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Abstract

We consider the strong stabilization of small amplitude gravity water waves
in a two dimensional rectangular domain. The control acts on one lateral
boundary, by imposing the horizontal acceleration of the water along that
boundary, as a multiple of a scalar input function u, times a given function
h of the height along the active boundary. The state z of the system consists
of two functions: the water level ζ along the top boundary, and its time
derivative ζ̇. We prove that for suitable functions h, there exists a bounded
feedback functional F such that the feedback u = Fz renders the closed-loop
system strongly stable. Moreover, for initial states in the domain of the semi-
group generator, the norm of the solution decays like (1+t)−

1
6 . Our approach

uses a detailed analysis of the partial Dirichlet to Neumann and Neumann to
Neumann operators associated to certain edges of the rectangular domain, as
well as recent abstract non-uniform stabilization results by Chill, Paunonen,
Seifert, Stahn and Tomilov (2019).
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1. Notation

Throughout this paper, the notation

N, Z, R, C

stands for the sets of natural numbers (starting with 1), integers, real num-
bers and complex numbers, respectively. We denote Z∗ = Z \ {0}.

If n, k ∈ N andO ⊂ Rn is an open set, then we use the notationHk(O) for
the Sobolev space formed by the distributions f ∈ D′(O) having the property
that ∂αf ∈ L2(O) for every multi-index α ∈ Zn with αj > 0 and |α| 6 k.
For f ∈ Hk(O) we set

‖f‖2
k =

∑
|α|6k

‖∂αf‖2
L2 . (1.1)

Let H0(O) := L2(O) and let Hs(O), with s > 0, denote the fractional order
Sobolev spaces obtained by interpolation via fractional powers of a positive
operator (see, for instance, Lions and Magenes [1]).

The system considered in this work is described by the linearized equa-
tions of water waves in the vertical (in the sense of gravity) rectangular
domain

Ω = (0, π)× (−1, 0). (1.2)

We set H1
top(Ω) = {f ∈ H1(Ω) | f(x, 0) = 0, x ∈ (0, π)}, (1.3)

where the values at the top boundary are defined in the sense of the Dirichlet
trace, as in [1], [2, Sect. 13.6]).

For two functions u and v defined on [0,∞) and for any τ > 0, their
τ -concatenation, denoted by u♦

τ
v, is the function

u♦
τ
v =

{
u(t) for t ∈ [0, τ),

v(t− τ) for t > τ.

If H is a Hilbert space, D(A0) is a subspace of H and A0 : D(A0) → H
is a linear operator, then A0 is called strictly positive if A0 is self-adjoint and
there exists m0 > 0 such that

〈A0z, z〉H > m0‖z‖2
H ∀ z ∈ D(A0).

2



2. The water wave model and its well-posedness

In this work we study the stabilizability of a system describing small-
amplitude water waves in a rectangular domain, in the presence of a wave
maker. For more details on water waves models we refer to Whitham’s book
[3, Chapter 13] and to Lannes [4, Chapter 1]. Here we consider the stabiliza-
tion of linear water waves by an input (the acceleration of the wave maker)
acting at one of the lateral edges. We assume that the domain Ω is delimited
at its top by a free water surface Γs and that the bottom Γf is flat. The other
two components of the boundary of the fluid domain, denoted by Γ1 and Γ2,
are supposed to be vertical, see Figure 1. Moreover, we assume that the fluid
fills the rectangular domain Ω defined in Section 1, that it is homogeneous,
incompressible, inviscid and that it undergoes irrotational flows. There is a
wave maker that acts at the left boundary of Ω, by injecting (or extracting)
fluid in the horizontal direction, at an acceleration determined by the control
signal u.

x

Γ2

Γf

Γ1

Γs

Ω

y

0 π

−1

g

ζ(t, x)

Figure 1: A rectangular domain Ω filled with water

The equations of the system, for all t > 0, are:

∆φ(t, x, y) = 0 ( (x, y) ∈ Ω),

φ(t, x, 0) + ζ(t, x) = 0 ( x ∈ (0, π)),

∂φ

∂y
(t, x, 0) = ζ̈(t, x) ( x ∈ (0, π)),

∂φ

∂x
(t, 0, y) = − h(y)u(t) ( y ∈ (−1, 0)),

∂φ

∂y
(t, x,−1) = 0 =

∂φ

∂x
(t, π, y) ( (x, y) ∈ Ω).

(2.1)
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In the above equations φ stands for the derivative with respect to time of
the velocity potential of the fluid and ζ for the elevation of the free surface.
The function h is given and it represents the profile of the acceleration field
imposed by the wave maker. Usually we assume that

∫ 0

−1
h(y)dy = 0, to

ensure the conservation of the volume of water. As far as we know, the
controllability and stabilizability properties of systems derived from (2.1)
have been first studied in Russell and Reid [5] and further in Mottelet [6].

Before stating our well-posedness result for (2.1), we need some back-
ground and more notation. First we recall the concept of a well-posed linear
control system, following Weiss [7] (where these systems have been called
abstract linear control systems), see also Tucsnak and Weiss [2].

Definition 2.1. Let U and X be Hilbert spaces. A well-posed linear control
system with the state space X and the input space U is a couple (T,Φ) of
families of operators such that

1. T = (Tt)t>0 is a strongly continuous operator semigroup (also called a
C0-semigroup) on X.

2. Φ = (Φt)t>0 is a family of bounded linear operators from L2([0,∞);U)
to X (called input maps) such that for every u, v ∈ L2([0,∞);U),

Φτ+t(u♦
τ
v) = TtΦτu+ Φtv ∀ t, τ > 0, (2.2)

where we used the concatenation of functions, see Section 1.

For any τ > 0, let Pτu denote the truncation of u : [0,∞)→U to [0, τ ],
setting (Pτu)(t) = 0 for t > τ . It follows from (2.2) that ΦτPτ = Φτ

(causality), and hence Φτ has a natural extension to L2
loc([0,∞);U).

Still using the notation from the above definition, if z0 ∈ X and u ∈
L2

loc([0,∞);U), then we call the function z(t) = Ttz0+Φtu the state trajectory
of the system corresponding to the initial state z0 and the input u. Let
A : D(A)→X denote the generator of T. For every well-posed linear control
system there exists a (usually unbounded) operator B defined on U and with
values in an extrapolation space that contains X, with the following property:
For any z0 ∈ X and u ∈ L2

loc([0,∞);U), the corresponding state trajectory
is the unique solution (in the extrapolation space) of the abstract differential
equation

ż(t) = Az(t) +Bu(t) , (2.3)
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with initial condition z(0) = z0. For details on this see [2, Chapter 4]. The
above operator B is called the control operator of the system. This operator
is called bounded if B ∈ L(U,X) (this is the case of interest in this paper).

