimension conservation

dim(µ) = dim(µ z ) + dim(Π i µ) holds.
Naturally, there is a similar result for the conditional measures of Π i µ projected on X j , 2 ≤ i < j ≤ k.

Theorem 2.14. Suppose k ≥ 3. Let µ be a non-degenerate Mandelbrot measure supported on K and 2 ≤ i < j ≤ k. Suppose that T (q) > -∞ for some q > 1. With probability 1, conditional on µ = 0, denote by (Π i µ) j,z the conditional measure of Π i µ associated with the projection Π i,j , and defined for Π j µ-almost every z.

(1) If dim e (µ) ≤ h ν j (T j ), then for Π j µ-a.e. z ∈ Π j (K), the measure (Π i µ) j,z is exact dimensional with Hausdorff dimension equal to 0. (2) If dim e (µ) > h ν j (T j ), then for Π j µ-a.e. z ∈ Π j (K), the measure

(Π i µ) j,z is exact dimensional with dim((Π i µ) j,z )) = j-1 j =i γ i j min(dim e (µ), h ν j (T j )) -h ν j (T j )) . (2.23)
(3) In both the previous situations, the Hausdorff dimension conservation

dim(Π i µ) = dim((Π i µ) j,z )) + dim(Π j µ)
holds for Π i,j -a.e. z ∈ Π i,j (K).

2.6. Applications to the Euclidean realisations of symbolic random statistically self-affine Sierpinski sponges. The link with Euclidean random sponges is the following: Given a sequence of integers 2

≤ m k < • • • < m 1 , if A i = k j=i {0, . . . , m i -1} for 1 ≤ i ≤ k, π i is the canonical projection from A i to A i+1 for 1 ≤ i ≤ k-1, γ 1 = 1/ log(m 1 ), and γ i = 1/ log(m i ) -1/ log(m i-1 ), 2 ≤ i ≤ k,
then the cylinders of generation n of X 1 project naturally onto parallelepipeds of the family

G n = k i=1 [ i m -n i , ( i + 1)m -n i ] : 0 ≤ i ≤ m n i -1 ,
and K projects on a statistically self-affine Sierpinski sponge K, also called Mandelbrot percolation set associated with (A(u)

) u∈A * 1 in the cube [0, 1] k endowed with the nested grids (G n ) n≥0 .
It is direct to prove that all the results of the previous sections are valid if one replaces K by K, the Mandelbrot measures by their natural projections on K (which are also called Mandelbrot measures), and Π i by the orthogonal projection from

R k to {0} i-1 × R k-i+1 .
If K is deterministic, then i 0 = 2, θ 2 = γ 1 /(γ 1 +γ 2 ), the Mandelbrot measure of maximal Hausdorff dimension is a Bernoulli product measures, and we recover the result established by Kenyon and Peres in [START_REF] Kenyon | Measures of full dimension on affine-invariant sets[END_REF] (they work on (R/Z) k but it is equivalent); also, in this case the results on the dimension of conditional measures is a special case of the general result obtained by the second author on the dimension theory of self-affine measures [START_REF] Feng | Dimension of invariant measures for self-affine iterated function system[END_REF]. If k = 2, the Euclidean version of Theorem 2.2 yields the value of dim H K computed by Gatzouras and Lalley in [START_REF] Gatzouras | Statistically self-affine sets: Hausdorff and box dimensions[END_REF].

Regarding the box counting dimension of K, if K is deterministic, we just recover the result of [START_REF] Kenyon | Measures of full dimension on affine-invariant sets[END_REF]; in this case, θ i = 0 for all 2 ≤ i ≤ k. If k = 2, we recover the result of Gatzouras and Lalley in [START_REF] Gatzouras | Statistically self-affine sets: Hausdorff and box dimensions[END_REF].

The paper is organized as follows. Section 3 is dedicated to the proof of Theorem 2.2, Section 4 to the proof of Theorem 2.3, Section 5 to that of Theorem 2.4 and its corollary, Section 6 to those of the corresponding results for projections of Mandelbrot measures and K, Section 7 to those on conditional measures, and the brief Section 8 to the case when some γ i vanish.

The Hausdorff dimension of µ. Proof of Theorem 2.2

Let us start with a few definitions.

With the notation given in the introduction part, for any word I ∈ A * 1 and any integer n ≥ 0, we denote by µ I the measure defined on X 1 by

µ I ([J]) = Q I (J)Y (IJ) for J ∈ A * 1
and by µ I n the measure on X 1 obtained by distributing uniformly Q I (J) on any cylinder J of the n th generation. Also, we write

µ n = µ n . For 1 ≤ i ≤ k and n ∈ N, let i (n) = min p ∈ N : p ≥ (γ 1 + • • • + γ i ) n γ 1 ,
and by convention set 0 (n) = 0. It is easy to check that in the ultrametric space (X 1 , d γ ), the closed ball centred at x of radius e -n γ 1 is given by

B(x, e -n γ 1 ) = y ∈ X 1 : Π i (y | i (n) ) = Π i (x | i (n) ) for all 1 ≤ i ≤ k .
Let F n be the partition of X 1 into closed balls of radius e

n γ 1 . For any finite Borel measure ν on X 1 , the L q -spectrum of ν can be defined as the concave mapping

τ ν : q ∈ R → lim inf n→∞ - γ 1 n log B∈Fn ν(B) q ,
with the convention 0 q = 0.

It is known that since (X 1 , d γ ) satisfies the Besicovich covering property, for ν-almost every x ∈ X 1 , one has

τ ν (1 + ) ≤ dim loc (ν, x) ≤ dim loc (ν, x) ≤ τ ν (1 -),
so that the existence of τ ν (1) implies the exact dimensionality of ν, with dimension equal to τ ν (1) (see, e. g., [START_REF] Ngai | A dimension result arising from the L q -spectrum of a measure[END_REF]). Consequently, Theorem 2.2 follows from the following stronger result.

Theorem 3.1. Suppose that T (q) > -∞ for some q > 1. Conditional on µ = 0, τ µ (1) exists and equals dim γ e (µ), where dim γ e (µ) is defined as in (2.6).

Recall that for 2 ≤ i ≤ k, we defined

ν i as Π i E(µ) = E(Π i µ). If ν is a Bernoulli product measure on X i , we set (3.1) T ν (q) = -log b∈A i ν([b]) q (q ≥ 0).
Then Theorem 3.1 follows from the following proposition.

Proposition 3.2. Suppose that T (q) > -∞ for some q > 1. Let

i 0 = max{2 ≤ i ≤ k : T (1) ≤ T ν i (1)},
with the convention max(∅) = 1. Then there exists q 0 > 1 and c 0 ≥ 0 such that for all q ∈ (0, q 0 ], we have

(3.2) E B∈Fn µ(B) q = O exp i 0 (n)(c 0 (q-1) 2 -T (q))- k i=i 0 +1 ( i (n)-i-1 (n))T ν i (q)
as n → ∞, here we use the Landau big O notation. Moreover, c 0 can be taken equal to 0 if one restricts q to belong to (0, 1]

or if T (1) = T ν i (1) for all 2 ≤ i ≤ k.
Assume that Proposition 3.2 holds. Then, a standard argument (see, e.g. [7, Lemma C]) yields that for any fixed q ∈ (0, q 0 ], the following holds almost surely:

lim sup n→∞ log B∈Fn µ(B) q n ≤ lim sup n→∞ i 0 (n)(c 0 (q -1) 2 -T (q)) -k i=i 0 +1 ( i (n) -i-1 (n))T ν i (q) n = γ 1 + • • • + γ i 0 γ 1 (c 0 (q -1) 2 -T (q)) - k i=i 0 +1 γ i γ 1 T ν i (q).
Then, by the convexity of the two sides as functions of q, the inequality holds almost surely for all q ∈ (0, q 0 ]. Multiplying both sides by -γ 1 yields, conditional on µ = 0,

τ µ (q) ≥ -(γ 1 + • • • + γ i 0 )c 0 (q -1) 2 + (γ 1 + • • • + γ i 0 ) T (q) + k i=i 0 +1 γ i T ν i (q).
Since both sides of the above inequality are concave functions which coincide at q = 1 and the right hand side is differentiable at 1, we necessarily have that τ µ (1) does exist and is equal to the derivative at 1 of the right hand side, namely

(γ 1 + • • • + γ i 0 ) T (1) + k i=i 0 +1 γ i T ν i (1) = dim γ e (µ).
Hence Proposition 3.2 implies Theorem 3.1.

In the remaining part of this section, we prove Proposition 3.2. We still need two additional lemmas. Lemma 3.3. Suppose that T (q) > -∞ for some q > 1. Then, for all q ∈ (1, 2) such that T (q) > 0, there exists a constant C q > 0 such that for all 2 ≤ i ≤ k, for all n ≥ 1 one has

max   E U ∈A n i Π i µ([U ]) q , E U ∈A n i Π i µ n ([U ]) q   ≤ C q e -n min(T (q),Tν i (q)) .
Proof. This is a direct consequence of [7, Corollary 5.2], in which the case k = 2 is considered.

Lemma 3.4. [START_REF] Bahr | Inequalities for the r-th absolute moment of a sum of random variables, 1 ≤ r ≤ 2[END_REF] Let (L j ) j≥1 be a sequence of centred independent real valued random variables. For every finite I ⊂ N and q ∈ (1, 2],

E i∈I L i q ≤ 2 i∈I E(|L i | q ).
Proof of Proposition 3.2. At first, note that the set of balls F n is in bijection with the set

k i=1 A i (n)-i-1 (n) i , since for any x = (x i ) ∞ i=1 ∈ X 1 , if we set U i = Π i (x i-1 (n)+1 • • • x i (n) ), 1 ≤ i ≤ k, and U = (U 1 , . . . , U k ), then B(x, e -n γ 1 ) = y ∈ X 1 : Π i (T i-1 (n) 1 y) ∈ [U i ] for all 1 ≤ i ≤ k = (J 1 ,...,J k )∈J U [J 1 • • • J k ],
where

(3.3) J U := (J 1 , . . . , J k ) ∈ k i=1 A i (n)-i-1 (n) 1 : Π i (J i ) = U i for all 1 ≤ i ≤ k . For 1 ≤ i ≤ k, set U (i) n = k j=i A j (n)-j-1 (n) j
. For q ∈ R + we need to estimate from above the partition function

Z q,n := B∈Fn µ(B) q = U ∈U (1) n (J 1 ,J 2 ,...,J k )∈J U µ([J 1 • • • J k ]) q . For 1 ≤ i ≤ k and U (i) = (U i , • • • , U k ) ∈ U (i) n , set J U (i) =    (J i , . . . , J k ) ∈ k j=i A j (n)-j-1 (n) 1 : Π j (J j ) = U j for all i ≤ j ≤ k    . Also, set U (k+1) n = { } and J = { }. Then, for 1 ≤ i ≤ k and (J 1 , . . . , J i ) ∈ i j=1 A i (n)-i-1 (n) 1
, define the random variable

Z q,n (J 1 • • • J i ) = U (i+1) ∈U (i+1) n   (J i+1 ,...,J k )∈J U (i+1) µ J 1 •••J i ([J i+1 . . . J k ])   q .
Notice that Z q,n ( ) = Z q,n and Z q,n (J

1 • • • J k ) = Y (J 1 • • • J k ) q .
Due to the branching property associated with the measures µ J , J ∈ A * 1 , for all 0 ≤ i ≤ k -1 we have

Z q,n (J 1 • • • J i ) = U (i+1) ∈U (i+1) n       J i+1 ∈A i+1 (n)-i (n) 1 Π i+1 (J i+1 )=U i+1 µ J 1 •••J i i+1 (n)-i (n) ([J i+1 ]) S U (i+2) (J 1 • • • J i J i+1 )       q , where U (i+2) = (U i+2 , . . . , U k ) ∈ U (i+2) n
, and

S U (i+2) (J 1 • • • J i J i+1 ) = (J i+2 ,...,J k )∈J U (i+2) µ J 1 •••J i J i+1 ([J i+2 . . . J k ]).
Notice that the random variables

S U (i+2) (J 1 • • • J i J i+1 ), where J i+1 ∈ A i+1 (n)-i (n)
1 and Π i (J i+1 ) = U i+1 , are independent and identically distributed, and independent of the σ-algebra generated by the µ

J 1 •••J i i+1 (n)-i (n) (J i+1 ). Setting L(J i+1 ) = S U (i+2) (J 1 • • • J i+1 ) -E(S U (i+2) ),
where E(S U (i+2) ) stands for the common value of the S U (i+2) (J 1 • • • J i+1 ) expectations, we have, for q > 1:

E       J i+1 ∈A i+1 (n)-i (n) i+1 Π i+1 (J i+1 )=U i+1 µ J 1 •••J i i+1 (n)-i (n) ([J i+1 ]) S U (i+2) (J 1 • • • J i J i+1 )       q ≤ 2 q-1 E       J i+1 ∈A i+1 (n)-i (n) i+1 Π i+1 (J i+1 )=U i+1 µ J 1 •••J i i+1 (n)-i (n) ([J i+1 ])       q E(S U (i+2) ) q + 2 q-1 E J i+1 ∈A i+1 (n)-i (n) i+1 Π i+1 (J i+1 )=U i+1 µ J 1 •••J i i+1 (n)-i (n) ([J i+1 ]) L(J i+1 ) q .
Assuming that q ∈ (1, 2], we can apply Lemma 3.4 to the second term conditional on the σ-algebra generated by the µ

