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Implicit complexity through linear realisability: polynomial
time and probabilistic classes
THOMAS SEILLER∗, CNRS, France

Based on work on realisability models for linear logic, the author recently proposed a new approach of
implicit computational complexity. He showed how to characterise in this way a hierarchy of sub-linear space
non-deterministic complexity classes by means of group actions. These classes, de�ned by means of two-way
non-deterministic automata, range from regular languages to NL������� (non-deterministic logarithmic
space).

In the present paper, we extend those results in two directions. First, we show how the same techniques can
be used to characterise the sub-linear space complexity classes de�ned by both deterministic and probabilistic
two-way multi-head automata. We thus obtain characterisations of deterministic complexity classes between
regular languages and L�������, as well as a hierarchy of probabilistic classes between stochastic languages
and PL������� (unbounded error probabilistic logarithmic space). Second, we exhibit a monoid action
capturing polynomial time computation based on pushdown machines, characterising both P���� and PP����
(unbounded error probabilistic polynomial time).

1 INTRODUCTION
Complexity theory �nds its root in three di�erent papers that, in the span of a single year, tackled
the di�cult question of de�ning a notion of feasible computation [8, 12, 18]. The �eld of complexity
theory then quickly developed, aiming at the de�nition and classi�cation of functions based on how
much resources (e.g. time, space) are needed to compute them. While progress on the classi�cation
aspects was quick in the early days, new results started to become scarcer and scarcer. The di�culty
of the classi�cation problem can be explained in several ways. First, from a logical point of view,
the question of showing whether a complexity class cannot contain a given function corresponds
to showing the negation of an existential statement. But the severe di�culty of this problem can be
understood through negative results known as barriers [1, 6, 26], i.e. results stating that currently
known methods cannot solve current open problems.
Implicit Computational Complexity (���) aims at studying computational complexity only in

terms of restrictions of languages and computational principles, for instance considering restrictions
on recursion schemes, and was established by Bellantoni and Cook’ landmark paper [7], and
following work by Leivant and Marion [23, 24]. Amongst the di�erent approaches to ���, several
results use Girard’s linear logic [15], a re�nement of intuitionnistic logic which accounts for the
notion of resource. Linear logic introduces a modality ! marking the “possibility of duplicating” a
formula �: the formula � shall be used exactly once, while the formula !� can be used any number
of times. Modifying the rules governing this modality then yields variants of linear logic capturing
complexity classes, e.g. the class P���� is characterised by ��� [17], ��� [22] and ���� [2, 5], while
Kalmar’s elementary functions [21] are captured by ��� [11].

The current work is part of a large programme aiming at developing a new approach to implicit
computation complexity [36, 37, 39], based on linear realisability models – realisability models of
linear logic. While standard ��� approaches cannot lead to new separation results, this alternative
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semantic variant of ��� opens the way to use invariants from dynamical systems to prove complexity
classes are not equal.
The di�erence with previous approaches lies in the use of types. ICC traditionally use typing

systems as constraints excluding some programs: any behaviour that could lead to, say, superpoly-
nomial execution time, will be forbidden by the type system. As a consequence, no program with
a super-polynomial running time will be typable. Moreover, if the type system is well-designed
it remains complete: any polynomial time computable function can be computed by a program
following the typing discipline. But this result is extensional, and the majority of polynomial time
algorithms are in fact not typable in the considered systems, making the approach unusable to
tackle open separation problems. In realisability models, one starts from a model of computation,
and no further constraints are imposed. Types are understood as descriptors rather than constraints:
a program will be of type � ! ⌫ as long as it produces an element of type ⌫ when given an input
of type �. The constraints will therefore come from the model of computation considered, not the
types.

Recently, the author proposed to exploit realisability models to provide new proof methods for
separation [30, 31, 37]. In essence, the guiding intuition is that a computation should be mathe-
matically modelled as a dynamical system, in the same way physical phenomena are. Obviously,
while a computation (i.e. a run of a program) is deterministic and can be represented as such, a
program is not in general: it might be e.g. probabilistic, deterministic, and may represent in itself
several possible runs on a given input. His proposal is therefore to work with generalisations of
dynamical systems introduced under the name of graphings, which is used to abstract the notion
of transition function. Graphings are furthermore induced by a monoid action U : " y - , a
monoid homomorphism from " to endomorphisms of - , representing a model of computation:
- represents the space of con�gurations of a machine (e.g. for Turing machines, the contents of
the tape and position of the head), and " is generated by a set of basic instructions (e.g. such as
"move the head to the right"). The overall method then relies on a theorem [35] stating that the
collection of graphings induced by a monoid action onto a space U : " y - gives rise to a model
of (fragments of) linear logic.

More speci�cally, the characterisations are obtained as follows [37]. Consider a monoid action U
that will be used to characterise a complexity class. One picks a monoid action V extending U (i.e. V
is de�ned from U by adding endormorphisms) such that the logic induced by V is at least Elementary
Linear Logic (���). This allows for the de�nition, in the induced model, of the type !Nat2 ( Bool1
of V-graphings (programs in the model of computation described by V) that compute predicates
over binary strings. As V extends U , one can further consider the set of U-graphings in this type
!Nat2 ( Bool. These are the programs computing predicates over binary strings and typable in the
logic induced by U (which is less expressive than ���): the set of those predicates is the complexity
class characterised by U .

The �rst formal result obtained in this way [37] provided a correspondence between a hierarchy
of group actions m1,m2, . . . ,m: , . . . ,m1 and a hierarchy of non-deterministic complexity classes
between (and including) R������– the class of regular languages – and ��NL�������. We insist
on the fact that this result characterises ��NL�������– even though it is know to be equal to
NL�������– because the technique developed captures the notion of acceptance of the former.
Moreover, although both regular languages and NL������� are closed under complementation,
this is not known for the intermediate classes characterised. Choosing di�erent monoid actions lead
to models in which the represented programs are of limited complexity, formalising an intuition
that already appeared in the more involved context of operator algebras [36].

