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DIMENSIONS OF RANDOM STATISTICALLY SELF-AFFINE
SIERPINSKI SPONGES IN R

JULIEN BARRAL AND DE-JUN FENG

ABSTRACT. We compute the Hausdorff dimension of any random statistically self-affine
Sierpinski sponge K C R* (k > 2) obtained by using some percolation process in [0, 1]k.
To do so, we first exhibit a Ledrappier-Young type formula for the Hausdorff dimensions
of statistically self-similar measures supported on K. This formula presents a new feature
with respect to the deterministic case or the random dynamical version. Then, we
establish a variational principle expressing dim K as the supremum of the Hausdorff
dimensions of statistically self-similar measures supported on K, which is shown to be
uniquely reached. The value of dim K is also expressed in terms of the weighted pressure
function of some deterministic potential. As a by product, when k& = 2, we give an
alternative approach to the Hausdorff dimension of K, which was obtained by Gatzouras
and Lalley. This alternative concerns both the sharp lower and upper bounds for the
dimension.

The value of the box counting dimension of K and its equality with dim K are also
studied. We also obtain a variational formula for the Hausdorff dimensions of the natural
orthogonal projections of K to the linear subspaces generated by the eigensubspaces of
the diagonal endomorphism used to generate K (contrarily to what happens in the
deterministic case, these projections are not of the same nature as K). Finally, we prove
a dimension conservation formula associated to any Mandelbrot measure supported on
K, that of its orthogonal projection to such subspace, and the dimension of almost every
associated conditional measure.

1. INTRODUCTION

This paper deals with dimensional properties of a natural class of random statisti-
cally self-affine sets and measures in R* (k > 2), namely random Sierpinski sponges and
related Mandelbrot measures, as well as certain of their projections and related fibers
and conditional measures. These random sponges can be also viewed as limit sets of
some percolation process on the unit cube endowed with an (my, ..., my)-adic grid, where
my > --- > my > 2 are integers.

Until now the Hausdorff dimension of such a set K is known in the deterministic case
and only when £ = 2 in the random case, while the projections of K and the random
Mandelbrot measures to be considered have been studied in the conformal case only. Un-
derstanding the missing cases is our goal, with Mandelbrot measures and their projections
as a main tool for a variational approach to the Hausdorff dimension of K and its orthog-
onal projections, together with a “weighted” version of the thermodynamic formalism on
symbolic spaces.

Key words and phrases. Mandelbrot measures, Hausdorff dimension, multifractals, phase transitions,
large deviations, branching random walk in a random environment.
2010 Mathematics Subject Classification: 28A78, 28A80, 60F10, 60G42, 60G57, 60K 40.
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Before coming in more details to these objects and our motivations, it seems worth
giving an overview of the nature of the main results known in dimension theory of self-
affine sets. Recall that given an integer N > 2 and an iterated function system (IFS)
{fihi<i<n of contractive maps of a complete metric space X, there exists a unique non
empty compact set K C X such that

N
=1

(see [29]). When X is an Euclidean space and f; are affine maps, due to the above equality
K is called self-affine. In particular, K is called self-similar if f; are all similitudes; we will
not focus on the self-similar case and refer the reader to [27] for a recent survey of this
topic.

The first class of strictly self-affine sets that have been studied in detail are certainly
Bedford-McMullen carpets in R?, also known as self-affine Sierpinski carpets. They are
among the most natural classes of fractal sets having different Hausdorff and box counting
dimensions. To be specific, one fixes two integers mq; > mso > 2 and a subset A C
{0,...,m1—1} x{0,...,mgo—1} of cardinality at least 2; the Bedford-McMullen carpet K

associated with A is the attractor of the system Sy = {fa sz, x9) (%, %) ta=

(a1,a2) € A} of contractive affine maps of the Euclidean plane; note that by construction

K C[0,1)%. Set Ny =#{a€ A: ay =i} foral 0 <i <mg—1land e :0 € Ry —
log 37271 N9, Bedford and McMullen proved independently [8, 40] that

@) log(m)
dlmK_log(mg)’ h Tog(m1)’
and
o L
dlmBK_log(ml) (log(mg) log.);(??ll))w(o)7

where dim and dimpg respectively stand for the Hausdorff and the box counting dimension,
and (1) and 1(0) are the topological entropy of K and that of its projection to the xs-
axis respectively. Moreover, dim K = dimp K if and only if the positive N; are all equal.
Note that the possible dimension gap dim K < dimp K cannot hold for self-similar sets
(see [I6]). For a general self-affine Sierpinski sponge K C [0,1]* invariant under the
action of an expanding diagonal endomorphism f of T* with eigenvalues the integers
my > --- > my > 2 (we identify [0, 1]¥ with T*), similar formulas as in the 2-dimensional
case hold. In particular, the approach to dimensional properties of compact f-invariant
sets developed by Kenyon and Peres [35] extends the results of [40] and establishes the
following variational principle: the Hausdorff dimension of K is the supremum of the
Hausdorff dimensions of ergodic measures supported on K, i.e. the Hausdorff and the
dynamical dimension of K coincide. Moreover, the dimension of any ergodic measure is
given by the Ledrappier-Young formula

k
)+
=2

- log(my

1 1

(1.1) dim(p) log(m;)  log(m;_y)

)hpoﬂ;l(ni of),

where IT; = (z1,...,2) — (24, ...,2%). Also, in the variational principle, the supremum
is uniquely reached at some Bernoulli product measure.
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Dimension theory of self-affine sets has been developed to understand the case of more
“generic” self-affine IFSs as well. First, given a family {M; }1<;<n of linear automorphisms
of R¥ to itself whose norm subordinated to the Euclidean norm on R¥ is smaller that 1/2,
it was shown [I7, [32] that for LV*-almost every choice of N translation vectors v1,...,vx
in R*, the Hausdorff dimension of the attractor K of the affine IFS {M;x + viti<i<n
is the maximum of the Hausdorff dimensions of the natural projections of ergodic mea-
sures on ({1,..., N}V, o) to K (here o stands for the shift operation); in addition for
such a measure p, dimg () = min(k, dimy,(p)), where dimy,(u) is the so-called Lyapunov
dimension of p [17, 44l BT, B0]. A similar result holds for £V K _almost every choice of
contractive {M;}i1<i<n in some non empty open set, with a fixed (vy,...,vn) [2]. In
these contexts one has dim K = dimp K = min(k,dim4 K), where dim4 K stands for
the so-called affinity dimension of K (note that for a Bedford-McMullen carpet, the affin-

. . . ) . 1
ity dimension equals 101§én22) if (1) < log(msg) and loi((m)l) + (1og(1mz) - bg(lml))log(mg)
otherwise, so that in this case the previous equality between dimensions only occurs ex-
ceptionally). If both {M;}i<i<n and (v1,...,vn) are fixed, the following stronger result

appeared recently in the 2-dimensional case: if {M;};<;<n satisfies the strong irreducibil-
ity property and {M;/\/|det(M;)|}1<i<n generate a non-compact group in GL2(R), and
if the IFS {fi}1<i<n is exponentially separated, then dim K is the supremum of the Lya-
pounov dimensions of the self-affine measures supported on K (it is not known if this
supremum is reached in general); here again for such a measure, Lyapunov and Hausdorff
dimension coincide, and dim K = dimp K = dim K [3,28]. The last two contexts make a
central use of the notion of Furstenberg measure associated to a self-affine measure, whose
crucial role in the subject was first pointed out in [19]. There are also similar results in
the case that the strong irreducibility fails but the M; cannot be simultaneously reduced
to diagonal automorphisms [20] 4, [3] 2§].

Let us come back to self-affine carpets. Their study was further developed with the
introduction of Gatzouras-Lalley carpets [38], with an application to the study of some
non-conformal nonlinear repellers [25] and Baranski carpets [I]. There, the linear parts
are no more subject to be equal, but they are still diagonal, and it is not true in general
that there is a unique ergodic measure with maximal Hausdorff dimension [32] [5] (see also
[37] for a study of Gatzouras-Lalley type carpets when the linear parts are trigonal). It
turns out that extending the dimension theory of these carpets to the higher dimensional
case raises serious difficulties in general, as it was shown in [I2] that the attractor may
have a Hausdorff dimension strictly larger than its dynamical dimension.

On the side of random fractal sets, one naturally meets random statistically self-affine
sets. Such a set K obeys almost surely an equation of the form K (w) = UN, ¢ (K;(w)),
where the f” are random contractive affine maps and the sets K; are copies of K. Re-
sults similar to those obtained for almost all self-affine sets described above exists in the
following situation: the sets K; are mutually independent and independent of the f;, the
linear maps of the f; are deterministic, but the translation parts are i.i.d and follow a law
compactly supported and absolutely continuous with respect to £¢ [30]. Results are also
known for random Sierpinski carpets. There are two natural ways to get such random sets.
The first one falls in the setting of random dynamical systems. It consists in considering
an ergodic dynamical system (2, F, P, T), on which is defined a random non empty subset
A(w) of {0,...,m1—1}x{0,...,mo—1} such that E(#A) > 1. Then one starts with the set



of maps S, (., and recursively, at each step n > 2 of the iterative construction of the ran-
dom attractor K(w), replace the set of contractions S (pn-2()) by Sa(1n-1(s)), S0 that the
contractive maps used after n iterations take the form fy 0o fg, ,, With a; € Sy(pi(.)-
By construction, K(w) = Uaea(w) fa(K(0(w))). The Hausdorff an box-counting dimen-
sions of such sets and their higher dimensional versions have been determined in [36] (in
a slightly more general setting); the situation is close to that in the deterministic one.

The other natural way to produce random statistically self-affine carpets is related to
branching processes and consists in using a general percolation scheme detailed below; at
the moment let us just say that one starts with a possibly empty random subset A(w) of
{0,...,m1—1}x{0,...,my—1}, and again assumes that E(#A) > 1. Then, one constructs
on the same probability space the set A(w) and a random compact set K(w) C T?, and
mi X mg random compact sets K(a,w), a € {0,...,m; — 1} x {0,...,mg — 1}, so that
K(w) = Useaw) fa(K(a,w)), where the K(a) are independent copies of K, and they
are also independent of A. The set K is non empty with positive probability. These
random sets have been studied in [24], and their self-similar versions have been investigated
extensively (see e.g. [26] 46 43]). Setting now ¥ (#) = log 372 ' E(NV;)? and letting ¢ be
the unique point at which the convex function v attains its minimum over [0, 1] if ¢ is not
constant, and ¢ = 1 otherwise, one has, with probability 1, conditional on K # 0,

i = 71#(0() where o« = max 710g(m2)
(1.2) dim K = 0 wh (- Togtr)
and
. Y@ 1
dimp K = log(my) (log(mg) log(ml))w(t)'

Moreover, dim K = dimp K iff t = 1 or all the positive E(NN;) are equal (we note that
the value of dim K was previously obtained in [42] O, [I0] in the very special case that
there is an integer b > 2 such that the law of A assigns equal probabilities to subsets of
cardinality b and probability 0 to the other ones). It is worth pointing out that the origin
of this different formula with respect to the deterministic case comes from the possibility
that E(N;) < 1 for some 4, which makes the situation quite versatile with respect to the
deterministic Bedford-McMullen carpets.

The approach developed in [24] to get (I.2]) is not based on a variational principle related
to a natural class of measures supported on the attractor. To determine the sharp lower
and upper bounds for dim K, the authors of [24] adapt the approach used by Bedford in
the deterministic case: Il still denoting the orthogonal projection on the xo-axis the lower
bound for dim K is obtained by taking the maximum of dimIIy(K) and the maximum of
the lower bound for the Hausdorff dimension of certain random subsets of K. Each such
subset F is obtained by considering the union of almost all the fibers 75 ' ({(0,z2)} with
respect to the restriction to II(K) of some Bernoulli product measure. The Hausdorff
dimensions of m(F) and that of the associated fibers are controlled from bellow. This
yields a lower bound for dim E thanks to a theorem of Marstrand. The upper bound for
dim K is obtained by using some effective coverings of K. It turns out to be delicate
to transfer these methods to the higher dimensional cases. Indeed, for the lower bound,
the Hausdorff dimension of the 1-dimensional fibers mentioned above is obtained thanks
to statistically self-similar branching measures in random environment, the dimension of
which is relatively direct to get, and yields the dimension of the fiber. Using this approach
in the higher dimensional case k > 3, we would have to consider the restriction of Bernoulli
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measures to II;(K) for 2 < i < k. Then for i > 3 we would meet the much harder problem
to estimate the Hausdorff dimension of fibers which are statistically self-affine Sierpinski
sponges in a random environment in R*™!, a problem not less difficult than the one we
consider in this paper; one would have to compute dim IT;(K) as well, a question that we
will naturally consider. Also, for the upper bound, extending to higher dimensions the
combinatorial argument used in [24] to get effective coverings seems impossible. However,
we will see that to getting the box-counting dimension of K in the higher dimension cases
is rather direct from the two dimensional case treated in [24].

We will develop a dimension theory for statistically self-affine Sierpinski sponges in R¥,
for any k > 2, by studying the statistiscally self-affine measures on K (which are also
called Mandelbrot measures on K). We will prove the following Ledrappier-Young type
formula: given a Mandelbrot measure p on K (see Sections and [2.6] for the definition),

k 1

i = ———dim — ime (g o IT
) = ooy 00 + 3 (iogony ~ Togm ) el o 1)
1 . 1 1 . .
(13) ~ log(m1) dime () + (log(mi) B log(m_1)) min (disne (), b (Tl 2 1)

where dim,(u) is the dimension entropy of u, and v; is the Bernoulli product measure
E(p o IT; Y) (see Theorem Z2). The fact that dim,(u o IT; ) = min(dime(p), hy, (IL; o £))
follows from our previous study of projections of Mandelbrot measures in [7]. To get (L3]),
we show that 7,, the L9-spectrum of y, is differentiable at 1 with TL(l) equal to the right
hand side of (L3)); this implies the exact dimensionality of u, with dimension equal to
TZL(l).