J 1 •••J i i+1 (n)-i (n) (J i+1
) and get

E J i+1 ∈A i+1 (n)-i (n) i+1 Π i+1 (J i+1 )=U i+1 µ J 1 •••J i i+1 (n)-i (n) ([J i+1 ]) L(J i+1 ) q ≤ 2 q E       J i+1 ∈A i+1 (n)-i (n) i+1 Π i+1 (J i+1 )=U i+1 µ J 1 •••J i i+1 (n)-i (n) ([J i+1 ]) q       E(|L| q ) ≤ 2 q E       J i+1 ∈A i+1 (n)-i (n) i+1 Π i+1 (J i+1 )=U i+1 µ J 1 •••J i i+1 (n)-i (n) ([J i+1 ])       q E(|L| q ) (using superadditivity) = 2 q E Π i+1 µ J 1 •••J i i+1 (n)-i (n) ([U i+1 ]) q E(|L| q ),
where

E(|L| q ) = E(|S U (i+2) -E(S U (i+2) )| q ) ≤ 2 q E(S q U (i+2) )
, and

E(S q U (i+2) ) is the common value of the E(S U (i+2) (J 1 • • • J i+1 ) q ).
Incorporating the last inequality in the previous one, we get

E       J i+1 ∈A i+1 (n)-i (n) i+1 Π i+1 (J i+1 )=U i+1 µ J 1 •••J i i+1 (n)-i (n) (J i+1 ) S U (i+2) (J 1 • • • J i+1 )       q ≤ 2 3q E Π i+1 µ J 1 •••J i i+1 (n)-i (n) ([U i+1 ]) q E S q U (i+2) .
Then, taking an arbitrary element

J i+1 in A i+1 (n)-i (n) 1
, we obtain

E(Z q,n (J 1 • • • J i )) ≤ 2 3q U i+1 ∈A i+1 (n)-i (n) i+1 E Π i+1 µ J 1 •••J i i+1 (n)-i (n) ([U i+1 ]) q U (i+2) ∈U (i+2) n E(S U (i+2) (J 1 • • • J i J i+1 ) q ) = 2 3q U i+1 ∈A i+1 (n)-i (n) i+1 E Π i+1 µ J 1 •••J i i+1 (n)-i (n) ([U i+1 ]) q E(Z q,n (J 1 • • • J i J i+1 )).
Since (µ p ) p≥1 and (µ

J 1 •••J i p
) p≥1 are identically distributed this yields

E(Z q,n (J 1 • • • J i )) ≤ 2 3q U i+1 ∈A i+1 (n)-i (n) i+1 E Π i+1 µ i+1 (n)-i (n) ([U i+1 ]) q E(Z q,n (J 1 • • • J i J i+1 )).
It follows that

E(Z q,n ) ≤ 2 3qk E(Y q ) k i=1 E    U i ∈A i (n)-i-1 (n) i Π i µ i (n)-i-1 (n) ([U i ]) q    .
Let q 1 ∈ (1, 2] such that T (q) > 0 for all q ∈ (1, q 1 ] (remember that T (1) = 0 and T (1) > 0). Then, for all q ∈ (1, q 1 ], the previous estimate combined with Lemma 3.3 yields

E(Z q,n ) ≤ 2 3qk C k-1 q E(Y q ) E U 1 ∈A n 1 µ n ([U 1 ]) q × exp - k i=2 ( i (n) -i-1 (n)) min(T (q), T ν i (q)) = 2 3qk C k-1 q E(Y q ) exp -nT (q) - k i=2 ( i (n) -i-1 (n)) min(T (q), T ν i (q)) .
Finally, recall that i 0 = max{2 ≤ i ≤ k : T (1) ≤ T ν i (1)} (note that for each i the number T ν i (1) is the measure-theoretic entropy of ν i so that the sequence (T ν i (1)) 1≤i≤k is non-increasing). Since T and the functions T ν i are analytic near 1 and coincide at 1, for all 2 ≤ i ≤ i 0 there exist q 0,i ∈ (1, q 1 ] and c i ≥ 0 such that for all q ∈ (1, q 0,i ] one has min(T (q), T ν i (q)) ≥ T (q) -c i (q -1) 2 ,

with c i = 0 if T (1) < T ν i (1). Taking c 0 = max{c i : 2 ≤ i ≤ i 0 } and q 0 = min{q 0,i : 2 ≤ i ≤ i 0 } yields (3.2).
Suppose now that q ∈ (0, 1]. We start with giving general estimate of E(Z q,n (J

1 • • • J i )). Using the subadditivity of x ∈ R + → x q we have Z q,n (J 1 • • • J i ) ≤ U (i+1) ∈U (i+1) n J i+1 ∈A i+1 (n)-i (n) 1 Π i+1 (J i+1 )=U i+1 µ J 1 •••J i i+1 (n)-i (n) ([J i+1 ]) q S U (i+2) (J 1 • • • J i J i+1 ) q , so E(Z q,n (J 1 • • • J i )) ≤ U i+1 ∈A i+1 (n)-i (n) i+1 J i+1 ∈A i+1 (n)-i (n) 1 Π i+1 (J i+1 )=U i+1 E(µ J 1 •••J i i+1 (n)-i (n) (J i+1 ) q ) • E U (i+2) ∈U (i+2) n S U (i+2) (J 1 • • • J i J i+1 ) q = E J i+1 ∈A i+1 (n)-i (n) 1 µ J 1 •••J i i+1 (n)-i (n) (J i+1 ) q E(Z q,n (J 1 • • • J i J i+1 )) = E J i+1 ∈A i+1 (n)-i (n) 1 µ i+1 (n)-i (n) (J i+1 ) q E(Z q,n (J 1 • • • J i J i+1 )) = exp(-( i+1 (n) -i (n))T (q))E(Z q,n (J 1 • • • J i J i+1 )).
Starting from E(Z q,n ) = E(Z q,n ( )) and iterating i 0 times the previous estimate we get

E(Z q,n ) ≤ i 0 i=1 exp(-( i (n) -i-1 (n))T (q)) E(Z q,n ( J 1 • • • J i 0 )) = exp(-i 0 (n)T (q)) E(Z q,n ( J 1 • • • J i 0 )).
On the other hand, setting

J = J 1 • • • J i 0 and λ(n) = k-1 (n) -i 0 +1 (n), we can write Z q,n ( J) = U (i 0 +1) ∈U (i 0 +1) n      J =J i 0 +1 ••• ,J k-1 Π j (J j )=U j , ∀ i 0 +1≤j≤k-1 µ J λ(n) ([J ]) J k : Π k (J k )=U k µ JJ ([J k ])      q = U (i 0 +1) ∈U (i 0 +1) n      J =J i 0 +1 •••J k-1 Π j (J j )=U j , ∀ i 0 +1≤j≤k-1 µ J λ(n) ([J ]) ν k ([U k ]) X( JJ )      q ,
where

X( JJ ) = J k : Π k (J k )=U k w JJ (J k ), with w JJ (J k ) =      µ JJ ([J k ]) ν k ([U k ]) if ν k ([U k ]) > 0, 0 otherwise
.

We can now use the independence of the random variables X( JJ ) with respect to the σ-algebra generated by the µ J λ(n) ([J ]), conditioned with respect to this σ-algebra and use Jensen's inequality to get

E(Z q,n ( J)) ≤ U (i 0 +1) ∈U (i 0 +1) n E      J =J i 0 +1 ,...,J k-1 Π j (J j )=U j , ∀ i 0 +1≤j≤k-1 µ J λ(n) ([J ]) ν k ([U k ]) E(X( JJ ))      q .
But by construction we have

ν k ([U k ]) = E J k : Π k (J k )=U k µ JJ ([J k ]) , hence E(X( JJ )) = 1. Setting R = (U i 0 +1 ,...,U k-1 )∈ k-1 i=i 0 +1 A i (n)-i-1 (n) i E      J =J i 0 +1 •••J k-1 Π j (J j )=U j , ∀ i 0 +1≤j≤k-1 µ J λ(n) ([J ])      q ,
this yields

E(Z q,n ( J)) ≤ R • U k ∈A k (n)-k-1 (n) k ν k ([U k ]) q = R • exp(-( k (n) -k-1 (n))T ν k (q)).
We can apply to R the same type of estimate as that for E(Z q,n ( J)), the only change being that µ JJ ([

J k ]) = µ JJ i 0 +1 •••J k-1 ([J k ]
) must be replaced by µ

JJ i 0 +1 •••J k-2 k-1 (n)-k-2 (n) (J k-1
), and one now must use the fact that

ν k-1 = E Π k-1 µ JJ i 0 +1 •••J k-2 k-1 (n)-k-2 (n) . Iterating we get E(Z q,n ( J)) ≤ exp - k i=i 0 +1 ( i (n) -i-1 (n))T ν i (q) ,
and finally

E(Z q,n ) ≤ exp -i 0 (n)T (q) - k i=i 0 +1 ( i (n) -i-1 (n))T ν i (q) .
This completes the proof of the Proposition.

The Hausdorff dimension of K. Proof of Theorem 2.3

We have to optimise the weighted entropy dim γ e (µ) over the set of non-degenerate Mandelbrot measures µ supported on K; this will provide us with a sharp lower bound for dim H K. To do so, it is convenient to first relate dim e (µ) to h ν i (T i ) for all 1 ≤ i ≤ k, where ν i = E(Πµ). This is the purpose of Section 4.1. Then we identify at which point the maximum of weighted entropy dimension of Mandelbrot measures supported on K is reached. This constitutes Section 4.2. Section 4.3 quickly derives the sharp lower bound for dim H K. Finally, in Section 4.4 we develop a kind of variational principle to get the sharp upper bound for dim H K.

4.1.

Mandelbrot measure as a kind of skewed product and decomposition of entropy dimension. Let µ be a non-degenerate Mandelbrot measure jointly constructed with K and such that K µ ⊂ K almost surely. As in Section 2.2, we denote by W the random vector used to generate µ. By construction, for any 1 ≤ i ≤ k, the measure ν i = E(Π i µ) is the Bernoulli product measure on X i associated with the probability vector p (i) = (p

(i) b ) b∈A i , where p (i) b = a∈A 1 : [a]⊂Π -1 i ([b]) E(W a ),
and one has ν i = π i-1 ν i-1 for i ≥ 2. We also define, for b ∈ A i ,

V (i) b = (V (i) b,a ) a∈A 1 : [a]⊂Π -1 i ([b]) = ν i ([b]) -1 (W a ) a∈A 1 : [a]⊂Π -1 i ([b]) if ν i ([b]) > 0 0 otherwise ,
so that for all a ∈ A 1 , for all 1 ≤ i ≤ k, we have the multiplicative decomposition

W a = ν i (Π i [a]) • V (i) Π i (a),a . For 1 ≤ i ≤ k and b ∈ A i , set (4.1) T V (i) b (q) = -log E   a∈A 1 : [a]⊂Π -1 i ([b]) (V (i) b,a ) q   (q ≥ 0),
with the conventions 0 0 = 0 and log(0) = -∞. In particular

(4.2) T V (i) b (0) = -log E(N (i) b (W )),
where

N (i) b (W ) = #{a ∈ A 1 : [a] ⊂ Π -1 i ([b]), W a > 0}. One can check that (4.3) e -T W (q) = b∈A i ν i ([b])>0 ν i ([b]) q e -T V (i) b (q) 
, from what it follows, after differentiating at 1, that

(4.4) dim e (µ) = h ν i (T i ) + dim e (µ|ν i ),
where

h ν i (T i ) = - b∈A i ν i ([b]) log ν i ([b])
is the entropy of the T i -invariant measure ν i and dim e (µ|ν i ) :

= b∈A i ν i ([b])>0 ν i ([b])T V (i) b (1) = b∈A i ν i ([b])>0 ν i ([b])   - a∈A 1 : [a]⊂Π -1 i ([b]) E(V (i) b,a log V (i) b,a )  
must be thought of as the relative entropy dimension of µ given ν i whenever this number is non-negative.

Among the Mandelbrot measures supported on K, special ones will play a prominent role. We introduce them now.

Recall that for 1 ≤ i ≤ k and b ∈ A i = Π i (A 1 ), we defined

N (i) b = #{a ∈ A 1 : [a] ⊂ Π -1 i ([b]), [a] ∩ K = ∅}
and we also defined the set

‹ A i = {b ∈ A i : E(N (i) b ) > 0}. For a ∈ A 1 such that [a] ⊂ Π -1 i ([b]) let ‹ V (i) b,a = (E(N (i) b )) -1 if b ∈ ‹ A i and [a] ∩ K = ∅ 0 otherwise .
If ν i is a Bernoulli product measure on X i , and W a is taken equal to

W a = ν i ([b]) ‹ V (i) b,a for all a ∈ A 1 such that [a] ⊂ Π -1 i ([b]), and if T ‹ W
(1) > 0, we get a new Mandelbrot measure that we denote by µ ν i . By construction, ν i = E(Π i µ ν i ), and

(4.5) dim e (µ ν i |ν i ) = b∈A i ν i ([b]) log E(N (i) b ).
The following remarks point out some properties which will play key roles in our proof of Theorem 2.3. 