1In practice, the type considered is rather !Nat2 ( NBool where NBool is a non-deterministic version of Bool.
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Monoid Action deterministic model non-deterministic model probabilistic model
m1 R������ R������ R������ S���������
...

...
...

...
...

m: �: �: ����: �:
...

...
...

...
...

m1 L������� NL������� ��NL������� PL�������
n1 P���� P���� P���� PP����

Fig. 1. Known characterisations. Contributions of the current paper are shown in blue cells.
Here, �: (resp. �: , �: ) is the class of languages decided by two-way k-heads (resp. nondeterministic, probabilistic) automata. Moreover, we
distinguish two columns in the non-deterministic case as di�erent tests lead to di�erent characterisations. Lastly, we distinguish NL�������
and ��NL������� despite the Immerman–Szelepcsényi theorem.

One hope for complexity theory is that the equivalence between monoid actions de�ned as induc-
ing the same complexity class could be formally related to standard equivalences of monoid/group
actions, such as orbit equivalence. More precisely, one can ask the following question: is it true that
if two actions U and V are not orbit equivalent, then they characterise di�erent complexity classes?
This would enable the use of invariants for orbit equivalence – such as ✓2-Betti numbers [14] or
cost [13] – to obtain separation results (i.e. showing that two complexity classes are di�erent).
This approach to separation is further strengthened by two recent results. The �rst [38] relates
the notion of orthogonality – which is used to de�ne types – with zeta functions of dynamical
systems. De�ned in terms of (�nite) orbits, the zeta function of a dynamical system is an invariant
for orbit equivalence. The second result [39] reformulates and strengthens lower bounds results for
algebraic models of computation by using graphings to exploit topological entropy – an invariant
for conjugacy: an equivalence of actions �ner than orbit equivalence.

Contributions. The current paper extends the previous characterisations to the corresponding
deterministic, non-deterministic (with the notion of acceptance of NL�������), and probabilistic
hierarchies, at the same time capturing the polynomial time constraint. This is an important step
in the overall program, as it shows the techniques apply to several computational paradigms,
and extend to superlinear space complexity classes. As such, it puts current open problems in
complexity, such as L������� =? P����, within reach of the potential separation techniques
mentioned above. From a more general point of view, the techniques provides the �rst Curry-
Howard implicit characterisations2 of probabilistic complexity classes, such as PL������� (resp.
PP����) of problems decidable (with unbounded error) by a probabilistic machine using logarithmic
space (resp. polynomial time) in the input. Figure 1 recapitulates3 the known characterisations
using the proposed approach, showing the results of the current paper in blue cells.

2 INTERACTION GRAPHS MODELS
Interaction Graphs (��) models of linear logic were developed in order to generalise Girard’s
geometry of interaction (���) constructions to account for quantitative aspects, in particular
adapting to non-deterministic and probabilistic settings. The aim of the ��� program approach is to
obtain a dynamic model of proofs and their cut-elimination procedure, i.e. a semantics in which

2Some implicit characterisation of a few probabilistic classes already exist [10, 20], but they are not based on the Curry-
Howard correspondence and do not apply to such a large extent of classes.
3This table is not exhaustive, but shows the most common classes. In particular, this paper also characterises numerous
classes not shown here, notably the classes of languages recognized by :-head two-way atutomata with a pushdown stack
where : is a �xed integer.
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a program % applied to an argument 0 do not possess the same interpretation as the result of the
computation (as opposed to denotational semantics). As a consequence, ��� (and hence ��) models
comprise a mathematical counterpart of cut-elimination (or equivalently, program execution). One
key insight of the author’s work on �� models is that this mathematical counterpart, called the
execution formula by Girard, can be understood as computing �nite orbits in a dynamical system.
We provide here a quick overview of the major concepts used in the paper but refer to previous
work for full details [27, 35] and illustrations [31].

2.1 Abstract models of computation
In the general setting, graphings can be de�ned in many di�erent �avours: discrete, topological,
measurable, etc. In this paper, we will be working with measurable graphings, and will refer to
them simply as graphings. Graphings act on a chosen space (hence here, on a measured space); the
de�nition of graphings makes sense for any measured space X, and under some mild assumptions
on X it provides a model of (at least) Multiplicative-Additive Linear Logic (MALL) [33–35].

In order to de�ne an Interaction graph model, two elements are needed. The �rst is a space X. In
full generality, this space could be discrete, a topological or measured space, a (topological) vector
space, etc. In this paper, we will only consider measured spaces. This space intuitively corresponds
to a space of con�gurations of the machines in the model of computation considered. The second
element is a monoid action U : " y X. In practice, this monoid action can be described through the
action of a set of generators � . I.e. each generator de�nes an endomorphism of X and the collection
of endomorphisms {U (<) | < 2 � } is enough to recover the full action U .

Example 1. As an example, let us consider Turing machines with a single tape. A natural represen-
tation of the model of computation would be an action of the basic instructions of a Turing machine
(writing a symbol and moving the head on the tape) on a space X representing the possible con�g-
urations of a Turing machine. Once could for instance choose X as the set {0, 1,¢}Z¢ of Z-indexed
sequences in {0, 1,¢} that are almost-always equal to ¢ (which is understood as representing blank
cells on the tape). With the convention that the head of the Turing machine is located above the
0-th indexed element of the sequence, the basic instructions of a Turing machines give rise to the
following maps:

• right : (B8 ) 7! (C8 ) with C8 = B8+1 for all 8;
• left : (B8 ) 7! (C8 ) with C8 = B8�1 for all 8;
• write⇤ : (B8 ) 7! (C8 ) (⇤ 2 {0, 1,¢}) with C0 = ⇤ and C8 = B8 for 8 < 0;

We now �x the measure space of interest in this paper.