We would like to formulate the system of equations (2.1) as a well-posed
linear control system. This is not obvious, because the equations (2.1) do
not even resemble (2.3). We have to define what we mean by the state of our
system at some time t > 0: this should be

z(t) =

[
ζ(t, ·)
ζ̇(t, ·)

]
. (2.4)

To define the state space X, and also for other arguments, we introduce
a scale of Hilbert spaces as follows. We set

H =

{
η ∈ L2[0, π]

∣∣∣∣ ∫ π

0

η(x) dx = 0

}
, (2.5)

which is a Hilbert space when endowed with the inner product inherited from
L2[0, π]. It is known that the family (ϕk)k∈N defined by

ϕk(x) =

√
2

π
cos(kx) ∀ x ∈ [0, π], (2.6)

forms an orthonormal basis in H. For any η ∈ H, we denote ηk = 〈η, ϕk〉.
The scale of Hilbert spaces (Hα)α>0 are defined by H0 = H and

Hα =

{
η ∈ H

∣∣∣∣∣ ∑
k>1

k2α|ηk|2 <∞
}

(α > 0), (2.7)

with the inner products (〈·, ·〉α)α>0 defined by 〈η, ψ〉α =
∑

k>1 k
2αηkψk, for

all η, ψ ∈ Hα. It is not difficult to check that

H1 =

{
η ∈ H1(0, π)

∣∣∣∣ ∫ π

0

η(x) dx = 0

}
.

By interpolation theory (see, for instance, Lions and Magenes [1], Bensoussan
et al [8, Part II] and Chandler-Wilde et al [9]) it follows that

Hs =

{
η ∈ Hs(0, π)

∣∣∣∣ ∫ π

0

η(x) dx = 0

}
∀ s ∈ (0, 1). (2.8)

We define what we mean by a solution of the water wave equations (2.1).
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Definition 2.2. Given u ∈ L2
loc[0,∞) and h ∈ L2[−1, 0], with

∫ 0

−1
h(y) dy =

0, a couple (φ, ζ) is called a solution of (2.1) if

φ ∈ L2
loc([0,∞);H1(Ω)), ζ ∈ C([0,∞);H 1

2
) ∩ C1([0,∞);H),

φ(t, ·, 0) + ζ(t, ·) = 0 , equality in L2
loc([0,∞);L2[0, π]), (2.9)

and for every Ψ ∈ H1(Ω) and every t > 0 we have∫ π

0

ζ̇(t, x)Ψ(x, 0)dx−
∫ π

0

ζ̇(0, x)Ψ(x, 0)dx = (2.10)∫ t

0

∫
Ω

∇φ(σ, x, y) · ∇Ψ(x, y)dx dy dσ −
∫ t

0

u(σ)

∫ 0

−1

h(y)Ψ(0, y)dy dσ.

Remark 2.3. We explain the connection between the water waves equations
(2.1) and their variational formulation (2.9)- (2.10). In one direction, assume
that (φ, ζ) is a classical solution of (2.1), having the smoothness

φ ∈ C([0,∞);H2(Ω)) , ζ ∈ C(([0,∞);H 1
2
) ∩ C2([0,∞);H) . (2.11)

(If u 6≡ 0, this implies that h ∈ H 1
2 (−1, 0) and u is continuous.) The equation

(2.9) is simply copied from (2.1). We multiply the first equation in (2.1)
with Ψ and apply the first Green formula (integration by parts), taking into
account the last three lines of (2.1). After this we do simple integration with
respect to t, and we obtain (2.10).

In the opposite direction, let us assume that (φ, ζ) is a solution of (2.9)-
(2.10) with the additional regularity (2.11), and u is continuous. Then (2.10)
can be differentiated with respect to the time t, and after using the first
Green formula we obtain∫ π

0

ζ̈(t, x)Ψ(x, 0)dx =

∫
∂Ω

(
∂

∂ν
φ

)
Ψdσ −

∫
Ω

∆φ(t, x, y) ·Ψ(x, y)dx dy

− u(t)

∫ 0

−1

h(y)Ψ(0, y)dy ∀ t > 0 ,

where ∂
∂ν

denotes the Neumann trace on the entire boundary ∂Ω. Considering
only functions Ψ with compact support in Ω, we see from the above that we
must have ∆φ = 0. After this, we consider test functions Ψ whose trace
is supported on one of the four segments of ∂Ω, knowing that these traces
are dense in the L2 space of the relevant segment, see [2, Theorem 13.6.10].
From here we can get that φ and ζ satisfy also the last three equations in
(2.1). (It also follows that h ∈ H 1

2 (−1, 0).)
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The following result establishes the existence of a well-posed linear control
system corresponding to (2.1). For the proof we refer to Section 6.

Theorem 2.4. Let h ∈ L2[−1, 0] be such that
∫ 0

−1
h(y) dy = 0. Then for

every u ∈ L2
loc[0,∞), ζ0 ∈ H 1

2
and w0 ∈ H, there exists a unique solution

of (2.1) with ζ(0) = ζ0 and ζ̇(0) = w0. Moreover, there exists a well-posed
linear control system (T,Φ) with state space X = H 1

2
× H and input space

U = C such that, setting z0 =
[
ζ0
w0

]
and using the state from (2.4), we have

z(τ) = Tτz0 + Φτu ∀ τ > 0. (2.12)

Finally, the generator A of T is skew-adjoint, with domain D(A) = H1×H 1
2
,

and there exists B ∈ L(C, X) such that for any τ > 0,

Φτu =

∫ τ

0

Tτ−σBu(σ) dσ ∀ u ∈ L2
loc[0,∞). (2.13)

We mention that, according to the above theorem and what we have said
around (2.3), the state strajectories of our system are solutions of (2.3), in
the sense of [2, Sect. 4.1-4.2], and our control operator B is bounded.

3. Statement of the main result

We recall some commonly used stabilizability concepts, for the particular
situation of bounded control and feedback operators.

Definition 3.1. Let Σ = (T,Φ) be a well-posed linear control system with
state space X and input space U . Let A be the generator of T and assume
that there exists B ∈ L(U,X) such that (2.13) holds. For some feedback
operator F ∈ L(X,U) we denote by Tcl the (closed loop) operator semigroup
on X generated by A+BF . Then the system (T,Φ) is:

1. Exponentially stabilizable with bounded feedback, if there exists F ∈
L(X,U) such that the semigroup Tcl is exponentially stable;

2. Strongly stabilizable with bounded feedback, if there exists F ∈ L(X,U)
such that the semigroup Tcl is strongly stable;

3. Uniformly stabilizable for smooth data (USSD), if there exists F ∈
L(X,U) and f : [0,∞)→ [0,∞), with lim

t→∞
f(t) = 0, such that

‖Tclt z0‖X 6 f(t)‖z0‖D(A) ∀ z0 ∈ D(A), t > 0. (3.1)
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If f in (3.1) can be chosen such that lim
t→∞

tmf(t) = 0 for some m ∈ N, then

the USSD property is called polynomial stabilizability.

