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DIMENSIONS OF RANDOM STATISTICALLY SELF-AFFINE

SIERPINSKI SPONGES IN Rk

JULIEN BARRAL AND DE-JUN FENG

Abstract. We compute the Hausdorff dimension of any random statistically self-affine
Sierpinski sponge K ⊂ Rk (k ≥ 2) obtained by using some percolation process in [0, 1]k.
To do so, we first exhibit a Ledrappier-Young type formula for the Hausdorff dimensions
of statistically self-similar measures supported on K. This formula presents a new feature
with respect to the deterministic case or the random dynamical version. Then, we
establish a variational principle expressing dimK as the supremum of the Hausdorff
dimensions of statistically self-similar measures supported on K, which is shown to be
uniquely reached. The value of dimK is also expressed in terms of the weighted pressure
function of some deterministic potential. As a by product, when k = 2, we give an
alternative approach to the Hausdorff dimension of K, which was obtained by Gatzouras
and Lalley. This alternative concerns both the sharp lower and upper bounds for the
dimension.

The value of the box counting dimension of K and its equality with dimK are also
studied. We also obtain a variational formula for the Hausdorff dimensions of the natural
orthogonal projections of K to the linear subspaces generated by the eigensubspaces of
the diagonal endomorphism used to generate K (contrarily to what happens in the
deterministic case, these projections are not of the same nature as K). Finally, we prove
a dimension conservation formula associated to any Mandelbrot measure supported on
K, that of its orthogonal projection to such subspace, and the dimension of almost every
associated conditional measure.

1. Introduction

This paper deals with dimensional properties of a natural class of random statisti-
cally self-affine sets and measures in Rk (k ≥ 2), namely random Sierpinski sponges and
related Mandelbrot measures, as well as certain of their projections and related fibers
and conditional measures. These random sponges can be also viewed as limit sets of
some percolation process on the unit cube endowed with an (m1, . . . ,mk)-adic grid, where
m1 ≥ · · · ≥ mk ≥ 2 are integers.

Until now the Hausdorff dimension of such a set K is known in the deterministic case
and only when k = 2 in the random case, while the projections of K and the random
Mandelbrot measures to be considered have been studied in the conformal case only. Un-
derstanding the missing cases is our goal, with Mandelbrot measures and their projections
as a main tool for a variational approach to the Hausdorff dimension of K and its orthog-
onal projections, together with a “weighted” version of the thermodynamic formalism on
symbolic spaces.

Key words and phrases. Mandelbrot measures, Hausdorff dimension, multifractals, phase transitions,
large deviations, branching random walk in a random environment.
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Before coming in more details to these objects and our motivations, it seems worth
giving an overview of the nature of the main results known in dimension theory of self-
affine sets. Recall that given an integer N ≥ 2 and an iterated function system (IFS)
{fi}1≤i≤N of contractive maps of a complete metric space X, there exists a unique non
empty compact set K ⊂ X such that

K =
N⋃

i=1

fi(K),

(see [29]). When X is an Euclidean space and fi are affine maps, due to the above equality
K is called self-affine. In particular, K is called self-similar if fi are all similitudes; we will
not focus on the self-similar case and refer the reader to [27] for a recent survey of this
topic.

The first class of strictly self-affine sets that have been studied in detail are certainly
Bedford-McMullen carpets in R2, also known as self-affine Sierpinski carpets. They are
among the most natural classes of fractal sets having different Hausdorff and box counting
dimensions. To be specific, one fixes two integers m1 > m2 ≥ 2 and a subset A ⊂
{0, . . . ,m1−1}×{0, . . . ,m2−1} of cardinality at least 2; the Bedford-McMullen carpet K

associated with A is the attractor of the system SA =
{
fa : (x1, x2) 7→

(
x1+a1
m1

, x2+a2m2

)
: a =

(a1, a2) ∈ A
}
of contractive affine maps of the Euclidean plane; note that by construction

K ⊂ [0, 1]2. Set Ni = #{a ∈ A : a2 = i} for all 0 ≤ i ≤ m2 − 1 and ψ : θ ∈ R+ 7→
log

∑m2−1
i=0 N θ

i . Bedford and McMullen proved independently [8, 40] that

dimK =
ψ(α)

log(m2)
, where α =

log(m2)

log(m1)
,

and

dimBK =
ψ(1)

log(m1)
+

( 1

log(m2)
−

1

log(m1)

)
ψ(0),

where dim and dimB respectively stand for the Hausdorff and the box counting dimension,
and ψ(1) and ψ(0) are the topological entropy of K and that of its projection to the x2-
axis respectively. Moreover, dimK = dimBK if and only if the positive Ni are all equal.
Note that the possible dimension gap dimK < dimBK cannot hold for self-similar sets
(see [16]). For a general self-affine Sierpinski sponge K ⊂ [0, 1]k invariant under the
action of an expanding diagonal endomorphism f of Tk with eigenvalues the integers
m1 > · · · > mk ≥ 2 (we identify [0, 1]k with Tk), similar formulas as in the 2-dimensional
case hold. In particular, the approach to dimensional properties of compact f -invariant
sets developed by Kenyon and Peres [35] extends the results of [40] and establishes the
following variational principle: the Hausdorff dimension of K is the supremum of the
Hausdorff dimensions of ergodic measures supported on K, i.e. the Hausdorff and the
dynamical dimension of K coincide. Moreover, the dimension of any ergodic measure is
given by the Ledrappier-Young formula

(1.1) dim(µ) =
1

log(m1)
· hµ(f) +

k∑

i=2

( 1

log(mi)
−

1

log(mi−1)

)
hµ◦Π−1

i
(Πi ◦ f),

where Πi = (x1, . . . , xk) 7→ (xi, . . . , xk). Also, in the variational principle, the supremum
is uniquely reached at some Bernoulli product measure.
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Dimension theory of self-affine sets has been developed to understand the case of more
“generic” self-affine IFSs as well. First, given a family {Mi}1≤i≤N of linear automorphisms
of Rk to itself whose norm subordinated to the Euclidean norm on Rk is smaller that 1/2,
it was shown [17, 32] that for LNk-almost every choice of N translation vectors v1, . . . , vN
in Rk, the Hausdorff dimension of the attractor K of the affine IFS {Mix + vi}1≤i≤N
is the maximum of the Hausdorff dimensions of the natural projections of ergodic mea-
sures on ({1, . . . , N}N

∗
, σ) to K (here σ stands for the shift operation); in addition for

such a measure µ, dimH(µ) = min(k,dimL(µ)), where dimL(µ) is the so-called Lyapunov

dimension of µ [17, 44, 31, 30]. A similar result holds for LNk
2
-almost every choice of

contractive {Mi}1≤i≤N in some non empty open set, with a fixed (v1, . . . , vN ) [2]. In
these contexts one has dimK = dimBK = min(k,dimAK), where dimAK stands for
the so-called affinity dimension of K (note that for a Bedford-McMullen carpet, the affin-

ity dimension equals ψ(1)
log(m2)

if ψ(1) ≤ log(m2) and ψ(1)
log(m1)

+ ( 1
log(m2)

− 1
log(m1)

) log(m2)

otherwise, so that in this case the previous equality between dimensions only occurs ex-
ceptionally). If both {Mi}1≤i≤N and (v1, . . . , vN ) are fixed, the following stronger result
appeared recently in the 2-dimensional case: if {Mi}1≤i≤N satisfies the strong irreducibil-

ity property and {Mi/
»
|det(Mi)|}1≤i≤N generate a non-compact group in GL2(R), and

if the IFS {fi}1≤i≤N is exponentially separated, then dimK is the supremum of the Lya-
pounov dimensions of the self-affine measures supported on K (it is not known if this
supremum is reached in general); here again for such a measure, Lyapunov and Hausdorff
dimension coincide, and dimK = dimBK = dimAK [3, 28]. The last two contexts make a
central use of the notion of Furstenberg measure associated to a self-affine measure, whose
crucial role in the subject was first pointed out in [19]. There are also similar results in
the case that the strong irreducibility fails but the Mi cannot be simultaneously reduced
to diagonal automorphisms [20, 4, 3, 28].

Let us come back to self-affine carpets. Their study was further developed with the
introduction of Gatzouras-Lalley carpets [38], with an application to the study of some
non-conformal nonlinear repellers [25] and Baranski carpets [1]. There, the linear parts
are no more subject to be equal, but they are still diagonal, and it is not true in general
that there is a unique ergodic measure with maximal Hausdorff dimension [32, 5] (see also
[37] for a study of Gatzouras-Lalley type carpets when the linear parts are trigonal). It
turns out that extending the dimension theory of these carpets to the higher dimensional
case raises serious difficulties in general, as it was shown in [12] that the attractor may
have a Hausdorff dimension strictly larger than its dynamical dimension.

On the side of random fractal sets, one naturally meets random statistically self-affine
sets. Such a set K obeys almost surely an equation of the form K(ω) =

⋃N
i=0 f

ω
i (Ki(ω)),

where the fωi are random contractive affine maps and the sets Ki are copies of K. Re-
sults similar to those obtained for almost all self-affine sets described above exists in the
following situation: the sets Ki are mutually independent and independent of the fi, the
linear maps of the fi are deterministic, but the translation parts are i.i.d and follow a law
compactly supported and absolutely continuous with respect to Ld [30]. Results are also
known for random Sierpinski carpets. There are two natural ways to get such random sets.
The first one falls in the setting of random dynamical systems. It consists in considering
an ergodic dynamical system (Ω,F ,P, T ), on which is defined a random non empty subset
A(ω) of {0, . . . ,m1−1}×{0, . . . ,m2−1} such that E(#A) > 1. Then one starts with the set
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of maps SA(ω), and recursively, at each step n ≥ 2 of the iterative construction of the ran-
dom attractor K(ω), replace the set of contractions SA(Tn−2(ω)) by SA(Tn−1(ω)), so that the
contractive maps used after n iterations take the form fa0 ◦ · · · ◦fan−1 , with ai ∈ SA(T i(ω)).

By construction, K(ω) =
⋃
a∈A(ω) fa(K(σ(ω))). The Hausdorff an box-counting dimen-

sions of such sets and their higher dimensional versions have been determined in [36] (in
a slightly more general setting); the situation is close to that in the deterministic one.

The other natural way to produce random statistically self-affine carpets is related to
branching processes and consists in using a general percolation scheme detailed below; at
the moment let us just say that one starts with a possibly empty random subset A(ω) of
{0, . . . ,m1−1}×{0, . . . ,m2−1}, and again assumes that E(#A) > 1. Then, one constructs
on the same probability space the set A(ω) and a random compact set K(ω) ⊂ T2, and
m1 × m2 random compact sets K(a, ω), a ∈ {0, . . . ,m1 − 1} × {0, . . . ,m2 − 1}, so that
K(ω) =

⋃
a∈A(ω) fa(K(a, ω)), where the K(a) are independent copies of K, and they

are also independent of A. The set K is non empty with positive probability. These
random sets have been studied in [24], and their self-similar versions have been investigated

extensively (see e.g. [26, 46, 43]). Setting now ψ(θ) = log
∑m2−1
i=0 E(Ni)

θ and letting t be
the unique point at which the convex function ψ attains its minimum over [0, 1] if ψ is not
constant, and t = 1 otherwise, one has, with probability 1, conditional on K 6= ∅,

dimK =
ψ(α)

log(m2)
where α = max

(
t,
log(m2)

log(m1)

)
,(1.2)

and

dimBK =
ψ(1)

log(m1)
+

( 1

log(m2)
−

1

log(m1)

)
ψ(t).

Moreover, dimK = dimBK iff t = 1 or all the positive E(Ni) are equal (we note that
the value of dimK was previously obtained in [42, 9, 10] in the very special case that
there is an integer b ≥ 2 such that the law of A assigns equal probabilities to subsets of
cardinality b and probability 0 to the other ones). It is worth pointing out that the origin
of this different formula with respect to the deterministic case comes from the possibility
that E(Ni) < 1 for some i, which makes the situation quite versatile with respect to the
deterministic Bedford-McMullen carpets.

The approach developed in [24] to get (1.2) is not based on a variational principle related
to a natural class of measures supported on the attractor. To determine the sharp lower
and upper bounds for dimK, the authors of [24] adapt the approach used by Bedford in
the deterministic case: Π2 still denoting the orthogonal projection on the x2-axis the lower
bound for dimK is obtained by taking the maximum of dimΠ2(K) and the maximum of
the lower bound for the Hausdorff dimension of certain random subsets of K. Each such
subset E is obtained by considering the union of almost all the fibers π−1

2 ({(0, x2)} with
respect to the restriction to Π2(K) of some Bernoulli product measure. The Hausdorff
dimensions of π2(E) and that of the associated fibers are controlled from bellow. This
yields a lower bound for dimE thanks to a theorem of Marstrand. The upper bound for
dimK is obtained by using some effective coverings of K. It turns out to be delicate
to transfer these methods to the higher dimensional cases. Indeed, for the lower bound,
the Hausdorff dimension of the 1-dimensional fibers mentioned above is obtained thanks
to statistically self-similar branching measures in random environment, the dimension of
which is relatively direct to get, and yields the dimension of the fiber. Using this approach
in the higher dimensional case k ≥ 3, we would have to consider the restriction of Bernoulli
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measures to Πi(K) for 2 ≤ i ≤ k. Then for i ≥ 3 we would meet the much harder problem
to estimate the Hausdorff dimension of fibers which are statistically self-affine Sierpinski
sponges in a random environment in Ri−1, a problem not less difficult than the one we
consider in this paper; one would have to compute dimΠi(K) as well, a question that we
will naturally consider. Also, for the upper bound, extending to higher dimensions the
combinatorial argument used in [24] to get effective coverings seems impossible. However,
we will see that to getting the box-counting dimension of K in the higher dimension cases
is rather direct from the two dimensional case treated in [24].

We will develop a dimension theory for statistically self-affine Sierpinski sponges in Rk,
for any k ≥ 2, by studying the statistiscally self-affine measures on K (which are also
called Mandelbrot measures on K). We will prove the following Ledrappier-Young type
formula: given a Mandelbrot measure µ on K (see Sections 2.2 and 2.6 for the definition),

dim(µ) =
1

log(m1)
dime(µ) +

k∑

i=2

( 1

log(mi)
−

1

log(m−1)

)
dime(µ ◦ Π−1

i )

=
1

log(m1)
dime(µ) +

( 1

log(mi)
−

1

log(m−1)

)
·min

Ä
dime(µ), hνi(Πi ◦ f)

ä
,(1.3)

where dime(µ) is the dimension entropy of µ, and νi is the Bernoulli product measure
E(µ ◦ Π−1

i ) (see Theorem 2.2). The fact that dime(µ ◦ Π−1
i ) = min(dime(µ), hνi(Πi ◦ f))

follows from our previous study of projections of Mandelbrot measures in [7]. To get (1.3),
we show that τµ, the L

q-spectrum of µ, is differentiable at 1 with τ ′µ(1) equal to the right
hand side of (1.3); this implies the exact dimensionality of µ, with dimension equal to
τ ′µ(1).

Optimising (1.3) yields the sharp lower bound for the Hausdorff dimension of K (see
Theorem 4.3); the supremum is uniquely attained, and the optimisation problem is non-
standard; the presence of the k−1 minima in the sum gives rise to k possible simplifications
of the formula separated by what can be thought of as k−1 phase transitions according to
the position of dime(µ) with respect to the entropies hνi(Πi◦f), hence k distinct optimisa-
tion problems must be considered, of which the optima must be compared. This study will
use the thermodynamic formalism, and the optimal Hausdorff dimension will be expressed
as the “weighted” pressure of some deterministic potential (see Theorem 2.3). Our sharp
upper bound for dimK proves that this maximal Hausdorff dimension of a Mandelbrot
measure supported on K yields dimK. This bound is derived from a variational princi-
ple as well, namely we optimise over uncountably many types of coverings of K, each of
which provides an upper bound for dimK (see Theorem 4.8); when k = 2, this does not
reduce back to the argument developed in [24]. As a by product, we get an alternative
to the proof by Kenyon and Peres [34] of the sharp upper bound in the deterministic
higher dimensional case. One may wonder if the approach by Kenyon and Peres, which in
the deterministic case uses a uniform control of the lower local dimension of the unique
Bernoulli measure of maximal Hausdorff dimension on K, can be extended to the random
case by using the unique Mandelbrot measure of maximal Hausdorff dimension on K. We
met an essential difficulty in trying to follow this direction, except in special cases (see the
discussion at the beginning of Section 4.4).

Our result regarding the box-counting dimension ofK is stated in Theorem 2.5. Another
difference between the deterministic or random dynamical Sierpinski sponges, and the
random Sierpinski sponges studied in this paper is that the first two classes of objects
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are stable under the natural projections Πi, 2 ≤ i ≤ k, while this is not the case for the
third one. Our approach will also provide dimΠi(K) (via a variational principle) and
dimB Πi(K) for the third class of random attractors (see Section 2.4; we note that the
case of Πk(K) reduces to that of Π2(K) when k = 2 and K is a statistically self-similar
set, a situation which is covered by [14, 17]). Finally, we determine the dimension of the
conditional measures associated with the successive images of any Mandelbrot measure by
the projections Πi (Section 2.5), which for each i equals dim(µ) − dim(Πi∗µ), hence the
conservation dimension formula holds.

Since using symbolic spaces to encode the Euclidean situation is necessary, we will
work on such spaces and endow them with adapted ultrametrics, so that the case of
random statistically self-affine Euclidean sponges and their projections will be reducible
to a particular situation of a more general framework on symbolic spaces and their factors.

Our framework and main results are presented in the next section.

2. Main results on self-affine symbolic spaces, and application to the

Euclidean case

We start with defining the symbolic random statistically self-affine sponges, which will
be studied in this paper.

2.1. Symbolic random statistically self-affine sponges. Let us first recall the notion
of self-affine symbolic space.

Let N, R+ and R∗
+ stand for the sets of non negative integer, non positive real numbers,

and strictly positive real numbers respectively.

Let k ≥ 2 be an integer. Assume that (Xi, Ti) (i = 1, . . . , k) are fulshifts over finite
alphabets Ai of cardinality ≥ 2 and such that Xi+1 is a factor of Xi with a one-block factor
map πi : Xi → Xi+1 for i = 1, . . . , k− 1 (this meaning that πi ((xn)

∞
n=1) = (π(xn))

∞
n=1 for

all (xn)
∞
n=1 ∈ Xi). For convenience, we use π0 to denote the identity map on X1. Define

Πi : X1 → Xi by Πi = πi−1 ◦ πi−2 ◦ · · · ◦ π0 for i = 1, . . . , k. Define A∗
i =

⋃
n≥0A

n
i , where

A0
i consists of the empty word ǫ. The maps πi and Πi naturally extend to A∗

i and A∗
1

respectively (πi(x1 · · · xn) = πi(x1) · · · πi(xn)).

