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The dynamics of perturbed aircraft wake models is investigated in the two-dimensional 10

limit by means of a linear stability analysis. The base flow, computed by a direct numerical 11

simulation of the incompressible Navier-Stokes equations, is a viscous counter-rotating 12

vortex dipole obtained from an initial condition which is either a superposition of two 13

Lamb-Oseen vortices or a vorticity sheet with elliptical vorticity distribution. The former, 14

referred to as the Lamb-Oseen dipole (LOD), is a model for the far field of the wake and 15

gives rise to a family of quasisteady dipoles parametrized by their aspect ratio only. The 16

later approaches the near-field wake of a wing during the rolling phase which eventually 17

converges towards the LOD model at later times. First, a modal stability analysis of the 18

LOD under the assumption of a frozen base flow is performed for aspect ratios a/b 19

ranging from 0.05 to 0.36 at various Reynolds numbers. Several families of unstable 20

antisymmetric and symmetric modes are observed. The maximal growth rates are reached 21

at low Reynolds numbers. The results are consistent with those obtained by Brion et al. 22

[Phys. Fluids 26, 064103 (2014)] for the higher aspect ratio inviscid Lamb-Chaplygin 23

dipole (LCD). However, the a posteriori verification of the validity of the frozen base flow 24

assumption shows that, except for a few modes occurring at the highest aspect ratios and 25

large Reynolds numbers, these two-dimensional instabilities do not survive the base flow 26

unsteadiness due to viscous diffusion. They are thus not likely to develop in the flow. 27

Second, we focus on the transient dynamics of the dipoles by looking for the optimal 28

perturbations through a nonmodal stability analysis based on a direct-adjoint approach. The 29

observed energy gains are substantial and indicate the potential of transient mechanisms. 30

In the short time dynamics, the optimal perturbation consists of intertwined vorticity layers 31

located within each vortex core and leading to a m = 2 deformation Kelvin wave excited 32

by the Orr mechanism. For moderate to large horizon times, the optimal perturbation 33

takes the form of vorticity layers localized outside the vortex core which eventually give 34

rise to the two-dimensional unstable mode unveiled by the modal analysis through a 35

combination of Orr mechanism and velocity induction. The robustness of these modes 36

is examined by considering the initial stage of the development of aircraft wakes. The 37

optimal perturbations developing on an elliptic and a double-elliptic vorticity sheet present 38

a similar structure and rely on the same mechanisms as the ones observed for the LOD but 39

come with lower energy gains. It is concluded that the rolling-up of the vorticity sheet in 40

the near-field of the wake does not influence significantly the linear development of these 41

two-dimensional perturbations. 42
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Near-field Far field

FIG. 1. Sketch of the streamwise development of an aircraft wake. The first sectional plan lies in the near-
field region where the vorticity sheet rolls-up. The second one corresponds to the far-field region where the
wake takes the form of a counter-rotating vortex dipole. The scales are not representative of real wake.

I. INTRODUCTION 43

Since the 1960s and the democratization of air transportation, aircraft wake vortices have44

been the subject of numerous research studies motivated by the associated economic, safety and45

more recent environmental issues. Invisible in the absence of condensation, the trailing vortices46

are very hazardous for a follower aircraft due to the intense rolling moment they can induce,47

requiring the imposition of security standards which limit the takeoff and landing rates in airports,48

and thereby their capacity and profitability. These vortices also play a role, though not yet49

completely understood, in the formation and dissemination of condensation trails or “contrails”50

generated by the aircraft engines. Under specific atmospheric conditions, these contrails lead to51

the formation of artificial cirrus clouds [1] which affect significantly the local radiative forcing52

and the photochemistry of the atmosphere. The contribution of aviation to the global radiative53

forcing is estimated to lie between 3.5% to 4.9% [2]. For all these reasons, the characterization54

and understanding of the dynamics of these trailing vortices take on an important scientific interest55

motivated by their control to reduce their lifespan.56

Trailing vortices observed in the far field of an aircraft wake result from the roll-up of the vorticity57

sheet generated at the trailing edge of the wing [3,4] as illustrated in Fig. 1. This initial phase of58

concentration of the vorticity sheet into two counter-rotating vortices is commonly referred to as the59

near-field of the wake and extends a few wingspans downstream the trailing edge [4]. An important60

part of the scientific effort dedicated to the dynamics of aircraft wake has focused on the far field61

when it has already rolled-up into a vortex dipole, and more specifically on the development of62

instabilities in the contrails. If an isolated vortex can be subjected to various kinds of instabilities,63

such as centrifugal [5], trailing [6], viscous [7] or Rayleigh-Taylor [8] ones, then trailing vortices64

exhibit a dipolar structure and are thus sensitive to three-dimensional instabilities specific to vortex65

dipoles. Two main types of so-called cooperative instabilities can be observed in real trailing vortices66

[9]: the Crow instability occurring at long wavelength of the order of the wingspan and the elliptic67

instability active at shorter wavelength, of the order of the vortex core radius a. Naturally triggered68

by disturbances and atmospheric turbulence, these instabilities lead to growing 3D distortions on69

contrails before their reconnection and eventual dissipation after a few minutes. These two instabil-70

ities were first predicted theoretically using a vortex filament model, respectively, by Crow [10] and71

Widnall et al. and Moore and Safman [11–13]. Since these pioneering works, the stability of vortex72

pairs has been extensively studied, like the inviscid Lamb-Chaplygin [14,15] and the viscous Lamb-73

Oseen [16–18] dipoles, or the stability of a four-vortex model taking into account the wake generated74

by the horizontal tail of the plane [19,20] (see the recent review of Leweke et al. [9] for a complete75

description).76

A new instability has been recently identified by Brion et al. [14] in the two-dimensional limit77

for the Lamb-Chaplygin dipole (LCD) through a modal stability analysis at moderate Reynolds78

numbers, i.e., Re < 3180. This two-dimensional instability takes the form of two displacement79

modes located in each vortex core and induces a zigzag displacement of the vortex pair along80

its unperturbed trajectory associated with viscous mechanisms that are not fully understood. In81
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the case of the antisymmetric oscillatory mode, the authors point out three different ingredients 82

participating to the dynamics of the unstable mode. First, they note that the instantaneous growth 83

rate of the mode is maximal (respectively, minimal) when the rotating displacement modes 84

located in each vortex core are aligned with the direction of stretching (respectively, compression) 85

induced by the companion vortex. Second, they show that the vorticity of the mode which 86

is leaking outside the Kelvin oval is responsible for the rotation of the perturbation. Finally, 87

they notice that the vorticity of the mode located in the viscous tail of the dipole induces 88

a velocity field inside the dipole with a magnitude comparable to the velocity of the dipole 89

itself, which underlines the important role of the dipole viscous tail in the dynamics of the 90

instability. 91

Because the LCD presents a discontinuity in its vorticity field at the Kelvin oval boundary, Brion 92

et al. [14] also made a single stability calculation for a relatively high aspect ratio Lamb-Oseen 93

dipole (LOD), a/b = 0.3, at two Reynolds numbers, and found that the two-dimensional instability 94

observed for the LCD is also present, though with smaller growth rates. They also noted that, at 95

these Reynolds numbers, the characteristic growth time is comparable to the characteristic diffusion 96

time of the dipole, which questions the validity of the modal approach under the assumption 97

of a frozen base flow. Indeed, the vortex dipole evolves under viscous diffusion while being 98

advected downwards at the self-induced velocity �/2πb where � and b are, respectively, the vortex 99

circulation and vortex separation. The resulting effect of viscous spreading is twofold: the radius 100

of each vortex increases in time and so does the dipole aspect ratio a/b, and, as a consequence, 101

vorticity progressively diffuses beyond the Kelvin oval generating a viscous tail [21]. The inviscid 102