Optimising (3] yields the sharp lower bound for the Hausdorff dimension of K (see
Theorem [A.3]); the supremum is uniquely attained, and the optimisation problem is non-
standard; the presence of the k—1 minima in the sum gives rise to k possible simplifications
of the formula separated by what can be thought of as k — 1 phase transitions according to
the position of dim, () with respect to the entropies h,, (II;0 f), hence k distinct optimisa-
tion problems must be considered, of which the optima must be compared. This study will
use the thermodynamic formalism, and the optimal Hausdorff dimension will be expressed
as the “weighted” pressure of some deterministic potential (see Theorem 2.3]). Our sharp
upper bound for dim K proves that this maximal Hausdorff dimension of a Mandelbrot
measure supported on K yields dim K. This bound is derived from a variational princi-
ple as well, namely we optimise over uncountably many types of coverings of K, each of
which provides an upper bound for dim K (see Theorem [A.8)); when k = 2, this does not
reduce back to the argument developed in [24]. As a by product, we get an alternative
to the proof by Kenyon and Peres [34] of the sharp upper bound in the deterministic
higher dimensional case. One may wonder if the approach by Kenyon and Peres, which in
the deterministic case uses a uniform control of the lower local dimension of the unique
Bernoulli measure of maximal Hausdorff dimension on K, can be extended to the random
case by using the unique Mandelbrot measure of maximal Hausdorff dimension on K. We
met an essential difficulty in trying to follow this direction, except in special cases (see the
discussion at the beginning of Section [4.4]).

Our result regarding the box-counting dimension of K is stated in Theorem 2.5l Another
difference between the deterministic or random dynamical Sierpinski sponges, and the
random Sierpinski sponges studied in this paper is that the first two classes of objects
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are stable under the natural projections II;, 2 < ¢ < k, while this is not the case for the
third one. Our approach will also provide dimII;(K) (via a variational principle) and
dimp IT;(K) for the third class of random attractors (see Section 2.4} we note that the
case of I (K) reduces to that of IIs(K) when k = 2 and K is a statistically self-similar
set, a situation which is covered by [14] [I7]). Finally, we determine the dimension of the
conditional measures associated with the successive images of any Mandelbrot measure by
the projections II; (Section 2.5]), which for each i equals dim(u) — dim(II;,p), hence the
conservation dimension formula holds.

Since using symbolic spaces to encode the Euclidean situation is necessary, we will
work on such spaces and endow them with adapted ultrametrics, so that the case of
random statistically self-affine Euclidean sponges and their projections will be reducible
to a particular situation of a more general framework on symbolic spaces and their factors.

Our framework and main results are presented in the next section.

2. MAIN RESULTS ON SELF-AFFINE SYMBOLIC SPACES, AND APPLICATION TO THE
EUCLIDEAN CASE

We start with defining the symbolic random statistically self-affine sponges, which will
be studied in this paper.

2.1. Symbolic random statistically self-affine sponges. Let us first recall the notion
of self-affine symbolic space.

Let N, R, and R* stand for the sets of non negative integer, non positive real numbers,
and strictly positive real numbers respectively.

Let k& > 2 be an integer. Assume that (X;,T;) (i = 1,...,k) are fulshifts over finite
alphabets A; of cardinality > 2 and such that X, is a factor of X; with a one-block factor
map 7; : X; = X4 for i = 1,...,k — 1 (this meaning that m; ((2,)52,) = (7(xy)),—; for
all ()52, € X;). For convenience, we use my to denote the identity map on X;. Define
IL; - Xl — XZ by II; =mj_1omi_g0---0mgy for i = 1, ,k. Define .A;k = UnzoAZn, where
AY consists of the empty word e. The maps m; and II; naturally extend to A} and A}
respectively (m;(zq -+ x,) = mi(x1) - mi(2h)).

If u € A}, we denote by [u] the cylinder made of those elements in X; which have u as
prefix. If x € X; and n > 0, we denote by x|, the prefix of x of length n.

Let ¥ = (v1,...,7) € R x (Ry)*~1. Define an ultrametric distance dy on X; by

i (2) AL ()]
(2.1) d,y(a:,y) = max (e ity 1< < k) ,
where
_ 0 if up # vy,
Ju Aol = { max{n: u; =v; for 1 <j<n} ifu =uv

for u = (u;)52;,v = (vj)52; € Xi.

The metric space (X1, dy) is called a self-affine symbolic space. It is a natural model
used to characterize the geometry of compact invariant sets on the k-torus under a diagonal
endomorphism 8, [40] 35, [6].

6



Now, we can define symbolic random statistically self-affine sponges. Let A = (¢a)acA,
be a random variable taking values in {0,1}4". It encodes a random subset of A, namely
{a € Ay : ¢, = 1}, which we identify with A. Suppose that E(} ,c4, ca) > 1. Let
(A(u))ueca; be a sequence of independent copies of A. For all n € N, let

(2.2) K,={z€X1: cp;(z_1) =1V1<i<n}= U [u].
weAT: T3y cu; (w)i—1)=1
Due to our assumption on A, with positive probability, the set
K =) Kn,
n>1
is the boundary of a non-degenerate Galton Watson tree with offspring distribution that

of the random integer 3 ,c4, ca. The set K satisfies the following symbolic statistically
self-affine invariance property:

K=Ja K% K'=[) U [u],

acA n20ueAp: T, cu, (aupi—1)=1

and we will call it a symbolic statistically self-affine Sierpinski sponge. The link with the
Euclidean case will be made in Section

Next we recall the definition and basic properties of Mandelbrot measures on K, and
state our result on their exact dimensionality.

2.2. Mandelbrot measures on K. These measures will play an essential role in finding
a sharp lower bound for dim K. Let W = (W,)ase4, be a non-negative random vector
defined simultaneously with A and such that {W, > 0} C {¢, = 1} for all a € A;. Let

T(q) =Tw(q) = —logE Y W, ¢>0,
acA;
and suppose that T'(1) = 0, i.e. EY ,c4, Wo = 1. Let ((A(u), W(u))uea: be a sequence
of independent copies of (A, W).
For each u,v € Aj let

|v]
Q"(v) = [ Wa(u-vp_1),
k=1
and simply denote Q°(v) by Q(v). Due to our assumptions on W, for each u € AjJ, setting
Yo(u) = Yjuj=n Q@“(v) the sequence (Y, (u),o(Wy(uv) : a € A1,v € A7))n>1 is a non
negative martingale. Denote its limit almost sure limit by Y (u). The mapping

p: [u] = Q(u)Y (u)
defined on the set of cylinders {[u] : u € A} } extends to a unique measure p on (X1, B(X1)).
This measure was first introduced in [39], and is called Mandelbrot measure. The support

of w is the set
K,= U McK,
n>0ucA7: Q(u)>0
where the inclusion K, C K follows from the assumption {W, > 0} C {cq(u) = 1}
for all u € A} and all a € A;. Moreover, if 77(1—) > 0, then (Y;,(u)),>1 is uniformly
integrable (see [34] [I1], [15]), and in this case note that K, is a symbolic statistically self-
affine set as well. Also, K, = K almost surely if and only if {c,(u) = 1} \ {W, > 0} has
7



probability 0. If 7/(1—) < 0, either g = 0 almost surely (one says that p is degenerate),
orP(3ae A, Wy,=1and Wy =0if a' #a) =1 (see (see [34, 1T, 15] as well), and in this
later case T"(1—) = 0, K, is a singleton and p is a Dirac measure [15].

The measure y is also the weak-star limit of the sequence (pn,)n>1 defined by distributing
uniformly (with respect to the uniform measure on X;) the mass Q(u) on each u € A”.
It is statistically self-affine in the sense that

w(B) = > Wau(c(Bnla)))
acA;

for all Borel subsets of X1, where u® is the copy of u constructed on K% with the weights
(W(au))uea; -

We will make a systematic use of the notion of entropy dimension of measures on Xj.
Given a positive and finite Borel measure v on X;, its entropy dimension is defined as

. . 1
dim(v) = Jlim =~ 3 vi(ul) log v(fu).
ueA?
whenever the limit exists. If v is T;-invariant, one has dim.(v) = h,(T;), the entropy of v
relative to T;.

Due to results by Kahane and Peyriere [34] 33], when a Mandelbrot measure y is non-
degenerate (that is when P(u # 0) > 0), with probability 1, conditional on u # 0, one

has
R (n))

n—00 —-n

=T'(1-)=— > E(WylogW,), for praec. z.
acAy

It then follows that dim.(u) exists [21] and dim.(p) = T7(1). In particular,
(2.3) dim,(p) < logE(#A).

Before stating our first result, we present a result deduced from [7] about the entropy
dimension of II;,u (in [7] we consider the exact dimensionality of the projection of a
Mandelbrot measure on X; x Xj to the first factor X7, in the case that X7 is endowed
with d5 with 4 = ((log #.41)™!); but projecting from X to X; and considering the entropy
dimension does not affect the arguments):

Theorem 2.1. [7, Theorem 3.2] Let p be a non-degenerate Mandelbrot measure on K.
Suppose that T'(q) > —oo for some q > 1. With probability 1, conditional on u # 0, for all
2 <i <k, one has dim,(Il;,p) = min(dime(u), by, (T3)), where v; is the Bernoulli product
measure on X; obtained as v; = E(I1;,p).

Hence, dim.(¢) and h,,(7;) compete in the determination of the entropy dimension of
the i*" projection of p.

Recall that a locally finite Borel measure v on a metric space (X, d) is said to be exact

log(v(B(z,1)))
log(r

denote the number D by dim(v) and call it the dimension of v. Our result on the exact
dimensionality of the Mandelbrot measure p on (X1, d5) is the following.

dimensional with dimension D if lim,_ o4 = D for v-almost every z. We

Theorem 2.2 (Exact dimensionality of p). Let u be a non-degenerate Mandelbrot measure
on K. Suppose that T'(q) > —oo for some q > 1. With probability 1, conditional on p # 0,
8



the measure 1 is exact dimensional and dim(p) = dim7 (), where

k k

dim7 (1) 1= i dime (Tl 1) = 71 dime () + > v min(dime (1), o, (T7)).
i=1 1=2

This result will follow from the stronger fact that the Li-spectrum of p is differentiable
at 1.

2.3. The Hausdorff and box counting dimensions of K. To state our result on
dim K, we need to recall some elements of the weighted thermodynamic formalism.

For 1 <i<kandbe A =1I;(A), let
N =#{ae A : [o] CTH(B) < [a] N K # 0}

Then set A; = {b € A; : E(N, éi)) > 0}. Without loss of generality we suppose that
#Ak > 2. Indeed, if Ak is a singleton, then Xj plays no role in the geometry of K since
IT;(K) is a singleton when K # (). As a consequence #.A >2forall 2<i<k.

For 1 <i <k, let X denote the one-sided symbohc space over the alphabet A If
o : X; — R is a continuous function on XZ, B8 = (Bis Bit1,- -5 Bk) € RE x R]fr ¢ and
veM(X;,T,), let

k
hﬁ(TZ) = Z thni,j*V(Tj)7
j=i

where
(24) Hi,j:ﬂ-j—lo“‘oﬂ'z‘ if j >4
and II; ; is the identity map of X;, and define the weighted pressure function

P(6,T;) = sup {v(¢) + (1) : v € M(X,,Ty) },

where v(¢) = [ %, ¢dv. It is known ([6]) that if ¢ is Holder-continuous, then P B (¢, T;) is

reached at a unique fully supported measure vg. Moreover, the mapping 6 — PB(Hqﬁ, T;)
is differentiable, and

dPB(-¢,T}))

(2.5) g

= [ 6(z) avg(w) = v0o(6).
0 X;

For 2 < i < k let 4' = (‘7;")15]51@ = (y1+ -+ %, Yi+1,---»7) and let ¢; be the
Holder-continuous potential defined on X; by

(2.6) $i(x) = (11 + -+ + %) log E(N{)).
For this potential and B = ii, setting
P = P7(4;,T),
23] yields
(2.7) PlO)=(m++%) Y vep (b)) g E(N)) (6 € R).

beA;
9



We now define some parameters involved in the next statement. In order to slightly
simplify the exposition, we assume that all the ~; are positive. The general situation will
be considered in the last section of the paper, namely Section 8l

Set I ={2,...,k} (introducing this convention will simplify the discussion in Section ),
(2.8) @:w if2<i<k,
Mt
and define

I= {z € 1: 36 € [6;,1] such that P/(§) > 0}
and 4o = min(I), where by convention min(f)) = k + 1. If T # 0), set
0i, = min {0 € [0, 1] : P}, (8) > 0} .
If I =0, set 1 = 1 and dpy1 = P
Theorem 2.3 (Hausdorff dimension of K). With probability 1, conditional on K # (),
dim K = sup{dim7 (p) : p is a positive Mandelbrot measure supported on K, C K}

| Pu(1) ifio=Fk+1

:inf{Pi(e): icl, §i§9§1},

(2.9)

and the supremum is uniquely attained at i, , .
20 70

Remark 2.4. We used an abuse of notation. Indeed, in Theorem [2.3 the supremum must
be understood as taken over the joint law of (K, u) with p a non-degenerate Mandelbrot
measure supported on K.

Theorem 2.5 (Box counting dimension of K). With probability 1, conditional on K # (),

k
dimp K = v log E(#A) —Fz:’yZ m[ln]log Z E(N, )
beA;

Next we give the necessary and sufficient condition for dim K = dimp K. Define
G0 e0,1] = log STEN) (2<i<k).
bE.Zi
For each 2 < i < k, denote by 0 the point in [0, 1] at which ; reaches its minimum if ;
is not constant (i.e. there is b € A; such that E(N, ) #1), and ; = 0 otherwise.
We will need the following lemma to state and prove Corollary 2.7l about the necessary

and sufficient condition for the equality dim K = dimp K to hold.
Lemma 2.6. Fach zﬁz takes the value logB(#A) at 6 = 1. Moreover, if 2 < i < k — 1,
then ¥; > 11, and 0 < 1 implies 91+1 < 1.

Proof. The first property is due to the relation E(N ® ) = e Jomi(b)=h E(Nb( )) for any

b€ -Zz‘+1, and the second one is due both to this property and the subadditivity of
y > 0 — y?. The third property is a direct consequence of the two first ones. O
10



Corollary 2.7. It holds that dim K = dimpg K with probability 1, conditional on K # ),
if and only if E(N, )) does not depend on b € .A for alli € I such that 9 < 1.

Next we present our results regarding the images of p and K under the projections II;,
2<i<k.

2.4. Dimensions of projections of ;1 and K. We still assume that all the ~; are positive
and will discuss the general case in Section 8l In the next statement  is a non-denenerate
Mandelbrot measure such that K, C K almost surely.

Theorem 2.8 (Dimension of II;,u). Let 2 < i < k. Suppose that T'(q) > —oo for some
q > 1. With probability 1, conditional on j # 0, the measure Il;,p is evact dimensional

and dim(IL;,p) = dim? (I1;,p), where

dim? (M) = 37 dime (T, 1) = 37 7 min(dime (1), b, (7).
j=i j=i

Now define 6; = 0 and §; = 6, if i < j < k (recall (Z8)). Set I; = {i,...,k} and define
Ii ={j € I; : 30 € [0;,1], Pj(f) > 0}. Then define jo = min(L) if I; # 0 andjo =k+1
otherwise. Also, set
0j, = min{0 € [0;,,1] : P} () > 0} if jo < k.
If I; = 0, set 01 = 1.