In (3.1) and also later, ‖ · ‖D(A) denotes the graph norm on D(A).

Remark 3.2. Note that the property (3.1) does not imply that the semi-
group Tcl is strongly stable. Indeed, consider Tclt to be e−0.7t times the semi-
group from [10, Example 2.3] (based on Zabczyk [11]), with λn = 2n, then it
satisfies (3.1) with f(t) = Me−0.2t (for some M > 0) but Tcl is exponentially
growing: ‖Tclt ‖ = e0.3t. However, if Tcl is a bounded semigroup and (3.1)
holds, then it is easy to see that Tcl is strongly stable.

Here is our main result:

Theorem 3.3. Let Σ = (T,Φ) be the well-posed linear control system intro-
duced in Theorem 2.4. Then

1. Σ is not exponentially stabilizable with bounded feedback;

2. Σ is strongly stabilizable with bounded feedback if and only if h is a
strategic profile, in the sense that∫ 0

−1

h(y) cosh [k(y + 1)] dy 6= 0 ∀ k ∈ N; (3.2)

In this case, one strongly stabilizing feedback operator is F = −B∗.

3. If

inf
k∈N

k

cosh k

∣∣∣∣∫ 0

−1

h(y) cosh [k(y + 1)] dy

∣∣∣∣ > 0, (3.3)

then the system Σ is USSD. More precisely, the feedback operator F =
−B∗ leads to the closed-loop semigroup Tcl (with generator A − BB∗)
which is strongly stable and has the following property: there exists
M > 0 such that

‖Tclt z0‖X 6
M

(1 + t)
1
6

‖z0‖D(A) ∀ z0 ∈ D(A), t > 0. (3.4)

Remark 3.4. It is not difficult to check (by integration by parts) that con-
dition (3.3) is satisfied, for instance, if there exists ε ∈ (0, 1) such that

‖h′‖L∞[−1,0] <
(1− ε) tanh 1

1− 2
e

|h(0)|, (3.5)
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where e = 2.71828... is the basis of the natural logarithm. Indeed, there
are many functions satisfying (3.5) and

∫ 0

−1
h(y)dy = 0, such as the linear

function h1(y) = y + 1
2
, the trigonometric function h2(y) = cos

[
1
2
π(y + 3

2
)
]

and some slightly modified step functions. Compared with other strategic
conditions, for instance the constraint condition at rational points in [12],
the condition (3.5) is easier to satisfy in practice.

Remark 3.5. The first two conclusions in Theorem 3.3 appear partially in
[6], with some steps of the proof not given. (For instance the operators A0 and
B0 that we introduce in Section 5 are used without a detailed construction
and proof of their main properties.) As far as we know, the property of the
water waves system described in the third point of Theorem 3.3 is new, and
gives us more detailed information on the stability of the closed-loop system.

4. Some background on the partial Dirichlet and Neumann maps
in a rectangular domain

In this section we consider two boundary value problems for the Lapla-
cian in the rectangular domain Ω = (0, π) × (−1, 0) and we define the cor-
responding solution operators. Note that, Ω being a rectangle, we are able
to construct these solution operators, as well as the Dirichlet to Neumann
and Neumann to Neumann operators (in the next section) in an elementary
and explicit way, using the separation of variables and analysis of Fourier
or Dirichlet series. Another possible approach to these issues, pursued in
[6], is the use of the much more sophisticated theory of elliptic problems in
polygonal domains as described, for instance, in Grisvard [13].

We begin by introducing a self-adjoint operator on L2(Ω) which plays an
important role in our arguments in this section.

Proposition 4.1. With Ω as in (1.2), we consider the operator A1 : D(A1)→
L2(Ω) defined by

D(A1) =

{
f ∈ H2(Ω)

∣∣∣∣ f(x, 0) = 0, ∂f
∂y

(x,−1) = 0 x ∈ (0, π)
∂f
∂x

(0, y) = 0, ∂f
∂x

(π, y) = 0 y ∈ (−1, 0)

}
,

A1f = −∆f ∀ f ∈ D(A1).

Then A1 is a strictly positive operator on L2(Ω).

Proof. The operator A1 is obviously symmetric. Moreover, the family

Ψkl(x, y) =
2√
π

cos(kx) sin
[
(2l − 1)

π

2
y
]

∀ k, l ∈ N, (x, y) ∈ Ω,
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is an orthonormal basis for L2(Ω) formed of eigenvectors of A1, corresponding
to the eigenvalues

λkl = k2 + (2l − 1)2π
2

4
∀ k, l ∈ N.

Let g ∈ L2(Ω), so that g =
∑

k,l∈N cklΨkl, with ckl ∈ l2(N2). This implies
that f defined by

f =
∑
k,l∈N

ckl

k2 + (2l − 1)2 π2

4

Ψkl,

satisfies f ∈ D(A1) and A1f = g. Thus the operator A1 is onto so that (see,
for instance, [2, Proposition 3.2.4]) A1 is self-adjoint. Finally, it follows from
the first Green formula that

〈A1f, f〉L2(Ω) = ‖∇f‖2
L2(Ω) ∀ f ∈ D(A1) .

This, together with a version of the Poincaré inequality (see [2, Theorem
13.6.9]), implies that A1 is strictly positive.

Proposition 4.2. For every η ∈ L2[0, π] there exists a unique function Dη ∈
L2(Ω) such that∫

Ω

(Dη)(x, y)g(x, y)dxdy = −
∫ π

0

η(x)
∂(A−1

1 g)

∂y
(x, 0) dx ∀g ∈ L2(Ω). (4.1)

Moreover, the operator η 7→ Dη (called the partial Dirichlet map) is bounded
from L2[0, π] into L2(Ω).

Proof. We first note from Proposition 4.1 that A−1
1 ∈ L(L2(Ω),H2(Ω)).

Thus, by a standard trace theorem the map g 7→ ∂(A−1
1 g)

∂y
(·, 0) is bounded

from L2(Ω) to L2[0, π]. Consequently, the right-hand side of (4.1) defines an
antilinear functional of the argument g ∈ L2(Ω), and the result follows by
applying the Riesz representation theorem. (See also [2, Sect. 10.6].)