LCD model does not allow to take into account these combined effects. Besides, its high aspect ratio 103

of the order of a/b ≈ 0.448 [14] is not representative of real aircraft wake vortices which aspect ratio 104

is smaller, i.e., a/b ≈ 0.1 [22,23]. These limitations of the LCD model stress the need for a complete 105

stability analysis of a viscous vortex dipole more representative of real aircraft wakes. The present 106

work focuses on the influence of the dipole aspect ratio on this two-dimensional unstable mode. 107

The choice of the LOD model is motivated by the fact that, in a viscous fluid, most counter- 108

rotating vortex pairs converge, through axisymmetrization and mutual elliptical deformation, 109

towards the same family of dipoles characterized by their aspect ratio only and for which the 110

near Gaussian vorticity distribution obtained on each vortex is very close to the Lamb–Oseen 111

vortex [9,16,21]. Besides, the azimuthal velocity component of a real trailing vortex is correctly 112

represented by the Gaussian profile of the Lamb-Oseen vortex (see the Fig. 4 of Devenport et al. 113

[24]). As done previously by Sipp et al. [16], Donnadieu et al. [18], Delbende and Rossi [21], 114

the LOD is obtained numerically from a direct numerical simulation starting with an initial state 115

consisting of two well-separated counter-rotating Lamb-Oseen vortices. Starting from an initial 116

dipole of very small aspect ratio, i.e., a/b = 0.025, which evolves in time under viscous diffusion 117

and self-induced downward advection, we generate a complete family of LODs with aspect ratio up 118

to a/b = 0.36. Their characteristics are described in Sec. II together with the numerical method. A 119

great care has been taken to generate the base state, in particular to the compensation of the dipole 120

descent velocity Vd . In Sec. III, this family of LODs provides the base states needed to extend the 121

work of Brion et al. [14] and explore the influence of the aspect ratio on the two-dimensional 122

instability. The section ends with an analysis of the effect of the base flow viscous diffusion, 123

neglected in the modal analysis, on the development of these two-dimensional instability modes. 124

Finally, a nonmodal stability analysis is conducted in Sec. IV to investigate the transient growth 125

mechanisms potentially occurring in the LOD. This is a model for the far field and it does not take 126

into account the initial rolling phase of the vorticity sheet generated at the trailing edge of the wing. 127

Hence, the nonmodal analysis, particularly suited to capture short term transient growth, is applied 128

to near-field wake models to ascertain if the linear dynamics is modified by the initial development 129

of the wake. The search for the optimal perturbation is thus conducted for two near-field wake 130

models consisting of elliptical vorticity sheets modeling the cruise or the high-lift takeoff or landing 131

phases. 132

004700-3



JUGIER, FONTANE, JOLY, AND BRANCHER

II. THE LAMB-OSEEN DIPOLE133

A. Base flow computation134

We consider a two-dimensional viscous flow solution of the incompressible Navier-Stokes135

equations:136

∇ · v = 0, (1)

∂v
∂t

= v × ω ez − ∇
(

p + v2

2

)
+ ν�v, (2)

where v = (u, v), ω, p stand, respectively, for the velocity, vorticity, and pressure fields, and ν is137

the kinematic viscosity. As done by Sipp et al. [16], Donnadieu et al. [18], the flow is initialized138

with a superposition of two counter-rotating axisymmetric Lamb-Oseen vortices of circulation139

�0 > 0 and −�0, dispersion radius a0 and vortex separation b0. There are three characteristic140

time scales associated with the dynamics of the base flow: the characteristic vortex turn-over141

time Ta = 2πa2
0/�0, the dipole advection time scale Tb = 2πb2

0/�0 and the viscous time scale142

Tν = a2
0/4ν. Unless stated, the results presented in the following will be normalized using Tb. The143

Reynolds number is classically defined by Re = �0/ν. In the Cartesian coordinate system (x, y)144

corresponding, respectively, to the horizontal and vertical directions, the vortices are initially located145

at (−b0/2, 0) and (b0/2, 0) so that the corresponding scalar vorticity field is146

ωB(x, y) = − �0

πa2
0

e−[(x+b0/2)2+y2]/a2
0 + �0

πa2
0

e−[(x−b0/2)2+y2]/a2
0 . (3)

The base flow fields (vB, ωB, pB) are obtained by the time integration of Eqs. (1) and (2) from147

this initial field in a doubly periodic box of size [−Lx/2, Lx/2] × [−Ly/2, Ly/2] with the same148

2D Fourier pseudospectral method used by Donnadieu et al. [18], except that temporal integration149

is done here by a fourth-order Runge-Kutta scheme rather than a second-order Adams-Bashforth150

scheme. The complete description of the numerical method is already described in details in151

Donnadieu et al. [18], Donnadieu [25], Jugier [26], so we only give here the details associated152

with the selection of the numerical parameters. The size of the domain is chosen as Lx × Ly =153

12b0 × 16b0, which has been checked to be sufficiently large so that the influence of the periodic154

boundary conditions is negligible; see Jugier [26] for details. The initial aspect ratio of the dipole is155

set to a0/b0 = 0.025 and the Reynolds number is equal to Re = 2500. We choose to have at least156

10 grid points within each vortex core initially so that the mesh size is 2400 × 3200.157

B. Definition of the relative frame of reference158

Due to self-induction, the dipole moves downwards at a speed of approximately −�0/2πb0.159

This descent velocity, noted Vd , is compensated so that the dipole is observed to be almost steady160

in its own frame of reference, only slowly evolving under viscous diffusion. In the previous studies161

on LOD dynamics [14,16,18,21,27], the definition of the relative frame of reference varies greatly162

due to the different evaluations of the descent velocity Vd , and its influence on the LOD dynamics163

has not been addressed carefully so far. We choose here to evaluate the descent velocity Vd as164

the y component of the velocity at the vortex centers defined by the vorticity extrema, denoted165

V1 in the following. But there are four other possible definitions: the Eulerian V2 = vB(xc, yc)166

and Lagrangian V3 = dyc/dt vertical velocities of the vortex centroid calculated from the first167

order vorticity momentum (xc, yc) = (
∫∫

D ωBx dS,
∫∫

D ωBy dS)/� (D is half of the domain where168

x > 0), the y component of the vorticity-weighted velocity V4 = ∫∫
ωBvB dS/�, and the descent169

velocity of a pair of point vortices with equivalent circulation and separation distance given by170

the analytical expression V5 = �/2πb. A good criterion to discriminate the best evaluation of171

the descent velocity is the minimization of the unsteadiness of the base flow in its own frame of172

reference. The unsteadiness of the base flow can be assessed from both the velocity and vorticity173
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FIG. 2. (a) Measure of the LOD unsteadiness as a function of the descent velocity relative deviation �Vd =
Vd/V1 − 1. (b) Influence of �Vd on the growth rate and frequency of the antisymmetric mode for (a/b, Re) =
(0.3, 788). The symbols correspond to the different evaluations of the descent velocity: V2 (+), V3 (×), V4 (©),
and V5 (�).