If u ∈ A∗
i , we denote by [u] the cylinder made of those elements in Xi which have u as

prefix. If x ∈ Xi and n ≥ 0, we denote by x|n the prefix of x of length n.

Let ~γ = (γ1, . . . , γk) ∈ R∗
+ × (R+)

k−1. Define an ultrametric distance d~γ on X1 by

(2.1) d~γ(x, y) = max

Å
e
−

|Πi(x)∧Πi(y)|

γ1+···+γi : 1 ≤ i ≤ k

ã
,

where

|u ∧ v| =

®
0, if u1 6= v1,
max{n : uj = vj for 1 ≤ j ≤ n} if u1 = v1

for u = (uj)
∞
j=1, v = (vj)

∞
j=1 ∈ Xi.

The metric space (X1, d~γ) is called a self-affine symbolic space. It is a natural model
used to characterize the geometry of compact invariant sets on the k-torus under a diagonal
endomorphism [8, 40, 35, 6].
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Now, we can define symbolic random statistically self-affine sponges. Let A = (ca)a∈A1

be a random variable taking values in {0, 1}A1 . It encodes a random subset of A1, namely
{a ∈ A1 : ca = 1}, which we identify with A. Suppose that E(

∑
a∈A1

ca) > 1. Let
(A(u))u∈A∗

1
be a sequence of independent copies of A. For all n ∈ N, let

(2.2) Kn = {x ∈ X1 : cxi(x|i−1) = 1 ∀ 1 ≤ i ≤ n} =
⋃

u∈An
1 :

∏n

i=1
cui(u|i−1)=1

[u].

Due to our assumption on A, with positive probability, the set

K =
⋂

n≥1

Kn,

is the boundary of a non-degenerate Galton Watson tree with offspring distribution that
of the random integer

∑
a∈A1

ca. The set K satisfies the following symbolic statistically
self-affine invariance property:

K =
⋃

a∈A

a ·Ka, Ka =
⋂

n≥0

⋃

u∈An
1 :

∏n

i=1
cui(au|i−1)=1

[u],

and we will call it a symbolic statistically self-affine Sierpinski sponge. The link with the
Euclidean case will be made in Section 2.6.

Next we recall the definition and basic properties of Mandelbrot measures on K, and
state our result on their exact dimensionality.

2.2. Mandelbrot measures on K. These measures will play an essential role in finding
a sharp lower bound for dimK. Let W = (Wa)a∈A1 be a non-negative random vector
defined simultaneously with A and such that {Wa > 0} ⊂ {ca = 1} for all a ∈ A1. Let

T (q) = TW (q) = − logE
∑

a∈A1

W q
a , q ≥ 0,

and suppose that T (1) = 0, i.e. E
∑
a∈A1

Wa = 1. Let ((A(u),W (u))u∈A∗
1
be a sequence

of independent copies of (A,W ).

For each u, v ∈ A∗
1 let

Qu(v) =

|v|∏

k=1

Wk(u · v|k−1),

and simply denote Qǫ(v) by Q(v). Due to our assumptions on W , for each u ∈ A∗
1, setting

Yn(u) =
∑

|v|=nQ
u(v) the sequence (Yn(u), σ(Wa(uv) : a ∈ A1, v ∈ A∗

1))n≥1 is a non
negative martingale. Denote its limit almost sure limit by Y (u). The mapping

µ : [u] 7→ Q(u)Y (u)

defined on the set of cylinders {[u] : u ∈ A∗
1} extends to a unique measure µ on (X1,B(X1)).

This measure was first introduced in [39], and is called Mandelbrot measure. The support
of µ is the set

Kµ =
⋂

n≥0

⋃

u∈An
1 : Q(u)>0

[u] ⊂ K,

where the inclusion Kµ ⊂ K follows from the assumption {Wa > 0} ⊂ {ca(u) = 1}
for all u ∈ A∗

1 and all a ∈ A1. Moreover, if T ′(1−) > 0, then (Yn(u))n≥1 is uniformly
integrable (see [34, 11, 15]), and in this case note that Kµ is a symbolic statistically self-
affine set as well. Also, Kµ = K almost surely if and only if {ca(u) = 1} \ {Wa > 0} has
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probability 0. If T ′(1−) ≤ 0, either µ = 0 almost surely (one says that µ is degenerate),
or P(∃ a ∈ A, Wa = 1 and Wa′ = 0 if a′ 6= a) = 1 (see (see [34, 11, 15] as well), and in this
later case T ′(1−) = 0, Kµ is a singleton and µ is a Dirac measure [15].

The measure µ is also the weak-star limit of the sequence (µn)n≥1 defined by distributing
uniformly (with respect to the uniform measure on X1) the mass Q(u) on each u ∈ An

1 .
It is statistically self-affine in the sense that

µ(B) =
∑

a∈A1

Wa µ
a(σ(B ∩ [a]))

for all Borel subsets of X1, where µ
a is the copy of µ constructed on Ka with the weights

(W (au))u∈A∗
1
.

We will make a systematic use of the notion of entropy dimension of measures on Xi.
Given a positive and finite Borel measure ν on Xi, its entropy dimension is defined as

dime(ν) = lim
n→∞

−
1

n

∑

u∈An
i

ν([u]) log ν([u]),

whenever the limit exists. If ν is Ti-invariant, one has dime(ν) = hν(Ti), the entropy of ν
relative to Ti.

Due to results by Kahane and Peyrière [34, 33], when a Mandelbrot measure µ is non-
degenerate (that is when P(µ 6= 0) > 0), with probability 1, conditional on µ 6= 0, one
has

lim
n→∞

log(µ([x|n]))

−n
= T ′(1−) = −

∑

a∈A1

E(Wa logWa), for µ-a.e. x.

It then follows that dime(µ) exists [21] and dime(µ) = T ′(1). In particular,

(2.3) dime(µ) ≤ logE(#A).

Before stating our first result, we present a result deduced from [7] about the entropy
dimension of Πi∗µ (in [7] we consider the exact dimensionality of the projection of a
Mandelbrot measure on X1 × X1 to the first factor X1, in the case that X1 is endowed
with d~γ with ~γ = ((log #A1)

−1); but projecting fromX1 toXi and considering the entropy
dimension does not affect the arguments):

Theorem 2.1. [7, Theorem 3.2] Let µ be a non-degenerate Mandelbrot measure on K.
Suppose that T (q) > −∞ for some q > 1. With probability 1, conditional on µ 6= 0, for all
2 ≤ i ≤ k, one has dime(Πi∗µ) = min(dime(µ), hνi(Ti)), where νi is the Bernoulli product
measure on Xi obtained as νi = E(Πi∗µ).

Hence, dime(µ) and hνi(Ti) compete in the determination of the entropy dimension of
the ith projection of µ.

Recall that a locally finite Borel measure ν on a metric space (X, d) is said to be exact

dimensional with dimension D if limr→0+
log(ν(B(x,r)))

log(r) = D for ν-almost every x. We

denote the number D by dim(ν) and call it the dimension of ν. Our result on the exact
dimensionality of the Mandelbrot measure µ on (X1, d~γ) is the following.

Theorem 2.2 (Exact dimensionality of µ). Let µ be a non-degenerate Mandelbrot measure
on K. Suppose that T (q) > −∞ for some q > 1. With probability 1, conditional on µ 6= 0,

8



the measure µ is exact dimensional and dim(µ) = dim~γ
e (µ), where

dim~γ
e (µ) :=

k∑

i=1

γi dime(Πi∗µ) = γ1 dime(µ) +
k∑

i=2

γimin(dime(µ), hνi(Ti)).

This result will follow from the stronger fact that the Lq-spectrum of µ is differentiable
at 1.

2.3. The Hausdorff and box counting dimensions of K. To state our result on
dimK, we need to recall some elements of the weighted thermodynamic formalism.

For 1 ≤ i ≤ k and b ∈ Ai = Πi(A1), let

N
(i)
b = #{a ∈ A1 : [a] ⊂ Π−1

i ([b]) : [a] ∩K 6= ∅}.

Then set ‹Ai = {b ∈ Ai : E(N
(i)
b ) > 0}. Without loss of generality we suppose that

# ‹Ak ≥ 2. Indeed, if ‹Ak is a singleton, then Xk plays no role in the geometry of K since

Πk(K) is a singleton when K 6= ∅. As a consequence # ‹Ai ≥ 2 for all 2 ≤ i ≤ k.

For 1 ≤ i ≤ k, let ‹Xi denote the one-sided symbolic space over the alphabet ‹Ai. If

φ : ‹Xi → R is a continuous function on ‹Xi, ~β = (βi, βi+1, . . . , βk) ∈ R∗
+ × Rk−i+ , and

ν ∈ M(Xi, Ti), let

h
~β
ν (Ti) =

k∑

j=i

βjhΠi,j∗ν
(Tj),

where

(2.4) Πi,j = πj−1 ◦ · · · ◦ πi if j > i

and Πi,i is the identity map of Xi, and define the weighted pressure function

P
~β(φ, Ti) = sup

{
ν(φ) + h

~β
ν (Ti) : ν ∈ M(‹Xi, Ti)

}
,

where ν(φ) =
∫
X̃i
φdν. It is known ([6]) that if φ is Hölder-continuous, then P

~β(φ, Ti) is

reached at a unique fully supported measure νφ. Moreover, the mapping θ 7→ P
~β(θφ, Ti)

is differentiable, and

(2.5)
dP

~β(·φ, Ti))

dθ

∣∣∣∣
θ
=

∫

X̃i

φ(x) dνθφ(x) = νθφ(φ).

For 2 ≤ i ≤ k let ~γi = (~γij)i≤j≤k = (γ1 + · · · + γi, γi+1, . . . , γk) and let φi be the

Hölder-continuous potential defined on ‹Xi by

(2.6) φi(x) = (γ1 + · · · + γi) logE(N
(i)
x1 ).

For this potential and ~β = ~γi, setting

Pi = P ~γ
i

(·φi, Ti),

(2.5) yields

(2.7) P ′
i (θ) = (γ1 + · · ·+ γi)

∑

b∈Ai

νθφi([b]) log E(N
(i)
b ) (θ ∈ R).

9



We now define some parameters involved in the next statement. In order to slightly
simplify the exposition, we assume that all the γi are positive. The general situation will
be considered in the last section of the paper, namely Section 8.

Set I = {2, . . . , k} (introducing this convention will simplify the discussion in Section 8),

(2.8) θ̃i =
γ1 + · · ·+ γi−1

γ1 + · · ·+ γi
if 2 ≤ i ≤ k,

and define

Ĩ =
¶
i ∈ I : ∃ θ ∈ [θ̃i, 1] such that P ′

i (θ) ≥ 0
©

and i0 = min(Ĩ), where by convention min(∅) = k + 1. If Ĩ 6= ∅, set

θi0 = min
¶
θ ∈ [θ̃i0 , 1] : P

′
i0(θ) ≥ 0

©
.

If Ĩ = ∅, set θk+1 = 1 and φk+1 = φk.

Theorem 2.3 (Hausdorff dimension of K). With probability 1, conditional on K 6= ∅,

dimK = sup{dim~γ
e (µ) : µ is a positive Mandelbrot measure supported on Kµ ⊂ K}

=

{
Pi0(θi0) if i0 ≤ k

Pk(1) if i0 = k + 1
(2.9)

= inf
{
Pi(θ) : i ∈ I, θ̃i ≤ θ ≤ 1

}
,

and the supremum is uniquely attained at µνθi0φi0
.

Remark 2.4. We used an abuse of notation. Indeed, in Theorem 2.3 the supremum must
be understood as taken over the joint law of (K,µ) with µ a non-degenerate Mandelbrot
measure supported on K.

Theorem 2.5 (Box counting dimension of K). With probability 1, conditional on K 6= ∅,

dimBK = γ1 logE(#A) +
k∑

i=2

γi min
θ∈[0,1]

log
∑

b∈Ãi

E(N
(i)
b )θ.

Next we give the necessary and sufficient condition for dimK = dimBK. Define

ψi : θ ∈ [0, 1] 7→ log
∑

b∈Ãi

E(N
(i)
b )θ (2 ≤ i ≤ k).

For each 2 ≤ i ≤ k, denote by θ̂i the point in [0, 1] at which ψi reaches its minimum if ψi

is not constant (i.e. there is b ∈ ‹Ai such that E(N
(i)
b ) 6= 1), and θ̂i = 0 otherwise.

We will need the following lemma to state and prove Corollary 2.7 about the necessary
and sufficient condition for the equality dimK = dimBK to hold.

Lemma 2.6. Each ψi takes the value logE(#A) at θ = 1. Moreover, if 2 ≤ i ≤ k − 1,

then ψi ≥ ψi+1, and θ̂i < 1 implies θ̂i+1 < 1.

Proof. The first property is due to the relation E(N
(i)

b̃
) =

∑
b∈Ãi: πi(b)=b̃

E(N
(i)
b ) for any

b̃ ∈ ‹Ai+1, and the second one is due both to this property and the subadditivity of
y ≥ 0 7→ yθ. The third property is a direct consequence of the two first ones. �
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Corollary 2.7. It holds that dimK = dimBK with probability 1, conditional on K 6= ∅,

if and only if E(N
(i)
b ) does not depend on b ∈ ‹Ai for all i ∈ I such that θ̂i < 1.

Next we present our results regarding the images of µ and K under the projections Πi,
2 ≤ i ≤ k.

2.4. Dimensions of projections of µ and K. We still assume that all the γi are positive
and will discuss the general case in Section 8. In the next statement µ is a non-denenerate
Mandelbrot measure such that Kµ ⊂ K almost surely.

Theorem 2.8 (Dimension of Πi∗µ). Let 2 ≤ i ≤ k. Suppose that T (q) > −∞ for some
q > 1. With probability 1, conditional on µ 6= 0, the measure Πi∗µ is exact dimensional

and dim(Πi∗µ) = dim~γi

e (Πi∗µ), where

dim~γi

e (Πi∗µ) =
k∑

j=i

~γij dime(Πj∗µ) =
k∑

j=i

~γij min(dime(µ), hνj (Tj)).

Now define θi = 0 and θj = θ̃j if i < j ≤ k (recall (2.8)). Set Ii = {i, . . . , k} and define

Ĩi = {j ∈ Ii : ∃θ ∈ [θj, 1], P
′
j(θ) ≥ 0}. Then define j0 = min(Ĩi) if Ii 6= ∅ and j0 = k + 1

otherwise. Also, set

θj0 = min{θ ∈ [θj0 , 1] : P
′
j0(θ) ≥ 0} if j0 ≤ k.

If Ĩi = ∅, set θk+1 = 1.

Theorem 2.9 (Hausdorff dimension of Πi(K)). Let 2 ≤ i ≤ k. With probability 1,
conditional on K 6= ∅,

dimΠi(K) = sup{dim~γi

e (Πi∗µ) : µ is a positive Mandelbrot measure supported on Kµ ⊂ K}

=

{
Pj0(θj0) if j0 ≤ k

Pj0(1) if j0 = k + 1
,(2.10)

and the supremum is uniquely attained if and only if j0 > i, or if j0 = i and (θj0 > 0 or
θj0 = 0 and P ′

j0
(0) = 0). In any of these cases the supremum is reached at µνθj0φj0

.

Remark 2.10. We deduce from Theorems 2.3 and 2.9 that: (i) if 2 ≤ i < i0 then
dimΠi(K) = dimK. (ii) dimK = dimΠi0(K) if and only if i0 ≤ k and P ′

i0(θi0) = 0, or if
i0 = k+1. (iii) If 2 ≤ i < j ≤ k then (a) if 2 ≤ i < j < j0, then dimΠj(K) = dimΠi(K);
(b) dimΠj0(K) = dimΠi(K) if and only if j0 ≤ k and P ′

j0(θj0) = 0, or j0 = k + 1.

Theorem 2.11 (Box counting dimension of Πi(K)). Let 2 ≤ i ≤ k. With probability 1,
conditional on K 6= ∅,

dimB Πi(K) =
k∑

j=i

~γij min
θ∈[0,1]

log
∑

b∈Aj

E(N
(j)
b )θ.

Corollary 2.12. Let 2 ≤ i ≤ k. It holds that dimΠi(K) = dimB Πi(K) with probability 1,
conditional on K 6= ∅, if and only if either of the three following conditions hold:

(1) θ̂i = 1 and E(N
(j)
b ) does not depend on b ∈ ‹Aj for all j ∈ Ii \ {i} such that θ̂j < 1.
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(2) 0 < θ̂i < 1 or θ̂i = 0 and ψ′
i(0) = 0. Moreover, if j′0 is the maximum of those j ∈ Ii

such that for all j′ ≤ j in Ii either 0 < θ̂j′ < 1 or θ̂j′ = 0 and ψj′(0) = 0: (i) for

all j ∈ Ii such that j ≤ j′0, for all b ∈ ‹Aj, Π
−1
i,j (b)∩Ai is a singleton (in particular

θ̂j = θ̂i); (ii) for all j ∈ Ii such that j > j′0 one has θ̂j = 0 and ψ′
j(0) > 0, and

∑
b′∈Π−1

i,j
({b}) E(N

(i)
b′ )

θ̂i does not depend on b ∈ ‹Aj.

(3) For all j ∈ Ii, θ̂j = 0, ψ′
j(0) > 0, and #Π−1

i,j (b) ∩ Ai does not depend on b ∈ ‹Aj.

In the random case, the last three results are new except in the case i = k, which is
reducible to the two dimensional case which follows from [14, 17, 7].

2.5. Dimensions of conditional measures. Given a non-degenerate Mandelbrot mea-
sure µ, conditional on µ 6= 0, for each 2 ≤ i ≤ k, the measure µ disintegrates as the
skewed product of Πi∗µ(dz)µ

z(dx), where µz is the conditional measure supported on
Π−1
i ({z}) ∩ K for Πi∗µ-almost every z. We will prove the exact dimensionality of the

measures µz and the value for their dimensions.

Let us start with a consequence of [7, Theorems 3.1 and 3.2]:

Theorem 2.13. Let µ be a non-degenerate Mandelbrot measure supported on K and
2 ≤ i ≤ k. Let νi be the Bernoulli product measure equal to E(Πi∗µ). With probability 1,
conditional on µ 6= 0, Πi∗µ is absolutely continuous with respect to νi if dime(µ) > hνi(Ti),
otherwise Πi∗µ and νi are mutually singular.