≤ i ≤ k, for each b ∈ A i such that ν i ([b]) > 0, the function T V (i) b is concave, takes value 0 at 1 and due to (4.2) one has T V (i) b (0) = -log E(N (i) b (W )) ≥ -log E(N (i) b ), so T V (i) b is bounded from below by the linear function T V (i) b : q → (q -1) log E(N (i) b ). Consequently, T V (i) b (1) ≤ T V (i) b (1) = log E(N (i) b ). It then follows from (4.4) that T ‹ W (1) = h ν i (T i ) + b∈A i : ν i ([b])>0 ν i ([b])T V (i) b (1) ≥ h ν i (T i ) + b∈A i : ν i ([b])>0 ν i ([b])T V (i) b (1) = T W (1), with equality only if T V (i) b equals T V (i) b whenever ν i ([b]) > 0. In particular, T V (i)
b must be affine. Remembering (4.1), and differentiating twice shows, after an application of Cauchy-Schwarz inequality, that this implies that ‹ V (1) > T W (1) ≥ 0 so that µ ν i is non-degenerate (recall that since µ is non-degenerate, T W (1) = 0 only in the case that µ is a Dirac measure).

(i) b,a equals 1 R * + (W a )/E(N (i) b (W )) almost surely. Consequently, T V (i) b equals T V (i) b if and only if V (i) b = ‹ V (i

Recall that for

i = 1, . . . , k, X i = A N i and ‹ X i = ( ‹ A i ) N , where ‹ A i := {b ∈ A i : E(N (i) b ) > 0}.
Remark 4.2. The reader will also check that when µ ν i is non-degenerate, for all

1 ≤ i ≤ i -1, denoting E(Π i µ ν i ) by ν i , one also has W a = ν i (b ) ‹ V (i ) b ,a for all b ∈ A i and a ∈ A 1 such that [a] ⊂ Π -1 i ([b]). Consequently, µ ν i = µ ν i and dim e (µ ν i ) = h ν i (T i ) + b∈A i ν i ([b]) log EN (i) b = h ν i (T i ) + b ∈A i ν i ([b ]) log E(N (i ) b )
(with the convention 0 × (-∞) = 0). Also, if ν i is fully supported on ‹ X i , then K µν i = K almost surely since by construction a component W a of the random vector W associated with µ ν i as in Section 4.1 vanishes exactly when a ∈ A(ω). Definition 4.3. We denote by B i the set of Bernoulli product measures on X i which are supported on ‹ X i . Also, if ρ i is a Bernoulli product measure defined on ‹ X i , we also denote by ρ i the Bernoulli product measure on X i defined by assigning the mass ρ i (B ∩ ‹ X i ) to any Borel subset B of X i . Remark 4.4. Another important fact, which follows from the previous remarks, is that given

1 ≤ i ≤ k and ρ i ∈ B i such that h ρ i (T i ) + b∈ A i ρ i ([b]) log EN (i)
b > 0, then µ ρ i is the unique Mandelbrot measure µ jointly defined with K and such that if

ρ = E(µ), then h ρ (T 1 ) + b∈ A 1 ρ([b]) log EN (1) b = h ρ i (T i ) + b∈A i ρ i ([b]) log EN (i)
b . On the other hand, it also holds that if

ρ i ∈ B i , then sup    h ρ (T 1 ) + b∈ A 1 ρ([b]) log EN (1) b : ρ ∈ B 1 , Π i ρ = ρ i    = h ρ i (T i ) + b∈A i ρ i ([b]) log EN (i) b ,
and the supremum is uniquely attained. See e.g. [START_REF] Ledrappier | A relativised variational principle for continuous transformations[END_REF] for a proof (or use [12, Lemma 1.1] for a direct proof ). One has

M γ = P i 0 (θ i 0 ) if i 0 ≤ k P k (1) if i 0 = k + 1 ,
and the maximum is uniquely attained at µ ν i 0 , where ν i 0 is the equilibrium state of P i 0 at θ 0 and µ ν i 0 is the Mandelbrot measure associated to ν i 0 as in Section 4.1.

Before proving Theorem 4.5, we first recall a version of von Neumann's min-max theorem and establish two useful corollaries of it.

A generalised version of von

Neumann's min-max theorem, and some applications. In this part, we state a generalised version of von Neumann's min-max theorem, which was proved by Ky Fan [START_REF] Fan | Minimax theorems[END_REF].

We first introduce some definitions. Let f be a real function defined on the product set X × Y of two arbitrary sets X, Y (not necessarily topologized). f is said to be convex on X, if for any two elements x 1 , x 2 ∈ X and t ∈ [0, 1], there exists an element x 0 ∈ X such that f (x 0 , y) ≤ tf (x 1 , y) + (1 -t)f (x 2 , y) for all y ∈ Y . Similarly f is said to be concave on Y , if for any two elements y 1 , y 2 ∈ X and t ∈ [0, 1], there exists an element y 0 ∈ Y such that f (x, y 0 ) ≥ tf (x, y 1 ) + (1 -t)f (x, y 2 ) for all x ∈ X. Theorem 4.6. [24, Theorem 2]. Let X be a compact Hausdorff space and Y an arbitrary set (not topologized). Let f be a real-valued function on X × Y such that for every y ∈ Y , f (x, y) is lower semi-continuous on X. If f is convex on X and concave on Y, then Now we give a specific application of Theorem 4.6. Let Y be a compact convex subset of a topological vector space. Let ∈ N * and g 1 , . . . , g be real concave functions defined on Y . Set ∆ = (q 1 , . . . , q ) ∈ R : q i ≥ 0 and

i=1 q i = 1 . Define P : ∆ → R by P (q 1 , . . . , q ) = sup i=1 q i g i (y) : y ∈ Y .
Clearly P is a convex function on ∆ . As a consequence of Theorem 4.6 we have the following.

Corollary 4.7. Under the above setting, we have (4.7) min (q 1 ,...,q )∈∆ P (q 1 , . . . , q ) = sup y∈Y min{g 1 (y), . . . , g (y)}.

Proof. Define f : ∆ × Y → R by f (q, y) = i=1 q i g i (y) for q = (q 1 , . . . , q ) ∈ ∆ , y ∈ Y.

Clearly, f is convex and continuous in q = (q 1 , . . . , q ) and concave in y. Notice that for every y ∈ Y , min{g 1 (y), . . . , g (y)} = min (q 1 ,...,q )∈∆ i=1 q i g i (y) = min (q 1 ,...,q )∈∆ f ((q 1 , . . . , q ), y).

Applying Theorem 1.1 to f (in which we take X = ∆ ) yields (4.7).

Next we rewrite (4. where q = (q 1 , . . . , q ) and g(y) := (g 1 (y), . . . , g (y)).

Corollary 4.8. Assume in addition that g 1 , . . . , g are strictly concave and continuous (or upper semi-continuous) on Y . Then the following properties hold:

(i) For any q ∈ ∆ , there is a unique y = y q ∈ Y which attains the supremum in the variational principle (4.8) P (q) = sup y∈Y q • g(y).

(ii) Write L = min q∈∆ P (q). Then there is a unique y ∈ Y such that (4.9) min{g 1 (y), . . . , g (y)} = L.

Moreover if P takes this minimum at a point q * = (q * 1 , . . . , q * ) ∈ ∆ , then y q * = y and furthermore, q * j = 0 if g j (y) > L.

Proof. Part (i) follows from the assumptions that g i are upper semi-continuous and strictly concave. Specifically, the first assumption ensures that the supremum in (4.8) is attainable.

The second one ensures that it is uniquely attained.

To see (ii), first notice that the uniqueness of y follows from the fact that L equals sup y∈Y min{g 1 (y), . . . , g (y)}, and from the strict concavity of min{g 1 , . . . , g }, which follows from the strict concavity of g i . To prove the remaining statements of part (ii), suppose that L = P (q * ) for some q * = (q * 1 , . . . , q * ) ∈ ∆ . By (i), there is a unique y q * ∈ Y so that P (q * ) = q * • g(y q * ). Recall that y ∈ Y is the unique element so that (4.9) holds. Clearly q * • g(y) ≥ L. We prove that y q * = y by contradiction. If y = y q * , then g i ((y + y q * )/2) > (g i (y) + g i (y q * ))/2 for all i so P (q * ) ≥ q * • g((y + y q * )/2) > (q * • g(y) + q * • g(y q * ))/2 ≥ L, leading to a contradiction. Hence y = y q * . Finally, since q * • g(y) = L = min{g 1 (y), . . . , g (y)}, it follows that q * j = 0 if g j (y) > L.

4.2.2. Proof of Theorem 4.5. For 1 ≤ i ≤ k, we identify B i , the set of Bernoulli product measures on X i which are supported on ‹ X i , with P( ‹ A i ), the compact convex set of probability measures on ‹ A i . An element ν i ∈ B i is said to be fully supported on

‹ A i if ν i (b) = 0 for every b ∈ ‹ A i . The projection π i originally defined from A i to A i+1 maps ‹ A i to ‹ A i+1 (i = 1, . . . , k -1)
. For ν i ∈ B i let H(ν i ) denote the Shannon entropy of ν i , which coincides with h ν i (T i ) but the notation H(ν i ) will be lighter.

Let φ : ‹

A 1 → R be defined by

φ(a) = log E(N (1) a ), q ∈ ‹ A 1 .
We identify φ with the potential defined on ‹ X 1 by x → φ(x 1 ).

Write B * 1 := {ν ∈ B 1 : H(ν) + ν( φ) > 0}. The proof of Theorem 4.5 is based on Remarks 4.1 to 4.4, Corollary 4.8 as well as the following two facts: Lemma 4.9.

M γ = max γ 1 (H(ν) + ν( φ)) + k i=2 γ i min{H(ν) + ν( φ), H(Π i ν)} : ν ∈ B * 1 = max γ 1 (H(ν) + ν( φ)) + k i=2 γ i min{H(ν) + ν( φ), H(Π i ν)} : ν ∈ B 1 . (4.10)
Proof. At first, note that for any non-degenerate non-atomic Mandelbrot measure µ, dim e (µ) = H(ν) + ν( φ) > 0, where ν = E(µ). Then, notice that if ν ∈ B 1 \B * 1 , we have H(ν) + ν( φ) ≤ 0 and so

γ 1 (H(ν) + ν( φ)) + k i=2 γ i min{H(ν) + ν( φ), H(Π i ν)} ≤ 0.
However we know that M γ > 0 (which follows from our assumption E(#A) > 1 and by considering the branching measure, i.e. the Mandelbrot measure on K associated with the random vector W = (1 A (a)/E(#A)) a∈A 1 ), so the maximum must be taken over B * 1 .

Now we are ready to prove Theorem 4.5.

Proof of Theorem 4.5. For i = 1, . . . , k, define

g i : B 1 → R by (4.11) g i (ν) = (γ 1 + . . . + γ i )(H(ν) + ν( φ)) + k j=i+1 γ j H(Π j ν).
Then g i are strictly concave functions on B 1 (identified with P( ‹ A 1 )). Clearly for each ν ∈ B 1 ,

γ 1 (H(ν) + ν( φ)) + k i=2 γ i min{H(ν) + ν( φ), H(Π i ν)} = min 1≤i≤k g i (ν).
Hence by (4.10), we obtain (4.12)

M γ = sup ν∈B 1 min{g 1 (ν), . . . , g k (ν)}.

Define P : ∆ k → R by (4.13) P (q 1 , . . . , q k ) = sup

ν∈B 1 k i=1 q i g i (ν).
Applying Corollaries 4.7-4.8, we see that

M γ = min (q 1 ,...,q k )∈∆ k P (q 1 , . . . , q k )
and that the supremum in (4.12) is uniquely attained at some element of B 1 , say ν; moreover, ν is the unique equilibrium state for P (q * ), provided that P takes its minimum at q * = (q * 1 , . . . , q * k ). Fix such a q * . Since ν is the equilibrium state for P (q * ), it must be fully supported on ‹ A 1 (see [START_REF] Barral | Weighted thermodynamic formalism on subshifts and applications[END_REF]). By the strong concavity of the entropy function H, it follows that (4.14)

H(Π i ν) ≥ H(Π i+1 ν) for i = 1, . . . , k -1;
and the equality holds only if π i : ‹ A i → ‹ A i+1 is injective. So either one of the following 3 cases occurs: (i)

H(ν) + ν( φ) ≥ H(Π 2 ν); (ii) there exists a unique i ∈ {2, . . . , k -1} so that H(Π i+1 ν) ≤ H(ν) + ν( φ) < H(Π i ν); (iii) H(ν) + ν( φ) < H(Π k ν). If Case (i) occurs, then g 1 (ν) ≤ g 2 (ν) ≤ g 3 (ν) ≤ • • • ≤ g k (ν)
, and by Corollary 4.8(ii), we have q * j = . . . = q * k = 0 where j is the smallest index i such that g i (ν) > g 2 (ν), if any; if there is no such an index, set j = k + 1. So if j = 3, then P (q * ) = P (q * 1 , q * 2 , 0, . . . , 0). Below we assume that j > 3. Since g 2 (ν) = . . . = g j-1 (ν), it follows that (4.15)

H(Π 2 ν) = H(Π 3 ν) = . . . = H(Π j-1 ν),
and (4.16) P (q * ) = P (q * 1 , q * 2 , . . . , q * j-1 , 0 . . . , 0).