fields, namely, Tb ‖∂t vB‖/‖vBref‖ and Tb ‖∂tωB‖/‖ωB‖, where ‖ · ‖ stands for the L2-norm defined 174

by Eq. (11) and the velocity field in the absolute frame vBref is used for normalization to avoid 175

any bias in the measure. The unsteadiness of the LOD is measured as a function of the relative 176

deviation �Vd of the descent velocity from the definition retained here, namely, the y component of 177

the velocity at the vorticity extrema V1, i.e., �Vd = (Vd − V1)/V1. These evolutions are displayed in 178

Fig. 2(a), where it can be observed that none of the different options for the evaluation of Vd leads 179

to a perfectly steady solution. Nevertheless, Vd = V1 is the best choice since it gives the minimum 180

of base flow unsteadiness. Evaluations of the descent velocity by V3 and V4 are also good candidates 181

since they are very close to that minimum, but they were discarded anyway since V1 is much easier 182

to compute. A correct evaluation of the descent velocity is crucial when considering the modal 183

stability analysis of the dipole since the characteristics of the unstable modes are seen to be sensitive 184

to the compensation of Vd from Fig. 2(b). For the most amplified antisymmetric mode obtained for 185

(a/b, Re) = (0.3, 788), the relative deviations on the growth rate are as large as 30%. 186

C. Characterization of the base flow 187

As discussed by Sipp et al. [16] and Delbende and Rossi [21], the computation of the base 188

flow from the initial conditions Eq. (3) starts with a short transient regime during which the two 189

counter-rotating circular vortices adapt to the strain field imposed by their counterpart and become 190

elliptical. This transient adaptation phase is characterized by oscillations occurring in the vortex 191

core and takes the form of an elliptical rotating mode of period 4πTa. These oscillations are damped 192

within a few Ta. 193

After the initial transient adaptation, the vortex dipole evolves slowly under viscous diffusion 194

towards larger aspect ratios. Figure 3 illustrates the evolution of the vorticity field ωB and the 195

streamlines of the LOD in its frame of reference for increasing aspect ratios. A specific family 196

of logarithmic-linear hybrid scales has been adopted here for the representation of the vorticity 197

contours to emphasize the viscous tail in the wake of the dipole: 198

En = {±M10−n+i/3, i ∈ [0, 3(n − 1)]} ∪ {±iM/10, i ∈ [2, 10]}, (4)

where M stands for the maximal absolute value of the plotted quantity and n is a positive integer. As 199

already described by Delbende and Rossi [21], the viscous evolution of the LOD is divided in two 200

phases. For small values of a/b, the two vortices remain separated so that their respective vorticity 201
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FIG. 3. Streamlines (black solid lines) and vorticity contours (color scale E6, see Eq. (4) and text for details)
for four LODs of increasing aspect ratio: (a) a/b = 0.05, (b) a/b = 0.15, (c) a/b = 0.25, and (d) a/b = 0.35.
A small part of the computational domain is represented, i.e., (x, y) ∈ [−1.5b, 1.5b] × [−1.5b, 3b]. The dotted
thick line corresponds to the Kelvin oval.

fields do not overlap. The circulation � = ∫∫
D ωB dx dy of each vortex is constant and the symmetry202

of the dipole with respect to the x-axis is preserved. In the second phase, vorticity diffusion across203

the separatrix between the two vortices yields a decrease of the circulation. Besides, due to vorticity204

diffusion across the Kelvin oval, a viscous tail forms in the dipole wake and breaks off its symmetry205

with respect to the x axis. As mentioned in the Introduction, the evolution of the base flow after206

the initial transient gives rise to a family of dipoles characterized by their aspect ratio only [16,21].207

This is corroborated here by following the evolution of the dipole characteristics with its aspect ratio208

a/b for four values of the initial Reynolds number Re = 2 500, 5 000, 7 500, and 10 000. We first209

consider the ellipticity of the vortices, defined as the ratio ay/ax of the vortex core radii along the y210

and x directions calculated from the second-order moments of vorticity:211

ay =
√

1

�

∫∫
D

ωB(y − yc)2 dx dy and ax =
√

1

�

∫∫
D

ωB(x − xc)2 dx dy. (5)

Figure 4(a) shows that the ellipticity evolution does depend on a/b and that the influence of the212

Reynolds number is negligible. Figure 4(b) shows the evolution of the total circulation � and213

the inner circulation �i obtained by integration of the vorticity field over the area delimited by214

the Kelvin oval, i.e., rejecting the contribution of the viscous tail. It can be seen that for aspect ratios215

below a/b ≈ 0.3, all curves are superimposed. This result implies that the circulation decay only216

FIG. 4. Evolution of (a) ellipticity ay/ax and (b) circulations �

�0
(solid lines), �i

�0
(dotted lines) of the

vortices as a function of the dipole aspect ratio a/b for various Reynolds numbers.
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depends on the aspect ratio of the dipole. The viscous effects become significant for larger aspect 217

ratios with the substantial contribution of the viscous tail to the total circulation, which amount is 218

driven by the Reynolds number. The decrease of the circulation given by the ratio �/�0 measured 219

for Re = 5000 differs from the one measured for Re = 2500 by about 1% when the dipole aspect 220

ratio is a/b = 0.36. We thus consider that the LOD is no longer Reynolds independent beyond this 221

value. Besides, the initial adaptation phase, which lasts few Ta, has already ended when the dipole 222

aspect ratio reaches the value of a/b = 0.05 by t ∼ 4500Ta. Thus only the base flows obtained for 223

0.05 � a/b � 0.36 and Re = 2500 will be used for the modal stability analysis in the next section. 224

III. LINEAR MODAL STABILITY ANALYSIS OF THE LOD 225

A. Numerical method 226

The Navier-Stokes Eqs. (1) and (2) are linearized around a frozen base state [vB, ωB, pB] 227

computed by the procedure described in Sec. II A and corresponding to a chosen aspect ratio a/b. 228

The linearization yields the following equations for a small 2D perturbation [v, ω, p]: 229

∇ · v = 0, (6)

∂v
∂t

= vB × ω ez + v × ωB ez − ∇(p + vB · v) + ν�v. (7)

These equations are advanced in time from an initial divergence-free white noise with the same 230

pseudospectral method used for the generation of the base flow. The constraint to have at least 10 231

grid points within each vortex core is maintained so the mesh size is adapted to the aspect ratio of 232

the LOD: 2400 × 3200 for a/b ∈ [0.05, 0.12], 1200 × 1600 for a/b ∈ [0.13, 0.2], and 600 × 800 233

for a/b ∈ [0.21, 0.36]. The temporal integration is made over a sufficiently long period so that the 234