Moreover, if T (q) > −∞ for some q > 1, then for Πi∗µ-a.e. z ∈ Πi(K) and µz-a.e.

x ∈ K, limn→∞
log(µz([x|n]))

−n = dime(µ)− dime(Πi∗µ), i.e. dime(µ)− hνi(Ti) if dime(µ) >

hνi(Ti) and 0 otherwise. In particular the entropy dimension of µz exists and dime(µ
z) =

dime(µ)− dime(Πi∗µ).

It is worth mentioning that the existence of the local entropy dimension for µz and the
entropy dimension conservation formula comes from the study achieved in [18] for the self-
similar case, while the alternative between singularity and absolute continuity regarding
Πi∗µ, as well as the value of dime(Πi∗µ) and so that of dime(µ

z) are obtained in [7].

For the Hausdorff dimension of the conditional measures, we prove the following result:

Theorem 2.14. Let µ be a non-degenerate Mandelbrot measure supported on K and
2 ≤ i ≤ k. Let νi be the Bernoulli product measure equal to E(Πi∗µ). Suppose that
T (q) > −∞ for some q > 1. With probability 1, conditional on µ 6= 0:

(1) If dime(µ) ≤ hνi(Ti), then for Πi∗µ-a.e. z ∈ Πi(K), the measure µz is exact
dimensional with Hausdorff dimension equal to 0.

(2) If dime(µ) > hνi(Ti), then for Πi∗µ-a.e. z ∈ Πi(K), the measure µz is exact
dimensional with

(2.11) dim(µz) = γ1(dime(µ)− hνi(Ti)) +
i−1∑

j=2

γj
Ä
min(dime(µ), hνj (Tj))− hνi(Ti)

ä
.

(3) In both the previous situations, the Hausdorff dimension conservation dim(µ) =
dim(µz) + dim(Πi∗µ) holds.

Naturally, there is a similar result for the conditional measures of Πi∗µ projected on
Xj , 2 ≤ i ≤ j ≤ k.
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Theorem 2.15. Suppose k ≥ 3. Let µ be a non-degenerate Mandelbrot measure supported
on K and 2 ≤ i < j ≤ k. Suppose that T (q) > −∞ for some q > 1. With probability 1,
conditional on µ 6= 0, denote by (Πi∗µ)

j,z the conditional measure of Πi∗µ associated with
the projection Πi,j, and defined for Πj∗µ-almost every z.

(1) If dime(µ) ≤ hνj(Tj), then for Πj∗µ-a.e. z ∈ Πj(K), the measure (Πi∗µ)
j,z is

exact dimensional with Hausdorff dimension equal to 0.
(2) If dime(µ) > hνj(Tj), then for Πj∗µ-a.e. z ∈ Πj(K), the measure (Πi∗µ)

j,z is
exact dimensional with

dim((Πi∗µ)
j,z)) =

j−1∑

j′=i

~γij′
Ä
min(dime(µ), hνj′ (Tj′))− hνj (Tj))

ä
.(2.12)

(3) In both the previous situations, the Hausdorff dimension conservation dim(Πi∗µ) =
dim((Πi∗µ)

j,z)) + dim(Πj∗µ) holds for Πi,j-a.e. z ∈ Πi,j(K).

2.6. Applications to the Euclidean realisations of symbolic random statistically

self-affine Sierpinski sponges. The link with Euclidean random sponges is the follow-
ing: Given a sequence of integers 2 ≤ mk < · · · < m1, if Ai =

∏k
j=i{0, . . . ,mi − 1} for

1 ≤ i ≤ k, πi is the canonical projection from Ai to Ai+1 for 1 ≤ i ≤ k−1, γ1 = 1/ log(m1),
and γi = 1/ log(mi) − 1/ log(mi−1), 2 ≤ i ≤ k, then the cylinders of generation n of X1

project naturally onto parallelepipeds of the family Gn = {
∏k
i=1[ℓim

−n
i , (ℓi +1)m−n

i ] : 0 ≤

ℓi ≤ mn
i − 1}, and K projects on a statistically self-affine Sierpinski sponge K̃, also called

Mandelbrot percolation set associated with (A(u))u∈A∗
1
in the cube [0, 1]k endowed with

the nested grids (Gn)n≥0.

It is direct to prove that all the results of the previous sections are valid if one replaces K

by K̃, the Mandelbrot measures by their natural projections on K̃ (also called Mandelbrot
measures), and Πi by the orthogonal projection from Rk to {0}i−1 × Rk−i+1.

If K̃ is deterministic, then i0 = 2, θ2 = γ1/(γ1+γ2), the Mandelbrot measure of maximal
Hausdorff dimension is a Bernoulli product measures, and we recover the result established
by Kenyon and Peres in [34] (they work on (R/Z)k but it is equivalent); also, in this case
the results on the dimension of conditional measures is a special case of the general result
obtained by the second author on the dimension theory of self-affine measures [22]. If

k = 2, the Euclidean version of Theorem 2.2 yields the value of dim K̃ computed by
Gatzouras and Lalley in [24].

Regarding the box counting dimension of K̃, if K̃ is deterministic, we just recover the

result of [34]; in this case, θ̂i = 0 for all 2 ≤ i ≤ k. If k = 2, we recover the result of
Gatzouras and Lalley in [24].

The paper is organized as follows. Section 3 is dedicated to the proof of Theorem 2.2,
Section 4 to the proof of Theorem 2.3, Section 5 to that of Theorem 2.5 and its corollary,
Section 6 to those of the corresponding results for projections of Mandelbrot measures
and K, Section 7 to those on conditional measures, and the brief Section 8 to the case
when some γi vanish.

3. The Hausdorff dimension of µ. Proof of Theorem 2.2

Let us start with a few definitions.
13



With the notations of the introduction part, for any word I ∈ A∗
1, and any integer

n ≥ 0, we denote by µI the measure defined on X1 by

µI([J ]) = QI(J)Y (IJ) (∀J ∈ A∗
1)

and by µIn the measure on X1 obtained by distributing uniformly QI(J) on any cylinder
J of the nth generation. Also, we write µn = µǫn.

For 1 ≤ i ≤ k and n ∈ N, let

ℓi(n) = min

ß
p ∈ N : p ≥ (γ1 + · · · + γi)

n

γ1

™
,

and by convention set ℓ0(n) = 0. It is easy to check that in the ultrametric space (X1, d~γ),

the closed ball centered at x of radius e
− n

γ1 is given by

B(x, e
− n

γ1 ) =
¶
y ∈ X1 : Πi(y|ℓi(n)) = Πi(x|ℓi(n)) for all 1 ≤ i ≤ k

©
.

Let Fn be the partition of X1 into closed balls of radius e
− n

γ1 . For any positive and finite
Borel measure ν on X1, the L

q-spectrum of ν can be defined as the concave mapping

τν : q ∈ R 7→ lim inf
n→∞

−
γ1
n

log
∑

B∈Fn

ν(B)q,

with the convention 0q = 0.

It is known that since (X1, d~γ) satisfies the Besicovich covering property, for ν-almost

every x ∈ X1, one has τ
′
ν(1

+) ≤ dimloc(ν, x) ≤ dimloc(ν, x) ≤ τ ′ν(1
−), so that the existence

of τ ′ν(1) implies the exact dimensionality of ν, with dimension equal to τ ′ν(1) (see, e. g.,
[41]). Consequently, Theorem 2.2 follows from the following stronger one.

Theorem 3.1. Suppose that T (q) > −∞ for some q > 1. Conditional on µ 6= 0, τ ′µ(1)

exists and equals dim~γ
e (µ).

Recall that for 2 ≤ i ≤ k, we defined νi as Πi∗E(µ) = E(Πi∗µ).

If ν is a Bernoulli product measure on Xi, we set

Tνi(q) = − log
∑

b∈Ai

νi([b])
q (q ≥ 0).

The theorem follows from the following proposition.

Proposition 3.2. Suppose that T (q) > −∞ for some q > 1. Let i0 = max{2 ≤ i ≤ k :
T ′(1) ≤ T ′

νi(1)} (with the convention max(∅) = 1). Then there exists q0 > 1 and c0 ≥ 0
such that for all q ∈ (0, q0], we have

(3.1) E
( ∑

B∈Fn

µ(B)q
)
= O

(
exp

(
ℓi0(n)(c0(q−1)2−T (q))−

k∑

i=i0+1

(ℓi(n)−ℓi−1(n))Tνi(q)
))

as n → ∞. Moreover, c0 can be taken equal to 0 if one restricts q to belong to (0, 1] or if
T ′(1) 6= T ′

νi(1) for all 2 ≤ i ≤ k.
14



Assume that Proposition 3.2 holds. Then, a standard argument (see, e.g. [7, Lemma
C]) yields that for any fixed q ∈ (0, q0], the following holds almost surely:

lim sup
n→∞

log
∑

B∈Fn

µ(B)q

n
≤ lim sup

n→∞

ℓi0(n)(c0(q − 1)2 − T (q))−
∑k
i=i0+1(ℓi(n)− ℓi−1(n))Tνi(q)

n

=
γ1 + · · ·+ γi0

γ1
(c0(q − 1)2 − T (q))−

k∑

i=i0+1

γi
γ1

Tνi(q).

Then, by the convexity of the two sides as functions of q, the inequality holds almost
surely for all q ∈ (0, q0]. Multiplying both sides by −γ1 yields, conditional on µ 6= 0,

τµ(q) ≥ −(γ1 + · · ·+ γi0)c0(q − 1)2 + (γ1 + · · · + γi0)T (q) +
k∑

i=i0+1

γi Tνi(q).

Since both sides of the above inequality are concave functions which coincide at q = 1
and the right hand side is differentiable at 1, we necessarily have that τ ′µ(1) does exist
and is equal to the derivative at 1 of the right hand side, namely (γ1 + · · · + γi0)T

′(1) +∑k
i=i0+1 γi T

′
νi(1) = dim~γ

e (µ).

The proof of Proposition 3.2 requires the following two lemmas.

Lemma 3.3. Suppose that T (q) > −∞ for some q > 1. Then, for all q ∈ (1, 2) such that
T (q) > 0, there exists a constant Cq > 0 such that for all 2 ≤ i ≤ k, for all n ≥ 1 one has

max

Ñ
E

∑

U∈An
i

Πi∗µ([U ])q,E
∑

U∈An
i

Πi∗µn([U ])q

é
≤ Cqe

−nmin(T (q),Tνi (q)).

Proof. This is a direct consequence of [7, Corollary 5.2], in which the case k = 2 is
considered. �

Lemma 3.4. [45] Let (Lj)j≥1 be a sequence of centered independent real valued random
variables. For every finite I ⊂ N and q ∈ (1, 2],

E
(∣∣∣∣

∑

i∈I

Li

∣∣∣∣
q)

≤ 2
∑

i∈I

E(|Li|
q).

Proof of Proposition 3.2. At first, note that the set of balls Fn is in bijection with the set
∏k
i=1A

ℓi(n)−ℓi−1(n)
i , since for any x = (xi)

∞
i=1 ∈ X1, if we set Ui = Πi(xℓi−1(n)+1 · · · xℓi(n)),

1 ≤ i ≤ k, and U = (U1, . . . , Uk), then

B(x, e
− n

γ1 ) = {y ∈ X1 : ∀ 1 ≤ i ≤ k, Πi(T
ℓi−1(n)
1 y) ∈ [Ui]} =

⋃

(J1,...,Jk)∈JU

[J1 · · · Jk],

where

(3.2) JU :=

{
(J1, . . . , Jk) ∈

k∏

i=1

A
ℓi(n)−ℓi−1(n)
1 : ∀ 1 ≤ i ≤ k, Πi(Ji) = Ui

}
.

For q ∈ R+ we need to estimate from above the partition function

Zq,n :=
∑

B∈Fn

µ(B)q =
∑

U∈U1,n

( ∑

(J1,J2,...,Jk)∈JU

µ([J1 · · · Jk])
)q
.
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For 1 ≤ i ≤ k, set U
(i)
n =

∏k
j=iA

ℓj(n)−ℓj−1(n)
j , and for U (i) = (Ui, · · · , Uk) ∈ U

(i)
n , set

JU (i) =



(Ji, . . . , Jk) ∈

k∏

j=i

A
ℓj(n)−ℓj−1(n)
1 : ∀ i ≤ j ≤ k, Πj(Jj) = Uj



 .

Also, set U
(k+1)
n = {ǫ} = Jǫ.

Then, for 1 ≤ i ≤ k and (J1, . . . , Ji) ∈
∏i
j=1A

ℓi(n)−ℓi−1(n)
1 , define the random variable

Zq,n(J1 · · · Ji) =
∑

U (i+1)∈U
(i+1)
n

( ∑

(Ji+1,...,Jk)∈JU(i+1)

µJ1···Ji([Ji+1 . . . Jk])
)q
.

Notice that Zq,n(ǫ) = Zq,n and Zq,n(J1 · · · Jk) = Y (J1 · · · Jk)
q.

Due to the branching property associated with the measures µJ , J ∈ A∗
1, for all 0 ≤

i ≤ k − 1 we have

Zq,n(J1 · · · Ji) =
∑

U (i+1)∈U
(i+1)
n

( ∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

1
Πi(Ji+1)=Ui+1

µJ1···Jiℓi+1(n)−ℓi(n)
([Ji+1])SU (i+2)(J1 · · · JiJi+1)

)q
,

where U (i+2) = (Ui+2, . . . , Uk) ∈ U
(i+2)
n , and

SU (i+2)(J1 · · · JiJi+1) =
∑

(Ji+2,...,Jk)∈JU(i+2)

µJ1···JiJi+1([Ji+2 . . . Jk]).

Notice that the random variables SU (i+2)(J1 · · · JiJi+1), where Ji+1 ∈ A
ℓi+1(n)−ℓi(n)
1 and

Πi(Ji+1) = Ui+1, are independent and identically distributed, and independent of the

σ-algebra generated by the µJ1···Jiℓi+1(n)−ℓi(n)
(Ji+1). Setting L(Ji+1) = SU (i+2)(J1 · · · Ji+1) −

E(SU (i+2)), where E(SU (i+2)) stands for the common value of the SU (i+2)(J1 · · · Ji+1) expec-
tations, we have, for q > 1:

E
( ∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

i+1

Πi(Ji+1)=Ui+1

µJ1···Jiℓi+1(n)−ℓi(n)
([Ji+1])SU (i+2)(J1 · · · JiJi+1)

)q

≤ 2q−1E
( ∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

i+1

Πi(Ji+1)=Ui+1

µJ1···Jiℓi+1(n)−ℓi(n)
([Ji+1])

)q
E(SU (i+2))q

+ 2q−1E

∣∣∣∣
∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

i+1

Πi(Ji+1)=Ui+1

µJ1···Jiℓi+1(n)−ℓi(n)
([Ji+1])L(Ji+1)

∣∣∣∣
q

.
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Assuming that q ∈ (1, 2], we can apply Lemma 3.4 to the second term conditional on the

σ-algebra generated by the µJ1···Jiℓi+1(n)−ℓi(n)
(Ji+1) and get

E

∣∣∣∣
∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

i+1

Πi(Ji+1)=Ui+1

µJ1···Jiℓi+1(n)−ℓi(n)
([Ji+1])L(Ji+1)

∣∣∣∣
q

≤ 2qE
( ∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

i+1

Πi(Ji+1)=Ui+1

µJ1···Jiℓi+1(n)−ℓi(n)
([Ji+1])

q
)
E(|L|q)

≤ 2qE
( ∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

i+1

Πi(Ji+1)=Ui+1

µJ1···Jiℓi+1(n)−ℓi(n)
([Ji+1])

)q
E(|L|q) (using superadditivity)

= 2qE
Ä
Πi∗µ

J1···Ji
ℓi+1(n)−ℓi(n)

([Ui+1])
q
ä
E(|L|q),

where E(|L|q) = E(|SU (i+2) − E(SU (i+2))|q) ≤ 2qE(Sq
U (i+2)), and E(Sq

U (i+2)) is the common

value of the E(SU (i+2)(J1 · · · Ji+1)
q). Incorporating the last inequality in the previous one,

we get

E
( ∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

i+1

Πi(Ji+1)=Ui+1

µJ1···Jiℓi+1(n)−ℓi(n)
(Ji+1)SU (i+2)(J1 · · · Ji+1)

)q

≤ 23qE
Ä
Πi∗µ

J1···Ji
ℓi+1(n)−ℓi(n)

([Ui+1])
q
ä
E(Sq

U (i+2)).

Then, taking an arbitrary element J̃i+1 in A
ℓi+1(n)−ℓi(n)
1 , we obtain

E(Zq,n(J1 · · · Ji))

≤ 23q
∑

Ui+1∈A
ℓi+1(n)−ℓi(n)

i+1

E
Ä
Πi∗µ

J1···Ji
ℓi+1(n)−ℓi(n)

([Ui+1])
q
ä ∑

U (i+2)∈U
(i+2)
n

E(SU (i+2)(J1 · · · JiJ̃i+1)
q)

= 23q
∑

Ui+1∈A
ℓi+1(n)−ℓi(n)

i+1

E
Ä
Πi∗µ

J1···Ji
ℓi+1(n)−ℓi(n)

([Ui+1])
q
ä
E(Zq,n(J1 · · · JiJ̃i+1)).

Since (µp)p≥1 and (µJ1···Jip )p≥1 are identically distributed this yields

E(Zq,n(J1 · · · Ji))

≤ 23q
∑

Ui+1∈A
ℓi+1(n)−ℓi(n)

i+1

E
Ä
Πi∗µℓi+1(n)−ℓi(n)([Ui+1])

q
ä
E(Zq,n(J1 · · · JiJ̃i+1)).

It follows that

E(Zq,n) ≤ 23qk E(Y q)
k∏

i=1

E
( ∑

Ui∈A
ℓi(n)−ℓi−1(n)

i

Πi∗µℓi(n)−ℓi−1(n)([Ui])
q
)
.

Let q1 ∈ (1, 2] such that T (q) > 0 for all q ∈ (1, q1] (remember that T (1) = 0 and
T ′(1) > 0). Then, for all q ∈ (1, q1], the previous estimate combined with Lemma 3.3
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yields

E(Zq,n) ≤ 23qkCk−1
q E(Y q)E

( ∑

U1∈An
1

µn([U1])
q
)

× exp
(
−

k∑

i=2

(ℓi(n)− ℓi−1(n))min(T (q),Tνi(q))
)

= 23qkCk−1
q E(Y q) exp

(
− nT (q)−

k∑

i=2

(ℓi(n)− ℓi−1(n))min(T (q),Tνi(q))
)
.