Remark 4.3. For every η ∈ H, we have Dη ∈ C∞(Ω) and ∆(Dη) = 0.
Indeed, this follows by an argument that is similar to the one used in the
proof of [2, Proposition 10.6.2]: We take g = ∆ϕ with ϕ ∈ D(Ω) in (4.1) to
see that ∆(Dη) = 0 in the sense of distributions. It follows from [2, Remark
13.5.6] that Dη ∈ Hn

loc(Ω) for every n ∈ N. Then we use the embedding
Hn

loc(Ω) ⊂ Cm(Ω) for n > 1 + m (m ∈ N) (see [2, Remark 13.4.5]), so that
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indeed Dη ∈ C∞(Ω), and hence ∆(Dη) = 0. Moreover, if Dη ∈ C1(Ω), then
Dη is the unique function in C2(Ω) ∩ C(Ω) that satisfies, in the classical
sense, the following boundary value problem:

∆(Dη)(x, y) = 0 ((x, y) ∈ Ω),

(Dη)(x, 0) = η(x),
∂(Dη)

∂y
(x,−1) = 0 (x ∈ (0, π)),

∂(Dη)

∂x
(0, y) = 0,

∂(Dη)

∂x
(π, y) = 0 (y ∈ (−1, 0)).

(4.2)

To see this, we take in (4.1) g = ∆f , where f ∈ D(A1), and use integration
by parts, which yields that∫ π

0

η(x)
∂f

∂y
(x, 0)dx =

∫ π

0

[
(Dη)

∂f

∂y

]
(x, 0)dx

+

∫ π

0

[
∂Dη

∂y
f

]
(x,−1)dx+

∫ 0

−1

[
∂Dη

∂x
f

]
(0, y)dy −

∫ 0

−1

[
∂Dη

∂x
f

]
(π, y)dy .

If we choose f ∈ D(A1) such that f = 0 on the lateral boundaries and the
bottom of Ω, we obtain that (Dη)(x, 0) = η(x) for almost every x ∈ [0, π].
By choosing suitable other test functions f ∈ D(A1) (we omit the details),
we can obtain also the remaining three equalities in (4.2).

Remark 4.4. The term “partial Dirichlet map” comes from the fact that D
acts on the upper boundary of Ω rather than the entire boundary ∂Ω.

Lemma 4.5. For every η ∈ H, Dη is given by

(Dη)(x, y) =
∑
k∈N

〈η, ϕk〉
cosh k

ϕk(x) cosh [k(y + 1)] ∀ x, y ∈ Ω, (4.3)

where the functions ϕk have been introduced in (2.6). Moreover, for every
η ∈ H3 we have Dη ∈ C2(Ω).

Proof. Using Remark 4.3 it is easily checked that for every k ∈ N we have

(Dϕk)(x, y) =

√
2

π

cos (kx) cosh [k(y + 1)]

cosh (k)
∀ x, y ∈ Ω. (4.4)

On the other hand, we can see that the right-hand side of (4.3) converges in
L2(Ω). This fact, together with (4.4) clearly implies (4.3).
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Moreover, for every α ∈ {0, 1, 2} we have∣∣∣∣ ∂α,2−α

∂xα∂y2−α

(
cos (kx) cosh (k(y + 1))

cosh (k)

)∣∣∣∣ 6 k2 ∀ k ∈ N, x, y ∈ Ω.

Using the Cauchy-Schwarz inequality and the fact that
∑

k∈N 1/k2 = π2/6,∑
k∈N

∣∣∣∣ ∂α,2−α

∂xα∂y2−α

(〈η, ϕk〉
cosh k

ϕk(x) cosh (k(y + 1))

)∣∣∣∣
6
∑
k∈N

1

k
· k3 |〈η, ϕk〉| 6

π√
6
‖η‖H3 ∀ η ∈ H3, x, y ∈ Ω.

Combining the last estimate with (4.3), we obtain that indeed Dη ∈ C2(Ω)
for every η ∈ H3.

Corollary 4.6. Let γ0 : C(Ω) → C[−1, 0] be the partial Dirichlet trace
operator defined by

(γ0g)(y) = g(0, y) ∀ g ∈ C(Ω), y ∈ [−1, 0],

and let D be the map defined in Proposition 4.2. Then C̃0 defined by

C̃0η = γ0Dη ∀ η ∈ H3

can be uniquely extended to a bounded operator C0 ∈ L(H,L2[−1, 0]).

Proof. According to Lemma 4.5, we have

(C̃0η)(y) =
∑
k∈N

√
2

π

〈η, ϕk〉
cosh k

cosh [k(y + 1)] ∀ η ∈ H3 , y ∈ [−1, 0] ,

which implies that there exists a constant K > 0 such that

‖C̃0η‖2
L2[−1,0] 6 K

∑
k∈N

|〈η, ϕk〉|2 = K‖η‖2
H ∀ η ∈ H3,

which shows that C̃0 can be extended as claimed.

Lemma 4.7. The partial Dirichlet map D defined in Proposition 4.2 is
bounded from H 1

2
to H1(Ω), i.e. D ∈ L(H 1

2
,H1(Ω)). Moreover,

(Dη)(x, 0) = η(x) ∀ η ∈ H 1
2
, equality in L2[0, π] , (4.5)∫

Ω

∇(Dη) · ∇Ψdxdy = 0 ∀ η ∈ H 1
2
, Ψ ∈ H1

top(Ω). (4.6)
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Proof. According to Lemma 4.5, Dη is given by (4.3). Since
{√

2
π

sin (kx)
}
k∈N

is an orthnormal basis in L2[0, π], we have that for every η ∈ H 1
2
,

∥∥∥∥∂(Dη)

∂x

∥∥∥∥2

L2(Ω)

=

∫ 0

−1

∫ π

0

∣∣∣∣∣∑
k∈N

√
2

π

k〈η, ϕk〉
cosh k

cosh [k(y + 1]) sin (kx)

∣∣∣∣∣
2

dx dy

6
∑
k∈N

|k〈η, ϕk〉|2
cosh2 k

∫ 0

−1

cosh2 [k(y + 1)] dy

=
∑
k∈N

k2 |〈η, ϕk〉|2
cosh2 k

+
∑
k∈N

k |〈η, ϕk〉|2
2 cosh2 k

sinh(2k),

which clearly implies that there exists K1 > 0 such that∥∥∥∥∂(Dη)

∂x

∥∥∥∥
L2(Ω)

6 K1‖η‖ 1
2

∀ η ∈ H 1
2
.

A similar estimate for ‖∂(Dη)
∂y
‖L2 can be obtained in a completely similar man-

ner. Moreover, we know from Proposition 4.2 that ‖Dη‖L2 is also bounded
by a similar estimate. Recalling (1.1) we conclude that D ∈ L(H 1

2
,H1(Ω)).

Formula (4.5) in the lemma follows from the last part of Lemma 4.5
together with Remark 4.3 and the density of H3 in H 1

2
.

To prove (4.6) first we assume that η ∈ H3 so that, according to Remark
4.3, Dη is the unique classical solution of (4.2). Multiplying the first equation
in (4.2) by Ψ ∈ H1

top(Ω) and integrating by parts, it follows that (4.6) holds for
η ∈ H3. Using the density of H3 in H 1

2
and the fact that D ∈ L(H 1

2
,H1(Ω)),

it follows that indeed (4.6) holds for all η ∈ H 1
2
.