2D perturbation fields have converged toward the most amplified mode. Since the coefficients of 235

this linear PDE system are time independent, in the long-term asymptotic limit, the solution is of 236

the form 237

v(x, y, t ) = �{v̂(x, y)eiωt } = [vr cos (2π f t ) − vi sin (2π f t )]eσ t , (8)

with v̂ = vr + ivi and ω = 2π f − iσ where f and σ stand, respectively, for the frequency and the 238

growth rate of the mode. For stationary modes, i.e., f = 0, the spatial structure is steady and reduces 239

to vr , and its energy grows exponentially. For oscillatory modes, i.e., f 	= 0, the fields vr and vi can 240

be chosen uniquely on a period so that 〈vr, vi〉 = 0 and ‖vr‖2 + ‖vi‖2 = 1 with ‖vr‖ � ‖vi‖, where 241

the scalar product 〈, 〉 and its associated norm are defined by Eq. (11) in the next section. The energy 242

presents oscillations of the form 243

E (t ) = ‖vr‖2 + ‖vi‖2

4
[1 + α cos(4π f t )]e2σ t , (9)

where α = ‖vr‖2−‖vi‖2

‖vr‖2+‖vi‖2 < 1 is a nondimensional coefficient that represents the amplitude of these 244

oscillations. When α → 0, the spatial structure of the mode transitions smoothly over the period 245

from vr → −vi → −vr → vi and back to vr , while when α → 1, the spatial structure of the mode 246

is mostly given by ±vr over the period except for rapid transitions to ∓vi around f t = 0.25 + 0.5n 247

with n ∈ Z. Finally, the base state being symmetric, the linearized Navier-Stokes Eqs. (1) and (2) 248

preserve symmetry and it is thus possible to compute separately the most amplified antisymmetric 249

and symmetric modes, as it is usually the case for dipole stability studies. 250

B. Antisymmetric modes 251

We now consider the most unstable antisymmetric mode which develops on the frozen base 252

flow described in the previous section as a function of the LOD aspect ratio for six values of the 253

Reynolds number, i.e., Re ∈ {223, 350, 500, 1280, 2500, 5000}. Cases Re = 223 and Re = 1280 254
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FIG. 5. Nondimensional growth rate σ ∗ (a) and frequency f ∗ (b) of the most amplified antisymmetric mode
as a function of the dipole aspect ratio a/b for different Reynolds numbers. Oscillatory and stationary branches
are, respectively, identified by the hollow and filled symbols positioned at the extremities and maximum
of each branch. Growth rates and frequencies for the LCD computed by Brion et al. [14] are added for
comparison.

are selected to allow comparison with the results of Brion et al. [14] obtained for the LOD. The255

normalized growth rates σ ∗ = Tbσ and frequencies f ∗ = Tb f of these modes are shown in Fig. 5.256

For large Reynolds numbers, i.e., Re � 1280, the most amplified mode is oscillatory and both its257

growth rate and frequency are increasing monotonously with the dipole aspect ratio, with nearly258

zero growth rate for the smallest aspect ratio. This suggests that the unstable mode disappears in the259

limit of infinite Reynolds number and zero aspect ratio, a result which is consistent with the absence260

of such two-dimensional instability in the inviscid analysis performed by Crow [10] for a pair of261

vortex filaments. For smaller Reynolds numbers, the picture drastically changes: as the dipole aspect262

ratio decreases, multiple unstable branches of oscillatory and stationary modes are observed with a263

maximum amplification of each branch corresponding to a specific value of a/b. Surprisingly, each264

branch exhibits larger growth rates when the Reynolds number decreases. This destabilizing effect265

of viscosity is unusual since it is generally expected that decreasing the Reynolds number results in266

the damping of the unstable modes. In the case of the LCD, Brion et al. [14] observed a similar trend267
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when decreasing Reynolds number but the growth rate eventually reaches a maximum before the 268

mode becomes stable below a critical value of Rec = 75 [28]. This must be also the case for the LOD 269

since the linearized Navier-Stokes equations in the limit of zero Reynolds number show that these 270

2D modes must vanish. This is readily observable for both stationary modes with a/b ∈ [0.16, 0.17] 271

and oscillatory ones with a/b ∈ [0.34, 0.36] where the value of the growth rates are smaller for 272

Re = 223 than for Re = 350. In these figures, the results obtained by Brion et al. [14] for the LCD 273

are also reported for a/b ≈ 0.4297 [29], using our normalization based on � and b instead of using 274

the descent velocity Vd of the dipole and the diameter D of the Kelvin oval as characteristic scales 275

(D ≈ 2.174b and Vd ≈ 0.135�/b). Extrapolation of the different branches obtained for the LOD 276

towards larger aspect ratios seems to be in fair agreement with the values obtained by Brion et al. 277

[14] for the LCD. It suggests that the differences of internal structure between the two dipoles do 278

not have a significant impact on the development of these 2D modes, a conclusion which was hinted 279

by Brion et al. [14]. As a test case in their Appendix A, they made one stability calculation for the 280

LOD for a/b = 0.3 and Re = 223. However, it should be noted that the characteristics of the mode 281

they determined for this specific case do not match the present results, most probably because they 282

used V2 to evaluate the descent velocity of the dipole, which we proved to have a strong impact on 283

the stability calculations (see Sec. II B). 284

The vorticity field of these unstable modes is displayed in Fig. 6 for four different values 285

of (a/b, Re) corresponding to oscillatory modes. The vorticity is mostly concentrated into two 286

symmetric displacement modes [30] located in each vortex core of the LOD with some additional 287

residual vorticity spreading in the viscous tail of the dipole. The orientation of the perturbation in the 288

vortex cores changes in time along with the projection of the mode on its real and imaginary part, 289

according to Eq. (8). It results in a full rotation of the mode over a period which can be assessed 290

in Fig. 7(b) by the evolution of the angle θ between the x-axis and the line connecting the two 291

vorticity extrema of one of the displacement mode, as illustrated in Fig. 7(a). It can be seen that 292

the rotation rate is not uniform along the period and depends on the value of the coefficient α as 293

defined in Eq. (9). For a/b = 0.24 and Re = 223, α is small and the structure of the mode transitions 294

smoothly between its real and imaginary parts. The rotation is almost regular throughout the period. 295

However, for the same aspect ratio but at larger Reynolds numbers, i.e., Re = 1280 and Re = 2500, 296

the coefficient α is close to unity and therefore the mode remains projected on its real part most of 297

the period except for two very short intervals around f t = 0.25 and f t = 0.75 where its structure 298

is collinear to its imaginary part. This yields a fast rotation at these two instants while the angle θ is 299

almost constant during the rest of the period. These unevenly rotating displacement modes induce 300

a periodic zigzag motion of the LOD around its unperturbed downward straight trajectory [14]. 301

Comparison between the two first columns of Fig. 6 points out the effect of the dipole aspect ratio 302

on the mode structure. When a/b is small, the displacement modes extend towards the Kelvin oval 303

into spiraling arms of vorticity that are not present for larger aspect ratios. A decrease of the aspect 304

ratio also induces a sharper and more irregular rotation of the mode associated with the increase of 305

the coefficient α, see the case corresponding to a/b = 0.06 in Fig. 7(b). The modifications of the 306

mode associated with the increase of the Reynolds number are also twofold. First, the extension of 307

the vorticity field in the viscous tail of the dipole reduces in width as seen in Fig. 6. Second, the 308

coefficient α increases towards unity which implies a more abrupt rotation of the mode. Finally, it 309

should be mentioned that the structure and the kinematics of the stationary modes (not shown) are 310

similar to those of the oscillatory ones except that the real and imaginary parts of the vorticity field 311

are equal. 312

C. Symmetric modes 313

The picture is quite similar for the symmetric unstable modes which normalized growth rate 314

σ ∗ and frequency f ∗ are displayed in Fig. 8 for the same Reynolds numbers. A notable difference 315

with the antisymmetric case is that most of the modes are stationary. For Reynolds numbers larger 316

than 1280, there is only one branch of stationary instability with moderate to low growth rates. 317
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FIG. 6. Real (top) and imaginary (bottom) parts of the vorticity field of antisymmetric oscillatory unstable
modes for various values of (a/b, Re) indicated above the figures. From left to right, α = 0.931, 0.621, 0.971,

and 0.987. A small part of the computational domain is represented, i.e., (x, y) ∈ [−2b, 2b] × [−1.5b, 10b].
The E4 scale is used. The dotted thick line corresponds to the Kelvin oval while the solid and dotted thin lines
correspond to ωB = ±0.1‖ωB‖∞.

