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Implicit complexity through linear realisability: polynomial time and probabilistic classes

Based on work on realisability models for linear logic, the author recently proposed a new approach of implicit computational complexity. He showed how to characterise in this way a hierarchy of sub-linear space non-deterministic complexity classes by means of group actions. These classes, dened by means of two-way non-deterministic automata, range from regular languages to NL (non-deterministic logarithmic space).

In the present paper, we extend those results in two directions. First, we show how the same techniques can be used to characterise the sub-linear space complexity classes dened by both deterministic and probabilistic two-way multi-head automata. We thus obtain characterisations of deterministic complexity classes between regular languages and L, as well as a hierarchy of probabilistic classes between stochastic languages and PL (unbounded error probabilistic logarithmic space). Second, we exhibit a monoid action capturing polynomial time computation based on pushdown machines, characterising both P and PP (unbounded error probabilistic polynomial time).

INTRODUCTION

Complexity theory nds its root in three dierent papers that, in the span of a single year, tackled the dicult question of dening a notion of feasible computation [START_REF] Cobham | The intrinsic computational diculty of functions[END_REF][START_REF] Edmonds | Paths, trees and owers[END_REF][START_REF] Hartmanis | On the computational complexity of algorithms[END_REF]. The eld of complexity theory then quickly developed, aiming at the denition and classication of functions based on how much resources (e.g. time, space) are needed to compute them. While progress on the classication aspects was quick in the early days, new results started to become scarcer and scarcer. The diculty of the classication problem can be explained in several ways. First, from a logical point of view, the question of showing whether a complexity class cannot contain a given function corresponds to showing the negation of an existential statement. But the severe diculty of this problem can be understood through negative results known as barriers [START_REF] Aaronson | Algebrization: A new barrier in complexity theory[END_REF][START_REF] Baker | Relativizations of the p = np question[END_REF][START_REF] Razborov | Natural proofs[END_REF], i.e. results stating that currently known methods cannot solve current open problems.

Implicit Computational Complexity () aims at studying computational complexity only in terms of restrictions of languages and computational principles, for instance considering restrictions on recursion schemes, and was established by Bellantoni and Cook' landmark paper [START_REF] Bellantoni | A new recursion-theoretic characterization of the polytime functions[END_REF], and following work by Leivant and Marion [START_REF] Leivant | Lambda calculus characterizations of poly-time[END_REF][START_REF] Leivant | Ramied recurrence and computational complexity II: Substitution and poly-space[END_REF]. Amongst the dierent approaches to , several results use Girard's linear logic [START_REF] Girard | Linear logic[END_REF], a renement of intuitionnistic logic which accounts for the notion of resource. Linear logic introduces a modality ! marking the "possibility of duplicating" a formula : the formula shall be used exactly once, while the formula ! can be used any number of times. Modifying the rules governing this modality then yields variants of linear logic capturing complexity classes, e.g. the class P is characterised by [START_REF] Girard | Bounded linear logic: a modular approach to polynomial-time computability[END_REF], [START_REF] Lafont | Soft linear logic and polynomial time[END_REF] and [START_REF] Atassi | Verication of ptime reducibility for system f terms via dual light ane logic[END_REF][START_REF] Baillot | Light types for polynomial time computation in lambda calculus[END_REF], while Kalmar's elementary functions [START_REF] Kalmar | Egyszerii pelda eldonthetetlen aritmetikai problemara[END_REF] are captured by [START_REF] Danos | Linear logic & elementary time[END_REF].

The current work is part of a large programme aiming at developing a new approach to implicit computation complexity [START_REF] Seiller | A correspondence between maximal abelian sub-algebras and linear logic fragments[END_REF][START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF][START_REF] Seiller | On the power of euclidean division: lower bounds for algebraic machines[END_REF], based on linear realisability models -realisability models of linear logic. While standard approaches cannot lead to new separation results, this alternative semantic variant of opens the way to use invariants from dynamical systems to prove complexity classes are not equal.

The dierence with previous approaches lies in the use of types. ICC traditionally use typing systems as constraints excluding some programs: any behaviour that could lead to, say, superpolynomial execution time, will be forbidden by the type system. As a consequence, no program with a super-polynomial running time will be typable. Moreover, if the type system is well-designed it remains complete: any polynomial time computable function can be computed by a program following the typing discipline. But this result is extensional, and the majority of polynomial time algorithms are in fact not typable in the considered systems, making the approach unusable to tackle open separation problems. In realisability models, one starts from a model of computation, and no further constraints are imposed. Types are understood as descriptors rather than constraints: a program will be of type ! ⌫ as long as it produces an element of type ⌫ when given an input of type . The constraints will therefore come from the model of computation considered, not the types.

Recently, the author proposed to exploit realisability models to provide new proof methods for separation [START_REF] Seiller | Measurable preorders and complexity[END_REF][START_REF] Seiller | Towards a Complexity-through-Realizability theory[END_REF][START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF]. In essence, the guiding intuition is that a computation should be mathematically modelled as a dynamical system, in the same way physical phenomena are. Obviously, while a computation (i.e. a run of a program) is deterministic and can be represented as such, a program is not in general: it might be e.g. probabilistic, deterministic, and may represent in itself several possible runs on a given input. His proposal is therefore to work with generalisations of dynamical systems introduced under the name of graphings, which is used to abstract the notion of transition function. Graphings are furthermore induced by a monoid action U : " y -, a monoid homomorphism from " to endomorphisms of -, representing a model of computation: represents the space of congurations of a machine (e.g. for Turing machines, the contents of the tape and position of the head), and " is generated by a set of basic instructions (e.g. such as "move the head to the right"). The overall method then relies on a theorem [START_REF] Seiller | Interaction graphs: Graphings[END_REF] stating that the collection of graphings induced by a monoid action onto a space U : " ygives rise to a model of (fragments of) linear logic.

More specically, the characterisations are obtained as follows [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF]. Consider a monoid action U that will be used to characterise a complexity class. One picks a monoid action V extending U (i.e. V is dened from U by adding endormorphisms) such that the logic induced by V is at least Elementary Linear Logic (). This allows for the denition, in the induced model, of the type !Nat 2 ( Bool1 of V-graphings (programs in the model of computation described by V) that compute predicates over binary strings. As V extends U, one can further consider the set of U-graphings in this type !Nat 2 ( Bool. These are the programs computing predicates over binary strings and typable in the logic induced by U (which is less expressive than ): the set of those predicates is the complexity class characterised by U.

The rst formal result obtained in this way [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF] provided a correspondence between a hierarchy of group actions m 1 , m 2 , . . . , m : , . . . , m 1 and a hierarchy of non-deterministic complexity classes between (and including) R-the class of regular languages -and NL. We insist on the fact that this result characterises NL-even though it is know to be equal to NL-because the technique developed captures the notion of acceptance of the former. Moreover, although both regular languages and NL are closed under complementation, this is not known for the intermediate classes characterised. Choosing dierent monoid actions lead to models in which the represented programs are of limited complexity, formalising an intuition that already appeared in the more involved context of operator algebras [START_REF] Seiller | A correspondence between maximal abelian sub-algebras and linear logic fragments[END_REF]. Here, : (resp. : , : ) is the class of languages decided by two-way k-heads (resp. nondeterministic, probabilistic) automata. Moreover, we distinguish two columns in the non-deterministic case as dierent tests lead to dierent characterisations. Lastly, we distinguish NL and NL despite the Immerman-Szelepcsényi theorem.

One hope for complexity theory is that the equivalence between monoid actions dened as inducing the same complexity class could be formally related to standard equivalences of monoid/group actions, such as orbit equivalence. More precisely, one can ask the following question: is it true that if two actions U and V are not orbit equivalent, then they characterise dierent complexity classes? This would enable the use of invariants for orbit equivalence -such as ✓2 -Betti numbers [START_REF] Gaboriau | Invariants ✓ 2 de relations d'équivalence et de groupes[END_REF] or cost [START_REF] Gaboriau | Coût des relations d'équivalence et des groupes[END_REF] -to obtain separation results (i.e. showing that two complexity classes are dierent). This approach to separation is further strengthened by two recent results. The rst [START_REF] Seiller | Zeta functions and the (linear) logic of markov processes[END_REF] relates the notion of orthogonality -which is used to dene types -with zeta functions of dynamical systems. Dened in terms of (nite) orbits, the zeta function of a dynamical system is an invariant for orbit equivalence. The second result [START_REF] Seiller | On the power of euclidean division: lower bounds for algebraic machines[END_REF] reformulates and strengthens lower bounds results for algebraic models of computation by using graphings to exploit topological entropy -an invariant for conjugacy: an equivalence of actions ner than orbit equivalence.