Finally, recall that i0 = max{2 ≤ i ≤ k : T ′(1) ≤ T ′
νi(1)} (note that for each i the

numbers T ′
νi(1) is the measure theoretic entropy of νi so that the sequence (T ′

νi(1))1≤i≤k
is non increasing). Since T and the functions Tνi are analytic near 1 and coincide at
1, for all 2 ≤ i ≤ i0 there exists q0,i ∈ (1, q1] and ci ≥ 0 such that for all q ∈ (1, q0,i]
one has min(T (q),Tνi(q)) ≥ T (q) − ci(q − 1)2, with ci = 0 if T ′(1) < T ′

νi(1). Taking
c0 = max{ci : 2 ≤ i ≤ i0} and q0 = min{q0,i : 2 ≤ i ≤ i0} yields (3.1).

Suppose now that q ∈ (0, 1]. We start with giving general estimate of E(Zq,n(J1 · · · Ji)).
Using the subadditivity of x ∈ R+ 7→ xq we have

Zq,n(J1 · · · Ji) ≤
∑

U (i+1)∈U
(i+1)
n

∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

1
Πi(Ji+1)=Ui+1

µJ1···Jiℓi+1(n)−ℓi(n)
([Ji+1])

q SU (i+2)(J1 · · · JiJi+1)
q,

so

E(Zq,n(J1 · · · Ji)) ≤
∑

Ui+1∈A
ℓi+1(n)−ℓi(n)

i+1

∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

1
Πi(Ji+1)=Ui+1

E(µJ1···Jiℓi+1(n)−ℓi(n)
(Ji+1)

q)

· E
( ∑

U (i+2)∈U
(i+2)
n

SU (i+2)(J1 · · · JiJ̃i+1)
q
)

= E
( ∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

1

µJ1···Jiℓi+1(n)−ℓi(n)
(Ji+1)

q
)
E(Zq,n(J1 · · · JiJ̃i+1))

= E
( ∑

Ji+1∈A
ℓi+1(n)−ℓi(n)

1

µℓi+1(n)−ℓi(n)(Ji+1)
q
)
E(Zq,n(J1 · · · JiJ̃i+1))

= exp(−(ℓi+1(n)− ℓi(n))T (q))E(Zq,n(J1 · · · JiJ̃i+1)).

Starting from E(Zq,n) = E(Zq,n(ǫ)) and iterating i0 times the previous estimate we get

E(Zq,n) ≤
( i0∏

i=1

exp(−(ℓi(n)− ℓi−1(n))T (q))
)
E(Zq,n(J̃1 · · · J̃i0))

= exp(−ℓi0(n)T (q))E(Zq,n(J̃1 · · · J̃i0)).
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On the other hand, setting J̃ = J̃1 · · · J̃i0 and λ(n) = ℓk−1(n)− ℓi0+1(n), we can write

Zq,n(J̃)

=
∑

U (i0+1)∈U
(i0+1)
n

( ∑

J ′=Ji0+1··· ,Jk−1

Πj(Jj)=Uj , ∀ i0+1≤j≤k−1

µJ̃λ(n)([J
′])

∑

Jk: Πk(Jk)=Uk

µJ̃J
′
([Jk])

)q

=
∑

U (i0+1)∈U
(i0+1)
n

( ∑

J ′=Ji0+1···Jk−1

Πj(Jj)=Uj , ∀ i0+1≤j≤k−1

µJ̃λ(n)([J
′]) νk([Uk])X(J̃J ′)

)q
,

where

X(J̃J ′) =
∑

Jk: Πk(Jk)=Uk

wJ̃J
′
(Jk), with w

J̃J ′
(Jk) =





µJ̃J
′
([Jk])

νk([Uk])
if νk([Uk]) > 0,

0 otherwise

.

We can now use the independence of the random variables X(J̃J ′) with respect to the

σ-algebra generated by the µJ̃λ(n)([J
′]), conditioned with respect to this σ-algebra and use

Jensen’s inequality to get

E(Zq,n(J̃)) ≤
∑

U (i0+1)∈U
(i0+1)
n

E
( ∑

J ′=Ji0+1,...,Jk−1

Πj(Jj)=Uj , ∀ i0+1≤j≤k−1

µJ̃λ(n)([J
′]) νk([Uk])E(X(J̃J ′))

)q
.

But by construction we have νk([Uk]) = E
(∑

Jk: Πk(Jk)=Uk
µJ̃J

′
([Jk])

)
, hence E(X(J̃J ′)) =

1. Setting

R =
∑

(Ui0+1,...,Uk−1)∈
∏k−1

i=i0+1
A

ℓi(n)−ℓi−1(n)

i

E
( ∑

J ′=Ji0+1···Jk−1

Πj(Jj)=Uj , ∀ i0+1≤j≤k−1

µJ̃λ(n)([J
′])

)q
,

this yields

E(Zq,n(J̃)) ≤ R ·
( ∑

Uk∈A
ℓk(n)−ℓk−1(n)

k

νk([Uk])
q
)
= R · exp(−(ℓk(n)− ℓk−1(n))Tνk(q)).

We can apply to R the same type of estimate as that for E(Zq,n(J̃)), the only change

being that µJ̃J
′
([Jk]) = µJ̃Ji0+1···Jk−1([Jk]) must be replaced by µ

J̃Ji0+1···Jk−2

ℓk−1(n)−ℓk−2(n)
(Jk−1), and

one now must use the fact that νk−1 = E(Πk−1∗µ
J̃Ji0+1···Jk−2

ℓk−1(n)−ℓk−2(n)
). Iterating we get

E(Zq,n(J̃)) ≤ exp
(
−

k∑

i=i0+1

(ℓi(n)− ℓi−1(n))Tνi(q)
)
,

and finally

E(Zq,n) ≤ exp
(
− ℓi0(n)T (q)−

k∑

i=i0+1

(ℓi(n)− ℓi−1(n))Tνi(q)
)
.

�
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4. The Hausdorff dimension of K. Proof of Theorem 2.3

We have to optimise the weighted entropy dim~γ
e (µ) over the set of non-degenerate

Mandelbrot measures µ supported on K; this will provide us with a sharp lower bound for
dimK. To do so, it is convenient to first relate dime(µ) to hνi(Ti) for all 2 ≤ i ≤ k. This
is the purpose of Section 4.1. Then we identify at which point the maximum of weighted
entropy dimension of Mandelbrot measures supported on K is reached. This constitutes
Section 4.2. Section 4.3 quickly derives the sharp lower bound for dimK. Finally, in
Section 4.4 we develop a kind of variational principle to get the sharp upper bound for
dimK.

4.1. Mandelbrot measure as a kind of skewed product and decomposition of

entropy dimension. Let µ be a non-degenerate Mandelbrot measure jointly constructed
with K and such that Kµ ⊂ K almost surely. As in Section 2.2, we denote by W the
random vector used to generate µ. By construction, for any 1 ≤ i ≤ k, the measure
νi = E(Πi∗µ) is the Bernoulli product measure on Xi associated with the probability

vector p(i) = (p
(i)
b )b∈Ai

, where

p
(i)
b =

∑

a∈A1: [a]⊂Π−1
i

([b])

E(Wa),

and one has νi = πi−1∗νi−1 for i ≥ 2. We also define, for b ∈ Ai,

V
(i)
b = (V

(i)
b,a )a∈A1:[a]⊂Π−1

i
([b]) =

{
νi([b])

−1(Wa)a∈A1:[a]⊂Π−1
i

([b]) if νi([b]) > 0

0 otherwise
,

so that for all a ∈ A1, for all 1 ≤ i ≤ k, we have the multiplicative decomposition

Wa = νi(Πi[a]) · V
(i)
Πi(a),a

.

For 1 ≤ i ≤ k and b ∈ Ai, set

T
V

(i)
b

(q) = − logE
∑

a∈A1:[a]⊂Π−1
i

([b])

(V
(i)
b,a )

q (q ≥ 0),

with the conventions 00 = 0 and log(0) = −∞. One can check that

(4.1) e−TW (q) =
∑

b∈Ai

νi([b])>0

νi([b])
qe

−T
V
(i)
b

(q)

,

from what it follows, after differentiating at 1, that

(4.2) dime(µ) = hνi(Ti) + dime(µ|νi),

where

hνi(Ti) = −
∑

b∈Ai

νi([b]) log νi([b])

is the entropy of the invariant measure νi and

dime(µ|νi) :=
∑

b∈Ai

νi([b])>0

νi([b])T
′

V
(i)
b

(1) =
∑

b∈Ai

νi([b])>0

νi([b])

Ö

−
∑

a∈A1:[a]⊂Π−1
i

([b])

E(V
(i)
b,a log V

(i)
b,a )

è
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must be thought of as the relative entropy dimension of µ given νi whenever this number
is non negative.

Among the Mandelbrot measures supported on K, special ones will play a prominent
role. We introduce them now.

Recall that for 1 ≤ i ≤ k and b ∈ Ai = Πi(A1), we defined

N
(i)
b = #{a ∈ A1 : [a] ⊂ Π−1

i ([b]) : [a] ∩K 6= ∅}

and we also defined the set ‹Ai = {b ∈ Ai : E(N
(i)
b ) > 0}.

For a ∈ A1 such that [a] ⊂ Π−1
i ([b]) let

‹V (i)
b,a =

{
(E(N

(i)
b ))−1 if b ∈ ‹Ai and [a] ∩K 6= ∅,

0 otherwise
.

If νi is a Bernoulli product measure, and Wa is taken equal to W̃a = νi(b)‹V (i)
b,a for all

a ∈ A1 such that [a] ⊂ Π−1
i ([b]), and if T ′‹W (1) > 0, we get a new Mandelbrot measure that

we denote by µνi . By construction, νi = E(Πi∗µνi), and

(4.3) dime(µνi |νi) =
∑

b∈Ai

νi([b]) log E(N
(i)
b ).

Remark 4.1. The following basic observation will play an important role. Given a non-
degenerate Mandelbrot measure µ supported on K and 2 ≤ i ≤ k, for each b ∈ Ai such that

νi([b]) > 0, the function T
V

(i)
b

is concave, takes value 0 at 1 and − logE(N
(i)
b ) at 0, so it

is bounded from below by the linear function T
Ṽ

(i)
b

: q 7→ (q− 1) logE(N
(i)
b ). Consequently,

T ′

V
(i)
b

(1) ≤ T ′

Ṽ
(i)
b

(1) = logE(N
(i)
b ). It then follows from (4.2) that T ′‹W (1) > 0, and µνi is

non-degenerate.

Remark 4.2. The reader will also check that when µνi is non-degenerate, for all 2 ≤ i′ ≤

i− 1, denoting E(Πi′∗µνi) by νi′, one also has W̃a = νi′(b
′)‹V (i′)

b′,a for all b′ ∈ Ai′ and a ∈ A1

such that [a] ⊂ Π−1
i′ ([b]). Consequently, µνi′ = µνi,and

dime(µνi) = hνi(Ti) +
∑

b∈Ai

νi([b]) log EN
(i)
b = hνi′ (Ti′) +

∑

b′∈Ai′

νi′([b
′]) logE(N

(i′)
b′ ).

Also, if νi is fully supported on ‹Xi, then Kµνi
= K almost surely.

4.2. An optimisation problem. The following result invokes several definitions given
in Section 1, especially in Sections 2.2 and 2.3.

Theorem 4.3. Let

M~γ : = max{dim~γ
e (µ) : µ is a positive Mandelbrot measure supported on Kµ ⊂ K}.

On has

M~γ =

{
Pi0(θi0) if i0 ≤ k

Pk(1) if i0 = k + 1
,

and the maximum is uniquely attained at µνθi0φi0
.

21



Now let us introduce some definitions and make some observations (Remark 4.4).

For 1 ≤ i ≤ k, set γ̃i = γ1 + · · ·+ γi.

Given a non-degenerate Mandelbrot measure µ supported on K, νj still standing for
E(Πj∗µ), for 2 ≤ i ≤ k define

di(µ) =
i−1∑

j=1

γj dime(µ) +
k∑

j=i

γjhνj(Tj)

= γ̃i−1

Ñ
∑

b∈Ai

νi([b])T
′

V
(i)
b

(1)

é
+ γ̃ihνi(Ti) +

k∑

j=i+1

γjhνj (Tj)

and dk+1(µ) = γ̃k

Ñ
∑

b∈Ak

νk([b])T
′

V
(k)
b

(1)

é
+ γ̃khνk(Tk).

For 2 ≤ i ≤ k, let Bi be the set of Bernoulli product measures νi on Xi whose topological

support is included in ‹Xi, i.e. such that νi([b]) = 0 if b 6∈ ‹Ai, and νi is not a Dirac mass.
Also, for νi ∈ Bi define

Di(νi) = γ̃i−1

Ñ
∑

b∈Ai

νi([b]) log EN
(i)
b

é
+ γ̃ihνi(Ti) +

k∑

j=i+1

γjhνj (Tj)(4.4)

and Dk+1(νk) = γ̃k

Ñ
∑

b∈Ak

νk([b]) log EN
(k)
b

é
+ γ̃khνk(Tk),(4.5)

where νj stands for the projection of νi to Xj.

Given νi ∈ Bi and the random vector W̃ = (νi(b)‹V (i)
b,a )a∈A1,b=Πi(a) defined in Section 4.1,

if T ′‹W (1) > 0, recall that the associated non-degenerate Mandelbrot measure µνi is so that

νi coincides with E(Πi∗µνi). We also define νi′ as E(Πi′∗µ) for 1 ≤ i′ < i. We also note

that if
∑
b∈Ai

νi([b]) log EN
(i)
b ≥ 0, it is direct from the differentiation of (4.1) at 1 that

T ′‹W (1) > 0 since νi is not a Dirac mass; moreover, di(µνi) = Di(νi).

The following subsets of the Bi will play a natural role. Let

B̃i =




νi ∈ Bi :





∑

b∈Ai−1

νi−1([b]) log EN
(i−1)
b ≤ 0

∑
b∈Ai

νi([b]) log EN
(i)
b ≥ 0





(2 ≤ i ≤ k)

and B̃k+1 =
{
νk ∈ Bk :

∑

b∈Ak

νk([b]) log EN
(k)
b ≤ 0

}
.

Then we set

Di = max{Di(νi) : νi ∈ B̃i} (2 ≤ i ≤ k)(4.6)

and Dk+1 = max{Dk+1(νk) : νk ∈ B̃k+1},(4.7)

with the convention that max(∅) = −∞.

Remark 4.4. Let 2 ≤ i ≤ k, νi ∈ Bi, and ν1, . . . , νi−1 defined from the non-degenerate
Mandelbrot measure µνi as above.
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(1) If i = 2, the inequality
∑
b∈A1

ν1([b]) log EN
(1)
b ≤ 0 always holds and it can be strict

only if K is not deterministic since N
(i)
b ≤ 1 for all b ∈ A1 almost surely.

Also, due to Remark 4.2 and the fact that the entropy cannot increase after projection,

if i ≥ 3, and the measure µνi is non-degenerate, then
∑
b∈Ai

νi([b]) log EN
(i)
b ≤ 0 implies

∑
b′∈Ai′

νi′([b
′]) log EN

(i′)
b′ ≤ 0 for all 2 ≤ i′ < i.

(2) If i ≥ 3 and the measure µνi is non-degenerate, then

Di−1(νi−1)−Di(νi) = di−1(µνi)− di(µνi)

= γi−1

(
hνi−1(Ti−1)− hνi(Ti)−

∑

b∈Ai

νi([b]) log EN
(i)
b

)
.

Consequently,
∑
b∈Ai

νi([b]) log EN
(i)
b < 0 implies di−1(µνi) > di(µνi). Also, if i = k, then

dk(µνk)−dk+1(µνk) = −γk
∑
b∈Ak

νk([b]) log EN
(k)
b . Hence dk(µνk) ≥ dk+1(µνk) if and only

if
∑
b∈Ak

νk([b]) log EN
(k)
b ≤ 0.

Theorem 4.3 follows from the two lemmas established below.

Lemma 4.5. One has M~γ = M̃~γ := max{Di : 2 ≤ i ≤ k + 1}.

Proof. We first remark that given a non-degenerate Mandelbrot measure µ supported
on K, if 2 ≤ i ≤ k, νi = E(Πi∗µ) and µνi constructed as in Section 4.1, we have
Kµ ⊂ Kµνi

almost surely and dime(µ|νi) ≤ dime(µνi |νi) conditional on {µ 6= 0} (see

(4.3) and Remark 4.1), hence dime(µ) ≤ dime(µνi). Also, by definition, dim~γ
e (µ) =

min{d2(µ), . . . , dk+1(µ)}, hence dim~γ
e (µ) = di(µ), where i = min{2 ≤ j ≤ k : dime(µ) ≥

hνj (Tj)}, with the convention min(∅) = k + 1.

The previous observations together with Remark 4.4 imply that: (1) the supremumM~γ

we seek for is reached for a measure µ of the form µνi , 2 ≤ i ≤ k; (2) Suppose that such a

Mandelbrot measure is given, and dim~γ
e (µ) = dj(µ) for some 2 ≤ j ≤ k+1; it is necessary

that νj ∈ B̃j. �

Recall that i0 was defined just before the statement of Theorem 2.3.

Lemma 4.6. M̃~γ is reached at Di0 . Moreover, Di0 is uniquely reached at νi0 = νθi0φi0 .

Also, M~γ is uniquely reached at µνi0 , and it is equal to

=

{
Pi0(θi0) if i0 ≤ k

Pk(1) if i0 = k + 1
.

Proof. It is rather long and will consist in distinguishing three situations.

At first we notice that the observation made in the last paragraph of the previous

proof shows that if 2 ≤ i ≤ k and E(N
(j)
b ) < 1 for all 2 ≤ j < i and b ∈ Aj, then

M~γ ∈ {Di, . . . ,Dk+1} (recall (4.6) and (4.7)).

Now, let j0 be the infinimum of the set of those 2 ≤ j ≤ k such that E(N
(j)
b ) ≥ 1 for

some b ∈ Aj if this set is not empty, and j0 = k+1 otherwise. Below we discuss the three
situations j0 = k + 1, j0 = k, and j0 ≤ k − 1. The two first ones are enough to cover the
case k = 2.
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• Suppose j0 = k + 1. It is necessary that M~γ = Dk+1, and optimising yields

νk([b]) =
E(N

(k)
b )

∑
b′∈Ak

E(N
(k)
b′ )

for all b ∈ Ak and M~γ = Dk+1(νk) = P (γ̃k)(φk, Tk) = Pk(1), that is νk = νφk . Thus, M~γ

is uniquely reached at the Mandelbrot measure µνk with νk = νφk . Moreover i0 = k + 1.