004700-10



LINEAR TWO-DIMENSIONAL STABILITY OF A …

FIG. 7. (a) Definition of the orientation angle θ on a close-up view (left vortex) of the unstable mode
obtained for (a/b, Re) = (0.24, 223). (b) Evolution over one period of θ for antisymmetric modes presented
in Fig. 6: (a/b, Re) = (0.06, 223) (©), (a/b, Re) = (0.24, 223) (�), (a/b, Re) = (0.24, 1280) (�), and
(a/b, Re) = (0.24, 2500) (♦).

Below this value, there are successive branches of stationary and oscillatory instabilities with much 318

larger growth rates, up to σ ∗ = 0.65 for (a/b, Re) = (0.17, 223). As for the antisymmetric modes, 319

these instabilities must vanish in the limit of zero Reynolds number, which implies that, for a given 320

aspect ratio, the growth rate reaches a maximum before decreasing when the Reynolds number 321

is lowered. This Reynolds number of maximum growth rate has not been reached here and must 322

be smaller than Re = 223 for most of the aspect ratios explored, except for a/b � 0.3 where it 323

lies between Re = 223 and Re = 350. For the LCD, Brion et al. [14] found a value of Re = 4983 324

which is much larger. The growth rates corresponding to the modes of the LCD have also been 325

added for a/b = 0.4297 and they seem to be in good agreement with our results when the curves 326

obtained for the LOD are extrapolated towards larger aspect ratios. As for the antisymmetric modes, 327

the calculation performed by Brion et al. [14] for the LOD with (a/b, Re) = (0.3, 1280) does not 328

match the present results and has not been reported in Fig. 8. This discrepancy is again very likely 329

due to the way the dipole descent velocity is calculated. 330

Figure 9 shows the vorticity fields of these stationary symmetric modes for four different values 331

of (a/b, Re). They consist of two antisymmetric displacement modes located at each vortex core 332

which induce a symmetric translation of the two vortices. The influence of both the aspect ratio and 333

the Reynolds number on the structure of these modes is identical to what has been observed for the 334

antisymmetric modes. Spiraling arms of vorticity are present for small aspect ratios and the vorticity 335

extending in the viscous tail of the dipole is thinner when the Reynolds number is increased. 336

D. Damping due to base flow diffusion 337

The frozen base flow hypothesis used for the modal approach must be validated a posteriori 338

by comparing the growth rate of the unstable modes with the characteristic time of the base 339

flow evolution which is given by the viscous time scale Tν = a2
0/4ν. For the frozen base flow 340

approximation to be valid, one must ensure that σTν � 1. We recall that the time evolution of 341

the dispersion radius of a viscous vortex is given by a2(t ) = a2
0 + 4νt . The dispersion radius 342

thus increases by about 40% over one Tν unit. As already pointed out by Brion et al. [14], the 343

present two-dimensional instabilities, which exhibit particularly strong growth rates at low Reynolds 344

numbers, might be counteracted by the base flow diffusion. This is confirmed in Fig. 10 where the 345

growth rates have been normalized by Tν . Only the antisymmetric modes occurring at large aspect 346
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FIG. 8. (a) Growth rates σ ∗ and (b) frequencies f ∗ of the most amplified symmetric mode as a function of
the dipole aspect ratio a/b for different Reynolds numbers. Same conventions as described in the caption of
Fig. 5.

ratios and large Reynolds numbers might be able to develop upon the time dependent base flow347

since they grow somewhat faster than the diffusion of the dipole (the largest value being Tνσ ≈ 5).348

We have performed a direct numerical simulation of the linearized Navier-Stokes Eqs. (6) and349

(7) initialized by an unstable mode, in which the base flow was allowed to evolve in time under350

viscous diffusion. Two modes were considered: the oscillatory antisymmetric and the stationary351

symmetric modes for a/b = 0.25 and Re = 5000 for which Tνσ is 1.35 and 5.55, respectively.352

The linear evolution of the oscillatory mode can be initialized with the perturbation taken at any353

instant within the oscillating period. Three different initial conditions have been tested according to354

Eq. (9) for the evolution of the perturbation energy E (t ): the mode taken at the instants tM and tm355

corresponding, respectively, to the local maximum and the local minimum of the perturbation energy356

over a given period, as well as at an intermediate time tmed = tm1 +tm2
2 corresponding to the mean357

time between two consecutive local minima of energy. The corresponding energy gain evolutions358

are displayed in Fig. 11 along with the ones obtained for a frozen base flow. As expected, if the359

diffusion of the base flow does not alter significantly the growth of the antisymmetric mode, it360

quickly stops the development of the symmetric one. When the antisymmetric mode is initialized at361
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FIG. 9. Vorticity field of symmetric stationary modes for various values of (a/b, Re) indicated above the
figures. Same conventions as described in the caption of Fig. 6.

tm, it benefits from the instantaneous positive growth rate and its energy increases while its energy 362

decreases if initialized at tM where the instantaneous growth rate turns negative. When initialized 363

at tmed, the evolution of the energy lies in between, exhibiting a weaker growth. Other simulations 364

(not presented here) have been conducted for smaller aspect ratios and smaller Reynolds numbers 365

[26] and the conclusion remains unchanged: the base flow diffusion prevents the growth of these 366

two-dimensional modes. 367

IV. LINEAR NONMODAL STABILITY ANALYSIS OF THE LOD 368

Since most of the previously identified two-dimensional modes do not grow fast enough when 369

the base flow is submitted to viscous diffusion, we now examine the transient linear dynamics by 370

looking at the optimal perturbation maximizing the energy gain over a given interval of time [0, Tf ]. 371

We first consider the LOD which corresponds to the far field of an aircraft wake. Then we turn 372

towards the near-field wake with a base flow taken as a vorticity sheet rolling up into a counter- 373

rotating vortex dipole. 374

A. Numerical method 375

The nonmodal stability analysis focuses on the 2D transient dynamics of perturbed aircraft wakes 376

models by computing the optimal perturbation over a given time interval [0, Tf ]. The optimal 377

perturbation is classically defined as the initial condition maximizing the energy gain over the 378

considered time interval: 379

G(Tf ) = E (Tf )

E0
, (10)
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FIG. 10. Growth rates Tνσ normalized by the dipole viscous time scale for both (a) antisymmetric and
(b) symmetric two-dimensional modes as a function of a/b for different Re. Same conventions as described in
the caption of Fig. 5.

where E0 stands for the initial kinetic energy of the perturbation. The energy definition is associated380

with the scalar product 〈, 〉 calculated over the computational domain:381

E (t ) = 〈v, v〉 = ‖v‖2 =
∫ Lx/2

−Lx/2

∫ Ly/2

−Ly/2
v∗ · v dx dy. (11)