Contributions. The current paper extends the previous characterisations to the corresponding deterministic, non-deterministic (with the notion of acceptance of NL), and probabilistic hierarchies, at the same time capturing the polynomial time constraint. This is an important step in the overall program, as it shows the techniques apply to several computational paradigms, and extend to superlinear space complexity classes. As such, it puts current open problems in complexity, such as L = ? P, within reach of the potential separation techniques mentioned above. From a more general point of view, the techniques provides the rst Curry-Howard implicit characterisations 2 of probabilistic complexity classes, such as PL (resp. PP) of problems decidable (with unbounded error) by a probabilistic machine using logarithmic space (resp. polynomial time) in the input. Figure 1 recapitulates3 the known characterisations using the proposed approach, showing the results of the current paper in blue cells.

INTERACTION GRAPHS MODELS

Interaction Graphs () models of linear logic were developed in order to generalise Girard's geometry of interaction () constructions to account for quantitative aspects, in particular adapting to non-deterministic and probabilistic settings. The aim of the program approach is to obtain a dynamic model of proofs and their cut-elimination procedure, i.e. a semantics in which a program % applied to an argument 0 do not possess the same interpretation as the result of the computation (as opposed to denotational semantics). As a consequence, (and hence ) models comprise a mathematical counterpart of cut-elimination (or equivalently, program execution). One key insight of the author's work on models is that this mathematical counterpart, called the execution formula by Girard, can be understood as computing nite orbits in a dynamical system. We provide here a quick overview of the major concepts used in the paper but refer to previous work for full details [START_REF] Seiller | Interaction graphs and complexity I[END_REF][START_REF] Seiller | Interaction graphs: Graphings[END_REF] and illustrations [START_REF] Seiller | Towards a Complexity-through-Realizability theory[END_REF].

Abstract models of computation

In the general setting, graphings can be dened in many dierent avours: discrete, topological, measurable, etc. In this paper, we will be working with measurable graphings, and will refer to them simply as graphings. Graphings act on a chosen space (hence here, on a measured space); the denition of graphings makes sense for any measured space X, and under some mild assumptions on X it provides a model of (at least) Multiplicative-Additive Linear Logic (MALL) [START_REF] Seiller | Interaction graphs: Full linear logic[END_REF][START_REF] Seiller | Interaction graphs: Exponentials[END_REF][START_REF] Seiller | Interaction graphs: Graphings[END_REF].

In order to dene an Interaction graph model, two elements are needed. The rst is a space X. In full generality, this space could be discrete, a topological or measured space, a (topological) vector space, etc. In this paper, we will only consider measured spaces. This space intuitively corresponds to a space of congurations of the machines in the model of computation considered. The second element is a monoid action U : " y X. In practice, this monoid action can be described through the action of a set of generators . I.e. each generator denes an endomorphism of X and the collection of endomorphisms {U (<) | < 2 } is enough to recover the full action U.

Example 1. As an example, let us consider Turing machines with a single tape. A natural representation of the model of computation would be an action of the basic instructions of a Turing machine (writing a symbol and moving the head on the tape) on a space X representing the possible congurations of a Turing machine. Once could for instance choose X as the set {0, 1, ¢} Z ¢ of Z-indexed sequences in {0, 1, ¢} that are almost-always equal to ¢ (which is understood as representing blank cells on the tape). With the convention that the head of the Turing machine is located above the 0-th indexed element of the sequence, the basic instructions of a Turing machines give rise to the following maps:

• We now x the measure space of interest in this paper.

Denition 2 (The Space). We dene the measure space X = R⇥ [0, 1] N ⇥{¢, 0, 1} N where R⇥ [0, 1] N is considered with its usual Borel f-algebra and Lebesgue measure. The space {¢, 0, 1} N is endowed with the natural topology 4 , the corresponding Borel f-algebra and the natural measure given by `(+ (F)) = 3 lg(F ) .

Borrowing the notation introduced in earlier papers [START_REF] Seiller | Interaction graphs: Full linear logic[END_REF][START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF], we denote by (G, s, c) the points in X, where s and c are sequences for which we allow a concatenation-based notation, e.g. we write 0 • s for the sequences whose rst element is 0. Given a permutation f over the natural numbers, we write f (s) the result of its natural action on the N-indexed list s.

Graphings are then dened as objects acting on the measured space X. A parameter in the construction allows one to consider subsets of graphings based on how they act on the space. To do this, we x a monoid action by measurable maps that abstractly describes a model of computation. Again, while graphings can be dened in full generality, some conditions on the chosen actions are needed to construct models of MALL [START_REF] Seiller | Interaction graphs: Graphings[END_REF]. The following monoid actions, which are of of interest in this paper, do satisfy these additional requirements. Denition 3 (Monoid actions). For all integer 8 > 1, we dene the translations

t z : (x, s, c) 7 ! (x + z, s, c).
For all integer 8 > 1, and all bijection f : N ! N such that f (:) = : for all : > 8, we dene the maps

p f : (x, s, c) 7 ! (x, f (s), c).
We denote by m 8 the monoid generated by those maps, and by m 1 the union [ 8>1 m 8 . We also consider the following maps:

pop :(G, s, 2 • c) 7 ! (G, s, c), push 0 :(G, s, c) 7 ! (G, s, 0 • c), push 1 :(G, s, c) 7 ! (G, s, 1 • c), push ¢ :(G, s, c) 7 ! (G, s, ¢ • c).
We denote by n 8 the monoid generated the monoid action m 8 extended by those, and by n 1 the union [ 8>1 n 8 .

Finally, let us denote by 0 +1 the fractional part of the sum 0 + 1. We also dene the monoid actions m8 (resp. n8 ) as the smallest monoid actions containing m 8 (resp. n 8 ) and all translations t_ :

(G, 0 • s) 7 ! (G, (0 +_) • s) for _ in [0, 1].

Programs as Graphings

We are now able to dene graphings. Suppose given a monoid action U : " y X. Graphings are formally dened as quotients of graph-like objects called graphing representatives. Graphing representatives are families of weighted edges, similarly to a graph. Intuitively, a weighted edge is a triple ((, <, l) where ( is a subspace of X, < is an element of the monoid ", and l is a weight. Formally, the denition is more involved since one need to introduce a notion of control states: a graphing representative therefore comes with an additional stateset (, and edges have a fourth component @ ! @ 0 with @, @ 0 2 (. While the formal denition is involved, one can intuitively think of a graphing representative as a transition graph.

Example 4. In the example of Turing machines above, we dene the following subspaces:

X 0 = {(B 8 ) 2 X | B 0 = 0} (0 2 {0, 1, ¢}).
Note that a conguration belongs to X 8 if and only if the head currently reads the symbol 8. The following graphing (with stateset {even, odd, accept, reject}) represents a Turing machine that accepts inputs with an even number of 0 before the rst ¢ symbol:

{(X 0 , right, 1even ! odd), (X 0 , right, 1, odd ! even), (X 1 , right, 1even ! even), (X 1 , right, 1odd ! odd), (X ¢ , right, 1even ! accept), (X ¢ , right, 1odd ! reject)}
As in previouss work [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF], we x the monoid of weights of graphings ⌦ to be equal to [0, 1]⇥{0, 1} with usual multiplication on the unit interval and the product on {0, 1}. Notation 5. To simplify notations, we write elements of the form (0, 0) as 0 and elements of the form (0, 1) as 0 • 1. On this set of weights, we will consider the xed parameter map <(G, ~) = G( used in Theorem 11).