• Suppose j0 = k. We first consider the optimisation of Dk(νk) over νk ∈ Bk rather

than B̃k.

Recall from Section 2.3 the definition of Pk(θ) and νθφk for θ ∈ R. It is standard that

(4.8) Pk(θ) = γ̃k log
∑

b∈Ak

E(N
(k)
b )θ

and νθφk is the Bernoulli product measure such that

νθφk([b]) =
E(N

(k)
b )θ

∑
b′∈Ak

E(N
(k)
b′ )θ

(∀ b ∈ ‹Ai).

We also know that

(4.9) P ′
k(θ) = γ̃k

∑

b∈Ak

νθφk([b]) log E(N
k
b ).

Now, recall that for νk ∈ Bk, Dk(νk) (see the definition (4.4)) rewrites

Dk(νk) = γ̃khνk(Tk)+
∑

b∈Ak

νk([b])γ̃k
γ̃k−1

γ̃k
logE(N

(k)
b ) = γ̃k

(
hνk(Tk)+

∫

X̃k

θ̃kφk(x) dνk(x)
)
,

where we recall that for 2 ≤ i ≤ k, we defined

θ̃i =
γ1 + · · ·+ γi−1

γ1 + · · ·+ γi
.

Consequently, the optimum of Dk(νk) equals Pk(θ̃k) and is uniquely reached at νk = ν
θ̃kφk

.

For simplicity we denote ν
θ̃kφk

by ν̃k.

We now distinguish two cases.

First case:
∑
b∈Ak

ν̃k([b]) logE(N
(k)
b ) ≥ 0. In this case ν̃k ∈ ‹Bk and Dk(ν̃k) = Dk.

Moreover, if νk ∈ Bk and
∑
b∈Ak

νk([b]) log E(N
(k)
b ) ≤ 0, i.e. νk ∈ ‹Bk+1, then

Dk+1(νk) = γ̃khνk(Tk) + γ̃k
∑

b∈Ak

νk([b]) logE(N
(k)
b ) ≤ Dk(νk),

with equality only if
∑
b∈Ak

νk([b]) log E(N
(k)
b ) = 0. Consequently Dk+1(νk) = Dk(νk) =

Dk(ν̃k), only if νk = ν̃k. This implies that M~γ is uniquely reached at the Mandelbrot

measure µνk with νk = ν̃k. Also, i0 = k, and θi0 = θ̃k.

Second case:
∑
b∈Ak

ν̃k([b]) log E(N
(k)
b ) < 0. In this case, the maximum of Dk(νk)

whenever νk describes ‹Bk is reached under the constraint
∑
b∈Ak

νk([b]) log E(N
(k)
b ) = 0.

Indeed, let ν̂k ∈ ‹Bk at which this maximum is reached, and let p̃ and p̂ be the probability

vectors associated with ν̃k and ν̂k respectively. If
∑
b∈Ak

ν̂k([b]) log E(N
(k)
b ) > 0, let λ be

the unique element of (0, 1) such that
∑
b∈Ak

(λν̃k([b]) + (1 − λ)ν̂k([b])) log E(N
(k)
b ) = 0.
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Then the element νk of ‹Bk associated with λp̃+(1−λ)p̂ is such that hνk(Tk) > λhν̃k(Tk)+

(1− λ)hν̂k(Tk), so Dk(νk) > Dk(ν̂k). This contradicts the definition of ν̂k.

Now, we notice that our assumption on ν̃k, namely
∑
b∈Ak

ν̃k([b]) log E(N
(k)
b ) < 0, im-

plies the strict convexity of Pk (see (4.8)). Then, using Lagrange multipliers, we see that
our optimisation problem has a unique solution νk = νθφk in the case that there exists
θ ∈ R (necessarily unique) such that

∑

b∈Ak

νθφk([b]) logE(N
(k)
b ) = 0.

Moreover, due to (4.9) and our assumption on ν̃k we have P ′
k(θ̃k) < 0. Thus, since Pk is

convex, if such a θ = θ0 exists we must have θ0 ≥ θ̃k. Also νθ0φk ∈ ‹Bk+1.

Now suppose that θ0 does exist and recall that max{Dk+1(νk) : νk ∈ Bk} is reached
at νφk .

If θ0 ≤ 1, by strict convexity of Pk we must have P ′
k(1) =

∑
b∈Ak

νφk([b]) log E(N
(k)
b ) ≥

0, with equality if and only if θ0 = 1. If the inequality is strict, an argument al-
ready used above shows that Dk+1 must be reached by a measure νk ∈ B̃k+1 such that
∑
b∈Ak

νk([b]) logE(N
(k)
b ) = 0, for which Dk(νk) and Dk+1(νk) coincide, so we find that

Dk+1 it is reached at νθ0φk as well; in particular Dk = Dk+1. If θ0 = 1, for similar reasons

we still have Dk = Dk+1, both reached at νφk . Consequently, M
~γ = Dk = Dk+1 and this

supremum is uniquely reached at the Mandelbrot measure µνk with νk = νθ0φk . Notice
also that in any case, i0 = k and θi0 = θ0.

If θ0 > 1, this time the strict convexity of Pk implies both Dk+1(νφk) > Dk+1(νθ0φk) =

Dk(νθ0φk) and
∑
b∈Ak

νφk([b]) log E(N
(k)
b ) < 0. So νφk ∈ B̃k+1 and Dk+1 > Dk. It follows

that M~γ is uniquely reached at the Mandelbrot measure µνk with νk = ννφk . Here i0 =

k + 1.

If there is no θ ∈ R such that
∑
b∈Ak

νθφk([b]) log E(N
(k)
b ) = 0, this implies that

E(N
(k)
b ) ≤ 1 for all b ∈ Ak and Dk is reached at νk such that for b ∈ Ak, νk([b]) > 0

implies E(N
(k)
b ) = 1, which after optimisation yields νk([b]) = 1/#{b ∈ Ak : E(N

(k)
b ) = 1}.

Thus, Dk = Dk(νk) = γ̃k log #{b ∈ Ak : E(N
(k)
b ) = 1} < γ̃k log

∑
b∈Ak

E(N
(k)
b ) =

Dk+1(νφk) = Dk+1. Here, the strict inequality comes from the fact that since we have
∑
b∈Ak

ν̃k([b]) logE(N
(k)
b ) < 0, there is some b ∈ Ak such that E(N

(k)
b ) < 1, and the last

equality holds since all the logE(N
(k)
b ) are non positive, hence νφk ∈ B̃k+1. Finally M

~γ is
uniquely reached at the Mandelbrot measure µνk with νk = νφk , and here again i0 = k+1.

Remark 4.7. The previous discussion proves that the conclusion of the lemma holds true
when k = 2.

• Suppose that j0 ≤ k − 1. This assumes k ≥ 3. As in the previous case we first
consider the optimisation of Dj0(νj0) over νj0 ∈ Bj0 . To this end we write

Dj0(νj0) = h
(γ̃j0+1,...,γk)
νj0+1 (Tj0+1) + γ̃j0hνj0 (Tj0) + γ̃j0−1

∑

b∈Aj0

νj0([b]) log E(N
(j0)
b )
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in the form (recall the definition of θ̃i0 in (4.2)):

Dj0(νj0) = h
(γ̃j0+1,...,γk)
νj0+1 (Tj0+1)

(4.10)

+
∑

b̂∈Aj0+1

νj0+1([̂b]) · γ̃j0
∑

b∈Aj0

πj0 ([b])=[̂b]

−p(b|̂b) log p(b|̂b) + p(b|̂b)θ̃j0 logE(N
(j0)
b ),

where

p(b|̂b) =





νj0([b])

νj0+1([̂b])
if νj0+1([̂b]) > 0

0 otherwise.

By definition of j0, we do have
∑
b′∈Aj0−1

νj0−1([b
′]) log EN

(j0−1)
b′ ≤ 0 for all νj0 ∈ Bj0 .

As mentioned above, we first ignore the requirement
∑
b∈Aj0

νj0([b]) log EN
(j0)
b ≥ 0 which

would hold if we directly optimised over B̃j0 . Then, the above expression for Dj0(νj0)

implies that optimising given νj0+1 yields p(b|̂b) = p
θ̃j0

(b|̂b), where

(4.11) pθ(b|̂b) =





E(N
(j0)
b )θ

∑

b′∈Aj0
: πj0 ([b

′])=[̂b]

E(N
(j0)
b′ )θ

if νj0+1([̂b]) > 0,

0 otherwise

.

Thus, given νj0+1 ∈ Bj0+1, if for θ ∈ R we define

Dj0(νj0+1, θ) = h
(γ̃j0+1,...,γk)
νj0+1 (Tj0+1)

+
∑

b̂∈Aj0+1

νj0+1([̂b]) · γ̃j0
∑

b∈Aj0

πj0 ([b])=[̂b]

−pθ(b|̂b) log pθ(b|̂b) + pθ(b|̂b) · θ logE(N
(j0)
b )

= h
(γ̃j0+1,...,γk)
νj0+1 (Tj0+1) +

∑

b̂∈Aj0+1

νj0+1([̂b]) · γ̃j0 log
∑

b∈Aj0

πj0 ([b])=[̂b]

E(N
(j0)
b )θ,

then we have

max{Dj0(νj0) : νj0 ∈ Bj0 , πj0∗νj0 = νj0+1}

= Dj0(νj0+1, θ̃j0) = h
(γ̃j0+1,...,γk)
νj0+1 (Tj0+1) +

∑

b̂∈Aj0+1

νj0+1([̂b]) · γ̃j0 log
∑

b∈Aj0

πj0([b])=[̂b]

E(N
(j0)
b )θ̃j0 .

Set ν̃j0 = ν
θ̃j0φj0

. By definition of this measure, denoting πj0∗ν̃j0 by ν̃j0+1 we have

Dj0(ν̃j0+1, θ̃j0) = sup{Dj0(νj0+1, θ̃j0) : νj0+1 ∈ Bj0+1} = P (γ̃j0 ,γj0+1,...,γk)(φ
θ̃j0φj0

, Tj0),

and the supremum is uniquely reached at ν̃j0+1.

As when j0 = k, two cases must be distinguished.

First case:
∑
b∈Aj0

ν̃j0([b]) log E(N
(j0)
b ) ≥ 0. Then ν̃j0 ∈ B̃j0 and dj0(µν̃j0

) = Dj0(ν̃j0) =

Dj0 . Also, given νj0+1 ∈ Bj0+1, recalling that νj0 stands for E(Πj0∗µνj0+1), if the inequality
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∑
b∈Aj0

νj0([b]) log E(N
(j0)
b ) ≤ 0 holds, which is the case if νj0+1 ∈ B̃j0+1, by definition of

the convex function Dj0(νj0+1, ·), this function has a non positive derivative at 1. Indeed,

D′
j0(νj0+1, 1) =

∑

b̂∈Aj0+1

νj0+1([̂b]) · γ̃j0

∑
b∈Aj0

, πj0 ([b])=[̂b]
E(N

(j0)
b ) logE(N

(j0)
b )

∑
b∈Aj0

, πj0([b])=[̂b]
E(N

(j0)
b )

= γ̃j0
∑

b̂∈Aj0+1

νj0+1([̂b])

E(N
(j0+1)

b̂
)
·

∑

b∈Aj0

πj0([b])=[̂b]

E(N
(j0)
b ) logE(N

(j0)
b )

= γ̃j0
∑

b∈Aj0

νj0([b]) log E(N
(j0)
b )

by definition of νj0 . Consequently, noting that Dj0+1(νj0+1) = Dj0(νj0+1, 1), we get

(4.12) Dj0+1(νj0+1) ≤ Dj0(νj0+1, θ̃j0) ≤ Dj0(ν̃j0+1, θ̃j0) = Dj0 .

Consequently, Dj0+1 ≤ Dj0 .

Also, the previous inequalities are equalities if and only if the derivative of the convex
analytic functionDj0(νj0+1, ·) vanishes over [θ̃k, 1], hence vanishes everywhere, and νj0+1 =

ν̃j0+1; notice also that in this case
∑
b∈Aj0

νj0([b]) log E(N
(j0)
b ) = 0. This implies that νj0 ∈

‹Bj0 and D(νj0) = D(ν̃j0), so ν̃j0 = νj0 hence the Mandelbrot measure µνj0+1 associated
with νj0+1 coincides with the measure µν̃j0

associated with ν̃j0 .

Now, let j0 + 1 < j ≤ k and νj ∈ B̃j. For all j0 ≤ i < j, denote by νi the
measure E(Πi∗µνj ). Remarks 4.4(1) and (2) yield Dj(νj) ≤ Dj0+1(νj0+1) as well as
∑
b∈Aj0

νj0([b]) log E(N
(j0)
b ) ≤ 0, so again Dj0+1(νj0+1) ≤ Dj0 . Also, if j = k and

νk ∈ B̃k+1, then Dk+1(νk) ≤ Dk(νk) ≤ Dj0+1(νj0+1), since
∑
b∈Ak

νk([b]) log E(N
(k)
b ) ≤ 0.

In all these cases, again the same argument as above implies that if there is equality
Dj(νj) = Dj0+1(νj0+1) = Dj0 , then the Mandelbrot µνj associated with νj coincides with

the measure µν̃j0
associated with ν̃j0 . In particular, M~γ is uniquely reached. Moreover,

we have i0 = j0, and θj0 = θ̃j0 .

Second case:
∑
b∈Aj0

ν̃j0([b]) log E(N
(j0)
b ) < 0. Since by definition of j0 the set B̃j0

is not empty, proceeding as when j0 = k we can show that the value Dj0 is reached

at a measure νj0 such that
∑
b∈Aj0

νj0([b]) log E(N
(j0)
b ) = 0 (notice that again due to

Remark 4.4 one has automatically
∑
b∈Aj0−1

νj0−1([b]) log E(N
(j0−1)
b ) ≤ 0). Thus, we seek

for the optimum of Dj0(νj0) (see (4.10)) under the constraint

(4.13)
∑

b̂∈Aj0+1

νj0+1([̂b])
∑

b∈Aj0

p(b|̂b) logE(N
(j0)
b ) = 0.

Using the Lagrange multipliers method shows that this approach yields the maximum if
and only if there exists a real number θ0, not depending on νj0+1, such that given νj0+1

one has p(b|̂b) = pθ0(b|̂b) (recall the definition (4.11) of pθ(b|̂b)).

Suppose that such a θ0 exists. It is then straightforward to check that if the optimum is

given by this method it must be reached at νθ0φj0 and equal to P (γ̃j0 ,γj0+1,...,γk)(θ0φj0 , Tj0) =
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Pj0(θ0). Recall that by (2.7) we have

P ′
j0(θ) = γ̃j0

∑

b∈Aj0

νθ0φj0 ([b]) log E(N
(j0)
b ).

This implies that θ0 ≥ θ̃j0 , since Pj0 is convex, (4.13) is equivalent to P ′
j0(θ0) = 0, and our

assumption on ν̃j0 asserts that P ′
j0(θ̃0) < 0. Also, θ0 is the infimum of those θ ≥ θ̃0 such

that
∑
b∈Aj0

νθφj0 ([b]) log E(N
(j0)
b ) ≥ 0.

Now suppose that θ0 ≤ 1. Then (4.12) holds for any νj0+1 ∈ ‹Bj0+1, with θ0 instead

of θ̃j0 and νθ0φj0 instead of ν̃j0 . Consequently, by the same argument as in the first case
we can conclude that Dj0 is reached uniquely at νθ0φj0 and it is not smaller than Dj for

j0 < j ≤ k + 1. Also, M~γ is uniquely reached, i0 = j0, and θi0 = θ0.

If θ0 > 1, we see from the definition of the convex function Dj0(πj0∗νθ0φj0 , ·) and the

property P ′
j0(θ0) = 0 that D′

j0(πj0∗νθ0φj0 , θ0) = 0. Thus, by convexity, Dj0+1(πj0∗νθ0φj0 ) =

Dj0(πj0∗νθ0φj0 , 1) ≥ Dj0 = Dj0(πj0∗νθ0φj0 , θ0), with either strict inequality or the func-

tion Dj0(πj0∗νθ0φj0 , ·) is constant. In the former case, using the definitions we see that

Dj0(πj0∗νθ0φj0 , 1) > Dj0 precisely means

∑

b̂∈Aj0+1

πj0∗νθ0φj0 ([̂b]) logE(N
(j0+1)

b̂
) > 0.

This implies that πj0∗νθ0φj0 ∈ B̃j0+1 and Dj0 < Dj0+1. In the latter case, the fact that

Dj0(πj0∗νθ0φj0 , ·) is constant implies, using the expression of this function, that for all

b̂ ∈ Aj0+1 such that πj0∗νθ0φj0 ([̂b]) > 0 the function θ 7→
∑

b∈Aj0

πj0 ([b])=[̂b]

E(N
(j0)
b )θ is constant.

We conclude that in all these expression E(N
(j0)
b ) = 1, which contradicts the fact that

P ′
j(θ̃j0) < 0. Hence the latter case is empty.

If there is no θ ∈ R such that P ′
j0(θ) = 0, then E(N

(j0)
b ) ≤ 1 for all b ∈ Aj0 , with

E(N
(j0)
b ) < 1 for some b ∈ Aj0 , and E(N

(j0)
b ) = 1 for some other b ∈ Aj0 (by definition

of j0). Moreover, since a measure νj0 at which Dj0 is reached belongs to B̃j0 , we have

νj0([b]) > 0 only if E(N
(j0)
b ) = 1, otherwise we would have

∑
b∈Aj0

νj0([b]) log E(N
(j0)
b ) < 0.

In particular, this implies that νj0+1([̂b]) > 0 only if E(N
(j0+1)

b̂
) ≥ 1. optimising Dj0(νj0)

given νj0+1 then yields (remind (4.10)), after defining ‹N (j0+1)

b̂
= #{b ∈ Aj0 : Πj0b =

b̂, E(N
(j0)
b ) = 1}:

p(b|̂b) =




1/‹N (j0+1)

b̂
if E(N

(j0)
b ) = 1,

0 otherwise
.
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Consequently,

Dj0(νj0) = h
(γ̃j0+1,...,γk)
νj0+1 (Tj0+1) + γ̃j0

∑

b̂∈Aj0+1: Ñ
(j0+1)

b̂
6=0

νj0+1([̂b]) log ‹N (j0+1)

b̂

≤ h
(γ̃j0+1,...,γk)
νj0+1 (Tj0+1) + γ̃j0

∑

b̂∈Aj0+1: Ñ
(j0+1)

b̂
6=0

νj0+1([̂b]) log E(N
(j0+1)

b̂
)

= Dj0+1(νj0+1),

where the last equality comes from the fact that νj0+1([̂b]) > 0 only if E(N
(j0+1)

b̂
) ≥ 1.