Here the superscript ∗ denotes the conjugate transpose. This optimization problem is solved within382

the framework of the optimal control theory. Constraints are imposed to the perturbation: its initial383

amplitude is fixed to some constant, i.e., ‖v(0)‖ = vc and the perturbation must be a solution of the384

linearized Navier-Stokes Eqs. (6) and (7). This can be transformed into an optimization problem385

without constraint using the variational method of the Lagrange multipliers [31]. The optimal386

solution is determined by use of the gradient descent, which in turn requires the solving of the387

so-called linearized Navier-Stokes adjoint equations [18,31]:388

∇ · v+ = 0, (12)
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FIG. 11. Energy gain evolution of (a) the antisymmetric oscillatory mode and (b) the symmetric stationary
mode for (a/b, Re) = (0.25, 5000), for a frozen (solid line) and a time-evolving (dashed line) base flow. The
oscillatory mode is initialized at three different instants within the period: tm (�), tmed (©), and tM (�).

−∂v+

∂t
= ωB ez × v+ − ∇ × (vB × v+) − ∇p+ + ν�v+. (13)

These equations are solved backward in time from t = Tf to t = 0, as indicated by the minus sign in 389

front of the time derivative in Eq. (13), using the same pseudospectral method as for the generation 390

of the base flow. The complete description of the optimization algorithm is provided in Ref. [26]. 391

We only give here the main lines: 392

(1) The velocity field v is initialized with a white noise with the condition ‖v(0)‖ = vc (vc = 1 393

for instance). 394

(2) The direct linearized Navier-Stokes Eqs. (6) and (7) are advanced in time up to the horizon 395

time Tf . 396

(3) The initial condition for the adjoint equations is computed from the terminal condition 397

v+(Tf ) = 2 v(Tf )/E0. 398

(4) The adjoint linearized Navier-Stokes Eqs. (12) and (13) are integrated backward in time from 399

t = Tf to t = 0. 400

(5) A new initial condition for the direct equations is obtained from the optimality condition 401

v(0) = E (Tf )v+(Tf )/2E2
0 before going back to step 2. 402

This optimization loop is stopped when the convergence is reached in terms of the optimal energy 403

gain, namely, |Gn+1(Tf ) − Gn(Tf )|/Gn(Tf ) < 10−2. 404

B. Transient growth on a far-field LOD 405

As mentioned in Sec. II C, there are three possible time scales that can be used to characterize 406

the dynamics of the LOD, namely, Ta, Tb, and Tν . Given the values of the aspect ratios and 407

Reynolds numbers considered here, Ta is the smallest time scale since Ta/Tb = (a0/b0)2 � 1 and 408

Ta/Tν = 8π/Re � 1. Therefore, we chose to observe the short time dynamics of the LOD in 409

number of vortex core rotations, namely, 2πTa. We consider the optimal perturbation developing 410

over a time-evolving LOD of initial aspect ratio a0/b0 = 0.15 for three horizon times corresponding 411

to 1, 10, and 60 vortex core rotations: Tf = 2πTa ≈ 0.15Tb, Tf = 20πTa ≈ 1.5Tb, and Tf = 412

120πTa ≈ 9Tb. Figure 12 presents the energy gain evolution of these optimal perturbations for 413

both the antisymmetric and symmetric cases and for three different Reynolds numbers. The levels 414

of amplification observed are substantial and both modes exhibit similar energy gains except for 415
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FIG. 12. Time evolution of the energy gain of the (a) antisymmetric and (b) symmetric optimal perturba-
tions obtained for a LOD of aspect ratio a0/b0 = 0.15 for three horizon times, Tf /Tb ∈ {0.15, 1.5, 9}, and three
Reynolds numbers, Re = 223 (�), Re = 1280 (©), and Re = 5000 (�).

the large horizon time where the energy gains of the antisymmetric perturbation are one order of416

magnitude higher than the symmetric ones. As the horizon time is increased, the mean growth rate417

log G(Tf )
2Tf

decreases which indicates that the most efficient mechanisms of energy growth are active in418

the short time dynamics. For the largest horizon time Tf = 9Tb, a drop in the energy growth is even419

observed around t ≈ 2Tb and it is more pronounced for the symmetric perturbations. In contrast420

with the modal analysis, the influence of the Reynolds number is here standard, with a decrease of421

the optimal energy gain with the diminution of the Reynolds number. The energy gains obtained422

here for (a/b, Re) = (0.15, 1280) are in good agreement with those computed recently by Navrose423

et al. [32] for a LOD with (a/b, Re) = (0.18, 1000) [see their Fig. 18(a)].424

The vorticity field of both the optimal perturbations ω0 and the optimal outcomes ω f are dis-425

played in Fig. 13 for Re = 1280 and the three horizon times investigated. The fields corresponding426

to the short time dynamics, Tf = 0.15Tb, are noticeably different from those obtained for medium to427

large horizon times. In the first case, the optimal perturbation consists of intertwined thin vorticity428

layers with a double helix periodicity located inside each vortex core. They progressively uncoil429

under the differential base flow rotation to give rise to the optimal response under the form of a430

m = 2 deformation mode inside each vortex core [30]. Even if the final state at t = Tf is similar to431

the one obtained for an isolated Lamb-Oseen vortex [33,34], the physical mechanism responsible for432

the energy growth relies here solely on the classical Orr mechanism; there is no core-contamination433

induced by a resonance because the vorticity layers are here located within the vortex core. Once434

uncoiled, the initial vorticity layers concentrate directly into a m = 2 deformation mode of the vortex435

cores.436

For larger horizon times, the initial perturbation is localized outside the vortex core and takes also437

the form of vorticity layers which are mainly localized along the contracting manifold of the trailing438

(respectively, leading) hyperbolic stagnation point for the antisymmetric (respectively, symmetric)439

case. These perturbations are very similar to those observed by Donnadieu et al. [18], Brion et al.440

[35] for the three-dimensional optimal perturbations leading at large time to the Crow instability.441

These optimal perturbations ultimately lead to a response which is similar to the modes identified442

in the previous section and consists of a m = 1 displacement mode located within each vortex443

core. The associated mechanism of energy growth is here slightly different from the one unveiled444

by Brion et al. [35] for the Crow instability since vortex-stretching is not active here in this two-445

dimensional flow. The initial growth relies again on the Orr mechanism which is then taken over by a446
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FIG. 13. Optimal perturbation ω0 and optimal outcome ω f vorticity fields obtained for a LOD with
(a0/b0, Re) = (0.15, 1280) and three different horizon times. A small part of the computational domain is
represented, i.e., (x, y) ∈ [−2b, 2b] × [−1.5b, 10b] and the E3 scale is used. The solid and dotted thin lines
correspond, respectively, to ωB = ±0.1‖ωB‖∞.

core-contamination through velocity induction, as originally described by Antkowiak and Brancher 447