We are now ready to give the formal denition of graphing representatives. Denition 6 (Graphing representative). Let U : " y X be a monoid action, + ⌧ a measurable subset of X, and ( ⌧ a nite set. A (⌦-weighted) U-graphing representative ⌧ of support + ⌧ and stateset ⇡ ⌧ is a family:

{(( ⌧ 4 , < ⌧ 4 , l ⌧ 4 , i G e ! o G e ) | e 2 E G }, where: • ( ⌧ 4 is a measurable subspace 5 of + ⌧ ⇥ ⇡ ⌧ ; • < ⌧ 4 is an element of " such that q ⌧ 4 (( ⌧ 4 ) ✓ + ⌧ ; • l ⌧ 4 2 ⌦ is a weight; • and i G e , o G
e are elements of ⇡ ⌧ . We will refer to elements of ⇢ ⌧ as edges. For any edge 4 2 ⇢ ⌧ the set ( ⌧ 4 ⇥ {i G e } is called the source of 4, and the set

) ⌧ 4 ⇥ {o G e } where ) ⌧ 4 = q ⌧ 4 (( ⌧ 4
) is called the target of 4. The notion of graphing representatives captures both an action on a space and a specic representation of it. As a simple example, suppose given two subspace ( and ( 0 such that ( \ ( 0 is negligible. Then the graphing representatives = {(( [ ( 0 , <, l, i ! o)} and 0 = {((, <, l, i ! o), (S 0 , m, l, i ! o)} somehow represent the same action onin two dierent ways. The notion of graphing is obtained by dissociating the action from the specic representation.

In earlier work [START_REF] Seiller | Interaction graphs: Graphings[END_REF], the equivalence relation used in the quotient was dened through a notion of renement. To ease the presentation, we here provide a more direct reformulation.

Denition 7 (Graphing). We dene on graphing representatives the equivalence dened from:

{(( [ ( 0 , <, l, i ! o)} and ( \ ( 0 = 0.4. ; ⇠ {((, <, l, i ! o), (S 0 , m, l, i ! o)}, by contextual closure -i.e. if ⇠ 0 , then ⌧ [ ⇠ ⌧ [ 0 .
A graphing is an equivalence class of graphing representatives w.r.t. this equivalence.

Since all operations considered on graphings were shown to be compatible with this quotienting [START_REF] Seiller | Interaction graphs: Graphings[END_REF], i.e. well dened on the equivalence classes, we will in the following make no distinction between a graphing -as an equivalence class -and a graphing representative belonging to this equivalence class.

Remark 8. As stated in a recent paper [START_REF] Seiller | Zeta functions and the (linear) logic of markov processes[END_REF], the set of deterministic (resp. probabilistic) U-graphings is in one-to-one correspondance with partial dynamical systems (resp. discrete-image sub-probability kernels)

5 : -ô -whose graph {(G, 5 (G)) | G 2 dom(5 )} is included in the pre-order P (U) = {(G, ~) | 9< 2 ", U (<)(G) = ~},
which generalises the notion of Borel equivalence relation [START_REF] Seiller | A correspondence between maximal abelian sub-algebras and linear logic fragments[END_REF].

Linear Realisability models

The author showed that, under mild hypotheses on the monoid action that are satised in the examples considered here, the set of U-graphings assemble into realisability models for (fragments of) linear logic. This construction is based on two notions: execution, an operation which represents cut-elimination (or equivalently, the execution of programs), and orthogonality, a binary relation accounting for linear negation.

Execution is dened in terms of alternating paths. Given two graphings , ⌧, one denes their execution as the graphing of maximal alternating paths between them. In terms of the corresponding dynamical systems 5 , 6 -when those graphings are deterministic -, this denes the set of maximal orbits in the composition 6 5 . The following denition, though involved, describes a graphing representative of this set in full generality. Notation 9. We denote AltPath( , ⌧) the set of alternating path between and ⌧, i.e. the set of paths c = 4 1 4 2 . . . 4 = such that for all 8 = 1, . . . , = 1,

4 8 2 i 4 8+1 2 ⌧. Given a path c = 4 1 4 2 . . . 4 = , we dene q c = q 4 1 q 4 2 • • • q 4 = , its weight l c = OE = 8=1 l 4 8
, and its domain ( c -the maximal subspace on which q c is well-dened.

Denition 10 (Execution). Let and ⌧ be graphings of respective supports + = + ] ⇠ and + ⌧ = ⇠ ] , with + \ , of null measure, and take representatives such that the source and target of all edges are either entirely included in ⇠ or do not intersect ⇠. Their execution :: ⌧ is the graphing of support + ] , and stateset ⇡ ⇥ ⇡ ⌧ dened as:

:: ⌧ = ( c , q c , l c , (i e 1 , i e 2 ) ! (o e n 1 , o e n ) | c = 4 1 , 4 2 , . . . , 4 = 2 AltPath( , ⌧)} .
We now recall the notion of measurement. When restricted to the monoid actions considered in this paper, the expression of the measurement can be simplied. We therefore only give here this simpler expression and point the curious reader to earlier work for the general case [START_REF] Seiller | Interaction graphs: Graphings[END_REF].

Denition 11. The measurement between two graphings is dened as

J , ⌧K = ' c 2Cycles( ,⌧ ) π supp(c ) <(l d qc (G ) c ) d q c (G) 3_(G),
where

d q c (G ) = inf {= 2 N | q = c (G) = G } (here inf ; = 1), Cycles( , ⌧)
is the set of alternating cycles 6 between and ⌧, and the support supp(c) of c is the set of points G belonging to a nite orbit [START_REF] Seiller | Interaction graphs: Graphings[END_REF]Denition 41].

The measurement is used to dene linear negation. But rst, let us recall the notion of project which is the semantic equivalent of proofs, and uses formal sums [START_REF] Seiller | Interaction graphs: Additives[END_REF]. Denition 12. A project of support + is a pair (0, ) of a real number 0 and a nite formal sum = Õ 8 2 U 8 8 where for all 8 2 , U 8 2 R and 8 is a graphing of support + . We can then dene an orthogonality relation on the set of projects. Orthogonality captures the notion of linear negation and somehow translates the correctness criterion for proof nets. Its denition is based on the measurement dened above, extended to formal weighted sums of graphings by "linearity" [START_REF] Seiller | Interaction graphs: Additives[END_REF][START_REF] Seiller | Interaction graphs: Graphings[END_REF]. Denition 13. Two projects (0, ), (1, ⌫) are orthogonal -written (0, ) ‹ (1, ⌫) -when they have equal support and J(0, ), (1, ⌫)K < 0, 1. We dene the orthogonal of a set ⇢ as

⇢ ‹ = {(1, ⌫) | 8(0, ) 2 ⇢, (0, ) ‹ (1, ⌫)} and write ⇢ ‹‹ the double-orthogonal (⇢ ‹ ) ‹ .
Orthogonality allows for a denition of types. In fact the models are dened based on two notions of types -conducts and behaviours [START_REF] Seiller | Interaction graphs: Additives[END_REF]. Conducts are simple to dene but while their denition is enough to dene a model of multiplicative linear logic, dealing with additives requires the more rened notion of behaviour. Denition 14. A conduct of support + is a set A of projects of support + such that A = A ‹‹ . A behaviour is a conduct such that for all (0, ) in A (resp. A ‹ ) and for all _ 2 R, (0, + _;) belongs to A (resp. A ‹ ) as well. When both A and A ‹ are non-empty, we say A is proper.

Conducts provide a model of Multiplicative Linear Logic. The connectives ⌦, ( are dened as follows: if A and B are conducts of disjoint supports + , + ⌫ , i.e. + \ + ⌫ is of null measure, then:

A ⌦ B = {a :: b | a 2 A, b 2 B} ‹‹ , A ( B = {f | 8a 2 A, f :: a 2 B}.
However, to dene additive connectives, one has to restrict the model to behaviours. In this paper, we will deal almost exclusively with proper behaviours. Based on the following proposition, we will therefore consider mostly projects of the form (0, !) which we abusively identify with the underlying sliced graphing !. Moreover, we will use the term "behaviour" in place of "proper behaviour".

P 15 ([32, P 60]). If A is a proper behaviour, (0, ) 2 A implies 0 = 0.
Finally, let us state the fundamental theorem for the interaction graphs construction in the restricted case we just exposed 7 .

T 16 ([35, T 1]). For any monoid action U, the set of behaviours denes a model of Multiplicative-Additive Linear Logic () without multiplicative units.