Moreover, this inequality is an equality only if E(N
(j0+1)

b̂
) = ‹N (j0+1)

b̂
when ‹N (j0+1)

b̂
6= 0

and νj0+1([̂b]) > 0. We automatically have
∑
b̂∈Aj0+1

νj0+1([̂b]) logE(N
(j0+1)

b̂
) ≥ 0, hence

νj0+1 ∈ B̃j0+1. So Dj0 ≤ Dj0+1.

We can now conclude. If i0 ≤ k, either i0 = j0, or Dj0 ≤ . . . ≤ Di0−1 ≤ Di0 , and Di0 is
reached at µν

θ̃i0
φi0

. Moreover, the discussions of the first case and the second case when θ0

exists and belongs to [θ̃j0 , 1] are valid for i0 and θi0 , so M
~γ is uniquely reached at µν

θ̃i0
φi0

.

If i0 = k + 1, we have Dj0 ≤ . . . ≤ Dk, and we are back to the second case j0 = k, θ0
exists and θ0 > 1, or θ0 does not exists. This yields the desired conclusion. �

4.3. Lower bound for the Hausdorff dimension of K. The sharp lower bound comes
from the optimisation problem solved in Section 4.2. Consider the unique Mandelbrot
measure µ = µνθi0φi0

obtained there. By construction the measure µ is fully supported

on K conditional on K 6= ∅, because νθi0φi0 is fully supported on ‹Xi0 if i0 ≤ k and ‹Xk

otherwise. Also, the assumptions of Theorem 2.2 are fulfilled for µ, and the Hausdorff
dimension of µ provides the desired lower bound for dim K.

4.4. Upper bound for the Hausdorff dimension of K. Let us start by discussing a
first possible attempt to show that dimK ≤ Di0 (recall the definition (4.6)). We could
expect to use the measure µ = µνθi0φi0

of maximal Hausdorff dimension Di0 and show

that dimloc(µ, x) ≤ Di0 everywhere on K; this is the approach used by McMullen as well
as Kenyon and Peres in the deterministic case; it would make it possible to conclude quite
quickly. In the random situation, we can show that this approach via the lower local

dimension works in the case when N
(2)
b ≥ 2 almost surely for all b ∈ ‹A2; say in this case

that K is of type I. This requires quite involved moments estimates for martingales in
varying environments. Notice that in this case we have i0 = 2 and θ2 = γ1/(γ1 + γ2).
The type I makes it possible to treat the case of a slightly more general type of examples,
still quite close to the deterministic case: i0 = 2, θ2 = γ1/(γ1 + γ2), and it is possible

to approximate K by a sequence (K(p))p∈N of random Sierpinski sponges of type I in

the sense that K ⊂ K(p) for all p ∈ N,
⋂
p∈NK

(p) = K, and limp→∞ dimK(p) = D2.
A sufficient condition to be in this situation is that Ψ2(0) < Ψ2(γ1/(γ1 + γ2)), where

Ψ2(θ) =
∑
b∈A2

E(N
(2)
b )θ (this condition obviously holds for examples of type I).
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Thus, regarding the lower local dimension approach, it remains open whether or not
in general it holds that dimloc(µ, x) ≤ Di0 everywhere on K; moreover, the sufficient
condition just stated to get the sharp upper bound for dimK is not at all satisfactory.

The alternative is to examine the strategy that Gatzouras and Lalley adopted for the two
dimensional case. Their approach is inspired by Bedford’s treatment of the deterministic
two dimensional case, and it uses effective coverings of the set K to find the sharp upper
bound for dimK. These coverings are closely related to a combinatoric argument due
to Bedford. But this argument turns out to be hard to extend to higher dimensional
cases. Below, we use a different, though related, combinatoric argument, which yields nice
effective coverings as well, but works in any dimension. Also, in the deterministic case
and in any dimension, it provides an alternative to the argument using a uniform bound
for the lower local dimension of µ. However, and interestingly, our argument uses a slight
generalisation of a key combinatoric lemma established by Kenyon and Peres to get this
uniform bound.

We now provide a general upper bound for dimK, expressed through a variational
principle.

Theorem 4.8. With probability 1, conditional on K 6= ∅,

dimK ≤ inf
{
Pi(θ) : i ∈ I, θ̃i ≤ θ ≤ 1

}
.

The sharp upper bound for dimK follows since by Theorem 4.8, if i0 ≤ k, taking θ = θi0
yields the upper bound dimK ≤ Pi0(θi0) = Di0 , and if i0 = k + 1, Dk+1 = Pk(1) is an
upper bound for dimK as well.

Before proving Theorem 4.8, we need to introduce some new definitions, and to make
some preliminary observations.

Let 2 ≤ i ≤ k and θ̃i ≤ θ ≤ 1. For νi ∈ Bi set

(4.14) Di,θ(νi) = γ̃iθ
∑

b∈Ai

νi([b]) log E(N
(i)
b ) + γ̃ihνi(Ti) +

k∑

j=i+1

γjhΠi,j∗νi
(Tj)

(in particular D
i,θ̃i

(νi) = Di(νi), recall (2.4) and (4.4)), and for ρ = (ρ̃i, ρi, . . . , ρk) ∈

Bi ×
∏k
j=i Bj, set

(4.15) ‹Di,θ(ρ) = γ̃iθ
∑

b∈Ai

ρ̃i([b]) log E(N
(i)
b ) + γ̃ihρi(Ti) +

k∑

j=i+1

γjhρj (Tj).

For each 2 ≤ i ≤ k. We endow the set Bi ×
∏k
j=i Bj with the distance

di(ρ, ρ
′) = max

(
max
b∈Ai

|ρ̃i([b]) − ρ̃′i([b])|, max
i≤j≤k

max
b∈Aj

|ρj([b]) − ρ′j([b])|
)
,

which makes it a compact set. Let

(4.16) Ri = {ρ ∈ Bi ×
k∏

j=i

Bj : ‹Di,θ(ρ) ≤ Pi(θ)}.

Ri The set Ri is compact. For any ǫ ∈ (0, 1), Ri can be covered by a finite collection of

open balls {B̊(ρ(m), ǫ)}1≤m≤M(ǫ). Moreover, if ǫ ≤ min{(#Aj)
−1 : 1 ≤ j ≤ k}, we can
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assume that for all m the components of each probability vector ρ(m) are not smaller than
ǫ/2.

For x ∈ X1, 2 ≤ j ≤ k, and n ∈ N∗ we define ρj(x, n) to be the Bernoulli product
measure onXj associated with the probability vector whose components are the frequences
of occurrence of the different elements of Aj in Πj(x)|n, namely the vector (n−1#{1 ≤
m ≤ n : Πj(x)m = b)b∈Aj

. Also, let

(4.17) ρ(x, n) = (ρ̃i, ρi, . . . , ρk),

where

ρ̃i = ρi (x, ⌈θℓi(n)⌉) , ρi = ρi(x, ℓi(n)),

ρj = ρj(T
ℓj−1(n)
1 x, ℓj(n)− ℓj−1(n)) ∀ i+ 1 ≤ j ≤ k.

Now, for any n ∈ N∗ and U = (Ui, . . . , Uk) ∈ A
ℓi(n)
i ×

∏k
j=i+1A

ℓj(n)−ℓj−1(n)
j , we can

define ρ(U) = (ρ̃i(U), ρi(U), . . . , ρk(U)) as equal to ρ(x, n), for any x ∈ X1 such that
Πi(x1 · · · xℓi(n)) = Ui and Πj(xℓj−1(n)+1 · · · xℓj(n)) = Uj for all i + 1 ≤ j ≤ k. Note that

ρi(U) depends on Ui only, so we also denote it by ρi(Ui).

Then, for each 1 ≤ m ≤M(ǫ) and n ∈ N∗ we set

Ri(ǫ,m, n) =
{
U ∈ A

ℓi(n)
i ×

k∏

j=i+1

A
ℓj(n)−ℓj−1(n)
j : ρ(U) ∈ B̊(ρ(m), ǫ)

}
.

It is standard to observe that if Ui ∈ A
ℓi(n)
i is such that |ρi(Ui)([b])− ρ

(m)
i ([b])| ≤ ǫ for all

b ∈ Ai then

ρ
(m)
i ([Ui]) =

∏

b∈Ai

ρ
(m)
i ([b])ℓi(n)ρi(U)([b]) ≥

∏

b∈Ai

ρ
(m)
i ([b])ℓi(n)ρ

(m)
i

([b])
∏

b∈Ai

ρ
(m)
i ([b])ℓi(n)ǫ

≥ exp
Ä
− ℓi(n)(hρ(m)

i

(Ti) + ǫ log(2/ǫ))
ä
,

Consequently, the cardinality of the set Ui,ǫ,m,n of such Ui is bounded from above by

exp
Ä
ℓi(n)(hρ(m)

i

(Ti) + ǫ log(1/ǫ))
ä
.

Similarly, for each i + 1 ≤ j ≤ k, the cardinality of the set Uj,ǫ,m,n of those Uj ∈

A
ℓj(n)−ℓj−1(n)
j such that |ρj(Uj)([b])−ρ

(m)
j ([b])| ≤ ǫ for all b ∈ Aj is bounded by exp

Ä
(ℓj(n)−

ℓj−1(n))(hρ(m)
j

(Tj) + ǫ log(2/ǫ))
ä
. Since by definition of Ri(ǫ,m, n) we have Ri(ǫ,m, n) ⊂

∏k
i=j Uj,ǫ,m,n, the previous observations yield

#Ri(ǫ,m, n) ≤
m∏

j=i

(#Uj,ǫ,m,n)

≤ exp
Ä
ℓk(n)ǫ log(2/ǫ)

ä
exp

(
ℓi(n)hρ(m)

i

(Ti) +
k∑

j=i+1

(ℓj(n)− ℓj−1(n))hρ(m)
j

(Tj)
)
.(4.18)

We also notice that if we endow Xi with the metric

d~γ,i(x, y) = max

Ç
e
−

|Πi,j (x)∧Πi,j(y)|

γ1+···+γj : i ≤ j ≤ k

å
,
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the balls of radius e
− n

γ1 in X1 project to the balls of the same radius in Xi, which are

parametrized by the elements of A
ℓi(n)
i ×

∏k
j=i+1A

ℓj(n)−ℓj−1(n)
j , in the sense that such a ball

takes the form BU = {y ∈ Xi : y1 · · · yℓi(n) = Ui, yℓj−1(n)+1 · · · yℓj(n) = Uj ∀ i+ 1 ≤ j ≤ k}

for some U in A
ℓi(n)
i ×

∏k
j=i+1A

ℓj(n)−ℓj−1(n)
j . Moreover, given such a ball BU , Π

−1
i (BU )∩K

is covered by, say, a family B(U) of nU balls of radius e
− n

γ1 which intersect K. Each

of the N
(i)
Ui|ℓi−1(n)

cylinders of generation ℓi−1(n) in X1 which intersects K and project

to [Ui|ℓi−1(n)] in Xi via Πi intersects only one such ball. Indeed, for such a cylinder
[V1 · · ·Vℓi−1

(n)], the data Πj([Vℓj−1(n)+1 · · ·Vℓj(n)]), 1 ≤ j ≤ i − 1, and BU determine a

unique ball B of X1 such that Πi(B) = BU . This implies nU ≤ N
(i)
Ui|ℓi−1(n)

. Consequently,

for every integer ℓ between ℓi−1(n) and ℓi(n), we also have nU ≤ N
(i)
Ui|ℓ

. In particular,

(4.19) nU ≤ N
(i)
Ui|⌈θℓi(n)⌉

.

The following lemma, whose proof we postpone to the end of this section, will play an

essential role to find effective coverings of Πi(‹X1), and then of K. Let us mention at the
moment that in this lemma (1) ⇒ (2) ⇒ (3). ALso, recall the definition (4.16) of Ri.

Lemma 4.9. For all x ∈ ‹X1:

(1) lim infn→∞
‹Di,θ(ρ(x, n)) −Di,θ(ρi(x, n)) ≤ 0;

(2) lim infn→∞
‹Di,θ(ρ(x, n)) ≤ Pi(θ);

(3) there exists ρ ∈ Ri and an increasing sequence of integers (nj)j∈N such that ρ(x, nj)
converges to ρ as j → ∞.

Proof of Theorem 4.8. It follows from Lemma 4.9(3) that given ǫ > 0, for all x ∈ ‹X1,
there exists 1 ≤ m ≤M(ǫ) such that Πi(x) belongs to

⋃
U∈Ri(ǫ,m,n)BU for infinitely many

integers n. As a result, for all N ∈ N∗, we get the following covering of K:

K ⊂
⋃

n≥N

M(ǫ)⋃

m=1

⋃

U∈Ri(ǫ,m,n)

⋃

B∈B(U)

B.

Thus, given s > 0, the pre-Hausdorff measure Hs

e
− n

γ1
of K is bounded as follows:

Hs

e
− N

γ1

(K) ≤
∑

n≥N

M(ǫ)∑

m=1

∑

U∈Ri(ǫ,m,n)

N
(i)
Ui|⌈θℓi(n)⌉

e
− n

γ1
s
.

Consequently, denoting by (Ui)ℓ the ℓ-th letter of Ui,

E
(
Hs

e
− N

γ1

(K)
)
≤

∑

n≥N

e
− n

γ1
s
M(ǫ)∑

m=1

∑

U∈Ri(ǫ,m,n)

E(N
(i)
Ui|⌈θℓi(n)⌉

)

=
∑

n≥N

e
− n

γ1
s
M(ǫ)∑

m=1

∑

U∈Ri(ǫ,m,n)

⌈θℓi(n)⌉∏

ℓ=1

E(N
(i)
(Ui)ℓ

)
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and using the definition of ρ̃i(U) to reexpress the right hand side of the last inequality,
this yields

E
(
Hs

e
− N

γ1

(K)
)
≤

∑

n≥N

e
− n

γ1
s
M(ǫ)∑

m=1

∑

U∈Ri(ǫ,m,n)

exp
(
⌈θℓi(n)⌉

∑

b∈Ai

ρ̃i(U)([b]) log E(N
(i)
b )

)
.

Now we use the fact that U ∈ Ri(ǫ,m, n) means that d(ρ(U), ρ(m)) ≤ ǫ, to get a constant
Ci independent of m, U and n such that

∑

b∈Ai

ρ̃i(U)([b]) log E(N
(i)
b ) ≤ Ciǫ+

∑

b∈Ai

ρ̃
(m)
i ([b]) log E(N

(i)
b ).

We then obtain:

E
(
Hs

e
− N

γ1

(K)
)
≤

∑

n≥N

e
− n

γ1
s
e⌈θℓi(n)⌉Ciǫ

·
M(ǫ)∑

m=1

(#Ri(ǫ,m, n)) exp
Ä
⌈θℓi(n)⌉

∑

b∈Ai

ρ̃
(m)
i ([b]) log E(N

(i)
b )
ä
.

Using (4.18), the fact that |ℓj(n)−
γ1+...+γj

γ1
n| ≤ 1 for all 1 ≤ j ≤ k, as well as the definition

of ‹Di,θ(ρ
(m)), we deduce that there exists a constant “Ci such that for all 1 ≤ m ≤M(ǫ):

(#Ri(ǫ,m, n)) exp
Ä
⌈θℓi(n)⌉

∑

b∈Ai

ρ̃
(m)
i ([b]) log E(N

(i)
b )
ä

≤ “Ci exp
Ä
ℓk(n)ǫ log(2/ǫ)

ä
exp

( n
γ1
‹Di,θ(ρ

(m))
)

≤ “Ci exp
Ä
ℓk(n)ǫ log(2/ǫ)

ä
exp

( n
γ1
Pi(θ)

)
(recall that ρ(m) ∈ Ri).

Upon taking Ci = “Ci big enough, we conclude that

E
(
Hs

e
− N

γ1

(K)
)
≤ CiM(ǫ)

∑

n≥N

exp
(
−
n

γ1

Ä
s− Pi(θ)− Ciǫ log(2/ǫ)

ä)
.

If s > Pi(θ)+Ciǫ log(1/ǫ), this yields E
(∑

N≥1 H
s

e
− N

γ1

(K)
)
<∞, so limN→∞Hs

e
− N

γ1

(K) =

0 and dimK ≤ s almost surely. Since this holds for any fixed ǫ > 0 small enough, we get
dimK ≤ Pi(θ) almost surely.

The previous upper bound is easily seen to hold simultaneously for all 2 ≤ i ≤ k and
θ̃i ≤ θ ≤ 1 since its holds simultaneously for all 2 ≤ i ≤ k and rational θ̃i ≤ θ ≤ 1, and
the mappings θ 7→ Pi(θ) are continuous. This yields Theorem 4.8. �

Proof of Lemma 4.9. That (1) ⇒ (2) follows from the fact that Pi(θ) = max{Di,θ(νi) :
νi ∈ Bi}, and (2) ⇒ (3) is immediate.

Let x ∈ X1. To prove (1), we are going to show that there exists J ∈ N∗, as well as J
bounded sequences uj : N

∗ → R such that limn→∞ uj(n + 1) − uj(n) = 0, and J couples
(αj , βj) ∈ R∗

+ such that for all n ∈ N∗,

(4.20) ‹Di,θ(ρ(x, n))−Di,θ(ρi(x, n)) ≤ ǫn +
J∑

j=1

uj(⌈βjn⌉)− uj(⌈αjn⌉),
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with limn→∞ εn = 0. The desired conclusion is then a direct application of [23, Lemma
5.4], which is a slight extension of the combinatorial lemma used by Kenyon and Peres
[34, Lemma 4.1].

To prove (4.20), noting that Πi,j∗ρi(x, n) = ρj(x, n) for all i ≤ j ≤ k, and using

the respective definitions of ‹Di,θ and Di,θ, we can write, after defining the sequences

vi(n) = γ̃iθ
∑
b∈Ai

ρ(x, n)([b]) log E(N
(i)
b ) and wj(n) = γjhρj(x,n)(Tj):

‹Di,θ(ρ(x, n)) −Di,θ(ρi(x, n)) = vi(⌈θℓi(n)⌉)− vi(n) +
k∑

j=i

wj(ℓj(n))− wj(n)

+
k∑

j=i+1

γj(h
ρj (T

ℓj−1(n)

1 x,ℓj(n)−ℓj−1(n))
(Tj)− hρj(x,ℓj(n))(Tj)).