The second important map constructed in this section is a partial Neu-
mann map. To this aim, recall the space H1

top(Ω) introduced in (1.3) and
notice that, due the version of the Poincaré inequality in [2, Theorem 13.6.9],
the sesquilinear form on H1

top(Ω) given by

a[f, g] =

∫
Ω

∇f · ∇g dx dy ∀ f, g ∈ H1
top(Ω) (4.7)

defines an inner product on H1
top(Ω) which is equivalent to the one inherited

from H1(Ω). These facts, combined with the continuity of the Dirichlet trace
(as an operator from H1(Ω) to L2(∂Ω)), imply the following:
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Proposition 4.8. For every v ∈ L2[−1, 0] there exists a unique function
Nv ∈ H1

top(Ω) such that∫
Ω

∇(Nv) · ∇g dx dy =

∫ 0

−1

v(y)g(0, y) dy ∀ g ∈ H1
top(Ω). (4.8)

Moreover, the operator N , called a partial Neumann map, is linear and
bounded from L2[−1, 0] to H1

top(Ω).

Proof. The results follow from the Lax-Milgram theorem by using the sesqui-
linear form a[·, ·] introduced in (4.7) (see also [14, Proposition 7.1]).

Remark 4.9. The above proposition can be formulated also as follows: for
every v ∈ L2[−1, 0] the boundary value problem

∆f(x, y) = 0 ((x, y) ∈ Ω),

f(x, 0) = 0,
∂f

∂y
(x,−1) = 0 (x ∈ (0, π)),

∂f

∂x
(0, y) = −v, ∂f

∂x
(π, y) = 0 (y ∈ (−1, 0)),

(4.9)

admits a unique weak solution f = Nv ∈ H1
top(Ω). If f ∈ C2(Ω) and

v ∈ C[−1, 0], then f = Nv is the unique classical solution of (4.9).

We note that the sequence (ψk)k∈N defined by

ψk(y) =
√

2 cos
[
(2k − 1)

π

2
(y + 1)

]
∀ k ∈ N, y ∈ [−1, 0], (4.10)

is an orthonormal basis in L2[−1, 0] (see [2, [Sect. 2.6]). We can use this basis
to construct the scale of Hilbert spaces (Uβ)β>0 defined by U0 = L2[−1, 0]
and (for β > 0)

Uβ =

{
v ∈ U0

∣∣∣∣∣ ∑
k∈N

(2k − 1)2β

∣∣∣∣∫ 0

−1

v(y)ψk(y) dy

∣∣∣∣2 <∞
}
, (4.11)

with the inner products (〈·, ·〉β)β>0 given, for every v, χ ∈ Uβ, by

〈v, χ〉Uβ =
∑
k∈N

(2k − 1)2β

(∫ 0

−1

v(y)ψk(y) dy

)(∫ 0

−1

χ(y)ψk(y) dy

)
.
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Lemma 4.10. Let N be the operator defined in Proposition 4.8. Then for
every v ∈ L2[−1, 0] and every (x, y) ∈ Ω we have

(Nv)(x, y) =
∑
k∈N

ak cosh
[
(2k − 1)

π

2
(x− π)

]
cos
[
(2k − 1)

π

2
(y + 1)

]
, (4.12)

with convergence in H1
top(Ω), where

ak =
2
√

2〈v, ψk〉
(2k − 1)π sinh

[
(2k − 1)π

2

2

] ∀ k ∈ N.

Moreover, for every v ∈ U2 we have Nv ∈ C2(Ω).

Proof. By using Remark 4.9 and separation of variables, we see that

(Nψk)(x, y) =
2ψk(y) cosh

[
(2k − 1)π

2
(x− π)

]
(2k − 1)π sinh

[
(2k − 1)π

2

2

] ∀ k ∈ N, (4.13)

for all (x, y) ∈ Ω. Since Nv =
∑

k∈N〈v, ψk〉Nψk, this clearly implies (4.12),
with convergence in H1

top(Ω) due to Proposition 4.8. For every j ∈ {0, 1, 2},∣∣∣∣ ∂j,2−j

∂xj∂y2−j (Nψk) (x, y)

∣∣∣∣ 6 √2

2
π(2k − 1) ∀ k ∈ N, (x, y) ∈ Ω,

so that for every v ∈ U , the series Nv =
∑

k∈N〈v, ψk〉Nψk converges in C2(Ω)
if the sequence k〈v, ψk〉 is in l1. For this (by an argument similar to the one
in the proof of Lemma 4.5) it is sufficient if the sequence k2〈v, ψk〉 is in l2,
which is precisely the condition v ∈ U2.

5. Partial Dirichlet to Neumann and Neumann to Neumann maps

In this section we give an explicit construction of the operators allowing us
to recast (2.1) as a well-posed linear control system. Recall the orthonormal
basis (ϕk)k∈N in H introduced in (2.6) and the corresponding spaces Hα.
First we note a direct consequence of Proposition 4.2 and of Lemma 4.5.

Corollary 5.1. Let γ1 : C1(Ω) → C[0, π] be the partial Neumann trace
operator defined by

(γ1f)(x) =
∂f

∂y
(x, 0) ∀ f ∈ C1(Ω), x ∈ [0, π].
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Then Ã0 defined by

Ã0η = γ1Dη ∀ η ∈ H3,

where D is the Dirichlet map defined in Proposition 4.2, is a linear bounded
map from H3 to C[0, π]. Moreover, we have

Ã0ϕk = k tanh(k)ϕk ∀ k ∈ N.

We are now in a position to define a partial Dirichlet to Neumann map.

Proposition 5.2. The operator Ã0 introduced in Corollary 5.1 has a unique
continuous extension to an operator A0 : H1 → H. This extension is strictly

positive and D(A
1
2
0 ) = H 1

2
. For each k ∈ N, we have A0ϕk = λkϕk, where

λk = k tanh(k) ∀ k ∈ N (5.1)

and
A0η =

∑
k∈N

λk〈η, ϕk〉ϕk ∀ η ∈ H1. (5.2)

Proof. It is clear from the previous proposition that A0 fits into the class of
diagonalizable operators discussed in [2] in Proposition 3.2.9 and the remarks
after it, and in Proposition 3.4.8 of the same book.

Proposition 5.3. Let A0 and D be the operators introduced in Propositions
5.2 and 4.2, respectively. Let γ ∈ H 1

2
and Ψ ∈ H1(Ω) be such that

Ψ(x, 0) = γ(x), equality in L2[0, π].

Then for every η ∈ H 1
2

we have Dη ∈ H1(Ω) and

〈A
1
2
0 η,A

1
2
0 γ〉 = 〈∇(Dη),∇Ψ〉L2(Ω). (5.3)

Proof. First we assume that η ∈ H3, so that according to Lemma 4.5 we
have Dη ∈ C2(Ω). Then (5.3) follows by a simple integration by parts and
Proposition 5.2. The fact that Dη ∈ H1(Ω) for every η ∈ H 1

2
has already

been proved in Lemma 4.7. Finally, to prove that (5.3) still holds for η ∈ H 1
2

it suffices to use the density of H3 in H 1
2
, combined with Lemma 4.7.