De�nition 2 (The Space). We de�ne the measure spaceX = R⇥ [0, 1]N⇥{¢, 0, 1}N where R⇥ [0, 1]N
is considered with its usual Borel f-algebra and Lebesgue measure. The space {¢, 0, 1}N is endowed
with the natural topology4, the corresponding Borel f-algebra and the natural measure given by
` (+ (F)) = 3�lg(F ) .

Borrowing the notation introduced in earlier papers [33, 37], we denote by (G, s, c) the points in
X, where s and c are sequences for which we allow a concatenation-based notation, e.g. we write
0 · s for the sequences whose �rst element is 0. Given a permutation f over the natural numbers,
we write f (s) the result of its natural action on the N-indexed list s.

Graphings are then de�ned as objects acting on the measured space X. A parameter in the
construction allows one to consider subsets of graphings based on how they act on the space. To do

4I.e. the topology induced by basic cylindrical open sets + (F ) = { 5 : N ! {0, 1} | 88 2 [=], 5 (8 ) = F8 } where F is a
�nite word of length = on the alphabet {0, 1}.
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this, we �x a monoid action by measurable maps that abstractly describes a model of computation.
Again, while graphings can be de�ned in full generality, some conditions on the chosen actions are
needed to construct models of MALL [35]. The following monoid actions, which are of of interest
in this paper, do satisfy these additional requirements.

De�nition 3 (Monoid actions). For all integer 8 > 1, we de�ne the translations
tz : (x, s, c) 7! (x + z, s, c).

For all integer 8 > 1, and all bijection f : N ! N such that f (:) = : for all : > 8 , we de�ne the
maps

pf : (x, s, c) 7! (x,f (s), c).
We denote by m8 the monoid generated by those maps, and by m1 the union [8>1m8 .

We also consider the following maps:
pop :(G, s, 2 · c) 7! (G, s, c),

push0 :(G, s, c) 7! (G, s, 0 · c),
push1 :(G, s, c) 7! (G, s, 1 · c),
push¢ :(G, s, c) 7! (G, s,¢ · c).

We denote by n8 the monoid generated the monoid action m8 extended by those, and by n1 the
union [8>1n8 .
Finally, let us denote by 0+̄1 the fractional part of the sum 0 + 1. We also de�ne the monoid

actions m̄8 (resp. n̄8 ) as the smallest monoid actions containing m8 (resp. n8 ) and all translations
t̄_ : (G,0 · s) 7! (G, (0+̄_) · s) for _ in [0, 1].

2.2 Programs as Graphings
We are now able to de�ne graphings. Suppose given a monoid action U : " y X. Graphings
are formally de�ned as quotients of graph-like objects called graphing representatives. Graphing
representatives are families of weighted edges, similarly to a graph. Intuitively, a weighted edge is a
triple ((,<,l) where ( is a subspace of X,< is an element of the monoid " , and l is a weight.
Formally, the de�nition is more involved since one need to introduce a notion of control states: a
graphing representative therefore comes with an additional stateset ( , and edges have a fourth
component @ ! @0 with @,@0 2 ( . While the formal de�nition is involved, one can intuitively think
of a graphing representative as a transition graph.

Example 4. In the example of Turing machines above, we de�ne the following subspaces:
X0 = {(B8 ) 2 X | B0 = 0} (0 2 {0, 1,¢}).

Note that a con�guration belongs to X8 if and only if the head currently reads the symbol 8 . The
following graphing (with stateset {even, odd, accept, reject}) represents a Turing machine that
accepts inputs with an even number of 0 before the �rst ¢ symbol:

{(X0, right, 1even ! odd), (X0, right, 1, odd ! even),
(X1, right, 1even ! even), (X1, right, 1odd ! odd),

(X¢, right, 1even ! accept), (X¢, right, 1odd ! reject)}

As in previouss work [37], we �x themonoid of weights of graphings ⌦ to be equal to [0, 1]⇥{0, 1}
with usual multiplication on the unit interval and the product on {0, 1}.
Notation 5. To simplify notations, we write elements of the form (0, 0) as 0 and elements of the
form (0, 1) as 0 · 1. On this set of weights, we will consider the �xed parameter map<(G,~) = G~
(used in Theorem 11).
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We are now ready to give the formal de�nition of graphing representatives.

De�nition 6 (Graphing representative). Let U : " y X be a monoid action, +⌧ a measurable
subset of X, and (⌧ a �nite set. A (⌦-weighted) U-graphing representative ⌧ of support +⌧ and
stateset ⇡⌧ is a family:

{((⌧4 ,<⌧
4 ,l

⌧
4 , i

G
e ! oGe ) | e 2 EG},

where:
• (⌧4 is a measurable subspace5 of +⌧ ⇥ ⇡⌧ ;
• <⌧

4 is an element of" such that q⌧
4 ((⌧4 ) ✓ +⌧ ;

• l⌧
4 2 ⌦ is a weight;

• and iGe , o
G
e are elements of ⇡⌧ .

We will refer to elements of ⇢⌧ as edges. For any edge 4 2 ⇢⌧ the set (⌧4 ⇥ {iGe } is called the source
of 4 , and the set )⌧

4 ⇥ {oGe } where )⌧
4 = q⌧

4 ((⌧4 ) is called the target of 4 .

The notion of graphing representatives captures both an action on a space and a speci�c rep-
resentation of it. As a simple example, suppose given two subspace ( and ( 0 such that ( \ ( 0 is
negligible. Then the graphing representatives � = {(( [ ( 0,<,l, i ! o)} and � 0 = {((,<,l, i !
o), (S0,m,l, i ! o)} somehow represent the same action on - in two di�erent ways. The notion
of graphing is obtained by dissociating the action from the speci�c representation.