Most monoid actions will in fact model larger fragments of linear logic. Since we will here work in a model of Elementary Linear Logic, we now explain how exponential connectives are dened. Following our previous work [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF] we x a bijective measure-preserving pairing function:

[•, •] : [0, 1] 2 ! [0, 1],
and dene for all set and integers 3 < =, the set

! 3 = ( ): {(0, [G, ~] • s, c) | (0, s, c) 2 , =G 2 [3, 3 + 1], ~2 [0, 1]}.
Given a measurable map 5 : ! ⌫ and integers 3, 3 0 < =, we also dene the measurable map:

! = 3,3 0 (5 ) : ⇢ ! = 3 ( ) ! ! = 3 0 (⌫) (0, G • s, c) 7 ! (0 0 , ~• s 0 , c),
where (0 0 , s 0 , c 0 ) = 5 (0, s, c) and ~= G + (3 0 3)/=.

This can be used to dene exponential connectives by encoding the stateset into the conguration of the machine.

Denition 17. Given a graphing ⌧ = {(( ⌧ 4 , q ⌧ 4 , i G e ! o G e ) of stateset ⇡ = [=],
we dene the promotion !⌧ of ⌧ as the following graphing of stateset [0]:

{(! = i G e (( ⌧ 4 ), ! = i G e ,o G e (q ⌧ 4 ), 0 ! 0) | 4 2 ⇢ ⌧ }.
Given a behaviour A, we dene the conduct !A as the set

{(0, !⌧) | ⌧ 2 A} ‹‹ .
This previous denition is a perennisation [START_REF] Seiller | Logique dans le facteur hyperni : géometrie de l'interaction et complexité[END_REF][START_REF] Seiller | Interaction graphs: Exponentials[END_REF], i.e. it maps arbitrary graphings to graphings with trivial dialect [0]. This implies that graphings of the form ! are duplicable [34, Proposition 36]. As a consequence, for any conduct !A8 there exists a graphing ⇠ implementing contraction:

(0, ⇠) 2 !A ( !A ⌦ !A.
One can also check that the above denition also allows for functorial promotion, i.e. there exists (0, %) in !(A ( B) ⌦ !A ( !B. The proof of this fact follows exactly the proof in [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF].

T 18. Consider the monoid action p generated by n1 together with the additional maps pair and pair 1 , with

pair : (0, G • ~• s, c) 7 ! (0, [G, ~] • s, c).
For any monoid action extanding p, the set of conducts and behaviours is a model of Elementary Linear Logic ().

All the monoid actions considered in this paper are restrictions of the monoid action p. For any such action m, we can thus consider the model of induced by p and study within this model the set of m-graphings of type Nat 2 ( NBool. Before detailing this, we dene the deterministic and sub-probabilistic submodels, that will be used in later sections.

Deterministic and Probabilistic Models

We furthermore use specic submodels dened by putting restrictions on the graphings considered. In order for this notion to be well-dened, one should suppose that the unit interval [0, 1] endowed with multiplication is a submonoid of ⌦. Denition 19. A graphing ⌧ is deterministic if all edges have weight equal to 1 and the following holds:

`⇣n G 2 X | 94, 5 2 ⇢ ⌧ , 4 < 5 and G 2 ( ⌧ 4 \ ( ⌧ 5 o⌘ = 0.
A graphing ⌧ is sub-probabilistic if all the edges have weight in [0, 1] and the following holds:

`© ≠ ´8 > > < > > : G 2 X | ' 4 2⇢ ⌧ ,G 2( ⌧ 4 l ⌧ 4 > 1 9 > > = > > ; ™ AE ¨= 0.
It was shown that both these notions are closed under execution [START_REF] Seiller | Zeta functions and the (linear) logic of markov processes[END_REF], i.e. the execution of deterministic graphings is deterministic, similarly for sub-probabilistic graphings. As a consequence, deterministic (resp. sub-probabilistic) graphings dene a submodel of M[⌦, m] -the set of all ⌦-weighted m-graphings -which we denote M det [⌦, m] (resp. M prob [⌦, m]). Since the interpretations of proofs by graphings used in the proofs of theorem 16 and theorem 18 are all deterministic, the logic induced by these submodels is the same as the logic induced by M[⌦, m].

CHARACTERISING COMPLEXITY CLASSES

Integers and Machines

We now review some denitions necessary to dene the characterisation of complexity classes in the Interaction Graphs models [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF]. We start by the representation of binary words, which is related [START_REF] Aubert | Characterizing co-nl by a group action[END_REF][START_REF] Aubert | Logarithmic space and permutations[END_REF] to the type of binary lists in Elementary Linear Logic [START_REF] Danos | Linear logic & elementary time[END_REF][START_REF] Girard | Light linear logic[END_REF]:

BList := 8-!(-( -) ( !(-( -) ( !(-( -).
Intuitively a binary word, say 001, is represented as a program that takes two functions 5 0 and 5 1 of type -! -, and produces the function 5 0 5 0 5 1 . This program can also be dened (in Krivine's notation) as the lambda-term _5 0 _5 1 _G .(5 0 )(5 0 )(5 1 )G. This lambda-term corresponds to a proof of BList in Elementary Linear Logic which contains exactly four axioms (g. 2). These four axioms give rise to the representation of the proof as a graphing in the Interaction Graph model. The latter representation uses six subspaces, corresponding to the six occurrences ofin the formula BList. We will rst introduce some notations for these subspaces and then dene formally the graphing representations of binary words. Notation 20. We write ⌃ the set {0, 1, ¢} ⇥ {in, out}. We also denote by ⌃ a,r the set ⌃ [ {a, r}, where a (resp. r) stands for accept (resp. reject).

- `- ax - `-⌦ -, -( - `- ax - `-⌦ -, -( -, -( - `- ax - `-⌦ -, -( -, -( -, -( - `- - ( -, -( -, -( -`-( - ! !(-( -), !(-( -), !(-( -) `!(-( -) ctr !(-( -), !(-( -) `!(-( -) 8 `8-, !(-( -) ( !(-( -) ( !(-( -)
Initial segments of the natural numbers {0, 1, . . . , =} are denoted [=]. Up to renaming, all statesets can be considered to be of this form. Notation 21. We x once and for all an injection from the set ⌃ a,r to intervals in R of the form [:, : + 1] with : 2 Z. For all E 2 ⌃ a,r , we write hEi /

. the measurable subset (E) ⇥. ⇥ / of X, where . ⇢ [0, 1] N and / ⇢ {¢, 0, 1} N .

When . = [0, 1] N (resp. / = {¢, 0, 1} N ), we omit the subscript (resp. superscript). The notation extends to subsets ( ⇢ ⌃ a,r by h(i = [ E 2( hEi (a disjoint union).

Denition 22. Given a word w = 0 1 0 2 . . . 0 : , we denote [w] the graph with set of vertices

+ [w] ⇥ ( [w] = ⌃ ⇥ [:], set of edges ⇢ [w] = {A, ; } ⇥ [:],
and source and target maps B [w] and C [w] dened as follows:

B [w] = (A, 8) 7 ! (0 8 , out, i) (;, 8) 7 ! (0 8 , in, i) C [w] = (A, 8) 7 ! (0 8+1 , in, i + 1 mod k + 1) (;, 8) 7 ! (0 8 1 , out, i 1 mod k + 1)
Notation 23. We write

B [w] ⌃ (resp. C [w]
⌃ ) the projection of the source (resp. target) map onto ⌃ , and B [w] [: ] (resp. C [w] [: ] ) the projection of the source (resp. target) map onto [:]. The graph thus dened is the discrete representations of w, that one can relate [START_REF] Aubert | Characterizing co-nl by a group action[END_REF] to the representation shown in g. 2. Now, a word graphing is somehow a geometric representation of a graph representation of a word: it can be dened as a graphing representative with the same graph structure as a word representation.

Denition 24. Let w be a word w = 0 1 0 2 . . . 0 : over the alphabet ⌃. The canonical graphing representation {w} of w is the graphing:

(hB [w] ⌃ i, q 4 , 1, B [w] [: ] ! C [w] [: ] ) | (A, 8) 2 ⇢ {w} },
where q 4 : hB [w] ⌃ i ! hC [w] ⌃ i is a translation. A word graphing , of stateset ( , is a graphing obtained from {w} by renaming the stateset w.r.t. an injection ( , 7 ! [:].

We write Gp(w) the set of word graphings for w.

Denition 25. Given a word w, a representation of w is a graphing !! where ! belongs to Gp(w).

The set of representations of words in ⌃ is denoted Rep, the set of representations of a specic word w is denoted Rep(w).

We dene the conduct !Nat 2 = (Rep) ‹‹ .