Theorem 2.9 (Hausdorff dimension of II;(K)). Let 2 < i < k. With probability 1,
conditional on K # 0,

dimII;(K) = sup{dim’gi(ﬂi*,u) : pis a positive Mandelbrot measure supported on K, C K}

_ Pjo(ejo) Z'ij <k
s {Pjom ifjo=k+1"

and the supremum is uniquely attained if and only if jo > i, or if jo =i and (8, > 0 or
0j, = 0 and Pj (0) =0). In any of these cases the supremum is reached at fi,,

0 %30
Remark 2.10. We deduce from Theorems and that: (i) if 2 < i < iy then
dim I1;(K) = dim K. () dim K = dimI1;,(K) if and only if ig < k and P} (0;,) = 0, or if
io =k+1. (19i) If2 <i<j<kthen (a) if2<i<j<jo, then dimIL;(K) = dimII;(K);
(b) dim T, (K) = dim IT;(K) if and only if jo < k and Pj (0,) =0, or jo =k + 1.

Theorem 2.11 (Box counting dimension of II;(K)). Let 2 < i < k. With probability 1,
conditional on K # 0,

dimp IT; (K Z‘y] em[én}log bzA; E N(J ).
€A

Corollary 2.12. Let2 < i < k. It holds that dimII;(K) = dimp IT;(K) with probability 1,
conditional on K # 0, if and only if either of the three following conditions hold:

(1) 6; =1 and E(Nb(j)) does not depend on b € .Zj forall j € I;\ {i} such that é\j < 1.
11



(2) 0<8; <1 orf; =0 and Pi(0) = 0. Moreover, if 36 is the mazimum of those j € I;
such that for all j' < j in I; either 0 < 0y <1 or 6, =0 and 1;(0) = 0: (i) for
all j € I; such that j < j{,, for all b € .Zj, H;]-l(b) N A; is a singleton (in particular
0; = 0;); (ii) for all j € I; such that j > jy one has 0; = 0 and ¥}(0) > 0, and
Zb/enz;({b}) E(Nb(,i))@' does not depend on b € A;.

)

(3) Forall j € I, éj =0, ¥5(0) >0, and #H;jl(b) N A; does not depend on b € .Z]

In the random case, the last three results are new except in the case ¢ = k, which is
reducible to the two dimensional case which follows from [14] [17, [7].

2.5. Dimensions of conditional measures. Given a non-degenerate Mandelbrot mea-
sure pu, conditional on p # 0, for each 2 < i < k, the measure p disintegrates as the
skewed product of II;,u(dz) u*(dz), where p* is the conditional measure supported on
;' ({z}) N K for II;,pu-almost every z. We will prove the exact dimensionality of the
measures 1° and the value for their dimensions.

Let us start with a consequence of [7, Theorems 3.1 and 3.2]:

Theorem 2.13. Let p be a non-degenerate Mandelbrot measure supported on K and
2 <1 < k. Let vy; be the Bernoulli product measure equal to E(Il;,p). With probability 1,
conditional on p # 0, I, pu is absolutely continuous with respect to v; if dime(u) > hy, (T5),
otherwise IL; . u and v; are mutually singular.

Moreover, if T(q) > —oo for some q > 1, then for Il u-a.e. z € I;(K) and p*-a.e.
x € K, limy, 00 M = dime(p) — dime (I, p), i.e. dime(p) — hy, (T;) if dime(p) >

n
hy,(T;) and 0 otherwise. In particular the entropy dimension of p* exists and dim.(p*) =

dim, (p) — dime (I, p).

It is worth mentioning that the existence of the local entropy dimension for p* and the
entropy dimension conservation formula comes from the study achieved in [I§] for the self-
similar case, while the alternative between singularity and absolute continuity regarding
I1;, 1, as well as the value of dim,(IT;,x) and so that of dim,(u?) are obtained in [7].

For the Hausdorff dimension of the conditional measures, we prove the following result:

Theorem 2.14. Let p be a non-degenerate Mandelbrot measure supported on K and
2 < i < k. Letv; be the Bernoulli product measure equal to E(Il;,u). Suppose that
T(q) > —oo for some q > 1. With probability 1, conditional on p # 0:

(1) If dime(p) < hy,(T;), then for Ij,u-a.e. z € IL;(K), the measure u* is exact
dimensional with Hausdorff dimension equal to 0.
(2) If dime(p) > hy,(T;), then for Ij,u-a.e. z € IL;(K), the measure u* is exact
dimensional with
i1
(211)  dim(p®) = 31 (dime (1) — by (1)) + 3 3 (min(dime (1), by, (7)) = b, (T3))-
j=2
(3) In both the previous situations, the Hausdorff dimension conservation dim(p) =
dim(p®) + dim(IL;, p) holds.

Naturally, there is a similar result for the conditional measures of II;, 1 projected on
X;,2<i<j<k
12



Theorem 2.15. Suppose k > 3. Let p be a non-degenerate Mandelbrot measure supported
on K and 2 < i < j < k. Suppose that T(q) > —oo for some q > 1. With probability 1,
conditional on pu # 0, denote by (I1;,1u)7* the conditional measure of Il;, ju associated with
the projection 11; j, and defined for IL;_ p-almost every z.

(1) If dime(p) < hy,(T}), then for 1L p-a.e. z € I;(K), the measure (I, p)"* is
exact dimensional with Hausdorff dimension equal to 0. _
(2) If dime(p) > hy;(T}), then for 1l p-a.e. z € 1;(K), the measure (Il;,pu)"* is
exact dimensional with
j—1
(212)  dim((Tp)) = 3 7o min(dime (), (7)) — o, (T7))).
J'=i
(3) In both the previous situations, the Hausdorff dimension conservation dim(Il;,p) =
dim((IT;,.p0)? %)) + dim(II; p) holds for 11; j-a.e. z € 11, ;(K).

2.6. Applications to the Euclidean realisations of symbolic random statistically
self-affine Sierpinski sponges. The link with Euclidean random sponges is the follow-
ing: Given a sequence of integers 2 < my < --- < mq, if A; = H?Zi{o,...,mi — 1} for
1 <4 <k, m; is the canonical projection from A; to A; 1 for 1 <i < k—1,~v = 1/log(mq),
and v; = 1/log(m;) — 1/log(m;—1), 2 < i < k, then the cylinders of generation n of X
project naturally onto parallelepipeds of the family G,, = {[[¥_, [tim; ", (€; +1)m; "] : 0 <
¢; <mp} —1}, and K projects on a statistically self-affine Sierpinski sponge K , also called
Mandelbrot percolation set associated with (A(u))ueas in the cube [0, 1]* endowed with
the nested grids (Gp)n>o0-

It is direct to prove that all the results of the previous sections are valid if one replaces K
by K, the Mandelbrot measures by their natural projections on K (also called Mandelbrot
measures), and II; by the orthogonal projection from RF to {0}'~1 x RF=i+1,

If K is deterministic, then ig = 2, 82 = 1 /(71 +72), the Mandelbrot measure of maximal
Hausdorff dimension is a Bernoulli product measures, and we recover the result established
by Kenyon and Peres in [34] (they work on (R/Z)* but it is equivalent); also, in this case
the results on the dimension of conditional measures is a special case of the general result
obtained by the second author on the dimension theory of self-affine measures [22]. If
k = 2, the Euclidean version of Theorem yields the value of dim K computed by
Gatzouras and Lalley in [24].

Regarding the box counting dimension of K , if K is deterministic, we just recover the
result of [34]; in this case, 6; = 0 for all 2 < i < k. If k = 2, we recover the result of
Gatzouras and Lalley in [24].

The paper is organized as follows. Section 3 is dedicated to the proof of Theorem 2.2]
Section 4 to the proof of Theorem [2.3] Section 5 to that of Theorem and its corollary,
Section 6 to those of the corresponding results for projections of Mandelbrot measures
and K, Section [7 to those on conditional measures, and the brief Section [ to the case
when some ~y; vanish.

3. THE HAUSDORFF DIMENSION OF p. PROOF OF THEOREM

Let us start with a few definitions.
13



With the notations of the introduction part, for any word I € A}, and any integer
n > 0, we denote by u! the measure defined on X; by

pH([J]) = QINY (1) (V] € A})
and by u! the measure on X; obtained by distributing uniformly Q’(J) on any cylinder
J of the n'™ generation. Also, we write jt,, = pS.
For1 <i<kandn €N, let
. n
ti(n) me{pGN:pZ (71+-~+%)7—},
1

and by convention set {y(n) = 0. It is easy to check that in the ultrametric space (X1, dy),

the closed ball centered at x of radius e " is given by
B(w,e_%) = {y € Xy: Hl(ywl(n)) = H2($|£Z(n)) forall 1 <14 < k’} .

Let F,, be the partition of X into closed balls of radius e 7. For any positive and finite
Borel measure v on X7, the Li-spectrum of v can be defined as the concave mapping

' P
T, qER— l%nl)gf—glog Z v(B)4,
BeF,
with the convention 07 = 0.

It is known that since (X1, d5) satisfies the Besicovich covering property, for v-almost
every ¥ € Xj, one has 7,(17) < dimy,. (v, z) < dimjec(v, z) < 7/,(17), so that the existence
of 7/(1) implies the exact dimensionality of v, with dimension equal to 7,,(1) (see, e.g.,
[41]). Consequently, Theorem follows from the following stronger one.

Theorem 3.1. Suppose that T(q) > —oo for some ¢ > 1. Conditional on p # 0, 7,,(1)
exists and equals dimZ(,u).

Recall that for 2 < i < k, we defined v; as II;,E(n) = E(IL;,p).
If v is a Bernoulli product measure on X;, we set

Toi(q) = —log > vi([B])* (g=0).

beA;

The theorem follows from the following proposition.

Proposition 3.2. Suppose that T(q) > —oo for some q > 1. Let ig = max{2 < i < k :
T'(1) < 7,.(1)} (with the convention max(()) = 1). Then there exists qo > 1 and cg > 0
such that for all q € (0, qo], we have

k
(31) E( Y wB)?) = O(exp (bio(n)(eolg—1)>~T(@)) = > (li(n)—lir(n)Tri(a)))

BeF, i=ig+1

as n — 0o. Moreover, ¢y can be taken equal to 0 if one restricts q to belong to (0,1] or if
T'(1) #7T,.(1) for all2 <i < k.
14



Assume that Proposition holds. Then, a standard argument (see, e.g. [7, Lemma
C]) yields that for any fixed g € (0, qo], the following holds almost surely:

lo B)?
P L) (colg — 1% = T(@)) — S (Gi(n) — i () Tou (@)

lim sup BEFn < limsup
n—o00 n n—00 n
k
= (g -1 =T(q) - Y, —Tula)

Then, by the convexity of the two sides as functions of ¢, the inequality holds almost
surely for all ¢ € (0, go]. Multiplying both sides by —v; yields, conditional on u # 0,

k
(@) > —(n -+ vi)cola = D+ (a4 %) T+ Y. % To(a)-
i=ig+1
Since both sides of the above inequality are concave functions which coincide at ¢ = 1

and the right hand side is differentiable at 1, we necessarily have that 7/,(1) does exist

and is equal to the derivative at 1 of the right hand side, namely (y; + -+ + 7i,) T7(1) +
Misior1 % To (1) = dim? ().
The proof of Proposition requires the following two lemmas.

Lemma 3.3. Suppose that T(q) > —oo for some ¢ > 1. Then, for all ¢ € (1,2) such that
T(q) > 0, there exists a constant Cq > 0 such that for all 2 < i <k, for alln > 1 one has

max <]E Z Hz*u([U])an Z Hz*ﬂn([U])q> che—nmin(T(q),ﬁi(q)).

UeAr UeAr
Proof. This is a direct consequence of [, Corollary 5.2], in which the case k = 2 is
considered. O

Lemma 3.4. [45] Let (Lj);>1 be a sequence of centered independent real valued random
variables. For every finite I C N and q € (1,2],

E(|Y L q) <23 E(|Li]9).

i€l iel
Proof of Proposition[32. At first, note that the set of balls F,, is in bijection with the set
e, Afi(")_ei’l("), since for any z = (z;)52; € X1, if we set U; = I1i(24,_, (n)41 " Tey(n))5
1<i<k,and U = (Uy,...,Uy), then

Blx,e w)={ye X1 :V1<i<k Ty ewl= U 1,

where

k
(32)  Jui= {(Jl,...,Jk) e JTAT™ 0 vi<i<k, () = U,} .
i=1
For ¢ € Ry we need to estimate from above the partition function
q
Zgw= > wB)1= 3 (S wlh-d))

BeF, Uein  (J1,J2,Jk)ETU
15



Z(n

For 1 <i <k, set Uy = [[5_; A =10 and for UG = (U;, -, Uy) € U, set

j=i

k
oty = {(Ji,...,Jk) e [TATW ™ vi<j<k W)= Uj} :

Also, set Z/ly(LkH) ={e} = J..
Then, for 1 <i <k and (Ji,...,J;) € [[)ey Afi(")_e“l(n), define the random variable

Zgn(J1---Ji) = > ( > p T (i Jk]))q-

UG e+ (i 1o JR)ET (141

Notice that Z, ,(€) = Zgn and Zy p(J1- -+ J) =Y (Jq -+ - Jg)9.