Note that each u ∈ {vi, wi, . . . , wk} is bounded and does satisfy limn→∞ u(n+1)−u(n) = 0.
Also, it is easy to see using the definitions and the convexity of x ≥ 0 7→ x log x that

h
ρj (T

ℓj−1(n)

1 x,ℓj(n)−ℓj−1(n))
(Tj)− hρj(x,ℓj(n))(Tj)

≤
ℓj−1(n)

ℓj(n)− ℓj−1(n)
(hρj (x,ℓj(n))(Tj)− hρj(x,ℓj−1(n))(Tj)).

Setting αj =
γ̃j
γ1
, this implies that

γj(h
ρj(T

ℓj−1(n)

1 x,ℓj(n)−ℓj−1(n))
(Tj)− hρj(x,ℓj(n))(Tj))

≤
γ̃j−1

γj
(wj(⌈αjn⌉)− wj(⌈αj−1n⌉)) + o(1).

Moreover, vi(⌈θℓi(n)⌉) − vi(n) = vi(⌈θαin⌉)− vi(n) + o(1). Finally (4.20) holds. �

5. The box counting dimension of K. Proofs of Theorem 2.5 and

Corollary 2.7

Proof of Theorem 2.5. Here again, without loss of generality we assume that all the γi are
positive.

We will use in an essential way the result established in [24, Section 4], which deals

with the case where k = 2, m1 = e−γ1 and m2 = e−(γ1+γ2) are integers, and with the
Euclidean realisation of K. It is worth noting that this result is strongly based on a result
by Dekking on the asymptotic behaviour of the survival probability of a branching process
in a random environment [13].

We first need to describe the balls of radius e
− n

γ1 which intersect K. For n ∈ N∗, we

saw that the set Fn of balls in X1 of radius e
− n

γ1 equals the set {BU : U = (U1, . . . , Uk) ∈∏k
i=1A

ℓi(n)−ℓi−1(n)
i }, where

BU = {y ∈ X1 : Πi(T
ℓi−1(n)
1 (y))|ℓi(n)−ℓi−1(n) = Ui, ∀ 1 ≤ i ≤ k}.

Thus BU ∩K 6= ∅ if and only if the event

EU =

{
∃ (ui)1≤i≤k ∈

k∏

i=1

A
ℓi(n)−ℓi−1(n)
1 : both FUk (u1, . . . , uk) and K

u1u2···uk 6= ∅ hold

}
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holds, where for all 1 ≤ i ≤ k

F
(U1,U2,...,Ui)
i (u1, . . . , ui) =

®
Πj(uj) = Uj, ∀ 1 ≤ j ≤ i,

[uj] ∩K
u1u2···uj−1

ℓj(n)−ℓj−1(n)
6= ∅, ∀ 1 ≤ j ≤ i

´

(note that necessarily u1 = U1). For 2 ≤ i ≤ k and (U1, . . . , Ui) ∈
∏i
j=1A

ℓj(n)−ℓj−1(n)
j , we

set

Ei(U1, . . . , Ui) =



∃ (uj)1≤j≤i ∈

i∏

j=1

A
ℓj(n)−ℓj−1(n)
j : F

(U1,U2,...,Ui)
i (u1, · · · , ui) holds





(note that E1(U1) is simply the event {[U1] ∩Kn 6= ∅}). We deduce from [24, Section 4]
that conditional on K 6= ∅, we have

lim
n→∞

log #{(U1, U2) ∈ An
1 ×A

ℓ2(n)−n
2 : E2(U1, U2) holds}

n
= log(E(#A)) +

γ2
γ1
ψ2(θ̂2).

This result mainly comes from the fact that limn→∞
log#{U1∈An

1 :E1(U1) holds}
n = log(E(#A)) >

0, and given U1 ∈ An
1 such that [U1] ∩Kn 6= ∅, the number of those U2 ∈ A

ℓ2(n)−n
2 such

that E2(U1, U2) holds is a random variable Z2,ℓ2(n)−n(U1), so that the random variables

Z2,ℓ2(n)−n(U1) are independent and identically distributed, limn→∞
logE(Z2,ℓ2(n)−n)(U1)

n =
γ2
γ1
ψ2(θ̂2) > 0 and, conditional on KU1 6= ∅, limn→∞

logZ2,ℓ2(n)−n(U1)

n = γ2
γ1
ψ2(θ̂2) almost

surely.

Now for 2 ≤ i ≤ k set

si = log(E(#A)) +
i∑

j=2

γi
γ1
ψj(θ̂j).

Suppose that k ≥ 3, and for some 3 ≤ i ≤ k we have proven that conditional on K 6= ∅,
it holds that

(5.1) lim
n→∞

log#{(U1, . . . , Ui−1) ∈
i−1∏

j=1

A
ℓj(n)−ℓj−1(n)
j : Ei−1(U1, . . . , Ui−1) holds}

n
= si−1.

Given (U1, . . . , Ui−1) ∈
∏i−1
j=1A

ℓj(n)−ℓj−1(n)
j , and fixed associated (u1, . . . , ui−1) such that

F
(U1,U2,...,Ui−1)
i−1 (u1, · · · , ui−1) holds, following the arguments of [24], the cardinality of

the set of those words Ui ∈ A
ℓi(n)−ℓi−1(n)
i such that there exists ui ∈ A1 such that

F
(U1,U2,...,Ui)
i (u1, · · · , ui) holds, is a random variable Zi,ℓi(n)−ℓi−1(n)(U1, . . . , Ui−1) so that

the Zi,ℓi(n)−ℓi−1(n)(U1, . . . , Ui−1) are independent, and identically distributed. Moreover,

setting ℓ̃i(n) = ℓi(n)− ℓi−1(n), one has both limn→∞
logE(Z

i,ℓ̃i(n))(U1,...,Ui−1)

n = γi
γ1
ψi(θ̂i) > 0

and, conditional on Ku1···ui−1 6= ∅, limn→∞
log(Z

i,ℓ̃i(n)(U1,...,Ui−1)

n = γi
γ1
ψi(θ̂i) almost surely.

Then, again the same reasoning as in [24] for the case k = 2 with the roles of An
1 and

A
ℓ2(n)−n
2 now respectively played by

∏i−1
j=1A

ℓj(n)−ℓj−1(n)
j and A

ℓi(n)−ℓi−1(n)
i shows that

(5.1) holds for i as well. Consequently, applying this to i = k, conditional on K 6= ∅,

we get for all n ≥ 1 an integer Nn such that limn→∞
logNn

n = sk, as well as Nn el-

ements U = (U1, . . . , Uk) ∈
∏k
i=1A

ℓi(n)−ℓi−1(n)
i and associated (u1 = U1, u2, . . . , uk) ∈
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∏k
i=1A

ℓi(n)−ℓi−1(n)
1 such that F

(U1,...,Uk)
k (u1, . . . , uk) hold. The events {Ku1u2···uk 6= ∅} be-

ing independent, with the same probability P(K 6= ∅), and independent of the events

F
(U1,U2,...,Uk)
k (u1, u2, . . . , uk), using [24, Section 4] again yields

lim
n→∞

log#{U ∈
∏k
i=1 A

ℓi(n)−ℓi−1(n)
i : E(U) holds}

n
= log(E(#A)) +

k∑

i=2

γi
γ1
ψi(θ̂i),

which, after dividing by γ−1
1 , is precisely limn→∞

log#{B∈Fn:B∩K 6=∅}

− log(e
− n

γ1 )
, i.e. dimBK. �

Next we state, using our notations, a fact established in the proof of [7, Corollary 3.5],
which is a variational approach to the dimension of projections of fractal percolation sets
in a symbolic space X1 ×X1 to one of its two natural factors.

Proposition 5.1. Let 2 ≤ i ≤ k. With probability 1, conditional on K 6= ∅,

max
{
min(dime(µ), hνi(Ti)) : µ is a Mandelbrot measure supported on Kµ ⊂ K

}
= ψi(θ̂i),

where νi stands for the expectation of Πi∗(µ). Moreover the maximum is uniquely reached

if and only if θ̂i > 0 or θ̂i = 0 and ψ′
i(θ̂i) = 0. In any case, when the maximum is reached,

one has νi = ν
i,θ̂i

, where

νi,θ([b]) = E(N
(i)
b )θ/

∑

b′∈Ai

E(N
(i)
b′ )

θ.

Also, if θ̂i > 0, or θ̂i = 0 and ψ′
i(θ̂i) = 0, then dime(µ) = hνi(Ti) for the unique µ at which

the maximum is reached, and if θ̂i = 0 and ψ′
i(θ̂i) > 0, then dime(µ) > hνi(Ti) for µ at

which the maximum is reached.

Proof of Corollary 2.7. It results from (2.3) and Proposition 5.1 that for dimK = dimB(K)
to hold almost surely, conditional on K 6= ∅, the Mandelbrot measure µ of maximal dimen-
sion supported onK must satisfy dime(µ) = logE(#A) and min(dime(µ), hνi(Ti)) = ψi(θ̂i)
for all i ∈ I.

The condition dime(µ) = logE(#A) implies that µ is the so called branching measure,
i.e. it is obtained from the random vector (1A(a)/E(#A))a∈A1 . The other condition
implies that for all 2 ≤ i ≤ k, we have νi = ν

i,θ̂i
. Since µ is the branching measure, this

implies that E(N
(i)
b )θ̂i/eψi(θ̂i) = E(N

(i)
b )/E(#A) for all b ∈ ‹Ai, hence E(N

(i)
b )θ̂i−1 does not

depend on b ∈ ‹Ai. This is a non trivial condition only if θ̂i < 1. This proves the necessity
of the condition given in the statement.

Now assume that E(N
(i)
b ) does not depend on b ∈ ‹Ai for all i ∈ I such that θ̂i < 1.

Suppose first that there is no i ∈ I such that θ̂i < 1, i.e. θ̂i = 1 for all i ∈ I. By
the remark made above, the branching measure µ does satisfy dim~γ

e (µ) = (γ1 + · · · +

γk) dime(µ) = dimB(K). Next, suppose that θ̂i < 1 for some i ∈ I. Again, consider the

branching measure µ. Since E(N
(i)
b ) does not depend on b ∈ ‹Ai we do have νi = ν

i,θ̂i
, so

that min(dime(µ), hνi(Ti)) = hνi(Ti) = hν
i,̂θi

(Ti) = ψi(θ̂i). This yields again dim~γ
e (µ) =

dimBK. �
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6. Projections of K and µ to factors of X1. Proofs of Theorems 2.8, 2.9

and 2.11, and Corollary 2.12

The proofs will be sketched.

Sketch of the proof of Theorem 2.8. For all n ≥ 1, denote by F i
n the set of balls of Xi of

radius e
− n

γ1 . Let j0 = max{i ≤ j ≤ k : T ′(1) ≤ T ′
νj(1)}, with the convention max(∅) =

i − 1. Computations similar to those used to prove Theorem 2.2 yield q0 > 1 and c0 ≥ 0
such that for all q ∈ (0, q0] we have

E
( ∑

B∈F i
n

Πi∗µ(B)q
)
= O

Ä
exp(−t(j0, q, n))

ä
as n→ ∞,

where

t(j0, q, n) =

{
ℓj0(n)(T (q)− c0(q − 1)2) +

∑k
j=j0+1(ℓj(n)− ℓj−1(n))Tνj (q) if j0 ≥ i

ℓi(n)Tνi(q) +
∑k
j=i+1(ℓj(n)− ℓj−1(n))Tνj (q) otherwise.

This is enough to get the differentiability of τΠi∗µ at 1 with τ ′Πi∗µ
(1) equal to dim~γi

e (Πi∗µ),
and conclude. �

Sketch of the proof of Theorem 2.9. We start with the lower bound. We redefine B̃i as

B̃i =
{
νi ∈ Bi :

∑
b∈Ai

νi([b]) log E(N
(i)
b ) ≥ 0

}
, and we set

Di = max{h~γ
i

νi (Ti) : νi ∈ B̃i}.

Here, by convention, max(∅) = −∞.

Arguing like in Section 4.2, we can get that a lower bound for dimΠi(K) is given

by max(Di,Di+1, . . . ,Dk+1). We set k0 = min{j ≥ i : ∃ b ∈ Aj, E(N
(j)
b ) ≥ 1}, with

min(∅) = k + 1. Clearly max(Di,Di+1, . . . ,Dk+1) = max(Dk0 , . . . ,Dk+1) if k0 > i.

Suppose that k0 = i. We know that h~γ
i

νi (Ti) reaches its maximum Pi(0) at ν0·φi , and

ν0·φi ∈
‹Bi if and only if P ′

i (0) =
∑
b∈Ai

ν0·φi([b]) log E(N
(i)
b ) ≥ 0.

Suppose, moreover, that P ′
i (0) ≥ 0. In this case, it is easily seen that Di is not smaller

than Dj , i+ 1 ≤ j ≤ k + 1. If P ′
i (0) > 0 then it is also easy to construct infinitely many

Mandelbrot measures µ which share with µν0·φi the property that E(Πi∗µ) = ν0·φi and

dime(µ) > hν0·φi . On the contrary, if P ′
i (0) = 0, µν0·φi is the unique Mandelbrot measure

µ such that dim~γi

e (µ) = Pi(0), and we let the reader check that no other Mandelbrot

measure of the form µνj with j > i and νj ∈ ‹Bj is such that dim~γi
e (µνj) = Pi(0). Note

that in any case j0 = i and θj0 = 0.

Suppose now that k0 = i and P ′
i (0) < 0. To get Di we must maximize hγi

νi (Ti)

over those νi ∈ Bi such that
∑
b∈Ai

νi([b]) log E(N
(i)
b ) = 0. Here we meet a situation

similar to that we discussed in the proof of Lemma 4.6. The only difference is that

θ̃j0 is replaced here by 0. It turns out that either there exists θ ∈ [0, 1] such that
P ′
i (θ) = 0 and max(Di,Di+1, . . . ,Dk+1) = Pi(θ), or max(Di,Di+1, . . . ,Dk+1) = Pi(θ) =

max(Di+1, . . . ,Dk+1). In the former case, we also have that µνθφi is the unique Mandel-

brot measure µ such that dim~γi
e (µ) = Pi(θ), j0 = i and θj0 = θ. In the latter case, we are

back to the discussion of the proof of Lemma 4.6 and we also get the desired conclusion.
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If k0 > i, since we seek for max(Dk0 , . . . ,Dk+1), the situation also boils down to that
of Lemma 4.6.

For the upper bound for the Hausdorff dimension, we prove that

dimΠi(K) ≤ inf{Pj(θ) : θ ∈ [0, 1] if j = i, and θ ∈ [θ̃j, 1] if i < j ≤ k},

which in view of the lower bound is enough to conclude. To show the previous inequality,

we extend the definitions of Di,θ and ‹Di,θ (see (4.14) and (4.15)) to θ ∈ [0, 1] and for j = i
we redefine the vector ρ(x, n) of (4.17) by taking ρ̃i = ρi(x, ℓi(n)). It is readily seen from
the proof of Lemma 4.9 that the conclusions of this lemma is still valid with these new

definitions of ‹Di,θ and ρ(x, n).

Now, arguing similarly as in the proof of Theorem 4.8, for each j ∈ {i, . . . , k}, for each

U = (Uj , · · · , Uk) in A
ℓj(n)
j ×

∏k
j′=j+1A

ℓj′(n)−ℓj′−1(n)

j′ , Π−1
i,j (BU )∩Πi(K) is covered by, say,

a family B(U) of nU balls of radius e
− n

γ1 ⊂ Xi which intersect Πi(K).

Suppose j = i and fix θ ∈ [0, 1]. In this case nU = 1 and we can bound this number

by (N
(i)
Ui

)θ. Noting that E
Ä
(N

(i)
Ui

)θ
ä
≤ E

Ä
N

(i)
Ui

äθ
, we can use similar estimates as in the

proof of Theorem 4.8 to now estimate Hs

e
− N

γ1

(Πi(K))), and this yields dimΠi(K) ≤ Pi(θ)

(here we followed the same idea as that used in [17] to deal with projections of planar
statistically self-similar limit sets of fractal percolation).

Next, suppose j ∈ {i+1, . . . , k} and fix θ ∈ [θ̃j , 1]. Denote by C
(i,j)
Uj

the set of cylinders

of generation ℓj−1(n) in Xi which intersects Πi(K), and project to [Uj |ℓj−1(n)
] in Xj via

Πi,j . Also denote by N
(i,j)
Uj

the cardinality of this set. Each cylinder in C
(i,j)
Uj

intersects at

most one of the elements of BU . Thus nU ≤ N
(i,j)
Uj

, so that:

nU ≤
∑

b∈C
(i,j)
Uj

1 ≤
∑

b∈C
(i,j)
Uj

N
(i)
b = N

(j)
Uj−1

.

Then, the same lines as in the proof of Theorem 4.8 yield dimΠi(K) ≤ Pi(θ) for all

θ ∈ [θ̃j, 1]. �

Sketch of the proof of Theorem 2.11. This is similar to the proof of Theorem 2.5, except
that one must evaluate the cardinality of those B ∈ F i

n such that B ∩ Πi(K) 6= ∅, and
this time we exploit results known for the box dimension of projections of statistically
self-similar fractal Euclidean percolation sets from dimension 2 to dimension 1.

We have to estimate the cardinality of those U ∈ A
ℓi(n)
i ×

∏k
j=i+1A

ℓj(n)−ℓj−1(n)
j such

that Ei(U) holds, with

Ei(U) =
{
∃ (uj)i≤j≤k ∈ A

ℓi(n)
1 ×

k∏

j=i+1

A
ℓj(n)−ℓj−1(n)
1 :

both F
i,(Ui,...,Uk)
k (ui, . . . , uk) and K

uiu2···uk 6= ∅ hold},
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and where

F
i,(Ui,...,Uj)
j (ui, . . . , uj) =





Πj′(uj′) = Uj′ , ∀ i ≤ j′ ≤ j,
[ui] ∩Kℓi(n) 6= ∅

[uj′ ] ∩K
ui···uj′−1

ℓj′ (n)−ℓj′−1(n)
6= ∅, ∀ i+ 1 ≤ j′ ≤ j




.