In earlier work [35], the equivalence relation used in the quotient was de�ned through a notion
of re�nement. To ease the presentation, we here provide a more direct reformulation.

De�nition 7 (Graphing). We de�ne on graphing representatives the equivalence de�ned from:

{(( [ ( 0,<,l, i ! o)} and ( \ ( 0 =0.4 . ;
⇠ {((,<,l, i ! o), (S0,m,l, i ! o)},

by contextual closure – i.e. if � ⇠ � 0, then ⌧ [ � ⇠ ⌧ [ � 0.
A graphing is an equivalence class of graphing representatives w.r.t. this equivalence.

Since all operations considered on graphings were shown to be compatible with this quotienting
[35], i.e. well de�ned on the equivalence classes, we will in the following make no distinction
between a graphing – as an equivalence class – and a graphing representative belonging to this
equivalence class.

Remark 8. As stated in a recent paper [38], the set of deterministic (resp. probabilistic) U-graphings is
in one-to-one correspondance with partial dynamical systems (resp. discrete-image sub-probability
kernels) 5 : - ô - whose graph {(G, 5 (G)) | G 2 dom(5 )} is included in the pre-order P(U) =
{(G,~) | 9< 2 ",U (<) (G) = ~}, which generalises the notion of Borel equivalence relation [36].

2.3 Linear Realisability models
The author showed that, under mild hypotheses on the monoid action that are satis�ed in the
examples considered here, the set of U-graphings assemble into realisability models for (fragments
of) linear logic. This construction is based on two notions: execution, an operation which represents
cut-elimination (or equivalently, the execution of programs), and orthogonality, a binary relation
accounting for linear negation.
Execution is de�ned in terms of alternating paths. Given two graphings � , ⌧ , one de�nes their

execution as the graphing of maximal alternating paths between them. In terms of the corresponding
5As ⇡⌧ is considered as a discrete measure space, a measurable subset of the product is simply a �nite collection of
measurable subset indexed by elements of ⇡⌧ .
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dynamical systems 5 , 6 – when those graphings are deterministic –, this de�nes the set of maximal
orbits in the composition 6 � 5 . The following de�nition, though involved, describes a graphing
representative of this set in full generality.

Notation 9. We denote AltPath(� ,⌧) the set of alternating path between � and ⌧ , i.e. the set of
paths c = 4142 . . . 4= such that for all 8 = 1, . . . ,= � 1, 48 2 � i� 48+1 2 ⌧ . Given a path c = 4142 . . . 4= ,
we de�ne qc = q41 � q42 � · · · � q4= , its weight lc =

Œ=
8=1l48 , and its domain (c – the maximal

subspace on which qc is well-de�ned.

De�nition 10 (Execution). Let � and ⌧ be graphings of respective supports + � = + ] ⇠ and
+⌧ = ⇠ ], with + \, of null measure, and take representatives such that the source and target
of all edges are either entirely included in ⇠ or do not intersect ⇠ . Their execution � ::⌧ is the
graphing of support + ], and stateset ⇡� ⇥ ⇡⌧ de�ned as:

� ::⌧ =
��
(c ,qc ,lc , (ie1 , ie2 ) ! (oen�1 , oen )

�
| c = 41, 42, . . . , 4= 2 AltPath(� ,⌧)} .

We now recall the notion of measurement. When restricted to the monoid actions considered in
this paper, the expression of the measurement can be simpli�ed. We therefore only give here this
simpler expression and point the curious reader to earlier work for the general case [35].

De�nition 11. The measurement between two graphings is de�ned as

J� ,⌧K =
’

c2Cycles(� ,⌧ )

π
supp(c )

<(ldqc (G )
c )

dqc (G)
3_(G),

where dqc (G ) = inf{= 2 N | q=
c (G) = G} (here inf ; = 1), Cycles(� ,⌧) is the set of alternating

cycles6 between � and ⌧ , and the support supp(c) of c is the set of points G belonging to a �nite
orbit [35, De�nition 41].

The measurement is used to de�ne linear negation. But �rst, let us recall the notion of project
which is the semantic equivalent of proofs, and uses formal sums [32].

De�nition 12. A project of support + is a pair (0,�) of a real number 0 and a �nite formal sum
� =

Õ
82� U8�8 where for all 8 2 � , U8 2 R and �8 is a graphing of support + .

We can then de�ne an orthogonality relation on the set of projects. Orthogonality captures
the notion of linear negation and somehow translates the correctness criterion for proof nets.
Its de�nition is based on the measurement de�ned above, extended to formal weighted sums of
graphings by “linearity” [32, 35].

De�nition 13. Two projects (0,�), (1,⌫) are orthogonal – written (0,�) ‹ (1,⌫) – when they
have equal support and J(0,�), (1,⌫)K < 0,1. We de�ne the orthogonal of a set ⇢ as ⇢‹ = {(1,⌫) |
8(0,�) 2 ⇢, (0,�) ‹ (1,⌫)} and write ⇢‹‹ the double-orthogonal (⇢‹ )‹ .

Orthogonality allows for a de�nition of types. In fact the models are de�ned based on two notions
of types – conducts and behaviours [32]. Conducts are simple to de�ne but while their de�nition is
enough to de�ne a model of multiplicative linear logic, dealing with additives requires the more
re�ned notion of behaviour.

De�nition 14. A conduct of support+� is a set A of projects of support+� such that A = A‹‹ . A
behaviour is a conduct such that for all (0,�) in A (resp. A‹ ) and for all _ 2 R, (0,� + _;) belongs
to A (resp. A‹ ) as well. When both A and A‹ are non-empty, we say A is proper.
6These are understood as paths whose source equals its target, quotiented by the relation c · 4 ⇠ 4 · c .
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Conducts provide a model of Multiplicative Linear Logic. The connectives ⌦,( are de�ned as
follows: if A and B are conducts of disjoint supports +�,+ ⌫ , i.e. +� \+ ⌫ is of null measure, then:

A ⌦ B = {a :: b | a 2 A, b 2 B}‹‹ ,

A ( B = {f | 8a 2 A, f ::a 2 B}.