16



Corollary 5.4. With γ1 as in Corollary 5.1, define the operator B̃1 by

B̃1v = γ1Nv ∀ v ∈ U2,

where N is the Neumann map introduced in Proposition 4.8. Then B̃1 is a
bounded linear operator from U2 to C[0, π]. Moreover, we have(

B̃1ψk

)
(x) =

(−1)k
√

2

sinh
[
(2k − 1)π

2

2

] cosh
[
(2k − 1)

π

2
(x− π)

]
, (5.4)

for all k ∈ N, x ∈ [0, π], where the functions ψk have been defined in (4.10).

Proof. This follows from Lemma 4.10 and the formula (4.13) for Nψk.

We are now ready to define a Neumann to Neumann map.

Theorem 5.5. The operator B̃1 introduced in Corollary 5.4 can be extended
in a unique manner to a linear bounded operator B1 : L2[−1, 0] → L2[0, π].

Moreover, for every v ∈ L2[−1, 0] with
∫ 0

−1
v(y) dy = 0 we have that B1v ∈ H,

where H is defined in (2.5). Finally,∫ π

0

(B1v)(x) Ψ(x, 0)dx =

∫
Ω

∇(Nv)(x, y) · ∇Ψ(x, y) dxdy

−
∫ 0

−1

v(y)Ψ(0, y) dy ∀ Ψ ∈ H1(Ω). (5.5)

Proof. For any v ∈ L2[−1, 0] we set

bk =
(−1)k

√
2

sinh
[
(2k − 1)π

2

2

] , vk = 〈v, ψk〉,

and notice that these sequences are in l2 and ‖(vk)‖l2 = ‖v‖L2[−1,0]. From
(5.4) it follows that if v ∈ U2 then for every x ∈ [0, π] we have

(B̃1v)(x) =
∑
k∈N

bkvk cosh
[
(2k − 1)

π

2
(x− π)

]
=
f(x) + g(x)

2
, (5.6)

where
f(x) =

∑
k∈N

bkvk exp
[
(2k − 1)

π

2
(x− π)

]
,
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g(x) =
∑
k∈N

bkvk exp
[
(2k − 1)

π

2
(π − x)

]
. (5.7)

On one hand, from 0 6 exp
[
(2k − 1)π

2
(x− π)

]
6 1 for all x ∈ [0, π], by

using Cauchy-Schwarz we obtain that there exists C1 > 0 such that∫ π

0

|f(x)|2 dx 6 C1‖v‖2
L2[−1,0] ∀ v ∈ U2 . (5.8)

On the other hand, from (5.7) it follows that∫ ∞
0

|g(x)|2 dx =
1

π

∑
k,l∈N

ckclvkvl
k + l − 1

,

where ck = bk exp
[
(2k − 1)π

2

2

]
for all k ∈ N. Using that |ck| 6 |c1| <

√
10

for all k ∈ N, together with Hilbert’s inequality, see for instance [15, Chapter
IX] or the nice survey [16], we obtain that∫ ∞

0

|g(x)|2 dx 6 10
∑
k∈N

|vk|2 ∀ v ∈ U2. (5.9)

Putting together (5.6), (5.8) and (5.9), it follows that there exists C > 0 such
that

‖B̃1v‖2
L2[0,π] 6 C‖v‖2

L2[−1,0] ∀ v ∈ U2.

The above estimate, combined with the density of U2 in L2[−1, 0], implies
that indeed B̃1 admits an unique extension B1 ∈ L (L2[−1, 0], L2[0, π]).

Assume again that v ∈ U2. Then, according to Remark 4.9 and to Lemma
4.10 we have that f = Nv is a classical solution of (4.9), so that for every
v ∈ U2 we have

0 =

∫
Ω

∆(Nv)(x, y)Ψ(x, y)dxdy

=

∫ 0

−1

v(y)Ψ(0, y)dy +

∫ π

0

(B1v)(x)Ψ(x, 0)dx−
∫

Ω

∇(Nv) · ∇Ψdxdy.

Thus (5.5) holds for v ∈ U2 and by density for v ∈ L2[−1, 0]. Using that∫ 0

−1
v(y)dy = 0 and taking Ψ = 1 in (5.5) we obtain that B1v indeed satisfies

the condition
∫ π

0
(B1v)(x)dx = 0, which implies that B1v ∈ H.
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Remark 5.6. An alternative proof of (5.9) can be given using the Carleson
measure criterion for admissibility, see for instance [2, Sect. 5.3]. To this
aim, consider the Hilbert space X̃ = l2, the strictly negative operator Ã =

diag
(
− (2k−1)π

2

)
and the observation functional C̃ =

[
c1 c2 c3 . . .

]
. Then

according to the aforementioned criterion, C̃ is an admissible observation
operator for the operator semigroup generated by Ã, and (5.9) follows.

The above theorem clearly implies the following result:

Corollary 5.7. Let h ∈ L2[−1, 0], with
∫ 0

−1
h(y) dy = 0 and let B0 be the

operator defined by
B0u = uB1h ∀ u ∈ C .

Then B0 ∈ L(C, H). Moreover, we have∫ π

0

(B0u)(x)Ψ(x, 0)dx = u

∫
Ω

∇(Nh) · ∇Ψdxdy − u
∫ 0

−1

h(y)Ψ(0, y) dy ,

(5.10)
for all u ∈ C and Ψ ∈ H1(Ω). In particular,

B∗0η = −
∫ 0

−1

h(y)(C0η)(y) dy ∀ η ∈ H, (5.11)

where C0 = γ0D is the operator introduced in Corollary 4.6.

Proof. The fact that B0 ∈ L(C, H) and (5.10) follows from Theorem 5.5 (in
particular from (5.5)) with v = uh. Moreover, taking Ψ = Dη with η ∈ H 1

2

(see Lemma 4.7) in (5.10), we see that for every u ∈ C,

〈B0u, η〉 = u〈B1h, η〉 = −u
∫ 0

−1

h(y)(C0η)(y) dy + u

∫
Ω

∇(Nh) · ∇(Dη)dxdy.

Using (4.6) it follows that the last term in the right-hand side of the above
equation is zero, so that we obtain (5.11).