By (4.15) we see that the mappings

π 2 : ‹ A 2 → ‹ A 3 , . . . , π j-2 : ‹ A j-2 → ‹ A j-1 are injective, which implies that (4.17) H(Π 2 µ) = H(Π 3 µ) = • • • = H(Π j-1 µ) for all µ ∈ B 1 . Now P (q * 1 , • • • , q * j-1 , 0, . . . , 0) = sup µ∈B 1 (q * 1 g 1 (µ) + • • • + q * j-1 g j-1 (µ)).
According to (4.17), we have

g 1 (µ) = γ 1 (H(µ) + µ( φ)) + (γ 2 + • • • + γ j-1 )H(Π 2 µ) + k p=j γ p H(Π p µ), g 2 (µ) = (γ 1 + γ 2 )(H(µ) + µ( φ)) + (γ 3 + • • • + γ j-1 )H(Π 2 µ) + k p=j γ p H(Π p µ), • • • g j-1 (µ) = (γ 1 + • • • + γ j-1 )(H(µ) + µ( φ)) + k p=j γ p H(Π p µ).
It follows that for (q 1 , . . . , q j-1 ) ∈ ∆ j-1 , sup

µ∈B 1 j-1 i=1 q i g i (µ) = sup µ∈B 1 j-1 t=1 q t (γ 1 + • • • + γ t )(H(µ) + µ( φ)) + j-2 s=1 q s (γ s+1 + • • • + γ j-1 )H(Π 2 µ) + k p=j γ p H(Π p µ) = sup η∈B 2 j-1 t=1 q t (γ 1 + • • • + γ t )(H(η) + η( φ 2 )) + j-2 s=1 q s (γ s+1 + • • • + γ j-1 )H(η) + k p=j γ p H(Π 2,p η) (where Π 2,p := π p-1 • • • • • π 2 ) = sup η∈B 2 j-1 t=1 q t (γ 1 + • • • + γ t )η( φ 2 ) + (γ 1 + • • • + γ j-1 )H(η) + k p=j γ p H(Π 2,p η),
where in the second equality, we used the fact that

sup{H(µ) + µ( φ) : µ ∈ B 1 , Π 2 µ = η} = H(η) + η( φ 2 )
for each η ∈ B 2 (see Remark 4.4). Hence P (q 1 , . . . , q j-1 , 0, . . . , 0) depends only on j-1 t=1 q t (γ 1 + • • • + γ t ). Clearly, there exists 2 < j ≤ j such that

γ 1 + • • • + γ j -2 ≤ j-1 t=1 q t (γ 1 + • • • + γ t ) ≤ γ 1 + • • • + γ j -1
where φ i+1 is the potential on ‹ X i+1 defined by φ i+1 (x) = log E(N

(i+1) x 1
) (see Remark 4.4). This, combined with the definition of P , yields (noting that φ i+1 = φ i+1 /(γ 1 + • • • + γ i+1 ), where φ i+1 was defined in (2.12)) P ( 0, . . . , 0

(i-1) times , 1 -t, t, 0, . . . , 0) = sup ν∈B 1    (1 -t)   (γ 1 + . . . + γ i )(H(ν) + ν( φ)) + k j=i+1 γ j H(Π j ν)   + t   (γ 1 + . . . + γ i+1 )(H(ν) + ν( φ)) + k j=i+2 γ j H(Π j ν)      = sup ν i+1 ∈B i+1 (γ 1 + . . . + γ i + tγ i+1 )ν i+1 ( φ i+1 ) + (γ 1 + . . . + γ i+1 )H(ν i+1 ) + k j=i+2 γ j H(Π i+1,j ν i+1 ) = P i+1 γ 1 + . . . + γ i + tγ i+1 γ 1 + . . . + γ i+1 , where Π i+1,j = π j-1 • • • • • π i+1
, and P i+1 is defined as in (2.13). So by (4.20) we have

R i = min{P i+1 (t) : (γ 1 + . . . + γ i )/(γ 1 + . . . + γ i+1 ) ≤ t ≤ 1}, i = 1, . . . , k -1.
Notice that P (0, . . . , 0, 1) = P k (1). Recalling that θ i = (γ 1 + . . . + γ i-1 )/(γ 1 + . . . + γ i ) for 2 ≤ i ≤ k, the previous discussion yields

(4.21) M γ = min min 2≤i≤k inf{P i (θ) : θ ∈ [ θ i , 1]}, P k (1) .
Finally we prove that

M γ = P i 0 (θ i 0 ) if i 0 ≤ k P k (1) if i 0 = k + 1 ,
where we recall that i 0 and θ i 0 where defined just before the statement of Theorem 2.3.

Below we divide our discussions into 3 steps :

Step 1. First assume that i 0 = 2, i.e., P 2 (1) ≥ 0. By the convexity of P 2 we see that P 2 (θ) is non-decreasing, so there are only two possibilities: (1) P 2 ( θ 2 ) ≥ 0 (in which case,

θ i 0 = θ 2 ) ; or (2) P 2 (θ i 0 ) = 0. Recall P 2 (θ) = (γ 1 + γ 2 ) • ν θφ 2 (φ 2 )
, where ν θφ 2 ∈ B 2 denotes the equilibrium state of the function P 2 at θ.

If (1) occurs, then by the above derivative formula, we have

ν θ 2 φ 2 (φ 2 ) = (γ 1 + γ 2 )ν θ 2 φ 2 ( φ 2 ) ≥ 0.
To simplify the notation, we write

ν 2 := ν θ 2 φ 2 . Let ν be the unique element in B 1 such that Π 2 ν = ν 2 and H(ν) + ν( φ) = H(ν 2 ) + ν 2 ( φ 2 ). Since ν 2 ( φ 2 ) ≥ 0, we have (4.22) H(ν) + ν( φ) ≥ H(ν 2 ) ≥ H(Π 3 ν) ≥ . . . ≥ H(Π k ν).
In the meantime,

P 2 ( θ 2 ) = γ 1 ν 2 ( φ 2 ) + (γ 1 + γ 2 )H(ν 2 ) + k j=3 γ j H(Π 2,j ν 2 ) = γ 1 (H(ν) + ν( φ)) + k j=2 γ j H(Π j ν)) = g 1 (ν).
By (4.22), we have

g 1 (ν) ≤ g 2 (ν) ≤ • • • ≤ g k (ν).
So by (4.12),

P 2 ( θ 2 ) = g 1 (ν) = min{g 1 (ν), . . . , g k (ν)} ≤ M γ . But P 2 ( θ 2 ) ≥ inf q∈∆ k P (q) = M γ . So we get P 2 ( θ 2 ) = M γ .
Next assume that Case (2) occurs. We still let ν 2 denote the equilibrium state of P 2 at θ i 0 . The derivative formula gives that ν 2 ( φ 2 ) = 0 and so (4.23)

P 2 (θ i 0 ) = (γ 1 + γ 2 )H(ν 2 ) + k j=3 γ j H(Π 2,j ν 2 ).
Let ν be the unique element in

B 1 such that Π 2 ν = ν 2 and H(ν)+ν( φ) = H(ν 2 )+ν 2 ( φ 2 ) = H(ν 2 ). Then g 1 (ν) = g 2 (ν) ≤ • • • ≤ g k (ν)
. By (4.23) and the fact that ν 2 ( φ 2 ) = 0,

P 2 (θ i 0 ) = γ 1 ν 2 ( φ 2 ) + (γ 1 + γ 2 )H(ν 2 ) + k j=3 γ j H(Π 2,j ν 2 ) = g 1 (ν).
Similar to the discussion for Case (1), we also obtain P 2 (θ i 0 ) = M γ .

It follows from Remark 4.1, as well as Corollary 4.8(ii) that in any of the cases discussed above, µ ν 2 is the unique Mandelbrot measure µ supported on K such that dim H (µ) = M γ , conditional on K = ∅.

Step 2. Assume that 2 < i 0 ≤ k. Then P i 0 -1 (1) < 0 and P i 0 (1) ≥ 0. However, notice that P i 0 -1 (1) = P i 0 ( θ i 0 ) (both of them are equal to P ( 0, . . . , 0

(i 0 -2) times
, 1, 0, 0, . . . , 0). Let ν i 0 -1 and ν i 0 denote the equilibrium states of P i 0 -1 at 1 and P i 0 at θ i 0 , respectively. Assume at the moment that π i 0 -1 ν i 0 -1 = ν i 0 ; we will check it at the end of the proof. Now from P i 0 -1 (1) < 0 it follows that ν i 0 -1 ( φ i 0 -1 ) < 0. Next we consider two possible cases: (a)

P i 0 ( θ i 0 ) > 0; (b) P i 0 ( θ i 0 ) ≤ 0. If Case (a) occurs, then ν i 0 ( φ i 0 ) > 0 and θ i 0 = θ i 0 . Let ν be the unique element in B 1 such that Π i 0 ν = ν i 0 and H(ν) + ν( φ) = H(ν i 0 ) + ν i 0 ( φ i 0 ). We will check that H(ν) + ν( φ) = H(ν i 0 -1 ) + ν i 0 -1 ( φ i 0 -1 ) as well. Hence H(ν i 0 ) < H(ν) + ν( φ) < H(ν i 0 -1 ). It follows that g 1 (ν) ≥ . . . ≥ g i 0 -1 (ν) > g i 0 (ν) ≤ . . . ≤ g k (ν). However P i 0 ( θ i 0 ) = g i 0 (ν) so P i 0 ( θ i 0 ) = min{g i (ν) : 1 ≤ i ≤ k} ≤ M γ . Hence we have P i 0 (θ i 0 ) = P i 0 ( θ i 0 ) = M γ .
Suppose Case (b) holds. Then P i 0 (θ i 0 ) = 0. Following the similar argument as in Case (2) of Step 1, we see that P i 0 (θ i 0 ) = M γ by considering ν defined as in Case (a). Note that ν θ i 0 φ i 0 ( φ i 0 ) = 0. We have

P i 0 (θ i 0 ) = g i 0 (ν) and g 1 (ν) ≥ g 2 (ν) ≥ • • • ≥ g i 0 -1 (ν) = g i 0 (ν) ≤ g i 0 +1 (ν) ≤ • • • ≤ g k (ν). So P i 0 (θ i 0 ) = M γ .
Like in the first step, in any case, µ ν i 0 is the unique Mandelbrot measure µ supported on K such that dim H (µ) = M γ , conditional on K = ∅.

Step 3. Assume that i 0 = k + 1. Then P i (1) < 0 for every i ∈ {2, . . . , k}. It follows that for each i ∈ {1, . . . , k -1}, P ( 0, . . . , 0 (i-1) times , 1 -t, t, 0, . . . , 0) is strictly decreasing in t. Hence by (4.18)-(4.20), M γ = P (0, . . . , 0, 1) = P k (1). Let ν k be the equilibrium state of P k at 1. and ν be the unique element of

B 1 such that Π k ν = ν k and H(ν) + ν( φ) = H(ν k ) + ν k ( φ k ).
Then P k (1) = g k (ν). We conclude as in the two first steps.

The proof of Theorem 4.5 will be complete after we have checked that in Step 2 we have

π i 0 -1 ν i 0 -1 = ν i 0 and H(ν) + ν( φ) = H(ν i 0 -1 ) + ν i 0 -1 ( φ i 0 -1 ).
To see that these equalities do hold, we look at the optimisation problem consisting in determining the equilibrium state ν i 0 -1 of P i 0 -1 at 1, by conditioning on the knowledge of π i 0 -1 ν i 0 -1 : using the relation φ i 0 -1 = γ i 0 -1 φ i 0 -1 , we have

P i 0 -1 (1)
= sup

ρ i 0 -1 ∈B i 0 -1 γ i 0 -1 ρ i 0 -1 ( φ i 0 -1 ) + H(ρ i 0 -1 ) + k i=i 0 γ i H(Π i 0 -1,i ρ i 0 -1 ) = sup ρ i 0 ∈B i 0 γ i 0 H(ρ i 0 ) + k i=i 0 +1 γ i H(Π i 0 ,i ρ i 0 ) + sup (p(•| b)) b∈ A i 0 b∈A i 0 ρ i 0 ([ b]) • γ i 0 -1 b∈ A i 0 -1 π i 0 -1 (b)= b -p(b| b) log p(b| b) + p(b| b) log E(N (i 0 -1) b ),
where (p(b| b)

) b∈A i 0 -1 ,π i 0 -1 (b)= b is the probability vector such that p(b| b) = ρ i 0 -1 (b)/ρ i 0 ( b)
when ρ i 0 ( b) > 0, and any probability vector otherwise. Optimising over the families (p(b| b)

) b∈A i 0 -1 ,π i 0 -1 (b)= b yields p(b| b) = E(N (i 0 -1) b ) E(N (i 0 ) b )
when ρ i 0 ( b) > 0, and

P i 0 -1 (1) = sup ρ i 0 ∈B i 0 γ i 0 -1 ρ i 0 ( φ i 0 ) + γ i 0 H(ρ i 0 ) + k i=i 0 +1 γ i H(Π i 0 ,i ρ i 0 ) = sup ρ i 0 ∈B i 0 ρ i 0 ( θ i 0 φ i 0 ) + γ i 0 H(ρ i 0 ) + k i=i 0 +1 γ i H(Π i 0 ,i ρ i 0 )(= P i 0 ( θ i 0 )),
from which the desired equalities follow.