However, to de�ne additive connectives, one has to restrict the model to behaviours. In this paper,
we will deal almost exclusively with proper behaviours. Based on the following proposition, we
will therefore consider mostly projects of the form (0, !) which we abusively identify with the
underlying sliced graphing !. Moreover, we will use the term “behaviour” in place of “proper
behaviour”.

P���������� 15 ([32, P���������� 60]). If A is a proper behaviour, (0,�) 2 A implies 0 = 0.

Finally, let us state the fundamental theorem for the interaction graphs construction in the
restricted case we just exposed7.

T������ 16 ([35, T������ 1]). For any monoid action U , the set of behaviours de�nes a model of
Multiplicative-Additive Linear Logic (����) without multiplicative units.

Most monoid actions will in fact model larger fragments of linear logic. Since we will here
work in a model of Elementary Linear Logic, we now explain how exponential connectives are
de�ned. Following our previous work [37] we �x a bijective measure-preserving pairing function:
[·, ·] : [0, 1]2 ! [0, 1], and de�ne for all set � and integers 3 < =, the set !3= (�):

{(0, [G,~] · s, c) | (0, s, c) 2 �,=G 2 [3,3 + 1],~ 2 [0, 1]}.

Given a measurable map 5 : � ! ⌫ and integers 3,3 0 < =, we also de�ne the measurable map:

!=3,3 0 (5 ) :
⇢

!=3 (�) ! !=3 0 (⌫)
(0, G · s, c) 7! (00,~ · s0, c),

where (00, s0, c 0) = 5 (0, s, c) and ~ = G + (3 0 � 3)/=.
This can be used to de�ne exponential connectives by encoding the stateset into the con�guration

of the machine.

De�nition 17. Given a graphing ⌧ = {((⌧4 ,q⌧
4 , i

G
e ! oGe ) of stateset ⇡ = [=], we de�ne the

promotion !⌧ of ⌧ as the following graphing of stateset [0]:

{(!=
iGe
((⌧4 ), !=iGe ,oGe (q

⌧
4 ), 0 ! 0) | 4 2 ⇢⌧ }.

Given a behaviour A, we de�ne the conduct !A as the set {(0, !⌧) | ⌧ 2 A}‹‹ .

This previous de�nition is a perennisation [29, 34], i.e. it maps arbitrary graphings to graphings
with trivial dialect [0]. This implies that graphings of the form !� are duplicable [34, Proposition
36]. As a consequence, for any conduct !A8 there exists a graphing ⇠ implementing contraction:
(0,⇠) 2 !A ( !A ⌦ !A.
One can also check that the above de�nition also allows for functorial promotion, i.e. there exists

(0, %) in !(A ( B) ⌦ !A ( !B. The proof of this fact follows exactly the proof in [37].

7The general construction allows for other sets of weights as well as whole families of measurements [35].
8The conduct !A is not a behaviour since it cannot satisfy the in�ation property. However, if B is an arbitrary behaviour,
!A ( B is a behaviour [34, Corollary 57].
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T������ 18. Consider the monoid action p generated by n̄1 together with the additional maps
pair and pair�1, with

pair : (0, G · ~ · s, c) 7! (0, [G,~] · s, c).
For any monoid action extanding p, the set of conducts and behaviours is a model of Elementary Linear
Logic (���).

All the monoid actions considered in this paper are restrictions of the monoid action p. For any
such action m, we can thus consider the model of ��� induced by p and study within this model
the set of m-graphings of type Nat2 ( NBool. Before detailing this, we de�ne the deterministic
and sub-probabilistic submodels, that will be used in later sections.

2.4 Deterministic and Probabilistic Models
We furthermore use speci�c submodels de�ned by putting restrictions on the graphings considered.
In order for this notion to be well-de�ned, one should suppose that the unit interval [0, 1] endowed
with multiplication is a submonoid of ⌦.

De�nition 19. A graphing ⌧ is deterministic if all edges have weight equal to 1 and the following
holds:

`
⇣n
G 2 X | 94, 5 2 ⇢⌧ , 4 < 5 and G 2 (⌧4 \ (⌧5

o⌘
= 0.

A graphing ⌧ is sub-probabilistic if all the edges have weight in [0, 1] and the following holds:

`
©≠
´
8>><
>>:
G 2 X |

’
42⇢⌧ ,G2(⌧4

l⌧
4 > 1

9>>=
>>;
™Æ
¨
= 0.

It was shown that both these notions are closed under execution [38], i.e. the execution of deter-
ministic graphings is deterministic, similarly for sub-probabilistic graphings. As a consequence,
deterministic (resp. sub-probabilistic) graphings de�ne a submodel of M[⌦,m] – the set of all
⌦-weightedm-graphings – which we denoteMdet [⌦,m] (resp.Mprob [⌦,m]). Since the interpreta-
tions of proofs by graphings used in the proofs of theorem 16 and theorem 18 are all deterministic,
the logic induced by these submodels is the same as the logic induced byM[⌦,m].

3 CHARACTERISING COMPLEXITY CLASSES
3.1 Integers and Machines
We now review some de�nitions necessary to de�ne the characterisation of complexity classes
in the Interaction Graphs models [37]. We start by the representation of binary words, which is
related [3, 4] to the type of binary lists in Elementary Linear Logic [11, 16]:

BList := 8- !(- ( - ) ( !(- ( - ) ( !(- ( - ).