A explained in the introduction, we will be interested in machines of type !Nat 2 ( NBool, where NBool should be understood as a non-deterministic version of Bool. Denition 26. We dene the (unproper) behaviour NBool as T ha,ri , where for all measurable sets + the behaviour T + is dened as the set of all projects of support + . A predicat m-machine over the alphabet ⌃ is a nite m-graphing belonging to Pred(m).

The computation of a given machine on a given input is represented by the execution, i.e. the computation of paths dened in Theorem 10. The result of the execution is an element of NBool, i.e. somehow a generalised boolean value 9 .

Denition 29 (Computation). Let " be a m-machine, w a word over the alphabet ⌃ and !! 2 !Nat 2 . The computation of " over !! is dened as the graphing " :: !! 2 NBool.

The principle of the approach is to use the orthogonality (which denes types) to capture the notion of acceptance. This is done using tests. Denition 30. A test is a family of projects of support ha, ri.

We now dene the language characterised by a machine. For this, one could consider existential L T 9 (") and universal L T 8 (") languages for a machine " w.r.t. a test T :

L T 9 (") = {w 2 ⌃ ⇤ | 8t 8 2 T, 9w 2 Rep(w), " :: w ‹ t 8 } L T 8 (") = {w 2 ⌃ ⇤ | 8t 8 2 T, 8w 2 
Rep(w), " :: w ‹ t 8 } The best situation is in fact when both denitions coincide, as it ensures that only one representation of w need to be considered to check whether w belongs to the language or not. This situation is captured by the notion of uniform test.

Denition 31 (Uniformity). Let m be a monoid action. The test T is said uniform w.r.t. m-machines if for all such machine ", and any two elements w, w 0 in Rep(w):

" :: w 2 T ‹ if and only if " :: w 0 2 T ‹
We write in this case L T (") = L T 9 (") = L T 8 ("). We now have introduced all the needed ingredients to state and prove characterisations of complexity classes. We will rst recall previously known results [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF].

Notation 32. For * ⇢ X, we dene Id * as the graphing with a single edge and stateset [0]: {(hri, x 7 ! x, 1 • 1, 0 ! 0)}. P 33. The test T , dened as

{t Z = (Z , Id hri ) | Z < 0},
is uniform w.r.t. n 1 -machines. 9 For the specic case of "deterministic machines", the result in fact belongs to the subtype Bool of booleans.

Note that since it is uniform w.r.t. n 1 -machines, it is uniform w.r.t. m-machines for any submonoid action m -hence w.r.t. all monoid actions considered in this paper. We will now dene classes dened from non-deterministic m-machines, i.e. nite graphing representatives of type Pred (m) in the model M[{0, 1}, m] (i.e. weights are either 0 or 1). Denition 34. We dene the complexity class

Pred co (m) = {L T (") | " m-machine in M[{0, 1}, m]}.
We recall the main characterisation obtained in the author's previous paper [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF], and refer to Theorem 40 for the denition of the characterised complexity classes. We write 2>2# 5 0(i) (resp. 2>2# 5 0(1)) the set of languages decided by non-deterministic 2-way automata with 8 heads (resp. arbitrarily large number of heads) with the complementary acceptance condition: all runs are accepting. The notion is dened properly in section 5.

T 35. For all 8 2 N ⇤ [ {1}, Pred co (m i ) = 2N(i).
As particular cases,

Pred co (m 6 ) = R Pred co (m 1 ) = NL.

Characterising NL

The starting point of this work was the realisation that one can dene another test T + capturing the notion of acceptance in NL. Based on this idea, and using technical lemmas from the previous paper, we can characterise easily the hierarchy of complexity classes dened by :-head non-deterministic automata with the standard non-deterministic acceptance condition (i.e. there is at least one accepting run). We state the results and provide explanations, but we do not provide a formal proof. Indeed, while an adaptation of the techniques used in previous work [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF] could be used, the result follows from the more general method exposed in the next sections.

Notation 36. For * ⇢ X, we dene Id 1/2 * as the graphing with a single edge and stateset [0]: {(hri, x 7 ! x, 1 2 • 1, 0 ! 0)}. P 37. The test T + dened as the family

{(0, Id 1/2 = ) | = = hai [0, 1 n ] n ⇥[0,1] N , n 2 N} is uniform w.r.t. n 1 -machines.
Denition 38. We dene the complexity class Pred ndet (m) as the set

{L T + (") | " m-machine in M ndet [{0, 1}, m]}.
The considered test does indeed capture the usual condition for acceptance of non-deterministic machines. In fact, the sole element (0, Id 1/2 hai ) is enough to obtain completeness, by a result from our earlier work [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF]Proposition 46]. We do not state it here, as it is generalised by Theorem 51 below. From these results, a :-heads two-way automaton M accepts a word w if and only if there exist at least one alternating path between the graphing translation {M} of " and the word representation !{w} whose source and target is hai Y for some subspace . . Thus, M accepts w if and only if there are alternating cycles between {M} :: !{w} and Id 1/2 hai , i.e. if and only if J{M} :: !{w}, Id 1/2 hai K < 0, 1, or equivalently if and only if {M} :: !{w} ‹ Id 1/2 hai .

However, the whole family of tests is required to obtain soundness. Indeed, in the general case, it might be possible that a m 8 -machine ⌧ passes the test {(0, Id 1/2 hai )} by taking several (possibly dierent) paths through the execution ⌧ :: !{w}, creating a cycle of arbitrary length between ⌧ :: !{w} and {(0, Id 1/2 hai )}. In that case, it is not clear that the existence of such a cycle can be decided with some automaton ". However, if ⌧ :: !{w} passes all tests in T + , it imposes the existence of a cycle of length 2 between ⌧ :: !{w} and Id 1/2 hai , something that can be decided by an automaton. The existence of the length 2 cycle is enforced by the restriction of the test to subspaces of the form [0, 1 = ]; we refer the the proof of lemma 58 for more details.

A simple adaptation of the arguments used in the proof of theorem 35 then provides a proof of the following. We omit the details for the moment, as the next sections will expose a generalisation of the technique (and the theorem) that also applies to the probabilistic case and to automata with a pushdown stack. Here, we write 2# 5 0(i) (resp. 2# 5 0(1)) the set of languages decided by non-deterministic 2-way automata with 8 heads (resp. arbitrarily large number of heads) with the standard notion of acceptance: there exists an accepting run. The notion is dened properly in the next section.

T 39. For all 8 2 N ⇤ [ {1}, Pred ndet (m i ) = 2N(i).
In particular,

Pred ndet (m 1 ) = L
In the following sections, we will in fact establish several extensions of this result to machines with pushdown stacks.

STATEMENT OF THE RESULTS

Multihead automata with pushdown stacks

The proof of the characterisation theorem [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF] relies on a representation of multihead automata as graphings. We here generalise the result to probabilistic automata with a pushdown stack. For practical purposes, we consider a variant of the classical notion of probabilistic two-way multihead nite automata with a pushdown stack obtained by:

• xing the right and left end-markers as both being equal to the xed symbol ¢;

• xing once and for all unique initial, accept and reject states;

• choosing that each transition step moves exactly one of the multiple heads of the automaton;

• imposing that all heads are repositioned on the left end-marker and the stack is emptied before accepting/rejecting. • symbols from the stack are read by performing a pop instruction; if the end-of-stack symbol ¢ is popped, it is pushed on the stack in the next transition. It should be clear that these choices in design have no eect on the sets of languages recognised. Denition 40. A :-heads non-deterministic two-way multihead nite automata with a pushdown stack (2N+(k)) M is dened as a tuple (⌃, &, !), where the transition ! is a relation that associates to each element of ⌃ :

¢ ⇥ & a subset of (Inst ⇥ &) where Inst is the set of instructions: ({1, . . . , :} ⇥ {in, out}) ⇥ {Id, pop, push 1 , push 0 , push ¢ }.

We say M is deterministic if ! is a function.