6. Proof of the main results

Throughout this section we denote by X the Hilbert space H 1
2
×H, where

H and (Hα)α>0 have been defined in (2.5) and (2.7), respectively. We also
introduce the linear operator A : D(A)→ X with D(A) = H1 ×H 1

2
and

A =

[
0 I
−A0 0

]
, i.e., A

[
ϕ
ψ

]
=

[
ψ
−A0ϕ

]
∀
[
ϕ
ψ

]
∈ D(A), (6.1)
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where A0 = γ1D is the strictly positive operator on H, with domain H1,
which has been introduced in Proposition 5.2. We redefine the inner product
on H 1

2
as

〈x, z〉 1
2

=
〈
A

1
2
0 x,A

1
2
0 z
〉
,

which is equivalent to the original inner product on H 1
2
. Then A is skew-

adjoint on X (see, for instance, [2, Proposition 3.7.6]), so that, according to
Stone’s theorem (see, for instance [2, Section 3.7]), A generates a group T =
(Tt)t∈R of unitary operators on X. Moreover, we recall that h ∈ L2[−1, 0],

with
∫ 0

−1
h(y) dy = 0 and that we have introduced the input space U = C.

Let B ∈ L(U,X) be given by

B =

[
0
B0

]
, (6.2)

where B0 ∈ L(U,H) is as in Corollary 5.7. Clearly B ∈ L(U,X).
We are now in a position to prove our main well-posedness result:

Proof of Theorem 2.4. With the above notation for X, A, U and B we
consider, for each τ > 0, the map Φτ defined by (2.13), which is clearly
linear and bounded from L2([0,∞);U) into X. Let z0 =

[
ζ0
w0

]
∈ X, let

u ∈ L2
loc([0,∞);U) and define z(t) = [ ζw ] ∈ C([0,∞);X)) by (2.12). Then,

according to a classical result (see, for instance, [2, Remark 4.1.2]), for every
t > 0 and ψ ∈ D(A) we have

〈z(t)− z0, ψ〉X =

∫ t

0

[−〈z(σ), Aψ〉X + 〈Bu(σ), ψ〉X ] dσ.

Setting ψ =
[
ψ1

ψ2

]
, with ψ1 ∈ H1 and ψ2 ∈ H 1

2
and using the specific structure

(6.1), (6.2) of A and B, the last formula implies that

〈A
1
2
0 (ζ(t)− ζ0), A

1
2
0 ψ1〉+ 〈w(t)− w0, ψ2〉 = −

〈∫ t

0

A
1
2
0 ζ(σ)dσ,A

1
2
0 ψ2

〉
+

〈∫ t

0

w(σ)dσ,A0ψ1

〉
+

∫ t

0

〈B0u(σ), ψ2〉dσ, (6.3)

for every t > 0, ψ1 ∈ H1, ψ2 ∈ H 1
2
. The above formula holds, in particular,

for ψ2 = 0 and arbitrary ψ1 ∈ H1, which yields that

ζ(t)− ζ0 =

∫ t

0

w(σ)dσ ∀ t > 0,
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so that w(t) = ζ̇(t), for all t > 0. Inserting the last two formulas in (6.3), we
obtain that

〈ζ̇(t) − w0, ψ2〉 = −
∫ t

0

〈A
1
2
0 ζ(σ), A

1
2
0 ψ2〉dσ +

∫ t

0

〈B0u(σ), ψ2〉dσ, (6.4)

where t > 0, w0 = ζ̇(0) and ψ2 ∈ H 1
2
. (This formula (6.4) is the weak form of

the equation ζ̈ = −A0ζ+B0u.) Let Ψ ∈ H1(Ω) be such that
∫ π

0
Ψ(x, 0) dx =

0 and then ψ2(x) = Ψ(x, 0) is a function in H 1
2
. By combining (6.4) and

(5.10) it follows that

〈ζ̇(t)− w0, ψ2〉 = −
∫ t

0

〈A
1
2
0 ζ(σ), A

1
2
0 ψ2〉dσ

+

∫ t

0

u(σ)

∫
Ω

∇(Nh) · ∇Ψdxdydσ −
∫ t

0

u(σ)

∫ 0

−1

h(y)Ψ(0, y)dydσ. (6.5)

On the other hand, from Proposition 5.3 it follows that Dζ(σ) ∈ H1(Ω) and

〈A
1
2
0 ζ(σ), A

1
2
0 ψ2〉 = 〈∇(Dζ(σ)),∇Ψ〉 ∀ Ψ ∈ H1(Ω), ψ2(x) = Ψ(x, 0) .

The above formula, when combined with (6.5), and setting

φ(t, ·, ·) = − [Dζ(t)](·, ·) + u(t)(Nh)(·, ·) ∀ t > 0, (6.6)

implies that φ(t, ·, ·) ∈ H1(Ω) and (φ, ζ) satisfies (2.10) for every Ψ ∈ H1(Ω)
with

∫ π
0

Ψ(x, 0)dx = 0. On the other hand, (φ, ζ) obviously satisfies (2.10)
if Ψ is a constant function, thus (φ, ζ) satisfies (2.10) for every Ψ ∈ H1(Ω).
Moreover, according to Lemma 4.7, Proposition 4.8 and the above definition
of φ, we have that φ ∈ L2

loc([0,∞),H1(Ω)) and (2.9) holds, so that (φ, ζ) is a
solution of (2.1) in the sense of Definition 2.2.

Conversely, assume that (φ, ζ) is a solution of (2.1) in the sense of Defini-
tion 2.2, with ζ(0) = ζ0 ∈ H 1

2
and ζ̇(0) = w0 ∈ H. Using the fact that (2.10)

holds, in particular, for Ψ ∈ H1
top(Ω) it follows that for every t > 0 and every

Ψ ∈ H1
top(Ω) we have∫

Ω

∇φ(t, x, y) · ∇Ψ(x, y) dxdy − u(t)

∫ 0

−1

h(y)Ψ(0, y) dy = 0.

Using the notation
φ̃(t, ·, ·) = φ(t, ·, ·)− u(t)(Nh)(·, ·), (6.7)
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where N is the Neumann map defined in Proposition 4.8, it follows that∫
Ω

∇φ̃(t, x, y) · ∇Ψ(x, y) dx dy = 0 ∀ Ψ ∈ H1
top(Ω).

The last formula holds, in particular, for Ψ ∈ D(A1), where D(A1) has
been defined in Proposition 4.1, so that an integration by parts yields that∫

Ω

φ̃(t, x, y)∆Ψ(x, y)dxdy =

∫ π

0

φ̃(t, x, 0)
∂Ψ

∂y
(x, 0)dx ∀Ψ ∈ D(A1). (6.8)

Moreover, according to Definition 2.2 and Proposition 4.8, we have (2.9) and
(Nh)(x, 0) = 0 for x ∈ [0, π], so that from (6.8) it follows that∫

Ω

φ̃(t, x, y)∆Ψ(x, y)dxdy = −
∫ π

0

ζ(t, x)
∂Ψ

∂y
(x, 0)dx ∀ Ψ ∈ D(A1).

Comparing the above formula with the definition (4.1) of the Dirichlet map,
with g = ∆Ψ = −A1Ψ, and recalling that A1 is onto, it follows that

φ̃(t, ·, ·) = − [Dζ(t)](·, ·) ∀ t > 0.