Due to the branching property associated with the measures p’, J € Aj, for all 0 <
1 <k —1 we have

q
Zq,n(Jl T Ji) = Z ( Z N&H( )— zz(n)([Ji-i-l]) SU(i+2) (Jl T JiJH—l)) )

U(i+1)€ur(bi+1) Ji+1€v4ii+1(n)*fi(n)
I (Jig1)=Uit1

where U2 = (Uyys, ..., Up) € UST?, and

SU(i+2)(J1 s JiJi—i—l) = Z 'u‘]l'”JiJ”l([Ji_;_g .. Jk])
(Jit2,- k) €T (i42)

Notice that the random variables Sy it2)(J1 -+ JiJitr1), where Jiy € Afi“(n)_éi(n) and
IT;(Ji+1) = Uit1, are independent and identically distributed, and independent of the
o-algebra generated by the “Zz—:lvﬁ(]riz)—zi(n)(‘]ﬁl)' Setting L(Ji+1) = Spara (J1-- - Jig1) —
E(Syi+2)), where E(Sy+2)) stands for the common value of the Sp;it2) (J1 - - - Jit1) expec-
tations, we have, for ¢ > 1:

T, q
E( > oy i) Spen (1 -+ Jidia) )
JlJrleAliJrll(n)*ei(n)
0 (Ji+1)=Uit1
B q
< 2071 ( > 17Tyt (i) E(Spern)?
JieAl jjll(")*li(")
I (Jig1)=Uiy1
q
+217'E > Mml( )=t () ([Jit1]) L(Jig1)
Jepre A=t

I (Ji41)=Us 41
16



Assuming that ¢ € (1,2], we can apply Lemma [3.4] to the second term conditional on the
o-algebra generated by the /‘z +1( Dt (n)(JiH) and get

E' Z N€z+1( )— Zz(n)([‘]i-i-l])L(Ji-l—l) '

T €A

IT; (Ji41)=Uit1

<PE( 3wy (Fea])) BOLY)

(n)—2;(n)
1+1€~Ali+11 7

I (Ji41)=Us11

< QqE( Z ,LLZ;I{;L)_&_(”)([JZ-JA])) E(|L|?) (using superadditivity)
L;yq(n)—€;(n)
’L+1€Al+1

I (Ji41)=Us11
= 2 (Mgt 00y oy ([Uisa])?) E(IL]9),

where E(|L|?) = E(|Sy a2 — E(Spar2)]9) < 2‘1E(S[q](z+2)) and E(Sg(z+2)) is the common
value of the E(S;;¢i+2)(J1 - -+ Ji+1)?). Incorporating the last inequality in the previous one,

we get

q
E( Z N&H( )— zi(n)(JiJrl)SU(iH)(Jl"'Ji+1))

Jit1 EAlfll (M=t (n)

I (Jit1)=Uit1
< 23QE(HZ*/Q +1E]Z) —ti(n )([Ui—i-l])q)E(S(q](iJrZ))'

Liy1(n)—4;(n)

Then, taking an arbitrary element J2+1 in A, , we obtain
E(Zq,n(Jl e Jz))
<2 3 By (U)X E(Speen (i Jidien))
Ui 7 Ui+ eyt
= 2% Z E(HZ*'M&H{ )— Zi(n)([Ui"'l])q) E(Zgn(Jr-- Jiji"‘l))‘
UireAl fll(n)*fi(n)

JZ)

Since (pp)p>1 and (ugl p>1 are identically distributed this yields

E(Zq,n(*]l e JZ))
< 2% > E(TLicpty, ()t () ([Uisa))?) B(Zg(J1 -+ JiJi41)).-

(n)—2;(n)
Uit G.Alfﬁrll ¢

It follows that

k
E(qu) < 234k E(Y?) H E( Z i*Wi(n)—&ﬂ(n)([Ui])q)-

=1 UZE.AZ i(n)—€; _1(n)
Let g1 € (1,2] such that T(q) > 0 for all ¢ € (1,¢] (remember that T'(1) = 0 and
T'(1) > 0). Then, for all ¢ € (1,q1], the previous estimate combined with Lemma B3]
17



yields

E(Zgn) < 2T CEBYDE( Y pa([01]))

U1€A’f
k
x exp (= Do (6iln) — £ima(n)) min(T(q), T, ()
1=2
k
= 2PFCFTE(YY) exp (—nT(q) = Y_(6(n) — fimy(n) min(T(q), T, (0)) ).
1=2

Finally, recall that ip = max{2 < i < k : T'(1) < 7,.(1)} (note that for each i the
numbers 7 (1) is the measure theoretic entropy of v; so that the sequence (7, (1))1<i<k
is non increasing). Since 7' and the functions 7, are analytic near 1 and coincide at
1, for all 2 < 4 < 4 there exists qo; € (1,¢1] and ¢; > 0 such that for all ¢ € (1, g ]
one has min(T(q),7,,(q)) = T(q) — ¢i(q — 1), with ¢; = 0 if /(1) < 7,.(1). Taking
co = max{c; : 2 < i <ip} and go = min{qo; : 2 <1 <ip} yields (B1)).

Suppose now that ¢ € (0,1]. We start with giving general estimate of E(Z ,,(J1 - - - J;)).
Using the subadditivity of z € Ry — x? we have

Zyn(Jr--- i) < Z Z N(zi:f(]ﬁ)—zi(n)(ui+l])q Syt (J1 -+ Jidiy1)?,
U(i“)euff“) Ji+1eAfi+1(n)4i(n)
0 (Ji41)=Uit1
SO
E(Zyn(Jy -+ Ji)) < > >, (g iy (Fix1)?)

£;11(n)—£;(n)
Uipr €A 0 g€

TL; (Jigy1)=Uiq1

E( Z Sprray (Jr--- Jiji—l-l)q)

Ui+2) gyt

A‘i+1(n)*5i(n)
1

= E( Z Né:l.t(],i)_gi(n)(Ji—i-l)q)E(Zq,n(Jl T Jiji—irl))
Ji+1€Afi+1(n)*ei(n)

= E( Z lufiﬂ(")—fi(")(Ji-i-l)q)E(Zq,N(Jl T Jiji-l—l))
Ji+1€Afi+1(n)7£i(n)

= exp(~(Ci11(n) — G(n)T(@)E(Zgn (1 - JiToe)):

Starting from E(Z, ) = E(Z,,(e)) and iterating io times the previous estimate we get

E(Zu) < (T] exp(=(6n) — o 0)7(@)) E(Zy(s - To)
i=1

— exp(—Liy (WVT(@)) E(Zyuu (T1 - Tiy))-
18



On the other hand, setting J = J - - - J;, and A(n) = £x_1(n) — £;, +1(n), we can write

Zyn(J)
T T q
SRED DU (D DI (81 0 D DR (¢A))
Ulio+ gyfioth J'=Jig+1 k-1 Ji: Uy (J1)=Us,
IL;(J;)=Uj, Vio+1<j<k—1
J ~ q
- 2. ( ) 1y () Vk([Uk])X(JJ/)) ,
Utio+D gyfoty J'=Tig41Jk—1
I (J;)=Uj, Vio+1<j<k—1
where
JJ
T T T H ([Jk]) .
X(JJ) = Z w?” (Jy), with w!? (J,) = e (U] if v([Ux]) > 0, '
T e (J1)=U 0 otherwise

We can now use the independence of the random variables X (J.J') with respect to the

o-algebra generated by the ,u{(n)([J '), conditioned with respect to this o-algebra and use
Jensen’s inequality to get

E(Zq,n(j)) < Z E( Z lu’i(n)([‘]l])Vk([Uk])E(X(jJ/)))
Ulioth eyt J'=Jig 4150 dk-1
IL; (J;)=Uj, Vio+1<j<k—1

q

But by construction we have vy ([Ug]) = E(ZJk:Hk(Jk):Uk ,uj‘]/([,]k])), hence E(X (JJ')) =
1. Setting

R= > B( > 1 (17D)",

k—1 Li(n)—L;_1(n) J'=J; M
Ui i1sUs)eTTEE A ig+1-Jk—1
( ig+1 k 1) H1710+1 7 HJ(JJ):U], VZO—"‘IS]S]C—I

this yields

EZn(DN <R (Y wllU)7) = R-exp(—(tx(n) — £1(n)Tr (0)).

L. (n)—¢ n
UkE.Akk( )L —1(n)

We can apply to R the same type of estimate as that for E(Z,,(J)), the only change

being that ,uj‘]'([,]k]) = uj‘]io““"]k*l([,]k]) must be replaced by ”Zkfi?rtj;iziz(n)(Jk_l)’ and

TJio 41T .
one now must use the fact that vp_; = E(Hk—l*ﬂzka)—éi,z(n))' Iterating we get

k
E(Zgu(F) exp (= 3 (6i(n) = lia (W) Ty ()

i=ig+1
and finally
k
E(Zgn) < exp (= Lip(m)T(q) = Y (ti(n) = £i1(n))Tr,(0))
i=ip+1



4. THE HAUSDORFF DIMENSION OF K. PROOF OF THEOREM [2.3]

We have to optimise the weighted entropy dimj(,u) over the set of non-degenerate
Mandelbrot measures u supported on K; this will provide us with a sharp lower bound for
dim K. To do so, it is convenient to first relate dim.(u) to hy, (T;) for all 2 < i < k. This
is the purpose of Section Il Then we identify at which point the maximum of weighted
entropy dimension of Mandelbrot measures supported on K is reached. This constitutes
Section Section 43| quickly derives the sharp lower bound for dim K. Finally, in
Section [4.4] we develop a kind of variational principle to get the sharp upper bound for
dim K.

4.1. Mandelbrot measure as a kind of skewed product and decomposition of
entropy dimension. Let p be a non-degenerate Mandelbrot measure jointly constructed
with K and such that K, C K almost surely. As in Section 2.2, we denote by W the
random vector used to generate p. By construction, for any 1 < ¢ < k, the measure

v; = E(Il;,p) is the Bernoulli product measure on X; associated with the probability

vector p() = (pz()i))beA“ where

= >  EW),
acAx: [a}CH;l([b])
and one has v; = m;_1,v;_1 for i > 2. We also define, for b € A;,

Vi([b])_l(Wa)aeAlz[a}Cﬂzl([b]) if VZ([b]) >0

@& _ @) _
Y= (Vb )QEAlz[a}CH;l([bD B {0 otherwise

so that for all a € Ay, for all 1 < ¢ < k, we have the multiplicative decomposition

Wy = Vi(Hi[a]) : Vr([?(a),a-

For 1 <i<kandbe A, set

Ty (q) = —logE > (Vo) (g >0),
a€A1:[a]CH;1([b})

with the conventions 0° = 0 and log(0) = —oo. One can check that
=T (@)
(4.1) e~ Tw(a) — Z vi([b])%e v ’
beA;
vi([b])>0

from what it follows, after differentiating at 1, that
(4.2) dim, (1) = hy, (1) + dim (ulvy),

where

ho,(Ti) = = ) vi([b]) log vi([b])

beA;
is the entropy of the invariant measure v; and

dime(ul) = Y w(@DTyw@ = 3 w®)|{ - X EWsV)
beA,; beA; a€A;:[a]CI !
w0 w0 EAleletL )
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must be thought of as the relative entropy dimension of y given v; whenever this number
is non negative.

Among the Mandelbrot measures supported on K, special ones will play a prominent
role. We introduce them now.

Recall that for 1 < i < k and b € A; = II;(A;), we defined
N =#{ae A :[a] T : [a] N K # 0}
and we also defined the set A; = {b € A, : E(Nbi)) > 0}.
For a € A; such that [a] C II; *([]) let

Tl _ {(E(Ng“))—l if be A and [a] VK #0,

ba 0 otherwise

If v; is a Bernoulli product measure, and W, is taken equal to Wa = I/Z(b)f/;)(;) for all
a € Aj such that [a] C IT; ([b]), and if Tév/(l) > 0, we get a new Mandelbrot measure that
we denote by f,,. By construction, v; = E(II;,4,,), and

(4.3) dim (pu:|vi) = 3 wi([B]) log E(N).
beA;

Remark 4.1. The following basic observation will play an important role. Given a non-
degenerate Mandelbrot measure p supported on K and 2 < i < k, for each b € A; such that

vi([b]) > 0, the function Tvb(i) is concave, takes value 0 at 1 and —log E(Nbl)) at 0, so it
s bounded from below by the linear function T‘7b(i) :q— (g—1)log E(Nb(i)). Consequently,
T"/b(i)(l) < T‘L/b(i)(l) = 10gIE(NéZ)). It then follows from (&2) that T;T/(l) > 0, and p, is
non-degenerate.

Remark 4.2. The reader will also check that when p,, is non-degenerate, for all2 < i <
i—1, denoting E(IL; ,u,) by vy, one also has W, = Vi/(b’)ngfa) for allt/ € Ay and a € Ay
such that [a] C T, ' ([b]). Consequently, Py = f;,and

dime(p,) = hoy(T) + 3 vi([(B) og EN = by, (Ti) + 37 v ([B']) log E(VS).
bEA; YA,

Also, if v; is fully supported on j(vi, then K, = K almost surely.

4.2. An optimisation problem. The following result invokes several definitions given
in Section 1, especially in Sections and 231

Theorem 4.3. Let

M7 : = max{dimJ () : p is a positive Mandelbrot measure supported on K, C K}.

On has

e Piy(0:y) ifio <k
P(1) ifig=k+1’

and the maximum is uniquely attained at p,,

iQ ¢i0 :
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Now let us introduce some definitions and make some observations (Remark F.4]).
For1<i<k,sety=v+ - +.

Given a non-degenerate Mandelbrot measure p supported on K, v; still standing for
E(IT;, u), for 2 < i < k define

i—1 k
di(p) =Y vj dime(p) + > b, (Ty)
j=1 J=i

k
= Ji-1 (Z Vi([b])T{/(i)(l)> + 3ihu, (T) + > b, (T))
beA; b

j=it1

and dy11(p) = ( PRZA()) T{/bm(l)) + Akl (Ti)-

be Ay

For2 <i <k, let B; lf)ve the set of Bernoulli product measures v; on X; whose topological
support is included in X, i.e. such that v;([0]) = 0if b € A;, and v; is not a Dirac mass.
Also, for v; € B; define

' k
(4.4) Di(vi) = % (z vi([b]) log ENS’) i (T + S 2, (1))

beA; j=i+1

(4.5) and Dk+1(Vk) = ’N}/k ( Z I/k([b]) log ENb(k)> + ’NYthk (Tk),
be Ay,

where v; stands for the projection of v; to Xj.

Given v; € B; and the random vector W = (l/i(b)‘?/b(’i))aeAl,b:Hi(a) defined in Section [A.T],
if Tl%/(l) > 0, recall that the associated non-degenerate Mandelbrot measure p,, is so that
v; coincides with E(II;,pu,,). We also define v as E(II;,u) for 1 < i < i. We also note

that if Y "pe 4, vi([b]) log ENb(Z) > 0, it is direct from the differentiation of (A1l at 1 that
Tl%/(l) > 0 since v; is not a Dirac mass; moreover, d;(u,,) = D;(v;).

The following subsets of the B; will play a natural role. Let

. > via(p)log NV <0
Bi =V € Bz DS beAd; ' (2 <i< /ﬁ)
Shea, vil[1]) og EN,Y > 0

and By, = {I/k € By : Z Vk([b])logENb(k) < O}.

be Ay
Then we set
(4.6) D; = max{D;(v;) : v; € B;} (2<i<k)
(4.7) and Djy1 = max{Dj41(vg) : v, € Bys1},
with the convention that max(f)) = —oo.

Remark 4.4. Let 2 <1 < k, v; € B;, and 11, ...,v;_1 defined from the non-degenerate
Mandelbrot measure j1,, as above.
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(1) If i = 2, the inequality > pe 4, v1([]) log ENb(l) < 0 always holds and it can be strict
only if K is not deterministic since Nb(i) <1 for all b € A1 almost surely.