Denition 41. A :-heads probabilistic two-way multihead nite automata with a pushdown stack (2P+(k)) M is dened as a tuple (⌃, &, !), where the transition function ! is a map that associates to each element of ⌃ : ¢ ⇥ & a sub-probability distribution over the set (Inst ⇥ &) where Inst is the set of instructions: ({1, . . . , :} ⇥ {in, out}) ⇥ {Id, pop, push 1 , push 0 , push ¢ }. Notation 42. The set of deterministic (resp. non-deterministic, resp. probabilistic) two-way multihead automata with : heads and without pushdown stack (i.e. not using stack instructions) is written 2dfa(:) (resp. 2nfa(:), resp. 2pdfa(:)) and the corresponding complexity class is noted 2D(k) (resp. 2P(k)). The set of all deterministic two-way multihead automata [ : >1 2dfa(:) is denoted by 2dfa. We dene in a similar manner the sets 2nfa and 2pfa. The corresponding complexity classes 2D(1), 2N(1), and 2P(1) are known to be equal to L, NL, and PL [START_REF] Holzer | Complexity of multi-head nite automata: Origins and directions[END_REF].

Notation 43. The set of : heads deterministic (resp. non-deterministic, resp. probabilistic) two-way multihead automata with : heads and a pushdown stack is written 2dfa + s(:) (resp. 2nfa + s(:) , resp. 2pdfa + s(:)) and the corresponding complexity class is noted 2D+(k) (resp. 2N+(k), resp. 2P+(k)). The set of all deterministic two-way multihead automata with a pushdown stack [ : >1 2dfa + s(:) is denoted by 2dfa + s. We dene in a similar way the sets 2nfa + s and 2pfa + s. The corresponding complexity classes 2D+(1), 2N+(1), and 2P+(1) are known to be equal to P [START_REF] Ioan | Multihead two-way probabilistic nite automata[END_REF], P, and PP respectively.

Remark 44. We note that non-deterministic two-way multihead automata with a pushdown stack characterise P and not NP, as shown by Cook [START_REF] Cook | Characterizations of pushdown machines in terms of time-bounded computers[END_REF] using memoization.

Results

Before stating the theorems, we need to dene the complexity classes considered in the realisability models. We already introduced two notions of tests; we will require a last one adapted to probabilistic models of computation. P 45. Let [ > 0. The test T +,n dened by

(log(1 1 2 .D), Id 1/2 hai V(¢ n ) [0, 1 n ] n ⇥[0,1] N ]) | u 2 [0, n], n 2 N} is uniform w.r.t. n 1 -machines.
Denition 46. We dene the complexity class Pred prob (m) as the set

{L T +, 1 2 (") | " m-machine in M prob [[0, 1], m]}.
In the remaining sections, we will establish the following theorem.

T 47. For all 8 2 N ⇤ [ {1}, Pred det (m i ) = 2D(i) Pred det (n i ) = 2D+(i) Pred ndet (m i ) = 2N(i) Pred ndet (n i ) = 2N+(i) Pred co (m i ) = 2N(i) Pred co (n i ) = 2N+(i) Pred prob (m i ) = 2P(i) Pred prob (n i ) = 2P+(i)
C 48. As special cases of the previous theorem,

Pred det (m 1 ) = L,Pred det (n 1 ) = P Pred ndet (m 1 ) = NL,Pred ndet (n 1 ) = P Pred co (m 1 ) = NL,Pred co (n 1 ) = P Pred prob (m 1 ) = PL,Pred prob (n 1 ) = PP
The proofs are quite similar, even though we will need to state variants of the key lemmas depending on the case considered: deterministic, non-deterministic (with dierent notions of acceptance), and probabilistic. However, the principle is the same and both directions rely on the fact that computation is represented by paths (cf. denition 10) and orthogonality is based on a measurement of cycles [START_REF] Seiller | Zeta functions and the (linear) logic of markov processes[END_REF].

To prove completeness, we then show how any automata can be simulated by a graphing. This requires the denition of the graphing translating the automaton, and proving that the orthogonality translates the existence of accepting runs in a quantitative manner (i.e. in the case of probabilistic machines, the sum of weights of the accepting paths will be equal to the probability of accepting).

The second part of the proof, soundness, is the most involved. It requires to show that given any n 1 -machine ", the computation of " on the graphing representation of a word w boils down to the computation of alternating paths between nite graphs (namely a graph mimicking " and the graph representation of W).

COMPLETENESS

We now describe a translation of multihead automata as graphings for the set of all 2P+(k).

Notation 49. For all probabilistic automaton M of transition !, and all pair t = ((© B, @), (8, 3 0 , @ 0 )), we denote by ! (© B, @)(8, 3 0 , @ 0 ) the probability that M transitions to (8, 3 0 , @ 0 ) from the conguration (© B, @).

We will also write t 2! when ! (© B, @)(8, 3 0 , @ 0 ) > 0, i.e. when the probability that the automaton will perform the transition t is non-zero.

The encoding is heavy but the principle is easy to grasp. We use the stateset to keep track of the last values read by the heads, as well as the last popped symbol from the stack. The subtlety is that we also keep track of the permutation of the heads of the machine. Indeed, the graphing representation has the peculiarity that moving one head requires to use a permutation to place this head on the rst copy of [0, 1]. As a consequence, to keep track of where the heads are positioned at a given time, we store a permutation that we update when applying each instruction. Lastly, the stack is initiated with the symbol ¢; this is done by simply restricting the source of the edges from the initial state to the subspace + (¢) of sequences starting with the symbol ¢.

Denition 50. Let M = (⌃, &, !) be a 2P+(k). We dene {M} a graphing in n k with dialect -set of states -& ⇥ G : ⇥ {¢, 0, 1} : ⇥ {¢, 0, 1} as follows.

• each transition of the form t = ((© B, @), (a, @ 0 )) with @ < init and a = (8, 3 0 ) ⇥ ] with ] < pop gives rise to a family of edges indexed by a permutation f and an element D of {¢, 0, 1}:

h(0, 3)i ⇥ {(@, f,© B, D)} ! h(B 8 , 3 0 )i ⇥ {(@ 0 , g 1,f (8 ) f,© B [B f 1 (1) := B], D)},
realised by the map p (1,f (i) ) together with the adequate map on the stack subspace and the adequate translation on Z, and of weight ! (© B, @)(a, @ 0 ); • each transition of the form t = ((© B, @), (a, @ 0 )) with @ < init and a = (8, 3 0 ) ⇥ pop gives rise to a family of edges indexed by a permutation f and an element D of {¢, 0, 1}:

h(0, 3)i + (D ) ⇥ {(@, f,© B)} ! h(B 8 , 3 0 )i ⇥ {(@ 0 , g 1,f (8 ) f,© B [B f 1 (1) := B], D)}
realised by the map p (1,f (i) ) composed with the pop map and the adequate translation on Z, and of weight ! (© B, @)(a, @ 0 );

• each transition of the form t = ((© B, @), (a, @ 0 )) with @ = init and a = (8, 3 0 ) ⇥ ] with ] < pop gives rise to a family of edges indexed by an element E 2 {a, r} and an element D of {¢, 0, 1}:

hvi V(¢) ⇥ {(init, Id, © ¢, u)} ! h(B 8 , 3 0 )i ⇥ {(@ 0 , g 1,f (8 ) ,© B [B f 1 (1) := B], D)},
realised by the map p (1,f (i) ) together with the adequate map on the stack subspace and the adequate translation on Z, and of weight ! (© B, @)(a, @ 0 ); • each transition of the form t = ((© B, @), (a, @ 0 )) with @ = init and a = (8, 3 0 ) ⇥ pop gives rise to a family of edges indexed by an element E 2 {a, r} and an element D of {¢, 0, 1}:

hvi V(¢) ⇥ {(init, Id, © ¢, u)} ! h(B 8 , 3 0 )i ⇥ {(@ 0 , g 1,f (8 ) ,© B [B f 1 (1) := B], D)},
realised by the map p (1,f (i) ) together with the pop map on the stack subspace and the adequate translation on Z, and of weight ! (© B, @)(a, @ 0 ).

We now state the key lemma, essential for all later results. The proof is a simple but lengthy induction.

L 51. Let M be a 2pfa + s(:). Alternating paths of odd length between {M} and !{w} of source hai Y (resp. hri Y ) with 10 . = [0, 1 lg(w) ] : ⇥ [0, 1] N are in a weight-preserving bijective correspondence with the accepting (resp. rejecting) runs of M on input w. This proposition states that given an automaton M and a word w, the set of possible executions of M on input w is in bijection with the edges in {M} :: !{w} (which, we recall, is dened as the maximal alternating paths). Moreover the probability of a given execution is equal to the weight of the corresponding edge.