4.3.

Lower bound for the Hausdorff dimension of K. The sharp lower bound comes from the optimisation problem solved in Section 4.2. Consider the unique Mandelbrot measure µ = µ ν θ i 0 φ i 0 obtained there. By construction the measure µ is fully supported on K conditional on K = ∅, because ν θ i 0 φ i 0 is fully supported on ‹ X i 0 if i 0 ≤ k and ‹ X k otherwise, and due to the last claim of Remark 4.2. Also, the assumptions of Theorem 2.2 are fulfilled for µ, and the Hausdorff dimension of µ provides the desired lower bound for dim H K.

4.4.

Upper bound for the Hausdorff dimension of K. Let us start by discussing a first possible attempt to show that dim H K ≤ M γ . We could expect to use the measure µ = µ ν θ i 0 φ i 0 of maximal Hausdorff dimension M γ and show that dim loc (µ, x) ≤ M γ everywhere on K; this is the approach used by McMullen [START_REF] Mcmullen | The Hausdorff dimension of general Sierpinsky carpets[END_REF] as well as Kenyon and Peres [START_REF] Kenyon | Measures of full dimension on affine-invariant sets[END_REF] in the deterministic case; that would make it possible to conclude quite quickly. In the random situation, we can show that this approach via the lower local dimension works in the case when N A 2 ; say in this case that K is of type I. This requires quite involved moments estimates for martingales in varying environments. Notice that in this case we have i 0 = 2 and θ 2 = γ 1 /(γ 1 + γ 2 ). The type I makes it possible to treat the case of a slightly more general type of examples, still quite close to the deterministic case: i 0 = 2, θ 2 = γ 1 /(γ 1 + γ 2 ), and it is possible to approximate K by a sequence (K (p) ) p∈N of random Sierpinski sponges of type I in the sense that K ⊂ K (p) for all p ∈ N, p∈N K (p) = K, and lim

p→∞ dim H K (p) = M γ . A sufficient condition to be in this situation is that Ψ 2 (0) < Ψ 2 (γ 1 /(γ 1 + γ 2 )), where Ψ 2 (θ) = b∈A 2 E(N (2) 
b ) θ (this condition obviously holds for examples of type I). Thus, regarding the lower local dimension approach, it remains open whether or not in general it holds that dim loc (µ, x) ≤ M γ everywhere on K; moreover, the sufficient condition just stated to get the sharp upper bound for dim H K is not at all satisfactory.

The alternative is to examine the strategy that Gatzouras and Lalley adopted for the two dimensional case. Their approach is inspired by Bedford's treatment of the deterministic two dimensional case, and it uses effective coverings of the set K to find the sharp upper bound for dim H K. These coverings are closely related to a combinatoric argument due to Bedford. But this argument turns out to be hard to extend to higher dimensional cases. Below, we use a different, though related, combinatoric argument, which yields nice effective coverings as well, but works in any dimension. Also, in the deterministic case and in any dimension, it provides an alternative to the argument using a uniform bound for the lower local dimension of µ. However, and interestingly, our argument uses a slight generalisation of a key combinatoric lemma established by Kenyon and Peres to get this uniform bound.

We now provide a general upper bound for dim H K, expressed through a variational principle.

Theorem 4.10. With probability 1, conditional on K = ∅,

dim H K ≤ inf P i (θ) : i ∈ I, θ i ≤ θ ≤ 1 .
The fact that this is a sharp upper bound for dim H K follows from (4.21) and the inequality dim H K ≥ M γ obtained in the previous section.

Before proving Theorem 4.10, we need to introduce some new definitions, and to make some preliminary observations.

Let 2 ≤ i ≤ k and θ i ≤ θ ≤ 1. For ρ i ∈ B i set (4.24) D i,θ (ρ i ) = γ i θ b∈A i ρ i ([b]) log E(N (i) b ) + γ i h ρ i (T i ) + k j=i+1 γ j h Π i,j ρ i (T j )
(again with the convention 0 × (-∞) = 0.

For ρ = ( ρ i , ρ i , . . . , ρ k ) ∈ B i × k j=i B j , set (4.25) 
‹ D i,θ (ρ) = γ i θ b∈A i ρ i ([b]) log E(N (i) b ) + γ i h ρ i (T i ) + k j=i+1 γ j h ρ j (T j ).
For each 2 ≤ i ≤ k. We endow the set B i × k j=i B j with the distance

d i (ρ, ρ ) = max max b∈A i | ρ i ([b]) -ρ i ([b])|, max i≤j≤k max b∈A j |ρ j ([b]) -ρ j ([b])| , which makes it a compact set. Let (4.26) R i =    ρ ∈ B i × k j=i B j : ‹ D i,θ (ρ) ≤ P i (θ)    .
The set R i is compact. For any ∈ (0, 1), R i can be covered by a finite collection of open balls { B(ρ (m) , )} 1≤m≤M ( ) . Moreover, if ≤ min{(#A j ) -1 : 1 ≤ j ≤ k}, we can assume that for all m the components of each probability vector ρ (m) are not smaller than /2.

For x ∈ X 1 , 2 ≤ j ≤ k, and n ∈ N * we define ρ j (x, n) to be the Bernoulli product measure on X j associated with the probability vector whose components are the frequences of occurrence of the different elements of A j in Π j (x |n ), namely the vector

n -1 #{1 ≤ m ≤ n : Π j (x m ) = b b∈A j . Also, let (4.27) ρ(x, n) = ( ρ i , ρ i , . . . , ρ k ),
where

ρ i = ρ i (x, θ i (n) ) , ρ i = ρ i (x, i (n)), ρ j = ρ j T j-1 (n) 1 x, j (n) -j-1 (n) , j = i + 1, . . . , k. Now, for any n ∈ N * and U = (U i , . . . , U k ) ∈ A i (n) i × k j=i+1 A j (n)-j-1 (n) j
, we can define ρ(U ) = ( ρ i (U ), ρ i (U ), . . . , ρ k (U )) as equal to ρ(x, n), for any x ∈ X 1 such that Π

i (x 1 • • • x i (n) ) = U i and Π j (x j-1 (n)+1 • • • x j (n) ) = U j for all i + 1 ≤ j ≤ k.
Note that ρ i (U ) depends on U i only, so we also denote it by ρ i (U i ).

Then, for each 1 ≤ m ≤ M ( ) and n ∈ N * we set

R i ( , m, n) =    U ∈ A i (n) i × k j=i+1 A j (n)-j-1 (n) j : ρ(U ) ∈ B(ρ (m) , )    . It is standard to observe that if U i ∈ A i (n) i is such that |ρ i (U i )([b]) -ρ (m) i ([b])| ≤ for all b ∈ A i then ρ (m) i ([U i ]) = b∈A i ρ (m) i ([b]) i (n)ρ i (U )([b]) ≥ b∈A i ρ (m) i ([b]) i (n)ρ (m) i ([b]) b∈A i ρ (m) i ([b]) i (n) ≥ exp -i (n) h ρ (m) i (T i ) + log(2/ ) ,
Consequently, the cardinality of the set U i, ,m,n of such U i is bounded from above by exp

i (n) h ρ (m) i (T i ) + log(1/ ) .
Similarly, for each i + 1 ≤ j ≤ k, the cardinality of the set U j, ,m,n of those

U j ∈ A j (n)-j-1 (n) j such that |ρ j (U j )([b]) -ρ (m) j ([b])| ≤ for all b ∈ A j is bounded from above by exp ( j (n) -j-1 (n))(h ρ (m) j (T j ) + log(2/ )) . Since by definition of R i ( , m, n) we have R i ( , m, n) ⊂ k i=j U j, ,m,n , the previous observations yield #R i ( , m, n) ≤ k j=i (#U j, ,m,n ) ≤ exp k (n) log(2/ ) exp i (n)h ρ (m) i (T i ) + k j=i+1 ( j (n) -j-1 (n))h ρ (m) j (T j ) . (4.28)
We also notice that if we endow X i with the metric

d γ,i (x, y) = max e - |Π i,j (x)∧Π i,j (y)| γ 1 +•••+γ j : j = i, . . . , k ,
the balls of radius e -n γ 1 in X 1 project to the balls of the same radius in X i , which are parametrized by the elements of

A i (n) i × k j=i+1 A j (n)-j-1 (n) j
, in the sense that such a ball takes the form

B U = y ∈ X i : y 1 • • • y i (n) = U i , Π i,j (y j-1 (n)+1 • • • y j (n) ) = U j for j = i + 1, . . . , k for some U in A i (n) i × k j=i+1 A j (n)-j-1 (n) j . Moreover, given such a ball B U , Π -1 i (B U )∩K is covered by, say, a family B(U ) of n U balls of radius e -n γ 1 which intersect K. Each of the N (i) U i| i-1 (n) cylinders of generation i-1 (n) in X 1 which intersects K and project to [U i| i-1 (n) ] in X i via Π i intersects only one such ball. Indeed, for such a cylinder [V 1 • • • V i-1 (n)], the data Π j ([V j-1 (n)+1 • • • V j (n) ]), 1 ≤ j ≤ i -1, and B U determine a unique ball B of X 1 such that Π i (B) = B U . This implies n U ≤ N (i) U i| i-1 (n) .
Consequently, for every integer between i-1 (n) and i (n), we also have n U ≤ N (i)

U i| . In particular, (4.29) n U ≤ N (i) U i| θ i (n) .
The following lemma, whose proof we postpone to the end of this section, will play an essential role to find effective coverings of Π i ( ‹ X 1 ), and then of K. Let us mention at the moment that in this lemma (1) ⇒ (2) ⇒ (3). ALso, recall the definition (4.26) of R i . Lemma 4.11. For all x ∈ ‹ X 1 :

(

1) lim inf n→∞ ‹ D i,θ (ρ(x, n)) -D i,θ (ρ i (x, n)) ≤ 0; (2) lim inf n→∞ ‹ D i,θ (ρ(x, n)) ≤ P i (θ); (3 
) there exists ρ ∈ R i and an increasing sequence of integers (n j ) j∈N such that ρ(x, n j ) converges to ρ as j → ∞.

Proof of Theorem 4.10. It follows from Lemma 4.11(3) that given > 0, for all x ∈ ‹ X 1 , there exists 1 ≤ m ≤ M ( ) such that Π i (x) belongs to U ∈R i ( ,m,n) B U for infinitely many integers n. As a result, for all N ∈ N * , we get the following covering of K:

K ⊂ n≥N M ( ) m=1 U ∈R i ( ,m,n) B∈B(U ) B.
Thus, given s > 0, the pre-Hausdorff measure H s e -n γ 1

of K is bounded as follows:

H s e -N γ 1 (K) ≤ n≥N M ( ) m=1 U ∈R i ( ,m,n) N (i) U i| θ i (n) e -n γ 1 s .
Consequently, denoting by (U i ) the -th letter of U i ,

E H s e -N γ 1 (K) ≤ n≥N e -n γ 1 s M ( ) m=1 U ∈R i ( ,m,n) E(N (i) U i| θ i (n) ) = n≥N e -n γ 1 s M ( ) m=1 U ∈R i ( ,m,n) θ i (n) =1 E(N (i) (U i ) )
and using the definition of ρ i (U ) to re-express the right hand side of the last inequality, we obtain

E H s e -N γ 1 (K) ≤ n≥N e -n γ 1 s M ( ) m=1 U ∈R i ( ,m,n) exp θ i (n) b∈A i ρ i (U )([b]) log E(N (i) b ) . Now we use the fact that U ∈ R i ( , m, n) means that d(ρ(U ), ρ (m) ) ≤ , to get a constant C i independent of m, U and n such that b∈A i ρ i (U )([b]) log E(N (i) b ) ≤ C i + b∈A i ρ (m) i ([b]) log E(N (i) b ).
We then obtain:

E H s e -N γ 1 (K) ≤ n≥N e -n γ 1 s e θ i (n) C i • M ( ) m=1 (#R i ( , m, n)) exp θ i (n) b∈A i ρ (m) i ([b]) log E(N (i) b ) .
Using (4.28), the fact that | j (n)-

γ 1 +...+γ j γ 1
n| ≤ 1 for all 1 ≤ j ≤ k, as well as the definition of ‹ D i,θ (ρ (m) ), we deduce that there exists a constant " C i such that for all 1 ≤ m ≤ M ( ):

(#R i ( , m, n)) exp θ i (n) b∈A i ρ (m) i ([b]) log E(N (i) b ) ≤ " C i exp k (n) log(2/ ) exp n γ 1 ‹ D i,θ (ρ (m) ) ≤ " C i exp k (n) log(2/ ) exp n γ 1 P i (θ) (recall that ρ (m) ∈ R i ).
Upon taking C i = " C i big enough, we conclude that

E H s e -N γ 1 (K) ≤ C i M ( ) n≥N exp - n γ 1 s -P i (θ) -C i log(2/ ) . If s > P i (θ)+C i log(1/ ), this yields E N ≥1 H s e -N γ 1 (K) < ∞, so lim N →∞ H s e -N γ 1 
(K) = 0 and dim H K ≤ s almost surely. Since this holds for any given small enough > 0 , we get dim H K ≤ P i (θ) almost surely.