Intuitively a binary word, say 001, is represented as a program that takes two functions 50 and 51 of
type - ! - , and produces the function 50 � 50 � 51. This program can also be de�ned (in Krivine’s
notation) as the lambda-term _50_51_G .(50) (50) (51)G . This lambda-term corresponds to a proof of
BList in Elementary Linear Logic which contains exactly four axioms (�g. 2). These four axioms
give rise to the representation of the proof as a graphing in the Interaction Graph model. The latter
representation uses six subspaces, corresponding to the six occurrences of - in the formula BList.
We will �rst introduce some notations for these subspaces and then de�ne formally the graphing
representations of binary words.
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ax
- ` -

ax
- ` - ⌦

- ,- ( - ` -
ax

- ` - ⌦
- ,- ( - ,- ( - ` -

ax
- ` - ⌦

- ,- ( - ,- ( - ,- ( - ` -
`

- ( - ,- ( - ,- ( - ` - ( -
!

!(- ( - ), !(- ( - ), !(- ( - ) ` !(- ( - )
ctr

!(- ( - ), !(- ( - ) ` !(- ( - )
8

` 8- , !(- ( - ) ( !(- ( - ) ( !(- ( - )

Fig. 2. Proof corresponding to _50 ._51 ._G .(50) (50) (51)G .

Notation 20. We write ⌃� the set {0, 1,¢} ⇥ {in, out}. We also denote by ⌃�a,r the set ⌃� [ {a, r},
where a (resp. r) stands for accept (resp. reject).

Initial segments of the natural numbers {0, 1, . . . ,=} are denoted [=]. Up to renaming, all statesets
can be considered to be of this form.

Notation 21. We �x once and for all an injection  from the set ⌃�a,r to intervals in R of the form
[:,: + 1] with : 2 Z. For all E 2 ⌃�a,r, we write hEi/. the measurable subset  (E) ⇥. ⇥/ of X, where
. ⇢ [0, 1]N and / ⇢ {¢, 0, 1}N.

When . = [0, 1]N (resp. / = {¢, 0, 1}N), we omit the subscript (resp. superscript). The notation
extends to subsets ( ⇢ ⌃�a,r by h(i = [E2( hEi (a disjoint union).
De�nition 22. Given a word w = 0102 . . . 0: , we denote [w] the graph with set of vertices + [w] ⇥
( [w] = ⌃� ⇥ [:], set of edges ⇢ [w] = {A , ;} ⇥ [:], and source and target maps B [w] and C [w] de�ned
as follows:

B [w] = (A , 8) 7! (08 , out, i)
(;, 8) 7! (08 , in, i)

C [w] = (A , 8) 7! (08+1, in, i + 1 mod k + 1)
(;, 8) 7! (08�1, out, i � 1 mod k + 1)

Notation 23. We write B [w]
⌃�

(resp. C [w]
⌃�

) the projection of the source (resp. target) map onto ⌃�, and
B [w][: ] (resp. C

[w]
[: ] ) the projection of the source (resp. target) map onto [:].

The graph thus de�ned is the discrete representations of w, that one can relate [3] to the rep-
resentation shown in �g. 2. Now, a word graphing is somehow a geometric representation of a
graph representation of a word: it can be de�ned as a graphing representative with the same graph
structure as a word representation.

De�nition 24. Let w be a word w = 0102 . . . 0: over the alphabet ⌃. The canonical graphing
representation {w} of w is the graphing:

(hB [w]
⌃�

i,q4 , 1, B [w][: ] ! C [w][: ] ) | (A , 8) 2 ⇢ {w} },

where q4 : hB [w]
⌃�

i ! hC [w]
⌃�

i is a translation. A word graphing, of stateset (, is a graphing obtained
from {w} by renaming the stateset w.r.t. an injection (, 7! [:].

We write Gp(w) the set of word graphings for w.

De�nition 25. Given a word w, a representation of w is a graphing !! where ! belongs to Gp(w).
The set of representations of words in ⌃ is denoted Rep, the set of representations of a speci�c
word w is denoted Rep(w).

We de�ne the conduct !Nat2 = (Rep)‹‹ .
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A explained in the introduction, we will be interested in machines of type !Nat2 ( NBool,
where NBool should be understood as a non-deterministic version of Bool.

De�nition 26. We de�ne the (unproper) behaviour NBool as Tha,ri , where for all measurable sets
+ the behaviour T+ is de�ned as the set of all projects of support + .

3.2 Computations, Tests and Languages
De�nition 27. An m-graphing⌧ is �nite when it has a representative � whose set of edges ⇢� is
�nite.

De�nition 28. For all monoid actionm, we de�ne Pred (m) as the set ofm-graphings in !Nat2 (
NBool.

A predicat m-machine over the alphabet ⌃ is a �nite m-graphing belonging to Pred (m).
The computation of a given machine on a given input is represented by the execution, i.e. the

computation of paths de�ned in Theorem 10. The result of the execution is an element of NBool,
i.e. somehow a generalised boolean value9.

De�nition 29 (Computation). Let" be am-machine, w a word over the alphabet ⌃ and !! 2 !Nat2.
The computation of" over !! is de�ned as the graphing" :: !! 2 NBool.

The principle of the approach is to use the orthogonality (which de�nes types) to capture the
notion of acceptance. This is done using tests.

De�nition 30. A test is a family of projects of support ha, ri.
We now de�ne the language characterised by a machine. For this, one could consider existential

LT
9 (") and universal LT

8 (") languages for a machine" w.r.t. a test T :

LT
9 (") = {w 2 ⌃⇤ | 8t8 2 T , 9w 2 Rep(w)," ::w ‹ t8 }

LT
8 (") = {w 2 ⌃⇤ | 8t8 2 T ,8w 2 Rep(w)," ::w ‹ t8 }

The best situation is in fact when both de�nitions coincide, as it ensures that only one represen-
tation of w need to be considered to check whether w belongs to the language or not. This situation
is captured by the notion of uniform test.