The last formula and (6.7) yield that again (6.6) holds.
Now we take ψ2 ∈ H 1

2
and we recall from Lemma 4.7 that Dψ2 ∈ H1(Ω)

and that (Dψ2)(x, 0) = ψ2(x) for x ∈ [0, π]. We can thus choose Ψ = Dψ2 in
(2.10) and using Proposition 5.3 and Corollary 5.7, it follows that ζ satisfies

(6.4). This easily implies that z =
[
ζ

ζ̇

]
satisfies (2.12).

In order to prove Theorem 3.3, we need the following preliminary result
on the eigenvalues and the eigenvectors of the operator A introduced at the
beginning of this section.

Lemma 6.1. Let (λk)k∈N and (ϕk)k∈N be the sequences defined in (5.1) and
(2.6), respectively. We extend the sequences µk = (

√
λk)k∈N and (ϕk)k∈N to

Z∗ by setting
µ−k = − µk, ϕ−k = − ϕk ∀ k ∈ N.

Then the family {φk}k∈Z∗ defined by

φk =
1√
2

[
1

iµk
ϕk
ϕk

]
∀ k ∈ Z∗ (6.9)
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is an orthonormal basis in X formed of eigenvectors of the operator A defined
in (6.1). Moreover, for each k ∈ Z∗, Aφk = iµkφk. Finally, there exists ε > 0

such that for every ω ∈ R with |ω| > 1, the interval
[
ω − ε

|ω| , ω + ε
|ω|

]
contains

at most one element of the sequence (µk)k∈Z∗.

Proof. According to Proposition 5.2, the family (ϕk)k∈N defined in (2.6) is
an orthonormal basis in H formed of eigenvectors of A0 and for each k ∈ N,
A0ϕk = λkϕk, where (λk)k∈N have been defined in (5.1). Using the structure
(6.1) of A and a classical result (see, for instance, [2, Section 3.7]), it follows
that A is diagonalizable, with the eigenvalues (iµk)k∈Z∗ corresponding to the
orthonormal basis of eigenvectors (φk)k∈Z∗ .

Next we prove the last assertion in the lemma by a contradiction argu-
ment. Note that for k ∈ N, µk ≈

√
k, with exponentially vanishing approxi-

mation error. If we assume that the assertion in the lemma is false, we obtain
the existence of a positive sequence (ωn) with ωn → ∞ and of a sequence
(kn) in N with kn →∞ such that

{µkn , µkn+1} ⊂
[
ωn −

1

nωn
, ωn +

1

nωn

]
. (6.10)

This implies that limn→∞ ωn(µkn+1 − µkn) = 0. Combining this fact with
(6.10), it follows that

lim
n→∞

µkn(µkn+1 − µkn) = 0. (6.11)

On the other hand, it is not difficult to check, using (5.1), that

lim
k→∞

µk (µk+1 − µk) =
1

2
,

which clearly contradicts (6.11) and thus ends the proof.

We are now in a position to prove our main stabilizability result.

Proof of Theorem 3.3. 1. The first assertion follows directly from Curtain
and Zwart [17, Theorem 5.2.6], since A has infinitely many unstable eigen-
values. Alternatively, we can apply the main result of Gibson [18] or Guo,
Guo and Zhang [19, Theorem 3].

2. To prove the second assertion, notice that, since the adjoint of the
operator B defined in (6.2) is B∗ =

[
0 B∗0

]
, we see from (5.11) and (6.9)

that

B∗φk =
−1√

2

∫ 0

−1

h(y)(C0ϕk)(y)dy ∀ k ∈ Z∗ ,
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where C0 = γ0D. Using (4.4), we get from the above that

B∗φk = − 1√
π

∫ 0

−1

h(y)
cosh [k(y + 1)]

cosh k
dy ∀ k ∈ Z∗ . (6.12)

Assume now that h is a strategic profile, i.e., (3.2) holds. Then clearly

B∗φk 6= 0 ∀ k ∈ Z∗.

According to [2, Proposition 6.9.1] the pair (A∗, B∗) is approximately observ-
able in infinite time (we have used that the eigenvalues of A are distinct).
Now it follows from the main result of Benchimol [20] that the semigroup
generated by A−BB∗ is strongly stable.

Conversely, let us assume that h is not a strategic profile, i.e., that h does
not satisfy assumption (3.2). Then from (6.12) there exists a k ∈ N such
that B∗φk = 0. Since A∗ = −A, it follows that for every F ∈ L(X,U),

(A∗ + F ∗B∗)φk = − iµkφk .

Let Tcl denote the semigroup generated by A+BF , we have(
Tclt
)∗
φk = e−iµktφk ∀ t > 0,

which implies that
∣∣〈Tclt φk, φk〉∣∣ = 1 for all t > 0, so that Tcl is not strongly

stable. We have thus shown that if (A,B) is strongly stabilizable, then h
satisfies (3.2), which ends the proof of the second assertion.

3. To prove the third assertion, first we notice that by combining (3.3)
and (6.12) it follows that there exists M0 > 0 such that

|B∗φk| >
M0

|k| ∀ k ∈ Z∗. (6.13)

We introduce, for every s ∈ R and δ > 0, the vector space WPs,δ(A), called
wave package of frequency s and width δ associated to the operator A, which
is defined by

WPs,δ(A) =

{
{0} if |µk − s| > δ for all k ∈ Z∗ ,
span

{
φk
∣∣ k ∈ Z∗ and |µk − s| < δ

}
else.

According to Lemma 6.1 there exists ε > 0 such that, setting

δ(s) =
ε

|s|+ 1
∀ s ∈ R, (6.14)
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we either have that WPs,δ(s)(A) = {0} or

WPs,δ(s)(A) = span {φk(s)},

where k(s) is the unique element of Z∗ such that

s− δ(s) < µk(s) < s+ δ(s).

Using the fact that µk =
√
k tanh(k) and µ−k = −µk for k ∈ N, together

with (6.13), it follows that there exists M1 > 0 such that

|B∗φ| > M1

(|s|+ 1)2
‖φ‖X ∀ φ ∈ WPs,δ(s)(A), s ∈ R.

We have thus obtained that the pair (A,B) satisfies the assumptions of The-
orem 1.1 in [21] with δ given by (6.14) and

γ(s) =
M1

(|s|+ 1)2
∀ s ∈ R.

We can apply Theorem 1.1 in [21] to conclude that the semigroup Tcl gener-
ated by A−BB∗ satisfies (3.4).

Remark 6.2. For the proof of the second assertion we could use (instead of
Benchimol [20]) the stronger result of Batty and Vu [22], where A generates
a contraction semigroup and B is still bounded. An even more general result
is in the recently published [23], where A generates a contraction semigroup
and B may be very unbounded (not even admissible).
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