The previous upper bound is easily seen to hold simultaneously for all 2 ≤ i ≤ k and θ i ≤ θ ≤ 1 since its holds simultaneously for all 2 ≤ i ≤ k and rational θ i ≤ θ ≤ 1, and the mappings θ → P i (θ) are continuous. This yields Theorem 4.10.

Proof of Lemma 4.11. That (1) ⇒ (2) follows from the fact that P i (θ) = max{D i,θ (ν i ) : ν i ∈ B i }, and (2) ⇒ (3) is immediate.

Let x ∈ X 1 . To prove (1), we are going to show that there exists J ∈ N * , as well as J bounded sequences u j : N * → R such that lim n→∞ u j (n + 1) -u j (n) = 0, and J couples (α j , β j ) ∈ R * + such that for all n ∈ N * , (4.30) To prove (4.30), noting that Π i,j ρ i (x, n) = ρ j (x, n) for all i ≤ j ≤ k, and using the respective definitions of ‹ D i,θ and D i,θ , we can write, after defining the sequences

‹ D i,θ (ρ(x, n)) -D i,θ (ρ i (x, n)) ≤ n + J j=1 u j ( β j n ) -u j ( α j n ),
v i (n) = γ i θ b∈A i ρ(x, n)([b]) log E(N (i) b ) and w j (n) = γ j h ρ j (x,n) (T j ): ‹ D i,θ (ρ(x, n)) -D i,θ (ρ i (x, n)) = v i ( θ i (n) ) -v i (n) + k j=i w j ( j (n)) -w j (n) + k j=i+1 γ j (h ρ j (T j-1 (n) 1 x, j (n)-j-1 (n)) (T j ) -h ρ j (x, j (n)) (T j )).
Note that each u ∈ {v i , w i , . . . , w k } is bounded and does satisfy lim n→∞ u(n+1)-u(n) = 0. Also, we have

h ρ j (T j-1 (n) 1 x, j (n)-j-1 (n)) (T j ) -h ρ j (x, j (n)) (T j ) ≤ j-1 (n) j (n) -j-1 (n) (h ρ j (x, j (n)) (T j ) -h ρ j (x, j-1 (n)) (T j )). (4.31)
To see this, note that denoting ρ j (x, j (n)), ρ j (x, j-1 (n)) and ρ j (T j-1 (n) 1

x, j (n)j-1 (n)) by ν j , ν j and ν j respectively, (4.31) is equivalent to

(4.32) ( j (n) -j-1 (n)) h ν j (T j ) + j-1 (n) h ν j (T j ) ≤ j (n) h ν j (T j ).
However, by definition, for all b ∈ A j we have

ν j ([b]) = j-1 (n) j (n) ν j ([b]) + j (n) -j-1 (n) j (n) ν j ([b]).
Thus, (4.32), and then (4.31), follow from the concavity of x ≥ 0 → -x log(x) and the fact that h ν (T j ) = -b∈A j ν([b]) log([b]) for ν ∈ {ν j , ν j , ν j }.

Setting α j = γ j γ 1 , (4.31) implies that γ j (h

ρ j (T j-1 (n) 1 x, j (n)-j-1 (n)) (T j ) -h ρ j (x, j (n)) (T j )) ≤ γ j-1 γ j (w j ( α j n ) -w j ( α j-1 n )) + o(1). Moreover, v i ( θ i (n) ) -v i (n) = v i ( θα i n ) -v i (n) + o(1)
. Finally (4.30) holds.

5.

The box counting dimension of K. Proofs of Theorem 2.4 and Corollary 2.6

Recall that for all u ∈ N * and u ∈ A * 1 , (K u , K u n ) denotes the copie of (K, K n ) generated by the random sets (A(u • a)) a∈A * 1 (see (2.3)).

Proof of Theorem 2.4. Here again, without loss of generality we assume that all the γ i are positive.

We will use in an essential way the result established in [27, Section 4], which deals with the case where k = 2, m 1 = e -γ 1 and m 2 = e -(γ 1 +γ 2 ) are integers, and with the Euclidean realisation of K. It is worth noting that this result is strongly based on a result by Dekking on the asymptotic behaviour of the survival probability of a branching process in a random environment [START_REF] Dekking | On the survival probability of a branching process in a finite state i.i.d. environment[END_REF].

We first need to describe the balls of radius e -n γ 1 which intersect K. For n ∈ N * , we saw that the set F n of balls in X 1 of radius e

-n γ 1 equals the set {B U : U = (U 1 , . . . , U k ) ∈ k i=1 A i (n)-i-1 (n) i }, where B U = {y ∈ X 1 : Π i (T i-1 (n) 1 (y)) | i (n)-i-1 (n) = U i , ∀ 1 ≤ i ≤ k}. Thus B U ∩ K = ∅ if and only if the event E U = ∃ (u i ) 1≤i≤k ∈ k i=1 A i (n)-i-1 (n) 1 : both F U k (u 1 , . . . , u k ) and K u 1 u 2 •••u k = ∅ hold holds, where for all 1 ≤ i ≤ k F (U 1 ,U 2 ,...,U i ) i (u 1 , . . . , u i ) = Π j (u j ) = U j , ∀ 1 ≤ j ≤ i, [u j ] ∩ K u 1 u 2 •••u j-1 j (n)-j-1 (n) = ∅, ∀ 1 ≤ j ≤ i (note that necessarily u 1 = U 1 ). For 2 ≤ i ≤ k and (U 1 , . . . , U i ) ∈ i j=1 A j (n)-j-1 (n) j , we set E i (U 1 , . . . , U i ) =    ∃ (u j ) 1≤j≤i ∈ i j=1 A j (n)-j-1 (n) j : F (U 1 ,U 2 ,...,U i ) i (u 1 , • • • , u i ) holds    (note that E 1 (U 1 ) is simply the event {[U 1 ] ∩ K n = ∅}). We deduce from [27, Section 4] that conditional on K = ∅, we have lim n→∞ log #{(U 1 , U 2 ) ∈ A n 1 × A 2 (n)-n 2 : E 2 (U 1 , U 2 ) holds} n = log(E(#A)) + γ 2 γ 1 ψ 2 ( θ 2 ).
This result mainly comes from the fact that lim n→∞

log #{U 1 ∈A n 1 : E 1 (U 1 ) holds} n = log(E(#A)) > 0, and given U 1 ∈ A n 1 such that [U 1 ] ∩ K n = ∅, the number of those U 2 ∈ A 2 (n)-n 2 such that E 2 (U 1 , U 2 ) holds is a random variable Z 2, 2 (n)-n (U 1 ), so that the random variables Z 2, 2 (n)-n (U 1 ) are independent and identically distributed, lim n→∞ log E(Z 2, 2 (n)-n )(U 1 ) n = γ 2 γ 1 ψ 2 ( θ 2 ) > 0 and, conditional on K U 1 = ∅, lim n→∞ log Z 2, 2 (n)-n (U 1 ) n = γ 2 γ 1 ψ 2 ( θ 2 ) almost surely. Now for 2 ≤ i ≤ k set s i = log(E(#A)) + i j=2 γ i γ 1 ψ j ( θ j ).
Suppose that k ≥ 3, and for some 3 ≤ i ≤ k we have proven that conditional on K = ∅, it holds that (5.1) lim

n→∞ log #{(U 1 , . . . , U i-1 ) ∈ i-1 j=1 A j (n)-j-1 (n) j : E i-1 (U 1 , . . . , U i-1 ) holds} n = s i-1 . Given (U 1 , . . . , U i-1 ) ∈ i-1 j=1 A j (n)-j-1 (n) j
, and fixed associated (u 1 , . . . , u i-1 ) such that

F (U 1 ,U 2 ,...,U i-1 ) i-1 (u 1 , • • • , u i-1
) holds, following the arguments of [START_REF] Gatzouras | Statistically self-affine sets: Hausdorff and box dimensions[END_REF], the cardinality of the set of those words

U i ∈ A i (n)-i-1 (n) i such that there exists u i ∈ A i (n)-i-1 (n) 1 such that F (U 1 ,U 2 ,...,U i ) i (u 1 , • • • , u i ) holds, is a random variable Z i, i (n)-i-1 (n) (U 1 , . . . , U i-1 ) so that the Z i, i (n)-i-1 (n) (U 1 , . . . , U i-1
) are independent, and identically distributed. Moreover,

setting i (n) = i (n) -i-1 (n), one has both lim n→∞ log E(Z i, ˜ i (n) )(U 1 ,...,U i-1 ) n = γ i γ 1 ψ i ( θ i ) > 0 and, conditional on K u 1 •••u i-1 = ∅, lim n→∞ log Z i, ˜ i (n) (U 1 ,...,U i-1 ) n = γ i γ 1 ψ i ( θ i ) almost surely.
Then, again the same reasoning as in [START_REF] Gatzouras | Statistically self-affine sets: Hausdorff and box dimensions[END_REF] for the case k = 2 with the roles of A n 1 and A 2 (n)-n 2 now respectively played by i-1 j=1 A j (n)-j-1 (n) j and A i (n)-i-1 (n) i shows that (5.1) holds for i as well. Consequently, applying this to i = k, conditional on K = ∅, 6. Projections of K and µ to factors of X 1 . Proofs of Theorems 2.7, 2.8 and 2.10, and Corollary 2.11

The proofs will be sketched.

Sketch of the proof of Theorem 2.7. For all n ≥ 1, denote by F i n the set of balls of X i of radius e -n γ 1 . Let j 0 = max{i ≤ j ≤ k : T (1) ≤ T ν j (1)}, with the convention max(∅) = i -1. Computations similar to those used to prove Theorem 2.2 yield q 0 > 1 and c 0 ≥ 0 such that for all q ∈ (0, q 0 ] we have

E B∈F i n Π i µ(B) q = O exp(-t(j 0 , q, n)) as n → ∞, where t(j 0 , q, n) = j 0 (n)(T (q) -c 0 (q -1) 2 ) + k j=j 0 +1 ( j (n) -j-1 (n))T ν j (q) if j 0 ≥ i i (n)T ν i (q) + k j=i+1 ( j (n) -j-1 (n))T ν j (q) otherwise.
This is enough to get the differentiability of τ Π i µ at 1 with τ Π i µ (1) equal to dim γ i e (Π i µ), and conclude.

Sketch of the proof of Theorem 2.8. We start with the lower bound.

If we proceed as in Section 4.5, we have to consider

M γ i = max    k j=i γ i j min{H(ν) + ν( φ), H(Π i ν)} : ν ∈ B 1    .
Define g i : B 1 → R (B 1 being still identified with P( ‹ A 1 )) by

g i (ν) = (γ 1 + . . . + γ i )H(Π i ν) + k j=i+1 γ j H(Π j ν) = h γ i Π i ν (T i ).
Note that g i is strictly concave only when considered as a function of Π i ν.

We have, remembering the definition (4.11) of the mappings g j ,

M γ i = sup ν∈B 1 min( g i (ν), g i (ν), . . . , g k (ν)).
To express this supremum in terms of the pressure functions P j (•), i ≤ j ≤ k, we have to consider the mapping ‹ P : ∆ k-i+2 → R defined by ‹ P ( q i , q i , . . . , q k ) = sup ν∈B 1 q i g i (ν) + q i g i (ν) + . . . + q k g k (ν).

Corollary 4.7 yields

M γ i = min ( q i ,q i ,...,q k )∈∆ k-i+2
‹ P ( q i , q i , . . . , q k ).