Also, due to Remark[{.9 and the fact that the entropy cannot increase after projection,
if i > 3, and the measure p,, is non-degenerate, then Y pc 4, vi([b])log ENéi) < 0 implies
Swea, vi(D]) g ENY) <0 for all 2 < < i.

(2) If i > 3 and the measure u,, is non-degenerate, then

Di—1(vi-1) — Di(vi) = di—1(p;) — di(pau;)

= Yi-1 (hl’ifl(Ti—l) - hui (Tz) - Z I/Z([b]) log ENb(Z))
beA;
Consequently, Y e 4, Vi([b]) log ENb(i) < 0 implies di—1(p;) > di(py,). Also, if i = k, then
di () — di+1 () = =Yk Zbea, ve([b]) log ENék). Hence dj, (1) > di+1(0,) if and only
if Yhea, vi([B) log EN® < 0.

Theorem (4.3 follows from the two lemmas established below.

Lemma 4.5. One has M7 = M7 := max{D; : 2 <i < k+1}.

Proof. We first remark that given a non-degenerate Mandelbrot measure p supported
on K, if 2 < ¢ < k, v; = E(Il;,pr) and p,, constructed as in Section K., we have
K, C K, almost surely and dlme(,u\uz) < dime(p,|vi) conditional on {u # 0} (see
(.3) and Remark E.T), hence dime(u) < dlme(,u,,) Also, by definition, dim)(p) =
min{dy (), ..., dp1 (1)}, hence dim? (1) = d;i(p), where i = min{2 < j < k : dime(p) >
hy;(T})}, with the convention min(()) = & + 1.

The previous observations together with Remark @4l imply that: (1) the supremum M7
we seek for is reached for a measure p of the form p,,, 2 < i < k; (2) Suppose that such a
Mandelbrot measure is given, and dimj(,u) = d;(p) for some 2 < j < k+1; it is necessary
that Vv € gj. U

Recall that ig was defined just before the statement of Theorem 2.3]

Lemma 4.6. M7 is reached at Dj,. Moreover, Dj, is uniquely reached at vi, = vp, ¢, -

Also, M7 is uniquely reached at L and it is equal to

P ifip=k+1"

Proof. 1t is rather long and will consist in distinguishing three situations.

At first we notice that the observation made in the last paragraph of the previous
proof shows that if 2 < ¢ < k and E(Néj)) < lforall 2 <j<iandb € Aj, then

M7 € {D;,...,Dips1} (recall [@B) and @7T)).

Now, let jp be the infinimum of the set of those 2 < j < k such that E(Nb(] )) > 1 for
some b € A; if this set is not empty, and jo = k + 1 otherwise. Below we discuss the three
situations jo = k + 1, jo = k, and jy < k — 1. The two first ones are enough to cover the
case k = 2.
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e Suppose jo = k + 1. It is necessary that M7 = Dy, and optimising yields

L — B
k([b]) - Eb/eAk E(Né,k))

for all b € A, and M7 = Dy 1(1p) = Pﬁk)(gbk,Tk) = Py (1), that is v = vy,. Thus, M7
is uniquely reached at the Mandelbrot measure p,, with v, = vy, . Moreover ig = k + 1.

e Suppose jy = k. We first consider the optimisation of Dy(vy) over v € By rather
than By,.

Recall from Section [2.3] the definition of Pj(6) and vp4, for 6 € R. It is standard that
(4.8) Pu(6) =T log 3 E(NM)?
be Ay
and vpg, is the Bernoulli product measure such that
k
(W)’

V9¢>k([b]) = (k) (Vbe-;(i)'

Svea, E(N,7)?

We also know that

(4.9) PL(0) = Y vog, (b)) log E(VD).
beAy
Now, recall that for vy € By, Di(v) (see the definition (4.4])) rewrites
Di(k) = oy (1) + 3 vel(b]7in "= 1o BNG) =30 (R (Ti) + [ Buon() don(e)).
be Ay k

where we recall that for 2 <7 < k, we defined

g, = 71+'~+%—1‘
Yt

Consequently, the optimum of Dy (vy) equals Pk(gk) and is uniquely reached at vy, = v

kPr

For simplicity we denote by .

e
Ordr
We now distinguish two cases.
First case: Y jc4, Dk([b])logE(lek)) > 0. In this case 7 € By and Dy(5y) = Dy.
Moreover, if v, € By, and Y pe 4, vk ([b]) log E(Nék)) <0, i.e. vy € Bpi1, then
D1 (k) = oy (1) + 3 >, vi([b]) 1og E(N,) < D),
be Ay
. . . (k) _ _ -~
with equality only if Y"pc 4, vx([0]) log E(N,’) = 0. Consequently Dy 1(v) = Di(vi) =
Dy, (%), only if v, = . This implies that M7 is uniquely reached at the Mandelbrot
measure [, with v, = 7. Also, 79 =k, and 6;, = 0.

Second case: Y ,c4, Uk([b])log E(Nék)) < 0. In this case, the maximum of Dy ()
whenever v, describes By, is reached under the constraint >bea, Vk([b]) log E(Nék)) = 0.
Indeed, let v, € Ek at which this maximum is reached, and let p and p be the probability
vectors associated with 7, and Dy respectively. If Y pc 4, Di([0]) log E(Nb(k)) > 0, let A be

the unique element of (0,1) such that Y pc 4, (AT ([b]) + (1 — A)Dg([b])) log E(Nb(k)) = 0.
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Then the element vy, of By, associated with Ap+ (1 — A\)p is such that o, (Ti;) > Mgy (T) +
(1 = N, (T), so Dg(v) > Dy(Dy). This contradicts the definition of 7.

Now, we notice that our assumption on 7, namely Y pc 4, Vk([b]) log E(Nék)) < 0, im-
plies the strict convexity of Py (see (4.8])). Then, using Lagrange multipliers, we see that
our optimisation problem has a unique solution v, = 144, in the case that there exists
0 € R (necessarily unique) such that

> v, ([B]) og E(NM) = 0.
be Ay

Moreover, due to (4.9) and our assumption on 7 we have P,g(gk) < 0. Thus, since Py is
convex, if such a 6 = fy exists we must have 6y > ;. Also vy,4, € Bit1-

Now suppose that 6y does exist and recall that max{Dy11(vx) : v € By} is reached
at vy, .

If §y < 1, by strict convexity of P, we must have P(1) = Y pc 4, Vg, ([0]) log E(Nb(k)) >
0, with equality if and only if 6y = 1. If the inequality is strict, an argument al-
ready used above shows that Dyi1 must be reached by a measure v € ng such that
Sbea, Vk([b]) log E(Nb(k)) = 0, for which Dy (vy) and Dj41(vk) coincide, so we find that
Dy.41 it is reached at vg,4, as well; in particular Dy, = Djyq. If 0p = 1, for similar reasons
we still have Dy, = Dy 1, both reached at v, . Consequently, MY =Dy, = Dy 1 and this
supremum is uniquely reached at the Mandelbrot measure p,, with v, = v4,4,. Notice
also that in any case, i9p = k and 6;, = 6p.

If 6p > 1, this time the strict convexity of P implies both Dy1(vg,) > Dit1(Vaye,) =
Dk(”%@c) and ZbE.Ak I/¢k([b])10g E(Nék)) < 0. So Vg, € gk-ﬁ-l and Dyiq > Dg. It follows
that M7 is uniquely reached at the Mandelbrot measure My, With v = v, . Here ig =
k+1.

If there is no # € R such that Y pc4, V(;d)k([b])logE(Nb(k)) = 0, this implies that
E(Nb(k)) < 1 for all b € Ay and Dy is reached at vy such that for b € Ay, v([b]) > 0
implies E(Nb(k)) = 1, which after optimisation yields v ([b]) = 1/#{b € Ay : E(Nb(k)) =1}
Thus, D, = Dy(vi) = Frlog#{b € A, : E(N) = 1} < Filog Yhen, E(NY) =
Dj41(vg,) = Diy1. Here, the strict inequality comes from the fact that since we have
Sbea, Vk([b]) log E(Nb(k)) < 0, there is some b € Ay, such that E(Nb(k)) < 1, and the last
equality holds since all the log E(Nb(k)) are non positive, hence vy, € l§k+1. Finally M7 is
uniquely reached at the Mandelbrot measure p,, with v, = vy, , and here again ig = k+1.

Remark 4.7. The previous discussion proves that the conclusion of the lemma holds true
when k = 2.

e Suppose that jo < k — 1. This assumes k > 3. As in the previous case we first
consider the optimisation of Dj,(v;,) over v;, € Bj,. To this end we write

it seenr1s) ~ ~ ;
Djo(’/jo) = hV;{é(ﬁl ke (Tjo-i-l) +’onth0 (Tjo) + Yjo-1 Z Vjo([b])IOgE(Nb(]O))
bGAjO
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in the form (recall the definition of 6;, in ([E2)):
(4.10)

(N. ARG )
Djo (Vjo) = hv?ffﬁl b (Tjo-i-l)

+ 3 v (@) S0 —p(blb) log p(b]b) + p(b[b)8, log E(N),
bEAj 41 bedj,
o (B)=[)

L[b]) if o1 ([8]) > 0

p(b[b) = { vjp1([B])
0 otherwise.

where

By definition of jo, we do have Yyeu, Vjo_l([b’])logEN(,jo_l) < 0 for all vj, € Bj,.
As mentioned above, we first ignore the requirement Y e 4, vjo([0]) log ENb(j %) > 0 which

would hold if we directly optimised over gjo' Then, the above expression for Dj (v;,)
implies that optimising given vj,11 yields p(b|b) = pz (b[b), where
Jo

E(N(jo))e ‘ R
N Z : E(N(jo))g if Vjo-i-l([b]) >0,
(4.11) pe(blb) = N v
VEeA ) mj, (['])=[b]
0 otherwise

Thus, given vj 11 € Bj,+1, if for § € R we define

Djo(Vj0+179) — h(’?joﬂw-ﬂ/k)(z—:jo_‘rl)

Vip+1
+ Y (BT Y —pe(blb) log pa(ble) + pu(blp) - 0 log E(NS)
beAj+1 beAj,
750 (1)=[0
= T )+ Y (@) Aplos Y BN,
bEAj)+1 beAj,
50 (1) =[0

then we have

max{Dj,(vj,) : Vjy € Bjo, Tjo,Vio = Vig+1}

~ (Vi 410eVk) ~ DN’
= Djo(Vjor1,050) = b 25 (Do) + Y vigni (D) -Fjlog > E(NIY).

EG.AJ'OJA be'AjO N
mjo ([0])=[0]
Set vj, = v5 . By definition of this measure, denoting ;,,v;, by 7;,4+1 we have

030 %30
Djo (ljjo-i-lv Hjo) = SuP{Djo (Vjo-i-l’ejo) PVjg+1 € Bjo-l-l} = P(ﬁ{jo ,’Yj0+17~~~7“/k)(¢5j0¢j0’Tjo),
and the supremum is uniquely reached at 7,4 1.
As when jo = k, two cases must be distinguished.
First case: Yy 4, 7 ([b]) log E(N*)) > 0. Then 7, € Bj, and d, (15,,) = D7) =

Dj,. Also, given vj 41 € Bjy+1, recalling that v, stands for E(IL;, Ly, 1), if the inequality
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> e, Vio([0]) log E(Nb(jo)) < 0 holds, which is the case if v;,4+1 € Bj,11, by definition of
the convex function Dj,(vj,+1,), this function has a non positive derivative at 1. Indeed,

5 EOVE) log (V™)

2obe Ay, (1)=0
Z V]o-i-l i Jo o (1)) =[0)

ey i Ly, (8)=0
. Vjor1([0) (o) (o)
=% 2. R b; E(N) log E(N*))
beEA;)+1 b € Jo
70 (D=0

=i 3 vi([0]) log E(NI™)
bEAjO

D] V]O+17

(N(]O))

by definition of vj,. Consequently, noting that Dj,+1(Vjo+1) = Djy(Vjo+1,1), we get

(4.12) Djo-l-l(’/jo-i-l) < Dj, (Vjo-i-la 0j0) < Djq (Djo-i-lvejo) = Dj,.
Consequently, Dj,+1 < Dj,.

Also, the previous inequalities are equalities if and only if the derivative of the convex
analytic function Dj, (vj,+1, ) vanishes over [0, 1], hence vanishes everywhere, and vj, 41 =
Vjo+1; Dotice also that in this case Y pe 4, vjo ([b]) log E(Nb(jo)) = 0. This implies that v}, €
Ejo and D(vj,) = D(vj,), so Uj, = vj, hence the Mandelbrot measure p,, ,, associated
with v;,11 coincides with the measure M associated with ;.

Now, let jo +1 < j < k and v; € gj. For all jo < i < j, denote by v; the
measure E(TL;,p,,). Remarks A4(1) and (2) yield D;(v;) < Djoy1(vjpy1) as well as
DbeA;, Vjo([b])logE(Néjo)) < 0, so again Dj,41(vjo+1) < Dj,. Also, if j = k and

> . k
Uk € Big1, then Dy 1(vy) < Dp(vg) < Djog1(Vjg+1), since S pea, vi([0]) log E(Nb( )) < 0.
In all these cases, again the same argument as above implies that if there is equality
Dj(vj) = Djy+1(Vjo+1) = Dj,, then the Mandelbrot u,,; associated with v; coincides with
the measure M associated with 7. In particular, M7 is uniquely reached. Moreover,

we have iy = jo, and 0, = gjo-

Second case: Y pea; Vjo([b])log E(Nb(jo)) < 0. Since by definition of jp the set gjo
is not empty, proceeding as when j, = k we can show that the value Dj, is reached
at a measure vj, such that Y e 4, vjo([0]) log E(Nb(jo)) = 0 (notice that again due to

Remark A.4] one has automatically >7pe4; , Vjo—1([b]) log E(Néjo_l)) < 0). Thus, we seek
for the optimum of Dj,(v;,) (see (£I0])) under the constraint

(4.13) > vin(B) Y- pbfb) g E(VS) = o.
/b\E.AjO+1 be‘AjO
Using the Lagrange multipliers method shows that this approach yields the maximum if
and only if there exists a real number 6y, not depending on vj,11, such that given ;41
one has p(b|b) = pg,(b|b) (recall the definition (ZITI]) of pp(b]b)).
Suppose that such a 0y exists. It is then straightforward to check that if the optimum is

given by this method it must be reached at vy, and equal to Pio Yio-+1r--+7k) (Bodjy, Tjy) =
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Pj,(0p). Recall that by ([2.17) we have

PlO) =75 Y. Vs, ([0]) log E(N)).
bG.AjO

This implies that 69 > gjo, since P}, is convex, (4.13)) is equivalent to P]{O (6o) = 0, and our
assumption on vj, asserts that ijo(go) < 0. Also, 6y is the infimum of those 8 > 50 such
that e, s, (1) log E(N,) > 0.