[33]. The resemblance of the unstable modes of Sec. III with the optimal response at the horizon 448

time indicates that such instabilities can nevertheless develop in a time evolving base flow when the 449

structure of the initial perturbation anticipates the evolution of the base flow and takes advantage of 450

mechanism of transient energy growth in its early development. 451
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The structures of the optimal perturbations and associated outcomes have been also examined452

for different values of the aspect ratio and the Reynolds number. They do not differ from the ones453

described previously for (a0/b0, Re) = (0.15, 1280) and are not shown here. There is only one454

difference at low Reynolds numbers for the short time dynamics. For Re = 223 and Tf = 0.15Tb,455

the optimal perturbation is structured on a m = 1 pattern of vorticity layers and gives rise to a456

displacement mode within each vortex core rather than the m = 2 deformation mode observed in457

Fig. 13.458

The structure and the evolution of the optimal perturbations computed in the present work do459

not correspond exactly to what has been recently observed by Navrose et al. [32] for a LOD with460

(a/b, Re) = (0.18, 1000) [see their Fig. 20(b)]. If their optimal perturbation obtained for Tf = 2.5Tb461

consists in similar spiraling arms of vorticity located at the periphery of the vortex centers as those462

illustrated in Fig. 13 for Tf = 1.5Tb, then their evolved state at the horizon time takes the form of463

a m = 2 deformation mode in each vortex core rather than the displacement mode observed in the464

present study. This optimal outcome corresponds to what has been observed here for the short time465

dynamics, i.e., Tf = 0.15Tb, and this difference in the results is not understood.466

C. Transient growth on a near-field elliptical vorticity sheet467

The aim of this section is to verify if the two-dimensional modes can still emerge when468

considering the complete history of the aircraft wake, i.e., taking into account the rolling phase of the469

vorticity sheet generated at the trailing edge of the wing. We consider two different configurations470

used by Spalart [3] and corresponding to the cruise and the high-lift takeoff or landing phases.471

The initial vorticity field of the base flow is obtained from the convolution of a given circulation472

distribution �(x) with the Gaussian function G(x, y) = exp ( x2+y2

h2
e

),473

ωB(x, y) =
∫∫

−d�(x − x′)
dx

δ(y − y′) exp

(
x2 + y2

h2
e

)
dx′dy′, (14)

where he measures the initial width of the vorticity sheet and δ is the Dirac function. The two474

circulation distributions used are an ideal elliptic distribution �1(x) for the cruise phase and a475

double-elliptic one �2(x) for the high-lift configuration defined, respectively, by476

�1(x) =
⎧⎨
⎩�0

√
1 − 4x2/l2

w if |x| � lw/2

0 if |x| > lw/2
(15)

and477

�2(x) =

⎧⎪⎪⎨
⎪⎪⎩

�2

√
1 − 4x2/l2

w2 + �1

√
1 − 4x2/l2

w1 if |x| � lw2/2

�1

√
1 − 4x2/l2

w1 if lw2/2 < |x| � lw1/2

0 if |x| > lw1/2

, (16)

where lw = 4l0/π , lw1 = 1.496l0, lw2 = 0.6l0, �1 = 0.7514�0, and �2 = 0.2486�0. The wingspan478

denoted l0 is used as the characteristic length scale and the initial width of the vorticity sheet479

is chosen arbitrarily to be he = 0.05l0. As for the LOD, the base flow is obtained by the time480

integration of Eqs. (1) and (2) from the initial fields Eqs. (14)–(16) using the same pseudospectral481

code. The size of the domain is unchanged, i.e., Lx × Ly = 12b0 × 16b0, and the mesh size is482

kept to 2400 × 3200 so that �x = �y � he/5 and consequently �x = �y � a/5 throughout the483

simulation since a � he. The evolution of the vorticity sheet toward a LOD is obtained for three484

values of the Reynolds number, Re ∈ {223, 1280, 5000}, and the corresponding vorticity fields are485

illustrated in Fig. 14 for Re = 1280. The extrema of vorticity are initially localized at the inflection486

points of the circulation distributions: two for the elliptic one Eq. (15) and four for the double-elliptic487

one Eq. (16). The vorticity sheet progressively rolls up to give rise ultimately to a dipolar structure488
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FIG. 14. Time evolution of the vorticity field (scale E5) for an elliptic (top) and a double-elliptic (bottom)
vorticity sheets at Re = 1280. A small part of the computational domain is represented, i.e., (x, y) ∈
[−1.5b, 1.5b]2 for t/Tb ∈ {0, 0.015, 0.15} and (x, y) ∈ [−2b0, 2b0]2 for t/Tb = 1.5.

close to one of the LOD. In the double-elliptic case, the evolution of the vorticity sheet exhibits 489

first a quadrupolar form which converges towards the LOD through the merger of the smaller inner 490

vortices with the outer larger ones. 491

As for the transient dynamics of the LOD, the optimal perturbations developing on the vorticity 492

sheets are investigated for three different horizon times when seeded at the initial time of the 493

base flow, which would correspond to a perturbation injected at the trailing edge of the wing. 494

The three chosen horizon times correspond, respectively, to 1, 10, and 100 vortex core rotations: 495

Tf = 2πTa ≈ 0.015Tb, Tf = 20πTa ≈ 0.15Tb, and Tf = 200πTa ≈ 1.5Tb, where the vortex core a 496

and the vortex separation distance b have been computed classically by a =
√

a2
x + a2

y and b = 2xc. 497

Figure 15 presents the energy gain evolution of these optimal perturbations for three Reynolds 498

numbers, Re ∈ {223, 1280, 5000}, for both the antisymmetric and the symmetric cases. The trends 499

are similar to what has been observed for the LOD except that the levels of energy gain are much 500

weaker, especially for the antisymmetric perturbations with a difference up to almost three orders 501

of magnitude for the largest energy gain measured at Tf = 1.5Tb and Re = 5000. While the energy 502

gain increases with the horizon time and with the Reynolds number, the mean growth rate log G(Tf )
2Tf

503

decreases, which indicates again that the most efficient mechanisms for energy growth operate in the 504

short time dynamics. The perturbations grow faster in the short times, i.e., Tf /Tb ∈ {0.015, 0.15}, for 505

the elliptic vorticity sheet than for the double-elliptic one. Conversely, the energy growths are larger 506

for the double-elliptic case for the largest horizon time Tf = 1.5Tb. In the case of the double-elliptic 507

vorticity sheet, the evolution of the energy gain is not monotonous for the largest Reynolds number, 508

i.e., Re = 5000, which might be related to the merger of the inner vortices with the outer ones. 509

Figures 16 and 17 show, respectively, the vorticity field of the optimal perturbation ω0 and opti- 510

mal outcome ω f for the elliptic and double-elliptic vorticity sheets. Both the symmetric and antisym- 511

metric perturbations are displayed for the three selected horizon times Tf /Tb ∈ {0.015, 0.15, 1.5} 512

and a Reynolds number of Re = 1280. At large horizon time Tf /Tb = 1.5, these vorticity fields are 513

very similar to those observed for the LOD. The optimal perturbation consists of coiled vorticity 514

layers located at the periphery of the vorticity sheet and they give rise to a displacement mode 515

within each vortex core, which corresponds to the two-dimensional unstable mode of the dipole. The 516
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FIG. 15. Time evolution of the energy gain of the (a), (c) antisymmetric and (b), (d) symmetric optimal
perturbations obtained for an elliptic (top) and a double-elliptic (bottom) vorticity sheet of initial width he/l0 =
0.05 for three horizon times, Tf /Tb ∈ {0.05, 0.15, 1.5}, and three Reynolds numbers, Re = 223 (�), Re = 1280
(©), and Re = 5000 (�).