C 52. The probabilistic (resp. non-deterministic) automaton M accepts w with probability ? 2 [0, 1] (resp. on exactly ? 2 N runs) if and only if ? is equal to the sum of the weights of alternating paths between {M} and !{w} of source and target hai.

This corollary is almost enough to prove the needed completeness results. First, consider the probabilistic cas. I.e. given a probabilistic automaton M and a word w:

• w belongs to L(M) if and only if the probability that M accepts on input w is greater than 1 2 ; • the probability that M accept on input w is equal to the sum of the weights of edges from hai to itself in {M} :: !{w}; • by uniformity,

w 2 L T +, 1 2 ({M}) i {M} :: !{w} ‹ T +, 1 2 ;
All that is left to prove is the following lemma. Taking n = 1 2 , it shows that {M} :: !{w} ‹ L T +, 1 2 (") if and only if the sum of the weights of edges from hai to itself in {M} :: !{w} is greater than 1 2 . Using the three facts above, this shows that

w 2 L T +, 1 2 ({M}) i w 2 L(M).
L 53. The sum of the weights of alternating paths between {M} and !{w} of source and target hai is greater than n if and only if {M} :: !{w} ‹ T +,n .

P. Let us write the weights of alternating paths between {M} and !{w} of source and target hai as ? 0 , ? 1 , . . . , ? : . We use here a result from the rst work on Interaction Graphs [START_REF] Seiller | Interaction graphs: Multiplicatives[END_REF] showing that in the probabilistic case the measurement of two graphs J⌧, K < is equal to the measurement of the graphs J ⌧, ˆ K < where . fusions the edges with same source and target into a single edge by summing the weights [START_REF] Seiller | Interaction graphs: Multiplicatives[END_REF]Proposition 16]. Therefore, J{M} :: !{w}, T +,n K is equal to n log(1 <( 

1 2 .D), Id 1/2 hai V(¢ n ) [0, 1 n ] n ⇥[0,1] N ]) for all D 2 [0, n]. ⇤
This covers the case of probabilistic automata. The deterministic and non-deterministic cases are covered in a similar way:

• w belongs to L(M) if and only if the number of accepting runs is greater than 1;

• the number of accepting runs of M on input w is equal to the sum of the weights of edges (i.e. the number of edges since all weights are equal to 1) from hai to itself in {M} :: !{w}; • by uniformity, w 2 L T + ({M}) i {M} :: !{w} ‹ T + .

The following lemma then nishes the argument for deterministic and non-deterministic machines.

L 54. There exists an alternating path between {M} and !{w} of source and target hai if and only if {M} :: !{w} ‹ T + .

The last case is that of non-deterministic machines with the complementary notion of acceptance.

Here the key ingredients is the following lemma.

L 55. There exists an alternating path between {M} and !{w} of source and target hai if and only if {M} :: !{w} 6 ‹ T .

These results together provide the completeness part of theorem 47. Indeed, given any automaton M one can dene a graphing {M} such that L(M) = L T ({M}) for the adequate notion of test T . We now need to prove soundness, i.e. the semantic classes dened from the realisability model do not contain more languages than expected. This is more intricate, as it will be necessary to show that the behaviour of any graphing can be simulated by an automaton (while respecting the number of heads). This will be the topic of the next section.

SOUNDNESS

We here generalise a technical lemma from our previous paper [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF]Lemma 4.14] to include probabilities and pushdown stacks. The principle is the following. Following our previous proof, the computation of a m 8 -machine given an input F can be simulated by a computation of paths between nite graphs. This can be extended with probabilistic weights in a straightforward manner. Now, the operations on stacks could be thought of as breaking this result, since stacks are arbitrarily long. However, this can be dealt with by considering graphs whose weights are extended with an element of the monoid ⇥ generated by {0, 1, ¢, 2} and the relations 20 = 21 = 2¢ = [ where [ is the empty sequence, thus the neutral element of ⇥. We will thus obtain that the computation of a (⌦-weighted) n 8 -machine given an input F can be simulated by a computation of paths between nite graphs with weights in ⌦ ⇥ ⇥.

L 56 (T L). Let ⌧ be a n 1 -machine. The computation of ⌧ with the representation !{w} of a word w is equivalent to the execution of a nite ⌦ ⇥ ⇥-weighted graph ⌧ and a nite graph ,w .

P. The proof of this lemma follows the proof of the restricted case provided in earlier work [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF]. Based on the niteness of n 1 -machines, there exist an integer # such that ⌧ is a n #machine. We now pick a word w 2 ⌃ : . All maps realising edges in ⌧ or in !{w} are of the form q ⇥ Id > 1 8=# +1 [0,1] ⇥ k -i.e. they are the identity on copies of [0, 1] indexed by natural numbers > # . So we can consider the underlying space to be of the form Z ⇥ [0, 1] # ⇥ {¢, 0, 1} N instead of X by just replacing those realisers by q ⇥ k . Moreover, the maps q here act either as permutations over copies of [0, 1] (realisers of edges of ⌧) or as permutations over a decomposition of [0, 1] into : intervals (realisers of !{w}). Consequently, all q act as permutations over the set of # -dimension cubes of size :: as in the proof of the restricted lemma proved in our previous work [START_REF] Seiller | Interaction graphs: Nondeterministic automata[END_REF]. The only dierence is that we will here keep track of weights and encode the stack operations as elements of ⇥ (we use the identication:

[[push 1 ]] = 1, [[push 0 ]] = 0, [[push ¢ ]] = ¢, [[pop]] = 2):
• there is an edge in ⌧ of source (B, (: 8 ) # 8=1 , 3) to (B 0 , (: 0 8 ) # 8=1 , 3 0 ) and weight (?, [[k ]]) if and only if there is an edge in ⌧ of source hBi ⇥ {3 } and target hB 0 i ⇥ {3 0 }, of weight ? and whose realisation is q ⇥k where q sends the # -cube > # 8=1 [: 8 /:, (: 8 + 1)/:] onto the # -cube > # 8=1 [: 0 8 /:, (: 0 8 + 1)/:]. • there is an edge (of weight (1, n)) in ,w of source (B, (: 8 ) # 8=1 , 3) to (B 0 , (: 0 8 ) # 8=1 , 3 0 ) if and only if 3 = 3 0 , : 8 = : 0 8 for 8 > 2 and there is an edge in {w} of source hBi ⇥ [: 1 /:, (: 1 + 1)/:] ⇥ [0, 1] N and target hB 0 i ⇥ [: 0 1 /:, (: 0 1 + 1)/:] ⇥ [0, 1] N . Then one checks that there exist an alternating path between " and !{w} of weight ? and whose stack operation is equal to k if and only if there exist an alternating path between " and [w] of weight (?, [[k ]]). ⇤

Remark 57. The previous lemma is not stated in this way because space limitations did not allow us to dene thick graphs and their execution. However, the graph ,w is a renement of the graph representation [w] of w, and a more satisfying statement of the above result is that the computation of ⌧ with the representation !{w} of a word w is represented by the thick graph ⌧ :: C {w} where :: C denotes the execution between thick graphs [START_REF] Seiller | Interaction graphs: Exponentials[END_REF].

We will here work with alternating paths between the ⌦ ⇥ ⇥-weighted graphs. We will consider the set of ⇥-trivial paths, i.e. paths whose weight is of the form (_, 2 8 ) (with 8 possibly equal to 0, with 2 0 = [), and consider the sum of the weights of ⇥-trivial paths as the sum in the rst component, i.e. a weight in ⌦.

As a consequence of this lemma, we have that: L 58. Let ⌧ be a n 1 -machine. The computation of ⌧ with the representation !{w} of a word w is orthogonal to equivalent to T +,n if and only if the sum of the weights of ⇥-trivial alternating paths between ⌧ and ,w from h0i > # 8=1 [0,1/: ] to itself is greater than n.