Now suppose that 6y < 1. Then (@I2) holds for any vj 41 € §j0+1, with 6y instead
of 5]'0 and vgyg, instead of vj,. Consequently, by the same argument as in the first case
we can conclude that Dj, is reached uniquely at Yooy, and it is not smaller than D; for
Jjo <j <k+1. Also, M7 is uniquely reached, iy = jo, and 6;, = 0.

If 6o > 1, we see from the definition of the convex function Djy(mj,,6,¢,,.-) and the
property Pj (6o) = 0 that D’ (7jy,Ve,e;,+00) = 0. Thus, by convexity, Dj,+1(mj,,Voye;, ) =
Do (o u V0050, 1) = Djo = Dijo(mjo,Vaee,, - 00), With either strict inequality or the func-
tion Dj, (ﬂjo*ygo¢jo,-) is constant. In the former case, using the definitions we see that
Dy (Tjo V00, 1) > Djy precisely means

> Tiouios, ([B]) g E(NI ) > 0.

bGAjO+1

This implies that 7j,, V.0, € gjo-l-l and Dj; < Djj41. In the latter case, the fact that
Dj, (7Tj0*l/90¢j0, -) is constant implies, using the expression of this function, that for all
be Aj,+1 such that Wjo*Veo@o([B]) > 0 the function 6 — Z E(Néjo))g is constant.
beAj,
mjo (0)=[)
We conclude that in all these expression E(Nb(jo)) = 1, which contradicts the fact that

Pj(0j,) < 0. Hence the latter case is empty.

If there is no ¢ € R such that Pj (§) = 0, then E(Nb(jo)) < 1 for all b € Aj,, with

E(Nb(jo)) < 1 for some b € Aj,, and E(Nb(jo)) = 1 for some other b € Aj, (by definition
of jo). Moreover, since a measure v;, at which Dj, is reached belongs to Bj,, we have
vj,([b]) > 0 only if E(Nb(”)) = 1, otherwise we would have ZbEAjO vj, ([b]) log E(Nb(”)) < 0.
In particular, this implies that vj,41([b]) > 0 only if E(Ng(] OJrl)) > 1. optimising D, (v;,)
given vj 41 then yields (remind (4.10)), after defining Ng(jﬁl) = #{b e A, : ;)b =

b, B(NI) =1}:

~ JyNPtY i R(NY) =1,
p(blb) = b :
0 otherwise
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Consequently,

(N' [ARRY) ) ~ N A7 (jo+1
Diy (o) = huys ™" (Tjo 1) + i > Vjo+1([b]) log Nﬁ(m )
/b\E.AjOJrll N/b(\JO+1)7éO
(N. PARAS ) ~ o y +1
< )+ X v (B) g EQGTY)
/b\G.AjO+1Z ﬁ/l?(\j0+1)750

= jo+1(’/j0+1)a

~

where the last equality comes from the fact that v 41([b]) > 0 only if E(Nz(jOH)) > 1.

Moreover, this inequality is an equality only if E(Ng(jOH)) = Ng(jﬁl) when ]vg(jﬁl) # 0

and l/j0+1([/5]) > 0. We automatically have =5 » Vj0+1([3])log E(Ng(jOH)) > 0, hence
~ 70

Vjo+1 € Bjo+1- S0 Djy < Dot

We can now conclude. If ig < k, either ig = jo, or Dj, < ... < D;,_1 < D;y, and Dj, is
reached at P Moreover, the discussions of the first case and the second case when 6
ig ?ig _ =
exists and belongs to [6,,1] are valid for ¢y and 6;,, so M7 is uniquely reached at P,
ig Vig
If ip = k+ 1, we have D;; < ... < Dy, and we are back to the second case jy = k, 0
exists and 6y > 1, or 6y does not exists. This yields the desired conclusion. O

4.3. Lower bound for the Hausdorff dimension of K. The sharp lower bound comes

from the optimisation problem solved in Section Consider the unique Mandelbrot

measure j = fi,, , obtained there. By construction the measure p is fully supported
20 70

on K conditional on K # (), because Vo,y i is fully supported on XVZ-O if ig < k and Xvk
otherwise. Also, the assumptions of Theorem are fulfilled for p, and the Hausdorff
dimension of y provides the desired lower bound for dim K.

4.4. Upper bound for the Hausdorff dimension of K. Let us start by discussing a
first possible attempt to show that dim K < D, (recall the definition (£.6])). We could
expect to use the measure yu = Hvo, o, of maximal Hausdorff dimension D;, and show
that dimy,.(p, z) < D;, everywhere on K; this is the approach used by McMullen as well
as Kenyon and Peres in the deterministic case; it would make it possible to conclude quite
quickly. In the random situation, we can show that this approach via the lower local
dimension works in the case when Nb(2) > 2 almost surely for all b € .Zg; say in this case
that K is of type I. This requires quite involved moments estimates for martingales in
varying environments. Notice that in this case we have ip = 2 and 0y = 71 /(71 + 72).
The type I makes it possible to treat the case of a slightly more general type of examples,
still quite close to the deterministic case: ig = 2, 62 = v1 /(71 + 72), and it is possible
to approximate K by a sequence (K (p))peN of random Sierpinski sponges of type I in
the sense that K ¢ K® for all p € N, MNpen K® = K, and lim, o0 dim K®) = D,.
A sufficient condition to be in this situation is that ¥9(0) < Wa(y1/(71 + 72)), where
Uy (0) = > pea, E(Néz))e (this condition obviously holds for examples of type I).
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Thus, regarding the lower local dimension approach, it remains open whether or not
in general it holds that dimy,.(u,z) < D;, everywhere on K; moreover, the sufficient
condition just stated to get the sharp upper bound for dim K is not at all satisfactory.

The alternative is to examine the strategy that Gatzouras and Lalley adopted for the two
dimensional case. Their approach is inspired by Bedford’s treatment of the deterministic
two dimensional case, and it uses effective coverings of the set K to find the sharp upper
bound for dim K. These coverings are closely related to a combinatoric argument due
to Bedford. But this argument turns out to be hard to extend to higher dimensional
cases. Below, we use a different, though related, combinatoric argument, which yields nice
effective coverings as well, but works in any dimension. Also, in the deterministic case
and in any dimension, it provides an alternative to the argument using a uniform bound
for the lower local dimension of u. However, and interestingly, our argument uses a slight
generalisation of a key combinatoric lemma established by Kenyon and Peres to get this
uniform bound.

We now provide a general upper bound for dim K, expressed through a variational
principle.

Theorem 4.8. With probability 1, conditional on K # (),
dim K <inf {P(6): i1, 6;<0<1}.

The sharp upper bound for dim K follows since by Theorem [4.8], if ig < k, taking 6 = 6;,
yields the upper bound dim K < P; (6;,) = D,, and if i9 = k+ 1, D1 = Pi(1) is an
upper bound for dim K as well.

Before proving Theorem [1.8] we need to introduce some new definitions, and to make
some preliminary observations.

Let2§i§k:and§i§0§1. For v; € B; set

k
(4'14) 20 Vz =70 Z Vz IOgE ()) +§74hl/1(1174) + Z 7jhni,j*vi(Tj)
beA; j=i+1
(in particular Di,@-(yi) = D;(v;), recall (24) and (44)), and for p = (pi, pi,---,px) €
Bi X H‘I;:Z Bj, set

(4.15) = 70 Z pi([b]) log E( N( )) +7ih pz )+ Z Vil pg
beA; j=i+1

For each 2 < i < k. We endow the set B; x ]_[f:i B; with the distance
. N N. —_ —_ /,
i, o) = masx (s i) — PP, mmasx max;([8]) = (0.

which makes it a compact set. Let

k
(4.16) R; = {p € B; x ng : Diﬂ(p) < PZ(Q)}
j=i
Ri The set R; is compact. For any e € (0,1), R; can be covered by a finite collection of
open balls {B(p(m),e)}lngM(E). Moreover, if € < min{(#A4;)"! : 1 < j < k}, we can
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assume that for all m the components of each probability vector p(™) are not smaller than
€/2.

For x € X1, 2 < j <k, and n € N* we define pj(z,n) to be the Bernoulli product
measure on X; associated with the probability vector whose components are the frequences
of occurrence of the different elements of A; in II;(x)),, namely the vector (n~1#{1 <
m < n: ILi(2)m = b)eea,- Also, let

(4.17) p(z,n) = (Pis Pi- - Pk,

where

pi = pi (z,[06:(n)]) . pi = pi(z,Li(n)),
pj = pj(Tfjfl(n)a:,ﬁj(n) —li—1(n)) Vi+1<j<k.

Now, for any n € N* and U = (U;,...,Uy) € Afi( X H] ZHAZ 7)== 1(n), we can
define p(U) = (p;(U), p;(U),...,pr(U)) as equal to p(z,n), for any z € X; such that
Wi(z1 -+ @gn)) = Ui and (g, ()11 Te;n)) = Uy for all i +1 < j < k. Note that
pi(U) depends on U; only, so we also denote it by p;(U;).

Then, for each 1 < m < M (e) and n € N* we set

k
Ri(e,m,n) = {U e AHM 1T Aﬁj(")_gjfl(") - p(U) € B(p™, )}‘
Jj=i+1
It is standard to observe that if U; € .Afi(") is such that |p;(U;)([b]) — Pgm)([b])’ < e for all
b € A; then

m i(n)p; m n m) m
) Uj]) = H Py )([b])fz( )pi(U)([B) > H Pz( )([ Li(n)p;  ([0] H p;

beA; beA; beA;
> exp (= li(n)(h o (T3) + €log(2/€)) ),

Consequently, the cardinality of the set U ¢, of such U; is bounded from above by
exp (£i(n ) (Ao (T, )+ elog(1/e))).

Similarly, for each ¢ +1 < j < k, the cardinality of the set U, of those U; €
¢

Ajj(n)_zjfl(n) such that |p; (U;)([b])— pgm ([b])] < eforall b € A; is bounded by exp ((ﬁj (n)—

Ej_l(n))(h (m)( i)+ elog(2/e))). Since by definition of R;(e, m,n) we have R;(e,m,n) C

Hf:j Z/[“,m,n, the previous observations yield

R (em.m) <[] )
k
(418) < oxp (Cu(n)elog(2/e)) exp (Lilm)h o (1) + 3 (£3(n) = Lma(m))h oo (1))
j=i+1 ’

We also notice that if we endow X; with the metric
G 5 @) ATLG ()]

dzi(z,y) = max (e et <5< k‘) )
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the balls of radius e~ ™1 in X4 pI"OJeCt to the balls of the same radius in X;, which are
£i(n)—Lj—1(n)

parametrized by the elements of Afi x 1% imir1 A , in the sense that such a ball
takes the form By = {y € X; 1 y1---yp,(n) = Uz,ygjil(n)ﬂ Yy = U Vi+ 1< <k}
for some U in Afi(n) X H?=i+1 Aﬁj (m)=tj-1(m) Moreover, given such a ball By, I, 1 (By)N K
is covered by, say, a family B(U) of ny balls of radius ¢ 71 which intersect K. Each
of the N[(JZ)MZ o

to [UM@.%( )] in X; via II; intersects only one such ball. Indeed, for such a cylinder
Vi Vi, (n)], the data ILi([Vy,_ (nys1- Viyml), 1 < J < i—1, and By determine a

unique ball B of X such that II;(B) = BU This implies ny < N[(])

cylinders of generation ¢;_1(n) in X; which intersects K and project

Consequently,
e _q(n)”

for every integer ¢ between ¢;_1(n) and ¢;(n), we also have ny < N[(Ji)\e' In particular,
(4.19) ny < N9
’ = Uiree; ()"
The following lemma, whose proof we postpone to the end of this section, will play an

essential role to find effective coverings of HZ(XV 1), and then of K. Let us mention at the
moment that in this lemma (1) = (2) = (3). ALSso, recall the definition ([@.I6]) of R;.

Lemma 4.9. For all x € Xl :

(1) liminf, o0 Dig(p(x,n)) — Dig(pi(e,n)) < 0;

(2) liminf, 13@9(/)(3;,71)) < Pi(0);
(3) there exists p € R; and an increasing sequence of integers (n;)jen such that p(x,n;)
converges to p as j — 00.

Proof of Theorem [{.§ It follows from Lemma [£.9(3) that given ¢ > 0, for all z € X1,
there exists 1 < m < M (e) such that II;(z) belongs to Urer, (e,mn) Bu for infinitely many
integers n. As a result, for all N € N*) we get the following covering of K:

M (e)

kcUuy U UB

n>N m=1UeR;(e,m,n) BEB(U

Thus, given s > 0, the pre-Hausdorff measure H*_ . of K is bounded as follows:
e M

M(e)

Z Z Z Nl(]?\ [0¢;(n)1 e

-4
e n>N m=1UeR;(e,m,n)

Consequently, denoting by (U;), the ¢-th letter of Uj,

(%)
E(He ’Yl ) Z ¢ 71 Z Z E(NUi\fwi(nﬂ)
n>N m=1 UERl(emn)
M 04,(n)
= ey, D H E(NG,)
n>N m=1UeR;(e,m,n) (=1
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and using the definition of p;(U) to reexpress the right hand side of the last inequality,
this yields

B(H y () < X e >y exp ([06:(n)] 3 pi(U) (b)) log E(N,?)).

e M n>N m=1UeR;(e,m,n) beA;

Now we use the fact that U € R;(e,m,n) means that d(p(U), p"™) < ¢, to get a constant
C; independent of m, U and n such that

S AU () g BN < Cie + 3 5™ (b)) log E(N).
beA; beA;
We then obtain:

B (1) = 3 ¢ o

n>N
M (e) .
3 #ERi(em,m) exp ([06:(n)] 3 () log E(NS)).
m=1 beA;

Using ([4.I8)), the fact that |¢;(n)— Wﬂ < 1foralll <j <k, as well as the definition
of 5i79(p(m)), we deduce that there exists a constant C; such that for all 1 < m < M (e):

(#Ri(e.mn)) exp ([06:(m)] S 5™ ([8]) log E(N))

beA;
C; exp (£(n)elog(2/e)) exp (%ﬁi,e@(m’))

C; exp (ﬁk(n)elog@/e)) exp (%P,(H)) (recall that p(™ € R;).

IN

IN

Upon taking C; = 5@ big enough, we conclude that
E(H* x (K)) < CiM(e) 3 exp (= (5 — P(0) — Cielog(2/e))).

e M n>N 71

If s > P;(0)+Cielog(1/e), this yleldsE(ZN>1H w0 (K)) < 00, 50 limy o My (K) =
1

0 and dim K < s almost surely. Since this holds for any fixed € > 0 small enough we get
dim K < P;(0) almost surely.