Let q * = ( q * i , q * i , . . . , q * k ) at which the minimum is attained, and ν ∈ B 1 such that ‹ P (q * ) = q * i g i (ν) + q * i g i (ν) + . . . + q * k g k (ν). Due to Remark 4.4, one has ‹ P (q * ) = sup

ν i B i q * i f i (ν i ) + q * i f i (ν i ) + . . . + q * k f k (ν i ), where f i (ν i ) = h γ i ν i (T i ) and f p (ν i ) = (γ 1 + • • • + γ p )(H(ν i ) + ν i ( φ i )) + k j=p+1 γ j H(Π i,j ν i ), p = i, i + 1, . . . , k.
Moreover, the supremum is reached at a unique element ν i of B i , which is fully supported. As in the minimization of P (q 1 , . . . , q k ) in the proof of Theorem 4.5, either one of the following 3 cases occurs:

(i) H(ν i ) + ν i ( φ i ) ≥ H(ν i ); (ii) there exists a unique j ∈ {i, . . . , k -1} so that H(Π i,j+1 ν i ) ≤ H(ν i ) + ν i ( φ i ) < H(Π i,j ν i ); (iii) H(ν i ) + ν i ( φ i ) < H(Π i,k ν i ).
In cases (ii) and (iii), we necessarily have q * i = 0, and we conclude by using the same approach as in the study of P that either there exists j ∈ {j, . . . , k -1} and (q j , q j +1 ) ∈ ∆ 2 such that ‹ P ( q * i , q * i , . . . , q * k ) = ‹ P ( 0, . . . , 0 (j -i+1) times , q j , q j +1 , 0, . . . , 0), or q * = (0, . . . , 0, 1). Also, if j > i, then ‹ P ( 0, . . . , 0 (j -i+1) times , q j , q j +1 , 0, . . . , 0) = P ( 0, . . . , 0 (j -i+1) times , q j , q j +1 , 0, . . . , 0). Now, suppose that we are in case (i). Let j be the smallest index j in {i, . . . , k} such that f j (ν i ) > ‹ P ( q * i , q * i , . . . , q * k ), and let j = k + 1 otherwise. We have q * j = 0 for all j ≤ j ≤ k. If j ≤ i + 1, we get ‹ P ( q * i , q * i , . . . , q * k ) = ‹ P ( q * i , q * i , 0, . . . , 0). If j > i + 1, then π j is injective for all i ≤ j ≤ j -2. Set γ s = γ 1 + • + γ s . For each ( q i , q i , . . . , q j-1 ) ∈ ∆ j-i+1 , we have ‹ P ( q i , q i , . . . , q j-1 , 0, . . . , 0) = sup

µ i ∈B i j-1 t=i q t γ t µ i (φ i ) + γ i H(µ i ) + k s=j γ s H(Π i,s µ i ),
where we have used that H(µ i ) = H(Π i,j µ i ) for all i < j ≤ j -1 since π j is injective for all i ≤ j ≤ j -2. Thus ‹ P ( q i , q i , . . . , q j-1 , 0, . . . , 0) depends only on j-1 t=i q t γ t . Set

β := j-1 t=i q * t γ t ∈ [0, γ j-1 ]. Either β ∈ [0, γ i ] or β ∈ [ γ j , γ j +1 ] for some i ≤ j ≤ j -2.
If the first case occurs, then there exists ( q i , q i ) ∈ ∆ 2 such that q i γ i = β, so ‹ P ( q * i , q * i , . . . , q * k ) = ‹ P ( q i , q i , 0, . . . , 0). If the second case occurs, then there exists (q j , q j +1 ) ∈ ∆ 2 such that β = q j γ j + q j +1 γ j +1 , so ‹ P ( q * i , q * i , . . . , q * k ) = ‹ P ( 0, . . . , 0 (j -i+1) times , q j , q j +1 , 0, . . . , 0).

Then, noting that inf t∈[0,1] ‹ P (t, 1 -t, 0, . . . , 0) = inf t∈[0,1] P i (t), we get

M γ i = min inf{P i (θ) : θ ∈ [0, 1]}, min i+1≤j≤k inf{P j (θ) : θ ∈ [ θ i , 1]}, P k (1) .
Moreover, by adapting the discussion of the proof of Corollary 4.8, we can get that either M γ i equals P i (θ) with θ ∈ [0, 1] and in this case M γ i is necessarily attained by ν ∈ B 1 such that Π i ν is the equilibrium state of P i at θ, or there is a unique ν ∈ B 1 at which M γ i is attained; in the later case, the unique maximizing measure ν is the same as the maximizing measure for M γ in Theorem 4.5 in case i 0 ≥ i + 1.

If P i (1) ≥ 0, then, using the notations of the statement of Theorem 2.8, we have j 0 = i, and we denote by ν i the equilibrium state of P i at θ i i . Suppose that P i (θ i i ) = 0, which holds automatically if θ i i > 0. This means that ν i ( φ i ) = 0. Let ν be the unique element of B 1 such that Π i ν = ν i and H(ν) + ν( φ) = H(ν i ) + ν i ( φ i ) = H(ν i ). We have P i (θ i i ) = g i (ν) = g i (ν) ≤ g i+1 (ν) ≤ • • • ≤ g k (ν), which implies M γ i = P i (θ i i ), and due to the observation made in the previous paragraph and Remark 4.1, the measure µ ν = µ ν i 0 is the unique Mandelbrot measure µ such that the dimension of Π i µ equals M γ i , conditional on K = ∅; moreover, one has dim H (µ ν ) = dim H (Π i µ ν ). If θ i i = 0 and P i (θ i i ) > 0, we still have M γ i = P i (θ i i ) = g i (ν) = g i (ν) ≤ g i+1 (ν) ≤ • • • ≤ g k (ν), but for any Mandelbrot measure µ supported on K, if ρ = E(µ) satisfies H(ρ)+ρ( φ) > H(ν i ), then dim H (Π i µ) = M γ i . There are infinitely many such measures. Indeed, µ ν i itself satisfies this property since P i (0) = ν i ( φ i ) = 0 > 0. Then one gets other examples of measures by considering, as defined in Section 4.1, random vectors W written as the "skewed " product of (ν i ([b])) b∈A i with random vectors (V b ) b∈A i obtained as slight perturbions of the vector ( ‹ V b ) b∈A i used to construct the measure µ ν i . If P i (1) < 0, the discussion ends like in the proof of Theorem 4.5.

For the upper bound for the Hausdorff dimension, we prove that dim H Π i (K) ≤ inf{P j (θ) : θ ∈ [0, 1] if j = i, and θ ∈ [ θ j , 1] if i < j ≤ k}, which in view of the lower bound is enough to conclude. To show the previous inequality, we extend the definitions of D i,θ and ‹ D i,θ (see (4.24) and (4.25)) to θ ∈ [0, 1] and for j = i we redefine the vector ρ(x, n) of (4.27) by taking ρ i = ρ i (x, i (n)). It is readily seen from the proof of Lemma 4.11 that the conclusions of this lemma is still valid with these new definitions of ‹ D i,θ and ρ(x, n). Now, arguing similarly as in the proof of Theorem 4.10, for each j ∈ {i, . . . , k}, for each U = (U j , • • • , U k ) in A j (n) j × k j =j+1 A j (n)-j -1 (n) j , Π -1 i,j (B U ) ∩ Π i (K) is covered by, say, a family B(U ) of n U balls of radius e -n γ 1 ⊂ X i which intersect Π i (K). Suppose j = i and fix θ ∈ [0, 1]. In this case n U = 1 and we can bound this number by (N (Π i (K))), and this yields dim H Π i (K) ≤ P i (θ) (here we followed the same idea as that used in [START_REF] Falconer | Projections of random Cantor sets[END_REF] to deal with projections of planar statistically self-similar limit sets of fractal percolation).

(i) U i ) θ . Noting that E (N (i) U i ) θ ≤ E N (i) U i θ ,
Next, suppose j ∈ {i + 1, . . . , k} and fix θ ∈ [ θ j , 1]. Denote by C (i,j)

U j the set of cylinders of generation j-1 (n) in X i which intersects Π i (K), and project to [U j | j-1 (n) ] in X j via Π i,j . Also denote by N (i,j) U j the cardinality of this set. Each cylinder in C (i,j) U j intersects at most one of the elements of B U . Thus n U ≤ N (i,j) U j , so that:

n U ≤ b∈C (i,j) U j 1 ≤ b∈C (i,j) U j N (i) b = N (j) U j-1 .
Then, the same lines as in the proof of Theorem 4.10 yield dim H Π i (K) ≤ P i (θ) for all θ ∈ [ θ j , 1].

Sketch of the proof of Theorem 2.10. This is similar to the proof of Theorem 2.4, except that one must evaluate the cardinality of those B ∈ F i n such that B ∩ Π i (K) = ∅, and this time we exploit results known for the box dimension of projections of statistically self-similar fractal Euclidean percolation sets from dimension 2 to dimension 1.

We have to estimate the cardinality of those U ∈ A i (n) i × k j=i+1 A j (n)-j-1 (n) j such that E i (U ) holds, with

E i (U ) = ∃ (u j ) i≤j≤k ∈ A i (n) 1 × k j=i+1
A j (n)-j-1 (n) 1 : both F i,(U i ,...,U k ) k (u i , . . . , u k ) and

K u i u 2 •••u k = ∅ hold},
and where F i,(U i ,...,U j ) j (u i , . . . , u j ) =

     Π j (u j ) = U j , ∀ i ≤ j ≤ j, [u i ] ∩ K i (n) = ∅ [u j ] ∩ K u i •••u j -1 j (n)-j -1 (n) = ∅, ∀ i + 1 ≤ j ≤ j      .
One deduces easily from [START_REF] Dekking | Superbranching processes and projections of random Cantor sets[END_REF] (see alternatively [START_REF] Falconer | Projections of random Cantor sets[END_REF] or [START_REF] Barral | Projections of random Mandelbrot measures[END_REF]), which deal with the case k = 2, that lim

n→∞ log #{U i ∈ A i (n) i : ∃u i ∈ A i (n) 1 , F i,U i i (u i ) holds} n = γ i γ 1 ψ i ( θ i ).
Then, a recursion similar to that used in the proof of Theorem 2.4 yields the desired result

lim n→∞ log #{U ∈ A i (n) i × k j=i+1 A j (n)-j-1 (n) j : E i (U ) holds} n = γ i γ 1 ψ i ( θ i )+ k j=i+1 γ j γ 1 ψ j ( θ j ),
i.e. dim B Π i (K) = γ i ψ i ( θ i ) + k j=i+1 γ j ψ j ( θ j ) after normalizing by γ -1 1 .

Proof of Corollary 2.11. If θ i = 1, using Proposition 5.1 we see that the equality between dim H Π i (K) and dim B Π i (K) imposes that dim H Π i (K) is attained by the branching measure, and the situation boils down to that of Corollary 2.6. This gives point (1) of the statement.

Suppose now that dim H Π i (K) = dim B Π i (K), θ i < 1 and ψ i ( θ i ) = 0 (which is automatically true if 0 < θ i < 1). The equality between dim H Π i (K) and dim B Π i (K) imposes that if µ stands for the unique Mandelbrot measure supported on K such that dim γ i e (µ) = dim H Π i (K), then dim e (µ) = h ν i (T i ) = ψ i ( θ i ), where ν i = E(Π i µ) = ν i, θ i . Also, for j ∈ I i (= {i, . . . , k}) such that j ≤ j 0 , we must have Π i,j ν i = ν j, θ . This implies that for all b ∈ ‹ A j , the set Π -1 i,j (b) ∩ ‹ A i is a singleton {b } such that E(N

(i) b ) = E(N (j)
b ), hence ψ i = ψ j and θ j = θ i . Let us now examine those j > j 0 in I i . The previous argument shows that θ j = 0 and ψ j (0) > 0 (for otherwise j 0 would be at least .

If U = (U 1 , • • • , U k ) ∈ k i=1 A i (n)-i-1 (n) i
, the ball B U intersects Π -1 i ({z}) if and only if Π j,i (U j ) = T j-1 (n) i (z) | j (n)-j-1 (n) for all 1 ≤ j ≤ i-1 and U j = Π i,j (T j-1 (n) i (z) | j (n)-j-1 (n) ) for i ≤ j ≤ k. Recalling (3.3), we also have

µ z (B U ) = (J 1 ,...,J k )∈J U µ z ([J 1 • • • J k ]]) = (J 1 ,...,J k )∈J U lim p→∞ µ([J 1 • • • J k ] ∩ Π -1 i ([z |n+p ])) ν i ([z |n+p ])
.

Fix q ≥ 0. For all n ≥ 1, we are going to estimate the expectation of the partition function B∈Fn µ z (B U ) q with respect to the measure P ⊗ ν i . Let j 0 = min{2 ≤ j ≤ i -1 : dim e (µ) > h ν j (T j )}, with min(∅) = i, and

D = γ j 0 -1 (dim e (µ) -h ν i (T i )) + i-1 j=j 0 γ j (h ν j (T j ) -h ν i (T i )),
which is precisely the value given by (2.22) due to our choice of j 0 . We will show that there exists c > 0 such that for all q in a neighbourhood of 1, there exists C q > 0 such that we have

E P⊗ν i B U ∈Fn
µ z (B U ) q ≤ C q exp -n γ 1 (q -1)D + O((q -1) 2 )) .

This is enough to conclude that with probability 1, conditional on µ = 0, for Π i µ-almost every z (remember that Π i µ is absolutely continuous with respect to ν i ), one has τ µ z (q)) ≥ (q -1)D -c(q -1) 2 in some neighbourhood of 1. But since µ z is a multiple of µ z , the same holds for µ z . This implies that the concave functions τ µ z and q → (q -1)D -c(q -1) 2 share the same derivative at 1, namely D. Consequently, µ z is exact dimensional with dimension D. Now we prove (7.1). Recall that outside the set A, the measure µ z ω has been defined equal to 0. By Fatou's lemma, we have

E P⊗ν i B U ∈Fn µ z (B U ) q ≤ lim inf p→∞ E P⊗ν i B U ∈Fn (J 1 ,...,J k )∈J U µ([J 1 • • • J k ] ∩ Π -1 i ([z | k (n)+p ])) ν i ([z | k (n)+p ]) q = lim inf p→∞ E L∈ ‹ A i k (n)+p B U ∈Fn (J 1 ,...,J k )∈J U µ([J 1 • • • J k ] ∩ Π -1 i ([L])) ν i ([L]) q ν i ([L]) = lim inf p→∞ E L∈ ‹ A i k (n)+p B U ∈Fn (J 1 ,...,J k )∈J U J p ∈Π -1 i (T k (n) i L) µ([J 1 • • • J k J p ]) ν i ([L]) q ν i ([L]).