energy growth is thus associated with the same physical mechanisms combining the Orr mechanism517

together with a core contamination due to velocity induction. This similarity is not surprising since518

both the elliptic and double-elliptic vorticity sheets converge towards a LOD at large times. For the519

intermediate horizon time Tf /Tb = 0.15, the optimal response takes also the form of a displacement520

mode inside each vortex core but it is triggered by initial vorticity layers localized closer to, if not521

inside, the vorticity sheet. Finally, the short transient dynamics differs from the one of the LOD since522

the optimal outcome exhibits also two dipolar structures located at the outer sides of the vorticity523

sheet rather than the deformation Kelvin waves observed in each vortex of the LOD. Because the524

optimization time interval is very short, Tf /Tb = 0.015, the structure of the optimal perturbation525

is very close to the optimal response and the energy gain results only from the Orr mechanism in526

this case. These results allow to conclude that the rolling of the vorticity layer in the near-field of527

the wake does not have a significant influence on the linear development of the two-dimensional528

perturbations. Brion [36] drew the same conclusion for axial wave numbers corresponding to the529

Crow instability.530
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FIG. 16. Optimal perturbation ω0 and optimal outcome ω f vorticity fields obtained for an elliptic vorticity
sheet with (he, Re) = (0.05, 1280) and three different horizon times. A small part of the computational domain
is represented, i.e., (x, y) ∈ [−1.5b, 1.5b]2 for t/Tb ∈ {0, 0.015, 0.15} and (x, y) ∈ [−2b0, 2b0]2 for t/Tb = 1.5.
The E4 scale is used. The solid and dotted thin lines correspond, respectively, to ωB = ±0.1‖ωB‖∞.

V. CONCLUSIONS 531

The two-dimensional linear dynamics of aircraft wake models has been investigated by means 532

of modal and nonmodal stability analyses. In a first part, we extended the study of Brion et al. 533

[14] who identified a new two-dimensional unstable mode thanks to a modal stability analysis 534

performed on the Lamb-Chaplygin dipole (LCD). The present analysis was conducted for a family 535

of viscous dipoles named Lamb-Oseen dipoles (LOD) because they are obtained numerically from 536

the initial superposition of two counter-rotating Lamb-Oseen vortices. As shown by Sipp et al. [16], 537

Delbende and Rossi [21], their characteristics depend only on the dipole aspect ratio a/b where 538

a and b are the vortex dispersion radius and the vortex separation distance. A specific attention 539

has been paid to the evaluation of the dipole descent velocity necessary to study the vortex pair 540

in its own frame of reference since it has a strong influence on the unsteadiness of the dipole and 541

consequently on the stability results. It has been shown that the velocity of the vorticity extrema is 542

the best choice to minimize the unsteadiness of the base flow. The two-dimensional modal analysis 543

has been conducted for the LOD family with aspect ratios in the range of a/b ∈ [0.05; 0.36] and 544

various Reynolds numbers. Different branches of both oscillatory and stationary unstable modes 545

were identified, all of them consisting of two displacement modes located within the core of each 546

vortex of the dipole, like the one observed by Brion et al. [14] for the LCD. Their growth rates 547
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FIG. 17. Optimal perturbation ω0 and optimal outcome ω f vorticity fields obtained for a double-elliptic
vorticity sheet with (he, Re) = (0.05, 1280) and three different horizon times. Same conventions as described
in the caption of Fig. 16.

increase for decreasing Reynolds numbers indicating a non trivial destabilizing action of viscosity.548

These modes induce a rotation and a translation of the vortex pair which results in a zigzagging549

motion of the dipole. When compared to the viscous characteristic time scale Tν = a2
0/4ν, most550

of the unstable modes are not growing fast enough to survive the base flow diffusion except the551

antisymmetric ones occurring at large aspect ratios and large Reynolds numbers. This is confirmed552

by linear numerical simulations in which the base flow is allowed to evolve under viscous diffusion.553

The growth of two-dimensional modes is quickly stopped implying that these modes are not likely554

to develop.555

Despite these negative conclusions, it turns out that these two-dimensional modes can ne-556

vertheless occur in LOD by taking advantage of transient growth mechanisms. This is attested557

by looking for the optimal perturbations thanks to a nonmodal stability analysis based on a558

direct-adjoint approach. The observed energy gains are substantial indicating the efficiency of559

transient mechanisms. In the short time dynamics, the optimal perturbation consists of intertwined560

vorticity layers located within each vortex core and leading to a m = 2 deformation Kelvin wave561

thanks to the Orr mechanism. For moderate to large horizon times, the optimal perturbation takes562

the form of vorticity layers localized outside the vortex core along the contracting manifold of563

the trailing (respectively, leading) hyperbolic stagnation point for the antisymmetric (respectively,564

symmetric) case. They eventually give rise to the two-dimensional unstable mode unveiled by the565

modal analysis through a combination of Orr mechanism and core contamination. We finally look at566
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the robustness of the modes by considering the initial stage of the development of aircraft wakes. The 567

optimal perturbations developing on an elliptic and a double-elliptic vorticity sheet present lower 568

but significant energy gains and they do not differ notably from the ones observed for the LOD. It 569

indicates that the rolling of the vorticity sheet in the near-field of the wake does not have a strong 570

influence on the linear development of the two-dimensional perturbations, a conclusion previously 571

inferred by Brion [36] for three-dimensional perturbations with axial wave numbers corresponding 572

to the Crow instability. 573

The present study confirms the existence of the two-dimensional modes of Brion et al. [14] 574

in more realistic vortex dipole models and provides a convincing and positive conclusion about 575

their possible occurrence in time-varying wake vortex models. In a three-dimensional flow, they 576

would compete with the classic Crow and elliptic instabilities which growth rates are substantially 577

higher than those measured here for the two-dimensional modes. Donnadieu et al. [18] obtained 578

normalized growth rate of σ ∗ = 0.73 for the Crow instability and σ ∗ = 0.5 for the elliptic instability 579

at Re = 2000 for a LOD of aspect ratio a/b = 0.206, which is at least five times greater than the 580

growth rate measured here for the antisymmetric mode for the same parameters. This difference 581

could explain why these two-dimensional modes have never been observed experimentally so far. 582

Besides, in real aircraft wakes, the trailing vortices exhibit a wake component associated with a 583

non zero axial velocity. In the two-dimensional limit, this axial flow does not have any influence on 584

the development of the instability since the equation of the axial velocity perturbation is decoupled 585

from the equations of the two other components of the perturbation velocity. Thus, for a prescribed 586

axial velocity of the base flow, it is possible to reconstruct directly the third component of the 587

perturbation velocity from the two-dimensional mode corresponding to the base flow without axial 588

flow. Consequently, the results obtained in the present study are also relevant for a vortex dipole with 589

axial flow. Nevertheless, some extensions to this work could be performed. It would be interesting 590

to look at the influence of the nonlinear terms on the development of these modes by performing 591

direct numerical simulations. The effect of the stratification could be also investigated. In the three- 592

dimensional case, Nomura et al. [37] and Donnadieu et al. [38] showed that a strong stratification 593

(Fr � 1) induces significant variations of both the perturbation wave number and its radial structure 594

due to base flow modifications where the two vortices of the dipole are getting closer because of 595

baroclinic effects. 596
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