_ The previous upper bound is easily seen to hold simultaneously for all 2 < < k and
f; < 0 < 1 since its holds simultaneously for all 2 < ¢ < k and rational 8; < # < 1, and
the mappings 0 — P;(#) are continuous. This yields Theorem [£.8] O

Proof of Lemma[{.9 That (1) = (2) follows from the fact that P;(0) = max{D;¢(v;) :
v; € B;}, and (2) = (3) is immediate.
Let z € X;. To prove (1), we are going to show that there exists J € N* as well as J

bounded sequences u; : N* — R such that lim, o u;(n + 1) —u;j(n) = 0, and J couples
(a4, B5) € R such that for all n € N*,

. J
(4.20) Dig(p(z,n)) — Dig(pi(z,n)) < & + > ui([Bn]) — uj([ayn]),
j=1
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with lim, o €, = 0. The desired conclusion is then a direct application of [23, Lemma
5.4], which is a slight extension of the combinatorial lemma used by Kenyon and Peres
[34, Lemma 4.1].

To prove ([20), noting that II; ; p;(z,n) = pj(xz,n) for all i < j < k, and using
the respective definitions of D; ¢ and D;g, we can write, after defining the sequences
vi(n) = 50 Shea, plar,n)([b]) log E(N,”) and w;(n) = iy, ) (T)):

k
Dig(p(w,n)) = Digp(pi(w,n)) = vi([04:(n)]) = vi(n) + Y w;(¢;(n)) = w;(n)

k
n e T) = by oo o (T5)).
j:zi;rl%( et sty 1)~ Pyt () (T5))
Note that each u € {v;, w;, ..., wg} is bounded and does satisfy lim,,_,oc u(n+1)—u(n) = 0.

Also, it is easy to see using the definitions and the convexity of x > 0 — xlog = that

(m) (T3) = hp, (a5 (T5)

oo
(T 00, ()~ 1 (n))

tj—1(n)
ot (T = By oo (T)).
S 50 — 61 Pestets ) T3) = Py sty o) (1)

Setting a; = %, this implies that

v (h (Ty) = hpj(@e; ) (T5))

oy (T by ()t )
Y-
< =2 (wy(Tagn) = wj(fag-an])) +o(1).
j
Moreover, v;([64;(n)]) — vi(n) = vi([0a;n]) — vi(n) + o(1). Finally [@20) holds. O

5. THE BOX COUNTING DIMENSION OF K. PROOFS OF THEOREM AND
COROLLARY 2.7

Proof of Theorem [2.]. Here again, without loss of generality we assume that all the ~; are
positive.

We will use in an essential way the result established in [24, Section 4], which deals
with the case where k = 2, my = e " and my = e~ M+72) are integers, and with the
Euclidean realisation of K. It is worth noting that this result is strongly based on a result
by Dekking on the asymptotic behaviour of the survival probability of a branching process
in a random environment [13].

We first need to describe the balls of radius e 7 which intersect K. For n € N*, we
saw that the set F,, of balls in X of radius e " equals the set {By : U = (Uy,...,Ux) €
1%, Afi(n)_zifl(n)}, where

li_1(n .
By ={ye Xt W W)ty = Ui, Y1 <i <k},
Thus By N K # () if and only if the event
k
Ey = {EI (wi)1<i<k € H.Afi(n)_&’l(n) . both F (uy,...,uy) and K%%2 Uk -£ () hold}

1=1
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holds, where for all 1 <i <k

| () =Uj, Y1 <j<i
(U17U27---7U1) P — J U u]7 U ’
FZ. (U17---7uz)—{ [ ]mel(n2) j—1 #@7v1§j§i}

£i—1(n)

(note that necessarily u; = U;). For 2 <i <k and (Uy,...,U;) € H] 1_,4[ i ()=t (n )7 we

set

EZ'(Ul, o 7Uz) = {3 (Uj)lgjgi € H A?(n)_ejil(n) : F’Z-(U17U27"'7Ui)(ul, AR ,ui) holds }
j=1

(note that E1(U;) is simply the event {[U1] N K,, # 0}). We deduce from [24, Section 4]

that conditional on K # (), we have

1y Jog #H{(U1, Un) € Af x A2 By (U, Us) holds}

n—oo n

:m@%@+%w@»
log #{U1€A7: 1 (Un) holds} __ (E(# ) >
0, and given U; € A7 such that [U;] N K,, # 0, the number of those U, € A " such

that E5(Uy,Uz) holds is a random variable Zj g, (n)—n(U1), so that the random variables

Z,05(n)—n(U1) are independent and identically distributed, lim, oo lOgE(ZQ’Zzy(L")*")(Ul) =
)

) . . log Z3 ¢y (n)—n (U Ny
%1/12(92) > 0 and, conditional on KU1 = (), lim,_s w = %1/12(92) almost

This result mainly comes from the fact that lim,, .o

surely.

Now for 2 < i < k set
= log(E(#A4)) + >~ L (7))
j=2 4!

Suppose that k& > 3, and for some 3 < i < k we have proven that conditional on K # (),
it holds that

i—1
log #{(U1....,Ui_1) € [[ A7 5 By (U, Uisy) holds)
(5.1) lim =1 = si1.

n—00 n

Given (Uy,...,U;—1) € H;;ll Aﬁj(n)_ejfl(n), and fixed associated (uq,...,u;—1) such that

F. (Ul’UZ""’Ui’l)(ul, C L Ui—1) holds following the arguments of [24], the cardinality of

the set of those words U; & A -1 uch that there exists u; € Ap such that
F(UI’UZ’ ’U’)(ul,--- ,u;) holds, is a random variable Z; g, (n)—¢,_; (n)(U1, .., Ui—1) so that

the Zi py(n)—ti 1(n)(U1, ...,U;—1) are independent, and identically distributed. Moreover,
08E(Z, ;. (1)) Urelic) o
T — = 2e1pi(0;) > 0
108(Z; 7 1y (Ut Us - PN
and, conditional on K“1""%i-1 = (). lim, s ogt “Zi(”)il ! 2 = %1/)@-(9@-) almost surely.
Then, again the same reasoning as in [24] for the case k = 2 with the roles of A} and
Aﬁz(""" now respectively played by H;_:ll A=t g Afi(")_e"*l(") shows that
(1) holds for i as well. Consequently, applying this to i = k, conditional on K # (),
we get for all n > 1 an integer N, such that lim, . % = 55, as well as N, el-

ements U = (Uy,...,Ux) € [T, A Z(n 41 and associated (up = Up,ug,...,ug) €
35
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e 1A1 -1 guch that F,gUl""’U’“)(ul, ... ug) hold. The events {K"1"2" %k =£ ()} be-
ing 1ndependent, with the same probability P(K # (), and independent of the events

FlgUl’U2""’Uk)(u1,u2, ...,ug), using |24 Section 4] again yields
_log #{U e [T, A4 B holds E oy
s U C Tl AT IS rog(mpan +3 L@,
=2
which, after dividing by 71_1, is precisely lim,, log#{BEI”:BnnKﬂ}, ie. dimp K. O

—log(e 1)

Next we state, using our notations, a fact established in the proof of [7, Corollary 3.5],
which is a variational approach to the dimension of projections of fractal percolation sets
in a symbolic space X7 X X7 to one of its two natural factors.

Proposition 5.1. Let 2 < i < k. With probability 1, conditional on K # ),
max { min(dime (), hy, (13)) : p is a Mandelbrot measure supported on K, C K} = 1;(6;),

where v; stands for the empectatzon of Hl*( ). Moreover the maximum is uniquely reached

if and only zf@ >0 or6; =0 and 1//( i) = 0. In any case, when the mazximum is reached,
one has v; = v.~, where

0 )
vio((b) = E(N)'/ 30 E(N)'.
beA;
Also, if 0; > 0, or 6; = 0 and 1//(A) =0, then dime(u) = hy, (T3) for the unique p at which
the mazimum is reached, and if 6; = 0 and (4 (6;) > 0, then dimg(p) > hy, (T}) for pu at
which the mazimum is reached.

Proof of Corollary[2.7. It results from (2.3]) and Proposition[E.Ilthat for dim K = dimp(K)
to hold almost surely, conditional on K # (), the Mandelbrot measure x of maximal dimen-
sion supported on K must satisfy dim.(u) = log E(#A) and min(dime(p), hy, (13)) = 1:(6;)
for all i € I.

The condition dim,(u) = log E(#A) implies that p is the so called branching measure,
i.e. it is obtained from the random vector (14(a)/E(#A))sca,. The other condition

implies that for all 2<i<k, wehavev; =v 5. Since p is the branching measure, this

implies that E(NV, ) /ewz i) = E(Néi))/E(#A) for all b € A;, hence E(Néi))gi_l does not
depend on b € .A,. This is a non trivial condition only if ; < 1. This proves the necessity
of the condition given in the statement.

Now assume that E(Nb(i)) does not depend on b € A; for all i € I such that 6; < 1.
Suppose first that there is no ¢ € I such that 6; < 1, ie. 6; = 1 for all i € I. By
the remark made above, the branching measure u does satisfy dimi(u) =m+-+
i) dimg () = dimp(K). Next, suppose that 6; < 1 for some i € I. Again, consider the

branching measure p. Since E(N, < )) does not depend on b € A; we do have v; = SO

Vi
that min(dime(u), hy, (T7)) = hy, (T3) = h,, A( 1) = ;(6;). This yields again dimJ(p) =

dimp K. O
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6. PROJECTIONS OF K AND g TO FACTORS OF X;1. PROOFS OF THEOREMS [2.8],
AND [2.17], AND COROLLARY [2.12]

The proofs will be sketched.

Sketch of the proof of Theorem[Z.8. For all n > 1, denote by F! the set of balls of X; of
radius e 7. Let jo = max{i < j < k:T'(1) < 7; (1)}, with the convention max()) =
1 — 1. Computations similar to those used to prove Theorem yield gg > 1 and ¢y > 0
such that for all ¢ € (0, go] we have
E( Y Mup(B)?) = O(exp(~t(jo.q.n))) asn oo,
BeF}
where
o) — {ejom)(T(q) = olg = 1)+ o1 (G0) — )Ty (@) i o >4
Y () Top (@) + S5—iga (65(n) — £i—1(n)) T, () otherwise.

This is enough to get the differentiability of 711, , at 1 with 7'1’-[” u(l) equal to dimZi(Hi* i),
and conclude. O

Sketch of the proof of Theorem[2.9 We start with the lower bound. We redefine B; as
Bi = {Vi € Bi: Ypea, vi([0]) log E(Nb(z)) > 0}, and we set

D; = max{hj; (T}) : v; € By}
Here, by convention, max()) = —oo.

Arguing like in Section 2] we can get that a lower bound for dimII;(K) is given
by max(D;, Dit1,...,Drt1). We set kg = min{j > i : 3b € A;, IE(Nb(j)) > 1}, with
min(() = k + 1. Clearly max(D;, D11, ..., Dgy1) = max(Dy,, ..., Dgy1) if ko > .

Suppose that kg = i. We know that h’j: (T;) reaches its maximum P;(0) at vg.¢,, and
Vo.g, € By if and only if P/(0) = Speu, Yo.s, ([b]) og E(N) > 0.

Suppose, moreover, that P/(0) > 0. In this case, it is easily seen that D; is not smaller

than Dj, i +1 < j < k+ 1. If P/(0) > 0 then it is also easy to construct infinitely many
Mandelbrot measures p which share with p,, b the property that E(IL;, ) = .4, and

dime (p) > Ay, -
w1 such that dim'e72 (u) = P;(0), and we let the reader check that no other Mandelbrot

measure of the form p,, with j > i and v; € Bj is such that dim7s (tw;) = Pi(0). Note
that in any case jo = ¢ and 6, = 0.

On the contrary, if P;(0) =0, f,. 6, 18 the unique Mandelbrot measure

Suppose now that kg = i and P/(0) < 0. To get D; we must maximize hyi(T5)
over those v; € B; such that > ¢4, v4([b]) log E(Nél)) = 0. Here we meet a situation
similar to that we discussed in the proof of Lemma The only difference is that
0j, is replaced here by 0. It turns out that either there exists § € [0,1] such that
P/(0) = 0 and max(D;, Dit1,...,Dgy1) = P;(0), or max(D;, Dit1,...,Dri1) = Pi(0) =
max(D;i1,...,Dg+1). In the former case, we also have that fi,, b is the unique Mandel-
brot measure u such that dimYi(u) = P;(6), jo = i and 6, = 6. In the latter case, we are

back to the discussion of the proof of Lemma and we also get the desired conclusion.
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If ko > 1, since we seek for max(Dy,,. .., Dgt+1), the situation also boils down to that
of Lemma

For the upper bound for the Hausdorff dimension, we prove that
dimII;(K) < inf{P;(0) : 0 € [0,1] if j =4, and 0 € [0;,1] if i < j < k},

which in view of the lower bound is enough to conclude. To show the previous inequality,
we extend the definitions of D; g and D; ¢ (see ({.14]) and (4I5) to 6 € [0,1] and for j = ¢
we redefine the vector p(z,n) of (£I7) by taking p; = pi(x,£¢;(n)). It is readily seen from
the proof of Lemma that the conclusions of this lemma is still valid with these new
definitions of D; g and p(x,n).

Now, arguing similarly as in the proof of Theorem [A.8] for each j € {i,...,k}, for each

(n L. (n)—~L i _q1(n —_ .

U=(Uj,--,U) in Aﬁj( ) ]_[é?,:jﬂ 'A,J;]' () =tyr-at ), Hi7J1(BU) NIL(K) is covered by, say,
a family B(U) of ny balls of radius e "1 C X; which intersect II;(K).

Suppose j = i and fix § € [0,1]. In this case ny = 1 and we can bound this number
by (N[(]?)g. Noting that E((N[(]?)e) < E(N[(;i))e, we can use similar estimates as in the
proof of Theorem (.8 to now estimate H*  (II;(K))), and this yields dimII;(K) < P;(6)

e 71
(here we followed the same idea as that used in [I7] to deal with projections of planar

statistically self-similar limit sets of fractal percolation).

Next, suppose j € {i+1,...,k} and fix € [5]-, 1]. Denote by C((jj?j) the set of cylinders
of generation £;_i(n) in X; which intersects II;(K’), and project to [ijj,l(n)] in X; via
IL; ;. Also denote by N((jj 7 the cardinality of this set. Each cylinder in C[(Ji;j ) intersects at

most one of the elements of By. Thus ny < Nl(Ji]fj), so that:

nw< Y 1< Y NP =NY
becy?  becy”

Then, the same lines as in the proof of Theorem [L.§ yield dimIL;(K) < F;(6) for all
RS [9]', 1] O

Sketch of the proof of Theorem [2.11]. This is similar to the proof of Theorem 2.5 except
that one must evaluate the cardinality of those B € Fi such that B N1IL;(K) # 0, and
this time we exploit results known for the box dimension of projections of statistically
self-similar fractal Euclidean percolation sets from dimension 2 to dimension 1.