S. The orthogonality relies on alternating cycles. Here, we have that ⌧ :: !{w} is orthogonal to T +,n if and only if the sum of the weights of alternating cycles between ⌧ :: !{w} and

Id 1/2 hai V(¢ n ) [0, 1 n ] n ⇥[0,1] N is of the form 0 • 1 for 0 > n.
This is because only weights of the form 0 • 1 are considered by the map < dening the measurement. Those alternating cycles then necessarily go through at least one edge of Id 1/2 hai V(¢ n ) [0, 1 n ] n ⇥[0,1] N because ⌧ and !{w} do not have weights of the form 0 • 1. As a consequence, these cycles are concatenations of alternating paths between ⌧ and !{w} of source and target in h0i such that the overall path acts trivially on the stack. Now, a key element in the result which has not yet appeared is that the shrinking of the support of the tests as = grows implies that the alternating paths thus concatenated need to go through the rst # -cube in the nite graphs ⌧ and ,w . Otherwise, this concatenation of paths will not represent a cycle between ⌧ :: !{w} and Id 1/2 hai V(¢ m ) [0, 1 m ] m ⇥[0,1] N for values of < larger than the length of w. The same trick implies that the stack is emptied during the path, i.e. the weight of the path alternating between the nite graphs ⌧ and ,w is required to be equal to (?, 2 8 ).

Finally, if such cycles exists, they must be composed from ⇥-trivial alternating paths between ⌧ and ,w from h0i > # 8=1 [0,1/: ] to itself. From a previous work on Interaction Graphs [28, Proposition 16] already used in the proof of lemma 53, we can fusion the edges with same source and target into a single edge by summing the weights without changing the measurement. We thus get the result. ⇤

All that is left is to dene an automaton that will compute the same language as a given n 1machine ⌧. Notice one subtlety here: a n 8 machine can use the push ¢ instruction at any given moment. Thus the automata to be dened works with a ternary stack -over the alphabet {¢, 0, 1}and not a binary one. This is ne because from any automaton with a ternary stack one can dene an automaton on a binary stack recognising the same language (very naively, using a representation of the ternary alphabet as words of length 2, this simply multiplies the number of states by a factor of 2).

As we have seen, for any n 1 -machine ⌧ and word w, ⌧ :: !{w} is orthogonal to T +,n if and only if there exist a path of weight (?, 2 8 ) with ? > n from the rst # -dimensional cube on a to itself. It is then easy to dene an automata {G} that computes the same language as ⌧ by simply following the transitions of ⌧, and ensuring that this automata accepts a word F with probability ? if and only if there is a path of weight (?, 2 8 ) with ? > n from h0i > # 8=1 [0,1/: ] to itself. This leads to the following proposition.

P 59. Let ⌧ be a n 8 -machine, F a word. Then {G} accepts F with probability greater than n if and only if the sum of the weights in ⌦ of alternating paths of ⇥-weight n between ⌧ and !, ⌦ Id hai from hai to itself is greater than n.

Combining the three previous statements, we obtain a proof of completeness for the probabilistic classes. The proof technique applies in a similar, yet easier, fashion to the deterministic and nondeterministic cases.

CONCLUSION AND PERSPECTIVES

We have shown how to extend our method based on realisability models for linear logic to capture complexity classes. We have obtained in this way numerous characterisations of numerous classes between regular languages and polynomial time, showing how the techniques applies as well to probabilistic computation. This provides the rst examples of implicit characterisations of probabilistic complexity classes. This is however related to unbounded error classes, and it will be natural to try and characterise bounded-error classes. In particular, it should be possible to capture both BPL and BPP from the present work. We expect to be able to do so using the rich notion of type provided by Interaction graphs models, which allows for intersection and dependent types, as well as quantication over parameters. As an illustration, let us explain how the characterisations above can be expressed through types in the models.

We can dene the language associated to a m-machine " and a test T as a type. Indeed, we say a word F is in the language dened by " if and only if " :: w ‹ t for all t 2 T . Using standard properties of the execution and orthogonality [START_REF] Seiller | Interaction graphs: Graphings[END_REF], this can be rephrased as " :: t ‹ w. Thus, " denes a set of projects {" :: t | t 2 T } which tests natural numbers, i.e. elements of Nat 2 .

Denition 60. Let " be a m-machine and T be a test. We dene the type:

Lang T (") = (!Nat ‹ 2 [ {" :: t | t 2 T }) ‹ In fact, Lang T (") can also be dened as an intersection type. We write " (T ) = {" :: t | t 2 T } and can obtain the following lemma.

L 61. Lang T (") = " (T ) ‹ \ !Nat 2 .

The type represents a language in the following fashion. P 62. Let " be a m-machine and T be a test. w 2 Lang T (") , 9F 2 L T ("), w 2 Rep(w) Now, this is particularly interesting when one considers that the model allows for the denition of (linear) dependent types. Indeed, if A(u) is a family of types (we suppose here that u ranges over the type U), the types Õ (").

Indeed, we have that:

A 2 PP , 9" : !Nat 2 ( NBool, A = Lang T +, 1 2 (").

Noting that T +, 1 2 can be dened as a countable intersection (thus a universal quantication), it is equal to 8= 2 N, T +, 1 
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 1 Fig. 1. Known characterisations. Contributions of the current paper are shown in blue cells.
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3. 2 Denition 28 .

 228 Computations, Tests and Languages Denition 27. An m-graphing ⌧ is nite when it has a representative whose set of edges ⇢ is nite. For all monoid action m, we dene Pred (m) as the set of m-graphings in !Nat 2 ( NBool.

8=1[: 8

 8 8 /:, (: 8 + 1)/:] | 0 6 : 8 6 : 1}, i.e. their restrictions to such # -cubes are translations. Based on this, one can build two (thick 11 ) graphs ⌧ and ,w over the set of vertices ⌃ ⇥ { # ? /:, (: 8 + 1)/:] | 0 6 : 8 6 : 1}

  u:U A(D) and OE u:U A(D) are well dened: 'u:U A(D) = {u ⌦ a | u 2 U, a 2 A(u)} ‹‹ ÷ u:U A(D) = {f | 8u 2 U, f :: u 2 A(u)}In the probabilistic model, we can use the following type to characterise12 PP: ' ":!Nat 2 (NBool Lang T +, 1 2

2 + 1 =. 1 2 + 1 =) ‹ \ !Nat 2 .

 21112 The above type then becomes: '":!Nat 2 (NBool 8= 2 N, "(T +,This type could then be used, through a quotient, to represent PP in the modelM prob [[0, 1], n 1 ],and PL in the modelM prob [[0, 1], m 1 ].We expect to provide types characterising bounded error predicates in the same way, providing characterisations of BPP in the model M prob [[0, 1], n 1 ], and BPL in the model M prob [[0, 1], m 1 ].

  right : (B 8 ) 7 ! (C 8 ) with C 8 = B 8+1 for all 8; • left : (B 8 ) 7 ! (C 8 ) with C 8 = B 8 1 for all 8; • write ⇤ : (B 8 ) 7 ! (C 8 ) (⇤ 2 {0, 1, ¢}) with C 0 = ⇤ and C 8 = B 8 for 8 < 0;

In practice, the type considered is rather !Nat

( NBool where NBool is a non-deterministic version of Bool.

Some implicit characterisation of a few probabilistic classes already exist[START_REF] Dal | A higher-order characterization of probabilistic polynomial time[END_REF][START_REF] Kahle | Towards recursion schemata for the probabilistic class pp[END_REF], but they are not based on the Curry-Howard correspondence and do not apply to such a large extent of classes.

[START_REF] Aubert | Characterizing co-nl by a group action[END_REF] This table is not exhaustive, but shows the most common classes. In particular, this paper also characterises numerous classes not shown here, notably the classes of languages recognized by :-head two-way atutomata with a pushdown stack where : is a xed integer.

I.e. the topology induced by basic cylindrical open sets + (F ) = {

: N ! {0, 1} | 88 2 [=], 5 (8 ) = F 8 }where F is a nite word of length = on the alphabet {0, 1}.

As ⇡ ⌧ is considered as a discrete measure space, a measurable subset of the product is simply a nite collection of measurable subset indexed by elements of ⇡ ⌧ .

These are understood as paths whose source equals its target, quotiented by the relation c • 4 ⇠ 4 • c .

The general construction allows for other sets of weights as well as whole families of measurements[START_REF] Seiller | Interaction graphs: Graphings[END_REF].

The conduct !A is not a behaviour since it cannot satisfy the ination property. However, if B is an arbitrary behaviour, !A ( B is a behaviour[START_REF] Seiller | Interaction graphs: Exponentials[END_REF] Corollary 57].

In fact, this type is more than PP and the latter should be dened as a quotient to identify those " such that Lang T (" ).
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