One deduces easily from [14] (see alternatively [17] or [7]), which deal with the case k = 2,
that

lim
n→∞

log #{Ui ∈ A
ℓi(n)
i : ∃ui ∈ A

ℓi(n)
1 , F i,Ui

i (ui) holds}

n
=
γ̃i
γ1
ψi(θ̂i).

Then, a recursion similar to that used in the proof of Theorem 2.5 yields the desired result

lim
n→∞

log #{U ∈ A
ℓi(n)
i ×

∏k
j=i+1A

ℓj(n)−ℓj−1(n)
j : Ei(U) holds}

n
=
γ̃i
γ1
ψi(θ̂i)+

k∑

j=i+1

γj
γ1
ψj(θ̂j),

i.e. dimB Πi(K) = γ̃iψi(θ̂i) +
∑k
j=i+1 γjψj(θ̂j) after normalizing by γ−1

1 . �

Proof of Corollary 2.12. If θ̂i = 1, using Proposition 5.1 we see that the equality between
dimΠi(K) and dimB Πi(K) imposes that dimΠi(K) is attained by the branching measure,
and the situation boils down to that of Corollary 2.7. This gives point (1) of the statement.

Suppose now that dimΠi(K) = dimB Πi(K), θ̂i < 1 and ψ′
i(θ̂i) = 0 (which is auto-

matically true if 0 < θ̂i < 1). The equality between dimΠi(K) and dimB Πi(K) im-
poses that if µ stands for the unique Mandelbrot measure supported on K such that
dim~γi

e (µ) = dimΠi(K), then dime(µ) = hνi(Ti) = ψi(θ̂i), where νi = E(Πi∗µ) = ν
i,θ̂i

.

Also, for j ∈ Ii(= {i, . . . , k}) such that j ≤ j′0, we must have Πi,j∗νi = ν
j,θ̂j

. Using that

for all b ∈ ‹Aj , we have
∑
b′∈Π−1

i,j
(b) νi,θ̂i

([b′]) = νj([b]) and the fact that ψ′
i(θ̂i) = ψ′

j(θ̂j) we

can write

0 = ψ′
i(θ̂i)− ψ′

j(θ̂j) =
∑

b′∈Ãi

ν
i,θ̂i

([b′]) logE(N
(i)
b′ )−

∑

b∈Ãj

ν
j,θ̂j

([b]) log E(N
(j)
b )

=
∑

b∈Ãj

∑

b′∈Π−1
i,j

(b)

ν
i,θ̂i

([b′]) log
E(N

(i)
b′ )

E(N
(j)
b )

.

This implies that for all b ∈ ‹Aj, the set Π
−1
i,j (b)∩

‹Ai is a singleton {b′} such that E(N
(i)
b′ ) =

E(N
(j)
b ), hence ψi = ψj and θ̂j = θ̂i. Let us now examine those j > j′0 in Ii. The previous

argument shows that θ̂j = 0 and ψ′
j(0) > 0 (for otherwise j′0 would be at least equal

to the smallest of those j), and Πi,j∗νi = νj,0, so that Πi,j∗νi is uniformly distributed,

i.e.
∑
b′∈Π−1

i,j
(b) E(N

(i)
b′ )

θ̂i does not depend on b ∈ ‹Aj. We conclude that the conditions

of point (2) are necessary. Conversely, if these conditions hold, one easily checks using
Theorems 2.9 and 2.11 that dimΠi(K) = dimB Πi(K).

The last case easily follows from the previous discussion. �

7. Dimension of conditional measures. Proof of Theorem 2.14

Since the proof of Theorem 2.15 is very similar to that of Theorem 2.14, we leave it to
the reader.
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Point (3) of the statement simply follows from points (1) and (2) as well as the dimen-
sions formula provided by Theorems 2.2 and 2.8 for dim(µ) and dim(Πi∗µ).

To get point (1) we notice that for any x ∈ X1 and n ≥ 1 we have [x|ℓk(n)] ⊂

B(x, e−n/γ1) ⊂ [x|n], so since dime(µ) ≤ hνi(Ti) we find that Theorem 2.13 implies that
µz is exact dimensional with Hausdorff dimension equal to 0.

Now we prove point (2). The following lines do not depend on Πi∗µ being absolutely
continuous with respect to νi of not.

When µω = µ 6= 0, for Πi∗µω-almost every z, the conditional measure µzω is supported
on Kz = π−1({z}) ∩K, obtained as the weak-star limit, as n → ∞, of the measures µzω,n

obtained on K by assigning uniformly the mass
µω([J ]∩Π

−1
i

([z|n]))

Πi∗µω([z|n])
to each cylinder [J ] of

generation n in X1. To be more specific, for any cylinder [J ], almost surely, the measurable
set

AJ =

{
(ω, z) ∈ Ω×Xi : lim

n→∞

µω([J ] ∩Π−1
i ([z|n]))

Πi∗µω([z|n])
exists

}

is of full “Q-probability, where we define “Q(dω,dz) = P(dω)Πi∗µω(dz), and for all (ω, z) in

a subset A′
J of AJ of full “Q-probability, we have µzω([J ]) = limn→∞

µω([J ]∩Π
−1
i

([z|n]))

Πi∗µω([z|n])
.

Suppose now that conditional on µ 6= 0, Πi∗µω is absolutely continuous with respect to

νi. There exists a measurable set A′ of full “Q-probability such that for all (ω, z) ∈ A′, the
limit

lim
n→∞

Ç
fω,n(z) :=

Πi∗µω([z|n])

νi([z|n])

å

exists and is positive. We denote it by fω(z).

Set A = A′∩
⋂
J∈Σ∗

A′
J . For all (ω, z) ∈ A, the sequence of measures µ̃zω,n = fω,n(z)µ

z
ω,n

weakly converges to the measure µ̃zω defined as fω(z)µ
z
ω.

Let

ΩA = {ω : (ω, z) ∈ A for some z ∈ Xi},

Fω = {z ∈ Xi : (ω, x) ∈ A}, ∀ω ∈ ΩA.

If (ω, x) 6∈ A, set µxω = µ̃xω = 0.

For z ∈ Fω, n ≥ 1 and J ∈ An
1 , we have

µ̃z([J ]) = lim
p→∞

µ̃zp([J ]) = lim
p→∞

µ([J ] ∩Π−1
i ([z|n+p])

νi([z|n+p])
.

If U = (U1, · · · , Uk) ∈
∏k
i=1A

ℓi(n)−ℓi−1(n)
i , the ball BU intersects Π−1

i ({z}) if and only if

Πj,i(Uj) = T
ℓj−1(n)
i (z)|ℓj(n)−ℓj−1(n) for all 1 ≤ j ≤ i−1 and Uj = Πi,j(T

ℓj−1(n)
i (z)|ℓj(n)−ℓj−1(n))

for i ≤ j ≤ k. Recalling (3.2), we also have

µ̃z(BU ) =
∑

(J1,...,Jk)∈JU

µ̃z([J1 · · · Jk]])

=
∑

(J1,...,Jk)∈JU

lim
p→∞

µ([J1 · · · Jk] ∩Π−1
i ([z|n+p]))

νi([z|n+p])
.
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Fix q ≥ 0. For all n ≥ 1, we are going to estimate the expectation of the partition function∑
B∈Fn

µ̃z(BU )
q with respect to the measure P⊗ νi.

Let j0 = min{2 ≤ j ≤ i − 1 : dime(µ) > hνj (Tj)}, with min(∅) = i, and D =

γ̃j0−1(dime(µ)− hνi(Ti)) +
∑i−1
j=j0

γj(hνj (Tj)− hνi(Ti)), which is precisely the value given

by (2.11) due to our choice of j0. We will show that there exists c > 0 such that for all q
in a neighbourhood of 1, there exists Cq > 0 such that we have

EP⊗νi

( ∑

BU∈Fn

µ̃z(BU )
q
)
≤ Cq exp

(
−
n

γ1
(q − 1)D +O((q − 1)2))

)
.(7.1)

This is enough to conclude that with probability 1, conditional on µ 6= 0, for Πi∗µ-almost
every z (remember that Πi∗µ is absolutely continuous with respect to νi), one has τµ̃z(q)) ≥

(q−1)D−c(q−1)2 in some neighbourhood of 1. But since µz is a multiple of µ̃z, the same
holds for µz. This implies that the concave functions τµz and q 7→ (q − 1)D − c(q − 1)2

share the same derivative at 1, namely D. Consequently, µz is exact dimensional with
dimension D.

Now we prove (7.1). Recall that outside the set A, the measure µ̃zω has been defined
equal to 0. By Fatou’s lemma, we have

EP⊗νi

∑

BU∈Fn

µ̃z(BU )
q ≤ lim inf

p→∞
EP⊗νi

∑

BU∈Fn

( ∑

(J1,...,Jk)∈JU

µ([J1 · · · Jk] ∩Π−1
i ([z|ℓk(n)+p]))

νi([z|ℓk(n)+p])

)q

= lim inf
p→∞

E
∑

L∈‹Ai

ℓk(n)+p

∑

BU∈Fn

( ∑

(J1,...,Jk)∈JU

µ([J1 · · · Jk] ∩Π−1
i ([L]))

νi([L])

)q
νi([L])

= lim inf
p→∞

E
∑

L∈‹Ai

ℓk(n)+p

∑

BU∈Fn

( ∑

(J1,...,Jk)∈JU

∑

J ′
p∈Π

−1
i

(T
ℓk(n)

i
L)

µ([J1 · · · JkJ
′
p])

νi([L])

)q
νi([L])

Denote by S the expectation in the right hand side of the previous inequality. Due
to the remark made above about the condition for BU to intersects Π−1

i ([u]), and the
multiplicativity property of the measure νi, we can rewrite S as follows:

S = E
∑

L=(L1,...,Li−1)

∑

(U1,...,Ui−1)L

∑

L′

m(U1, . . . , Ui−1, L, L
′)qνi([L1 · · ·Li−1L

′]),

where L ∈
∏i−1
j=1
‹Aℓi−1(n)
i , (U1, . . . , Ui−1)L ∈

∏i−1
j=1
‹Aℓj(n)−ℓj−1(n)
j is such that Πj,i(Uj) = Lj

for each 1 ≤ j ≤ i − 1, L′ ∈ ‹Ap+ℓk(n)−ℓi−1(n)
i , and taking the conventions that the words

involved below whose writing uses the symbol J belong to ‹A∗
1,

m(U1, . . . , Ui−1, L, L
′) =

∑

(J1,...,Ji−1): Πj,i(Jj)=Uj ,
J=Ji···Jk: Πi(Jj)=Lj

∑

J ′: Πi(J ′)=L′

µ([J1 · · · Ji−1J
′])

νi([L1 · · ·Li−1L′])
.(7.2)

Suppose that q ≥ 1. Using the same idea as in the proof of Theorem 3.2, but rewriting
S as an expectation with respect to P⊗ νi instead of P, yields

E(S) ≤ 23q(i−1)

Ñ
i−1∏

j=1

Sj,n

é
·Rn,p,
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where

Sj,n = E
(∑

Lj

νi([Lj ])
∑

Uj : Πj,i(Uj)=Lj

( ∑

Jj : Πj(Jj)=Uj

µℓj(n)−ℓj−1(n)([Jj ])

νi(Lj)

)q)

and

Rn,p = E
(∑

L′

( ∑

J ′: Πi(J ′)=L′

µ([J ′])

νi([L′])

)q
νi([L

′])
)
.

Note that Rn,p = EP⊗νi(X
q
p+ℓk(n)−ℓi−1(n)

), where

Xn(ω, z) =
∑

J∈Ãn
1 : Πi(J)=z|n

µω([J ])

νi([z|n])

is a perturbation of the martingale in random environment

‹Xn(ω, z) =
∑

J∈Ãn
i
: Πi(J)=z|n

µω,n([J ])

νi([z|n])
.

Now, recalling the definition of the vectors V
(i)
b in Section 4.1 and setting

ϕ(q) = log
∑

b∈Ã1

νi([b])e
−T

V
(i)
b

(q)

,

our assumption that dime(µ) > hνi(Ti) is equivalent to saying that at point 1 the function
ϕ has a negative derivative, since ϕ′(1) = hνi(Ti)−T

′(1) = hνi(Ti)−dime(µ). We can then
apply [7, Proposition 5.1] to Xp+ℓk(n)−ℓi−1(n) and for q close enough to 1+, get a constant
Cq > 0 such that Rp,n ≤ Cq independently of n and p.

Next we estimate the terms Sj,n, for 1 ≤ j ≤ i− 1. For j = 1, we simply have
(7.3)

S1,n = E
(∑

L1

νi([L1])
∑

U1: Πi(U1)=L1

(µn([U1])

νi([L1])

)q)
= enϕ(q) = en(q−1)(hνi (Ti)−dime(µ))+O((q−1)2)).

For 2 ≤ j ≤ i− 1, we rewrite Sj,n as (recall that νj stands for the expectation of Πj∗µ)

(7.4) Sj,n = E
∑

Uj

φj(Uj)
( ∑

Jj : Πj(Jj)=Uj

µℓj(n)−ℓj−1(n)([Jj ])

νj([Uj ])

)q
,

where

φj(Uj) = νj([Uj ])
qνi(Πj,i([Uj ]))

1−q .

Let νq,j be the Bernoulli product measure on ‹Xj associated with the probability vector

νq,j([b]) =
φj([b])∑

b′∈Ãj
φj([b′])

, and define

ϕj(q) = log
∑

b∈Ãj

φj([b]) and ‹X(j)
n (ω, z) =

∑

J∈Ãn
1 : Πj(J)=z|n

µn([J ])

νj([z|n])
, z ∈ ‹Xj .

With these definitions, Sj,n rewrites

Sj,n = e(ℓj(n)−ℓj−1(n))ϕj(q)EP⊗νq,j((
‹X(j)
n )q),
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Again, we can use [7, Proposition 5.1], and get a constant Cq,j > 0 such that

Sj,n ≤ Cq,je
(ℓj(n)−ℓj−1(n))ϕj (q)max

(
1,

∑

b∈Ãj

νq,j([b])e
−T

V
(j)
b

(q))ℓj(n)−ℓj−1(n)
.

A computations shows that the derivative at 1 of the function q 7→
∑
b∈Ãj

νq,j([b])e
−T

V
(j)
b

(q)

is equal to hνj(Tj)− T ′(1) = hνj (Tj)− dime(µ).

Recall that j0 = min{2 ≤ j ≤ i − 1 : dime(µ) > hνj (Tj)}, with min(∅) = i. If j0 ≤

j ≤ i − 1 and q is close enough to 1, we thus have
∑
b∈Ãj

νq,j([b])e
−T

V
(j)
b

(q)

< 1, hence

Sj,n ≤ Cq,je
(ℓj (n)−ℓj−1(n))ϕj (q). If 2 ≤ j < j0, using a Taylor expansion of order 2 we

get
∑
b∈Ãj

νq,j([b])e
−T

V
(j)
b

(q)

≤ exp((q − 1)(hνj (Tj) − dime(µ)) + O((q − 1)2)). Moreover,

for any j, eϕj(q) = exp((q − 1)(hνi(Ti) − hνj (Tj)) + O((q − 1)2)). So for 2 ≤ j < j0,

Sj,n ≤ Cq,j exp((ℓj(n)− ℓj−1(n))((q − 1)(hνi(Ti)− dime(µ)) + O((q − 1)2)). Finally, for q
close enough to 1+, there exists Cq > 0 such that

EP⊗νi

∑

BU∈Fn

µ̃z(BU )
q ≤ Cq exp

(
q − 1)(ℓj0−1(n)(hνi(Ti)− dime(µ))

+ (q − 1)
i−1∑

j=j0

(ℓj(n)− ℓj−1(n))(hνi(Ti)− hνj(Tj)) +O((q − 1)2)n
)

= Cq exp
(
−
n

γ1
(q − 1)D +O((q − 1)2))

)
,

hence (7.1) holds.

Suppose now that q ∈ (0, 1). Using the same idea as in the proof of Theorem 3.2 yields

E(S) ≤
i−1∏

j=1

S̃j,n,

where

S̃j,n =





E
(∑

Lj

νi([Lj ])
∑

Uj : Πj,i(Uj)=Lj

( ∑

Jj : Πj(Jj)=Uj

µℓj(n)−ℓj−1(n)([Jj ])
q

νi(Lj)q

))
if 1 ≤ j ≤ j0 − 1

E
(∑

Lj

νi([Lj ])
1−q

∑

Uj : Πj,i(Uj)=Lj

νj(Uj)
q
)

if j0 ≤ j ≤ i− 1.

With the notations introduced in the case q ≥ 1, this rewrites

S̃j,n =





( ∑

b∈Ãi

νi([b])e
−T

V
(i)
b

(q)
)ℓj(n)−ℓj−1(n)

if 1 ≤ j ≤ j0 − 1

eϕj(q)(ℓj(n)−ℓj−1(n)) if j0 ≤ j ≤ i− 1.

Using Taylor expansions we can get that (7.1) holds for q close to 1− as well.
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8. The case when {2 ≤ i ≤ k : γi 6= 0} = ∅

In our main statements about the Hausdorff and box-counting dimension of K and its
projections for simplicity we assumed all the γi, 2 ≤ i ≤ k to be positive, which in the
Euclidean realisation of Section 2.6 corresponds to m1 > · · · > mk ≥ 2. It turns out
that up to slight modifications in the statement and proofs, our results cover the general
configuration m1 ≥ · · · ≥ mk ≥ 2, for which the diagonal endomorphism diag(m1, . . . ,mk)
may have eigenspaces of dimension at least 2 over which it is a similarity. In this case,
in the expressions giving the dimensions of K and its projections, when mi = mi−1, i.e.
γi =

1
log(mi−1)

− 1
log(mi)

= 0, the index i has no contribution, and geometrically for any

1 ≤ i < j ≤ k, x ∈ Xi and n ≥ 1, for the induced metric by d~γ on Xi, if y ∈ B(x, e−n/γ1),

nothing is required on T
ℓj−1(n)
i (y)|ℓj(n)−ℓj−1(n).

For all the statements of Section 2.3 and Theorem 4.8, the only change to make to cover
the case γi ≥ 0 for all 2 ≤ i ≤ k is to set I = {2 ≤ i ≤ k : γi > 0 and replace k by sup(I)
in (2.9). The proofs adapt readily.

For the statements of Section 2.4, one has to replace Ii by {i} ∪ {i < j ≤ k : γj > 0}
and replace k by sup(Ii) in (2.10). Again, the modifications in the proofs are left to the
reader.
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