Remark 4 . 1 .

 41 Given a non-degenerate Mandelbrot measure µ supported on K and 1

W( 1 )

 1 ) b almost surely, for all b such that ν i ([b]) > 0, i.e. W = W almost surely. In particular, either T ‹ = T W (1) and µ ν i is non-degenerate since µ ν i = µ almost surely, or T ‹ W

4. 2 .

 2 An optimisation problem. The following result invokes notions introduced to state Theorem 2.3 and in the previous Section 4.1. Recall Definition 4.3. Theorem 4.5. Let M γ = max{dim γ e (µ) : µ is a positive Mandelbrot measure supported on K}.

q

  • g(y) = sup y∈Y min q∈∆ q • g(y) = sup y∈Y min{g 1 (y), . . . , g (y)},

( 2 )

 2 b ≥ 2 almost surely for all b ∈ ‹

with lim n→∞ ε n = 0 .

 0 The desired conclusion is then a direct application of [26, Lemma 5.4], which is a slight extension of the combinatorial lemma used by Kenyon and Peres [38, Lemma 4.1].

  we can use similar estimates as in the proof of Theorem 4.10 to now estimate H s e -N γ 1

  j . Using that for all b ∈ ‹ A j , we have b ∈Π -1 i,j (b) ν i, θ i ([b ]) = ν j ([b]) and the fact thatψ i ( θ i ) = ψ j ( θ j ) we can write 0 = ψ i ( θ i ) -ψ j ( θ j ) = b ∈ A i ν i, θ i ([b ]) log E(N b∈ A j b ∈Π -1 i,j (b) ν i, θ i ([b ]) log E

For

  z ∈ F ω , n ≥ 1 and J ∈ A n 1 , we have µ z ([J]) = lim p→∞ µ z p ([J]) = lim p→∞ µ([J] ∩ Π -1 i ([z |n+p ]) ν i ([z |n+p ])
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so there exists (p j -2 , p j -1 ) ∈ ∆ 2 such that j-1 t=1

and so P (q 1 , . . . , q j-1 , 0, . . . , 0) = P ( 0, . . . , 0, (j -3) times p j -2 , p j -1 , 0, . . . , 0).

Applying this fact to the case when (q 1 , . . . , q j-1 ) = (q * 1 , . . . , q * j-1 ), we see that there exist 2 < j ≤ j and (p j -2 , p j -1 ) ∈ ∆ 2 so that P (q * ) = P (q * 1 , . . . , q * j-1 , 0, . . . , 0) = P ( 0, . . . , 0, (j -3) times p j -2 , p j -1 , 0, . . . , 0).

If Case (ii) occurs, then either (a) H(Π i+1 ν) < H(ν)+ν( φ) < H(Π i ν), or (b) H(Π i+p+1 ν) < H(Π i+p ν) = . . . = H(Π i+1 ν) = H(ν) + ν( φ) < H(Π i ν) for some p ≥ 1. In the subcase (a), g 1 (ν) > . . . > g i (ν) < g i+1 (ν) ≤ . . . ≤ g k (ν), so by Corollary 4.8(ii), q * j = 0 for j = i, i.e. q * = (0, . . . , 0, q * i , 0, . . . , 0) with q * i = 1. In the subcase (b), we have q 1 (ν) > . . . > g i (ν) = g i+1 (ν) = • • • = g i+p (ν) < g i+p+1 (ν) ≤ . . . ≤ g k (ν), so by Corollary 4.8(ii), q * j = 0 if j < i or j > i + p, i.e. P (q * ) = P ( 0, . . . , 0 (i-1) times , q * i , . . . , q * i+p , 0, . . . , 0).

Following an argument similar as in the first case, we can show that there exist 1 ≤ p ≤ p and (q i+p -1 , q i+p ) ∈ ∆ 2 so that P (q * ) = P (0, . . . , 0, q * i , . . . , q * i+p , 0, . . . , 0) = P ( 0, . . . , 0

, q i+p -1 , q i+p , 0, . . . , 0).

. By Corollary 4.8(ii), q * j = 0 for j < k. So P (q * ) = P (0, . . . , 0, 1). The discussions in the above paragraph describe the possible forms of P (q * ). As a direct consequence, we have (4.18)

M γ = min{R 1 , . . . , R k-1 , P (0, . . . , 0, 1)}, where (4.19) R i := min{P (q 1 , . . . , q k ) : (q 1 , . . . , q k ) ∈ ∆ k , q j = 0 for j ∈ {1, . . . , k}\{i, i + 1}}

In what follows, we further investigate the values of R i .

Fix i ∈ {1, . . . , k -1}. By definition, (4.20)

P ( 0, . . . , 0

we get for all n ≥ 1 an integer N n such that lim n→∞ log Nn n = s k , as well as N n el-

(u 1 , . . . , u k ) hold. The events {K u 1 u 2 •••u k = ∅} being independent, with the same probability P(K = ∅), and independent of the events

which, after dividing by γ - , i.e. dim B K.

Next we state, using our notation, a fact established in the proof of [7, Corollary 3.5], which is a variational approach to the dimension of projections of fractal percolation sets in a symbolic space X 1 × X 1 to one of its two natural factors.

where ν i stands for the expectation of Π i (µ). Moreover the maximum is uniquely reached if and only if θ i > 0 or θ i = 0 and ψ i ( θ i ) = 0. In any case, when the maximum is reached, one has

, where

Also, if θ i > 0, or θ i = 0 and ψ i ( θ i ) = 0, then dim e (µ) = h ν i (T i ) for the unique µ at which the maximum is reached, and if θ i = 0 and ψ i ( θ i ) > 0, then dim e (µ) > h ν i (T i ) for µ at which the maximum is reached.

Proof of Corollary 2.6. It follows from (2.5) and Proposition 5.1 that for dim H K = dim B (K) to hold almost surely, conditional on K = ∅, the Mandelbrot measure µ of maximal dimension supported on K must satisfy dim e (µ) = log E(#A) and min(dim e (µ),

The condition dim e (µ) = log E(#A) implies that µ is the so called branching measure, i.e. it is obtained from the random vector (1 A (a)/E(#A)) a∈A 1 . The other condition implies that for all 2 ≤ i ≤ k, we have

A i . This is a non trivial condition only if θ i < 1. This proves the necessity of the condition given in the statement. A i for all i ∈ I such that θ i < 1. Suppose first that there is no i ∈ I such that θ i < 1, i.e. θ i = 1 for all i ∈ I. By the remark made above, the branching measure µ does satisfy dim γ e (µ) = (γ

Now assume that E(N

equal to the smallest of those j), and Π i,j ν i = ν j,0 , so that Π i,j ν i is uniformly distributed,

We conclude that the conditions of point (2) are necessary. Conversely, if these conditions hold, one easily checks using Theorems 2.8 and 2.10 that dim

The last case easily follows from the previous discussion.

Dimension of conditional measures. Proof of Theorem 2.13

Since the proof of Theorem 2.14 is very similar to that of Theorem 2.13, we leave it to the reader. Point (3) of the statement simply follows from points (1) and ( 2) as well as the dimensions formula provided by Theorems 2.2 and 2.7 for dim(µ) and dim(Π i µ).

To get point (1) we notice that for any x ∈ X 1 and n ≥ 1 we have

, so since dim e (µ) ≤ h ν i (T i ) we find that Theorem 2.12 implies that µ z is exact dimensional with Hausdorff dimension equal to 0. Now we prove point [START_REF] Bárány | Dimension of self-affine sets for fixed translation vectors[END_REF]. The following lines do not depend on Π i µ being absolutely continuous with respect to ν i or not.

When µ ω = µ = 0, for Π i µ ω -almost every z, the conditional measure µ z ω is supported on K z = π -1 ({z}) ∩ K, obtained as the weak-star limit, as n → ∞, of the measures µ z ω,n obtained on K by assigning uniformly the mass

to each cylinder [J] of generation n in X 1 . To be more specific, for any cylinder [J], almost surely, the measurable set

exists is of full " Q-probability, where we define " Q(dω, dz) = P(dω)Π i µ ω (dz), and for all (ω, z) in a subset A J of A J of full " Q-probability, we have

. Suppose now that conditional on µ = 0, Π i µ ω is absolutely continuous with respect to ν i . There exists a measurable set A of full "

Q-probability such that for all (ω, z) ∈ A , the limit

exists and is positive. We denote it by f ω (z).

weakly converges to the measure µ z ω defined as f ω (z)µ z ω . Let

Denote by S the expectation in the right hand side of the previous inequality. Due to the remark made above about the condition for B U to intersects Π -1 i ([u]), and the multiplicativity property of the measure ν i , we can rewrite S as follows:

where

, and taking the conventions that the words involved below whose writing uses the symbol

Suppose that q ≥ 1. Using the same idea as in the proof of Theorem 3.2, but rewriting S as an expectation with respect to P ⊗ ν i instead of P, yields

, where

is a perturbation of the martingale in random environment

Now, recalling the definition of the vectors

in Section 4.1 and setting

, our assumption that dim e (µ) > h ν i (T i ) is equivalent to saying that at point 1 the function ϕ has a negative derivative, since ϕ (1) = h ν i (T i )-T (1) = h ν i (T i )-dim e (µ). We can then apply [7, Proposition 5.1] to X p+ k (n)-i-1 (n) and for q close enough to 1+, get a constant C q > 0 such that R p,n ≤ C q independently of n and p.

Next we estimate the terms S j,n , for 1 ≤ j ≤ i -1. For j = 1, we simply have

q = e nϕ(q) = e n(q-1)(hν i (T i )-dime(µ))+O((q-1) 2 )) .

For 2 ≤ j ≤ i -1, we rewrite S j,n as (recall that ν j stands for the expectation of Π j µ)

Let ν q,j be the Bernoulli product measure on ‹ X j associated with the probability vector

, and define

With these definitions, S j,n rewrites S j,n = e ( j (n)-j-1 (n))ϕ j (q) E P⊗ν q,j (( ‹ X (j) n ) q ), Again, we can use [7, Proposition 5.1], and get a constant C q,j > 0 such that S j,n ≤ C q,j e ( j (n)-j-1 (n))ϕ j (q) max 1,

.

A computations shows that the derivative at 1 of the function q

is equal to h ν j (T j ) -T (1) = h ν j (T j ) -dim e (µ).

Recall that j 0 = min{2 ≤ j ≤ i -1 : dim e (µ) > h ν j (T j )}, with min(∅) = i. If j 0 ≤ j ≤ i -1 and q is close enough to 1, we thus have b∈

< 1, hence S j,n ≤ C q,j e ( j (n)-j-1 (n))ϕ j (q) . If 2 ≤ j < j 0 , using a Taylor expansion of order 2 we

≤ exp((q -1)(h ν j (T j ) -dim e (µ)) + O((q -1) 2 )). Moreover, for any j, e ϕ j (q) = exp((q -1)(h

)). Finally, for q close enough to 1+, there exists C q > 0 such that

) hence (7.1) holds.

Suppose now that q ∈ (0, 1). Using the same idea as in the proof of Theorem 3.2 yields

where

With the notations introduced in the case q ≥ 1, this rewrites

Using Taylor expansions we can get that (7.1) holds for q close to 1-as well.

8. The case when {2 ≤ i ≤ k :

In our main statements about the Hausdorff and box-counting dimension of K and its projections for simplicity we assumed all the γ i , 2 ≤ i ≤ k to be positive, which in the Euclidean realisation of Section 2.6 corresponds to m 1 > • • • > m k ≥ 2. It turns out that up to slight modifications in the statement and proofs, our results cover the general configuration m 1 ≥ • • • ≥ m k ≥ 2, for which the diagonal endomorphism diag(m 1 , . . . , m k ) may have eigenspaces of dimension at least 2 over which it is a similarity. In this case, in the expressions giving the dimensions of K and its projections, when m i = m i-1 , i.e. γ i = 1 log(m i-1 ) -1 log(m i ) = 0, the index i has no contribution, and geometrically for any 1 ≤ i < j ≤ k, x ∈ X i and n ≥ 1, for the induced metric by d γ on X i , if y ∈ B(x, e -n/γ 1 ), nothing is required on

For all the statements of Section 2.3 and Theorem 4.10, the only change to make to cover the case γ i ≥ 0 for all 2 ≤ i ≤ k is to set I = {2 ≤ i ≤ k : γ i > 0 and replace k by sup(I) in (2.18). The proofs adapt readily.

For the statements of Section 2.4, one has to replace I i by {i} ∪ {i < j ≤ k : γ j > 0} and replace k by sup(I i ) in (2.21). Again, the modifications in the proofs are left to the reader.

Appendix A. Main notation and conventions

For the reader's convenience, we summarize in Table 1 the main notation and typographical conventions used in this paper. 

symbolic random statistically self-affine sponge defined from a random subset A of A1, where A is alternatively written as (ca)a∈A 1 (Section 2.1) W = (Wa)a∈A 1 a non-negative random vector such that Wa > 0 ⊂ {ca = 1} and E( a∈A 1 Wa) = 1 (Section 2.2) (A(u), W (u)) u∈A *