De�nition 31 (Uniformity). Letm be a monoid action. The test T is said uniformw.r.t.m-machines
if for all such machine" , and any two elements w,w0 in Rep(w):

" ::w 2 T‹ if and only if" ::w0 2 T‹

We write in this case LT (") = LT
9 (") = LT

8 (").
We now have introduced all the needed ingredients to state and prove characterisations of

complexity classes. We will �rst recall previously known results [37].

Notation 32. For * ⇢ X, we de�ne Id* as the graphing with a single edge and stateset [0]:
{(hri, x 7! x, 1 · 1, 0 ! 0)}.
P���������� 33. The test T� , de�ned as

{t�Z = (Z , Idhri) | Z < 0},
is uniform w.r.t. n1-machines.

9For the speci�c case of “deterministic machines”, the result in fact belongs to the subtype Bool of booleans.
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Note that since it is uniform w.r.t. n1-machines, it is uniform w.r.t. m-machines for any sub-
monoid action m – hence w.r.t. all monoid actions considered in this paper. We will now de�ne
classes de�ned from non-deterministic m-machines, i.e. �nite graphing representatives of type
Pred (m) in the modelM[{0, 1},m] (i.e. weights are either 0 or 1).
De�nition 34. We de�ne the complexity class

Predco (m) = {LT� (") | " m-machine inM[{0, 1},m]}.
We recall the main characterisation obtained in the author’s previous paper [37], and refer to

Theorem 40 for the de�nition of the characterised complexity classes. We write 2>2# 5 0(i) (resp.
2>2# 5 0(1)) the set of languages decided by non-deterministic 2-way automata with 8 heads (resp.
arbitrarily large number of heads) with the complementary acceptance condition: all runs are
accepting. The notion is de�ned properly in section 5.

T������ 35. For all 8 2 N⇤ [ {1},
Predco (mi) = ��2N��(i).

As particular cases,

Predco (m6) = R������
Predco (m1) = ��NL�������.

3.3 Characterising NL�������
The starting point of this work was the realisation that one can de�ne another test T+ capturing
the notion of acceptance in NL�������. Based on this idea, and using technical lemmas from the
previous paper, we can characterise easily the hierarchy of complexity classes de�ned by :-head
non-deterministic automata with the standard non-deterministic acceptance condition (i.e. there is
at least one accepting run). We state the results and provide explanations, but we do not provide a
formal proof. Indeed, while an adaptation of the techniques used in previous work [37] could be
used, the result follows from the more general method exposed in the next sections.

Notation 36. For * ⇢ X, we de�ne Id1/2* as the graphing with a single edge and stateset [0]:
{(hri, x 7! x, 12 · 1, 0 ! 0)}.
P���������� 37. The test T+ de�ned as the family

{(0, Id1/2�=
) | �= = hai [0, 1n ]n⇥ [0,1]N , n 2 N}

is uniform w.r.t. n1-machines.

De�nition 38. We de�ne the complexity class Predndet (m) as the set
{LT+ (") | " m-machine inMndet [{0, 1},m]}.

The considered test does indeed capture the usual condition for acceptance of non-deterministic
machines. In fact, the sole element (0, Id1/2hai) is enough to obtain completeness, by a result from our
earlier work [37, Proposition 46]. We do not state it here, as it is generalised by Theorem 51 below.
From these results, a :-heads two-way automaton M accepts a word w if and only if there exist at
least one alternating path between the graphing translation {M} of" and the word representation
!{w} whose source and target is haiY for some subspace . . Thus, M accepts w if and only if there
are alternating cycles between {M} :: !{w} and Id1/2hai , i.e. if and only if J{M} :: !{w}, Id1/2haiK < 0,1, or

equivalently if and only if {M} :: !{w} ‹ Id1/2hai .
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However, the whole family of tests is required to obtain soundness. Indeed, in the general case,
it might be possible that a m8-machine ⌧ passes the test {(0, Id1/2hai)} by taking several (possibly
di�erent) paths through the execution⌧ :: !{w}, creating a cycle of arbitrary length between⌧ :: !{w}
and {(0, Id1/2hai)}. In that case, it is not clear that the existence of such a cycle can be decided with
some automaton" . However, if⌧ :: !{w} passes all tests in T+, it imposes the existence of a cycle of
length 2 between⌧ :: !{w} and Id1/2hai , something that can be decided by an automaton. The existence
of the length 2 cycle is enforced by the restriction of the test to subspaces of the form [0, 1= ]; we
refer the the proof of lemma 58 for more details.

A simple adaptation of the arguments used in the proof of theorem 35 then provides a proof of
the following. We omit the details for the moment, as the next sections will expose a generalisation
of the technique (and the theorem) that also applies to the probabilistic case and to automata
with a pushdown stack. Here, we write 2# 5 0(i) (resp. 2# 5 0(1)) the set of languages decided by
non-deterministic 2-way automata with 8 heads (resp. arbitrarily large number of heads) with the
standard notion of acceptance: there exists an accepting run. The notion is de�ned properly in the
next section.

T������ 39. For all 8 2 N⇤ [ {1},
Predndet (mi) = 2N��(i).

In particular,

Predndet (m1) = L�������

In the following sections, we will in fact establish several extensions of this result to machines
with pushdown stacks.

4 STATEMENT OF THE RESULTS
4.1 Multihead automata with pushdown stacks
The proof of the characterisation theorem [37] relies on a representation of multihead automata
as graphings. We here generalise the result to probabilistic automata with a pushdown stack. For
practical purposes, we consider a variant of the classical notion of probabilistic two-way multihead
�nite automata with a pushdown stack obtained by:

• �xing the right and left end-markers as both being equal to the �xed symbol ¢;
• �xing once and for all unique initial, accept and reject states;
• choosing that each transition step moves exactly one of the multiple heads of the automaton;
• imposing that all heads are repositioned on the left end-marker and the stack is emptied
before accepting/rejecting.