We have to estimate the cardinality of those U € Afi(n) X [Thia Aﬁj (M=510) quch
that E¢(U) holds, with

k
E'U) = {3 (uj)icjar € AT 5 T AP
Jj=i+1
both F,i’(Ui""’Uk)(ui, ..., up) and K"tz £ () hold},
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and where

PO =] ()N Ky # 0

[uj/]ﬂKZJ( )Jz, () #0, Vi+1<j <j
One deduces easily from [14] (see alternatively [17] or [7]), which deal with the case k = 2,
that

log #{U; € A7™ : 3w € AT, F"Y(w;) holds} 7,

lim

n—00 n

7,(97,)-
Then, a recursion similar to that used in the proof of Theorem 2.5l yields the desired result

log #{U € AT x [Thyy A7 ™ 751" B(U) holds} G

. o~ 7‘] o
lim i(0i)+ —1;(0;),
n—00 n " ];1 " J
ie. dimp IL;(K) = 3,4 (6;) + Z;?:H_l Vi ((/9\)) after normalizing by ~; ' O

Proof of Corollary [Z12. If §; = 1, using Proposition [5.11 we see that the equality between
dim IT;(K) and dimp IT;(K) imposes that dim IT;(K) is attained by the branching measure,
and the situation boils down to that of Corollary [Z7l This gives point (1) of the statement.

Suppose now that dimIL;(K) = dimpIL;(K), 6; < 1 and ¢}(8;) = 0 (which is auto-
matically true if 0 < 6; < 1). The equality between dimII;(K) and dimpIL;(K) im-
poses that if p stands for the unique Mandelbrot measure supported on K such that
dim?i(p) = dimIL;(K), then dim.(u) = hy,(T;) = ¥i(0;), where v; = E(Il;,u) = VG,
Also, for j € Ij(= {i,...,k}) such that j < jj, we must have II; j_v; = V5. Using that
for all b € AJ, we have Zb’en o)V ([b’]) = v;j([b]) and the fact that 1/)1( ) ¢;( ;) W
can write

0=wi(B) ~vj(B;) = 3 v,5,(I)og BE(NY) = 3 v 5 (1) log E(N,)

beA; beA;

()
-y ¥ ui@qb'])logE(Nb')

%
beA; Vel 1 (b) E(N,™)

This implies that for all b € Zj, the set II; jl(b) NA; is a singleton {b'} such that E(Nb(,i )) =
E(Nb(j)), hence 1; = 1; and é\j — 6;. Let us now examine those j > Jo in I;. The previous
argument shows that 0; = 0 and ¢}(0) > 0 (for otherwise j; would be at least equal
to the smallest of those j), and II; j,v; = v, so that II; j, v; is uniformly distributed,

ie. Zb,eH;;(b) E(Nb(,i))é\i does not depend on b € ZJ We conclude that the conditions

of point (2) are necessary. Conversely, if these conditions hold, one easily checks using
Theorems 2.9 and 217] that dim IT;(K) = dimp II;(K).

The last case easily follows from the previous discussion. O
7. DIMENSION OF CONDITIONAL MEASURES. PROOF OF THEOREM [2.14]
Since the proof of Theorem 215l is very similar to that of Theorem 2.14] we leave it to

the reader.
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Point (3) of the statement simply follows from points (1) and (2) as well as the dimen-
sions formula provided by Theorems and 2.8 for dim(x) and dim(II;, ).

To get point (1) we notice that for any z € X; and n > 1 we have [z}, ()] C
B(z,e ™M) C [2}], s0 since dim.(u) < hy,(T;) we find that Theorem T3] implies that
1 is exact dimensional with Hausdorff dimension equal to 0.

Now we prove point (2). The following lines do not depend on II;, 1 being absolutely
continuous with respect to v; of not.

When pu,, = p # 0, for II;, pu,-almost every z, the conditional measure p7 is supported
on K* = 771({z}) N K, obtained as the weak-star limit, as n — oo, of the measures Horm,

po ()N ([21)))
i pros ([2]0])
generation n in X;. To be more specific, for any cylinder [J], almost surely, the measurable

set
_ . im po([J] NI ([710)) " }
Ay = {(w,z) €Qx X;: lim TTR(E) exists

is of full Q-probability, where we define Q(dw, dz) = P(dw)I,, p1s(d2), and for all (w, 2) in
)

Y —1
a subset A’; of A; of full Q-probability, we have pZ([J]) = limy, 00 %

Suppose now that conditional on p # 0, I1;,p,, is absolutely continuous with respect to
v;. There exists a measurable set A’ of full Q-probability such that for all (w, z) € A’, the

limit - ()
i%Mw Z|n
vi([2n]) )

obtained on K by assigning uniformly the mass to each cylinder [J] of

i (fonle) =

exists and is positive. We denote it by f,(z).

Set A= A"NNjex, A. For all (w, 2) € A, the sequence of measures [if, ,, = fun(2)1d ,,
weakly converges to the measure 7, defined as f,,(2)pus.

Let
Qg ={w: (w,2) € A for some z € X,},
F={ze€ X;: (w,x)€e A}, VYVweQa.
If (w,z) & A, set u, =l = 0.
For z € F¥, n>1 and J € A7, we have

(1)) = lim fiZ([J]) = lim w0 T ([2m))

P00 P00 Vi ([2n+p])

U = (U, -, U) €15, Al 4o ball By intersects IT; 1 ({2}) if and only if

()

Li—1(n . . Li—1(n
i(U) = T3 (@) gty 1 for all 1 < < i=Land Uy = Ty (T () g0ty )

3 (2

for i < j < k. Recalling (3.2), we also have

F(By)= > (L)
(J1y k) ETU
_ g PULT1 - ] mn;l([zmﬂ,])).
(Jl,...,zJ;;eJU e Vi([Zn+p])
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Fix ¢ > 0. For all n > 1, we are going to estimate the expectation of the partition function
> Ber, ¥ (By)? with respect to the measure P ® v;.

Let jo = min{2 < j < i—1: dime(p) > hy(Tj)}, with min(@) = i, and D =
Fjo—1(dime(p) = hu, (T3)) + 32525 45 (hu, (T5) — ho, (T;)), which is precisely the value given
by (2I1I) due to our choice of jy. We Wlll show that there exists ¢ > 0 such that for all ¢
in a neighbourhood of 1, there exists C; > 0 such that we have

(1) Eeen( 3 F(B0)) < Cpexp (= a= 1D +0((a—17).

ByeFn

This is enough to conclude that with probability 1, conditional on p # 0, for IT;, u-almost
every z (remember that IT; . is absolutely continuous with respect to 1;), one has 7. (q)) =

(¢—1)D —c(q—1)? in some neighbourhood of 1. But since x? is a multiple of /i*, the same
holds for p*. This implies that the concave functions 7,= and ¢ — (¢ — 1)D — ¢(q — 1)?
share the same derivative at 1, namely D. Consequently, p©* is exact dimensional with
dimension D.

Now we prove (7.I). Recall that outside the set A, the measure 7 has been defined
equal to 0. By Fatou’s lemma, we have

p(l - T 0T ()
Epgw, Z s BU)‘1<hm1npr®V Z Z e ]\)k( )+p )
By€Fn Bu€Fn  (Ji,di)ETu i\L#1ek (n)+p

-1 q
STTIEID DD ol (D SR e LR P

Le Zek(7l)+l) BUE]'-n (le--'ka)er

Jy- Je )\ e
e Yy (xy Ml

LA, Bt BUEFn (1, WETY jren— (k) )

Denote by S the expectation in the right hand side of the previous inequality. Due
to the remark made above about the condition for By to intersects II; '([u]), and the
multiplicativity property of the measure v;, we can rewrite S as follows:

S=FE Z > > mU, ... Uiny, L L) ([Ly - Li1 L)),
L=(L1,....Li—1) (U1,...Ui—1)r L'
where L € Hi_l A/Ei’l(") , (U, .. ) H A5 =5-1 46 quch that II;;,(U;) = L,
foreach 1< j<i—1, L ¢ .Ap M’“(n) i-1(n ), and taklng the conventions that the words
involved below whose writing uses the symbol J belong to .Al,

e J: /
2 e kD)= I o
(J1seeydiz1): 115 (J5)=U;, J': I (J))=L' Vi 1 i—1
J=Ji- i 11 (Jg): .

Suppose that ¢ > 1. Using the same idea as in the proof of Theorem [3.2], but rewriting
S as an expectation with respect to P ® v; instead of P, yields

E(S <23qZ 1 (Hsjn> " iln,py
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where

Sin=B(Tum) ¥ (% SO

j U ;5(U;)=L;  J;:11;(J;)=U;
and
w([JDNe o
Rn,=E V(L
B3 2 ) )

(I,
Note that R, , = EP@W(XEMk(n)—&,l(n))’ where

JG.AN]L: 0;(J)=2 ’

is a perturbation of the martingale in random environment

pon([J])
vi([zn])

Xn(w, z) = Z

JE./Z?: Hi(J)ZZ‘,,L

Now, recalling the definition of the vectors Vb(i) in Section [£.I] and setting

=T ()
plg) =log Y wvi(lbhe %,
bG.Z1
our assumption that dim.(u) > h,,(7;) is equivalent to saying that at point 1 the function
¢ has a negative derivative, since ¢'(1) = h,, (T;) —=T'(1) = hy,(T;) — dim(p). We can then
apply [7, Proposition 5.1] to X1, (n)—¢,_, (n) and for ¢ close enough to 1+, get a constant
Cy > 0 such that R, , < C, independently of n and p.

Next we estimate the terms Sj,, for 1 < j <i—1. For j = 1, we simply have
(7.3)

/LTL([UI]) k. n n(qg—1)(hy, (T;)—dime O((g—1)2
Sl,n :E(ZVi([Ll]) Z (u-([Ll])) ) — (@) — nlg—1)(hw, (Ti) (W)+0((g—1)%)) |
L, Uy:11;(U1)=L1 v

For 2 < j <i—1, we rewrite S, as (recall that v; stands for the expectation of II; )

(7.4) Sin=EY <zﬁj(Uj)( > fie; (m)—; 1 () ([J5]) )«17
Uj

T3 1L, (J;)=U; v ([U;])

where
¢;(U;) = v ([U;]) 7w (1L 4([U;])) 9.

Let v, ; be the Bernoulli product measure on ij associated with the probability vector

Vg i = _ @ and define
QJ([b]) Zb/GANj gb]([b’])’ dd ﬁ
©j(q) = log Z ¢j([b]) and XV (w,z) = Z 5?%]]])), z € j(vj.
beA; JEAD T () =2y In

With these definitions, S; , rewrites

Sjm = ellim=ti—1(m)es (DR, _((f(j))q)
) ] n )
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Again, we can use [7, Proposition 5.1], and get a constant C, ; > 0 such that
—-T . 0 (n)—F;
Sin < que(gj(n)—gjfl(n))@j@) max (1, Z v ([b])e vb(ﬂ)(Q)) 3 (n)—4; 1(").
bG.’Zj

=T (a0
A computations shows that the derivative at 1 of the function ¢ — 37, _ 7 vq,;([0])e Y’
J

is equal to hy,;(T;) — T'(1) = hy, (T;) — dime(p).

Recall that jo = min{2 < j <4 —1:dime(u) > hy,(Tj)}, with min(0) = i. If jo <

=T (a0
j <i—1and ¢ is close enough to 1, we thus have 3>, + vg,i([b])e vy < 1, hence
J

Sin < CpyelimM=tiimlei(@  1f 2 < j < jy, using a Taylor expansion of order 2 we

- j (Q)
get S,z vas(Ble " < expllg — 1), (T3) — dime(u)) + O((g — 1)2)). Morcover,

for any j, e®i(@) = exp((q — 1)(hy,(T3) — hy,;(T)) + O((q — 1)2)). So for 2 < j < jo,

Sjm < Cggexp((¢;(n) — £-1(n))((q — 1) (hy, (T3) — dime(u)) + O((g — 1)*)). Finally, for ¢
close enough to 14, there exists C; > 0 such that

Erow, 3. B (Bu) < Cyexp (q— 1)U 1(n)(h, (T:) — dime (1)
ByeFn
i—1
0= 1) X (600 = 61 (0) (o, (T3) = By (1) + O((q — 1))
J=Jo
m

= Cyexp (= —(a= 1D +0((a = 1)),

hence (1)) holds.

Suppose now that ¢ € (0,1). Using the same idea as in the proof of Theorem yields

—1
E(S) <[] Sim:
j=1

where
1t (ny—e; o (n) ([T5])7 . o
E(Ywl) Y (X i )V?(Ll(‘); L)) 1< <go—1
g]n = L; U;:11;(Uj)=L; J;:11;(J;)=U; LA
E(>w(L)™ Y wuy)) ifjo<j<i—1.
L; U;:11,4(U;)=L;

With the notations introduced in the case ¢ > 1, this rewrites

-T i(n) =l 1(n
(w0 T <<y
Sjvn = bejz

(2@ (W)=t () itjo<j<i—l.

Using Taylor expansions we can get that (.I]) holds for ¢ close to 1— as well.
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8. THE CASE WHEN {2 <i<k:v #0} =10

In our main statements about the Hausdorff and box-counting dimension of K and its
projections for simplicity we assumed all the v;, 2 < ¢ < k to be positive, which in the
Euclidean realisation of Section corresponds to my > --- > my > 2. It turns out
that up to slight modifications in the statement and proofs, our results cover the general
configuration m; > -+ > my > 2, for which the diagonal endomorphism diag(my,...,mg)
may have eigenspaces of dimension at least 2 over which it is a similarity. In this case,
in the express10ns glvmg the dimensions of K and its projections, when m; = m;_1, i.e.
Vi = g(ml 3. g(m) = 0, the index ¢ has no contribution, and geometrically for any

1<i<j<k, z€X;and n > 1, for the induced metric by dy on X;, if y € B(x,e_"/“ﬂ),
nothing is required on Tfj -1(m) (Y)1e;(n)—

Lj—1(n)-

For all the statements of Section 2.3]and Theorem E.8], the only change to make to cover
the case v; > 0 for all 2 < i < kistoset I = {2 <i<k:v >0 and replace k by sup(J)
in [2.9]). The proofs adapt readily.

For the statements of Section 2.4] one has to replace I; by {i} U{i < j < k:v; > 0}
and replace k by sup(/;) in (2I0). Again, the modifications in the proofs are left to the
reader.
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