• symbols from the stack are read by performing a pop instruction; if the end-of-stack symbol
¢ is popped, it is pushed on the stack in the next transition.

It should be clear that these choices in design have no e�ect on the sets of languages recognised.

De�nition 40. A :-heads non-deterministic two-way multihead �nite automata with a pushdown
stack (2N��+�(k)) M is de�ned as a tuple (⌃,&,!), where the transition ! is a relation that
associates to each element of ⌃:¢ ⇥& a subset of (Inst ⇥&) where Inst is the set of instructions:
({1, . . . ,:} ⇥ {in, out}) ⇥ {Id, pop, push1, push0, push¢}.
We say M is deterministic if ! is a function.

De�nition 41. A :-heads probabilistic two-way multihead �nite automata with a pushdown stack
(2P��+�(k)) M is de�ned as a tuple (⌃,&,!), where the transition function! is a map that associates
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to each element of ⌃:¢ ⇥& a sub-probability distribution over the set (Inst ⇥&) where Inst is the
set of instructions: ({1, . . . ,:} ⇥ {in, out}) ⇥ {Id, pop, push1, push0, push¢}.
Notation 42. The set of deterministic (resp. non-deterministic, resp. probabilistic) two-waymultihead
automata with : heads and without pushdown stack (i.e. not using stack instructions) is written
2dfa(:) (resp. 2nfa(:), resp. 2pdfa(:)) and the corresponding complexity class is noted 2D��(k)
(resp. 2P��(k)). The set of all deterministic two-way multihead automata [:>12dfa(:) is denoted by
2dfa. We de�ne in a similar manner the sets 2nfa and 2pfa. The corresponding complexity classes
2D��(1), 2N��(1), and 2P��(1) are known to be equal to L�������, NL�������, and PL�������
[19].

Notation 43. The set of : heads deterministic (resp. non-deterministic, resp. probabilistic) two-way
multihead automata with : heads and a pushdown stack is written 2dfa + s(:) (resp. 2nfa + s(:) ,
resp. 2pdfa + s(:)) and the corresponding complexity class is noted 2D��+�(k) (resp. 2N��+�(k),
resp. 2P��+�(k)). The set of all deterministic two-way multihead automata with a pushdown stack
[:>12dfa + s(:) is denoted by 2dfa + s. We de�ne in a similar way the sets 2nfa + s and 2pfa + s.
The corresponding complexity classes 2D��+�(1), 2N��+�(1), and 2P��+�(1) are known to be
equal to P���� [25], P����, and PP���� respectively.

Remark 44. We note that non-deterministic two-way multihead automata with a pushdown stack
characterise P���� and not NP����, as shown by Cook [9] using memoization.

4.2 Results
Before stating the theorems, we need to de�ne the complexity classes considered in the realisability
models.We already introduced two notions of tests; wewill require a last one adapted to probabilistic
models of computation.

P���������� 45. Let [ > 0. The test T+,n de�ned by

(log(1 � 1
2
.D), Id1/2haiV(¢

n )
[0, 1n ]n⇥ [0,1]N

]) | u 2 [0, n], n 2 N}

is uniform w.r.t. n1-machines.

De�nition 46. We de�ne the complexity class Predprob (m) as the set

{LT+, 12 (") | " m-machine inMprob [[0, 1],m]}.
In the remaining sections, we will establish the following theorem.

T������ 47. For all 8 2 N⇤ [ {1},
Preddet (mi) = 2D��(i) Preddet (ni) = 2D��+�(i)

Predndet (mi) = 2N��(i) Predndet (ni) = 2N��+�(i)
Predco (mi) = ��2N��(i) Predco (ni) = ��2N��+�(i)

Predprob (mi) = 2P��(i) Predprob (ni) = 2P��+�(i)

C�������� 48. As special cases of the previous theorem,

Preddet (m1) = L�������,Preddet (n1) = P����

Predndet (m1) = NL�������,Predndet (n1) = P����
Predco (m1) = ��NL�������,Predco (n1) = P����

Predprob (m1) = PL�������,Predprob (n1) = PP����
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The proofs are quite similar, even though we will need to state variants of the key lemmas
depending on the case considered: deterministic, non-deterministic (with di�erent notions of
acceptance), and probabilistic. However, the principle is the same and both directions rely on the
fact that computation is represented by paths (cf. de�nition 10) and orthogonality is based on a
measurement of cycles [38].

To prove completeness, we then show how any automata can be simulated by a graphing. This
requires the de�nition of the graphing translating the automaton, and proving that the orthogonality
translates the existence of accepting runs in a quantitative manner (i.e. in the case of probabilistic
machines, the sum of weights of the accepting paths will be equal to the probability of accepting).

The second part of the proof, soundness, is the most involved. It requires to show that given any
n1-machine" , the computation of" on the graphing representation of a word w boils down to
the computation of alternating paths between �nite graphs (namely a graph mimicking " and the
graph representation of W).

5 COMPLETENESS
We now describe a translation of multihead automata as graphings for the set of all 2P��+�(k).

Notation 49. For all probabilistic automaton M of transition !, and all pair t = ((©B,@), (8,3 0,@0)),
we denote by! (©B,@) (8,3 0,@0) the probability that M transitions to (8,3 0,@0) from the con�guration
(©B,@).
We will also write t 2!when! (©B,@) (8,3 0,@0) > 0, i.e. when the probability that the automaton

will perform the transition t is non-zero.

The encoding is heavy but the principle is easy to grasp. We use the stateset to keep track of
the last values read by the heads, as well as the last popped symbol from the stack. The subtlety
is that we also keep track of the permutation of the heads of the machine. Indeed, the graphing
representation has the peculiarity that moving one head requires to use a permutation to place this
head on the �rst copy of [0, 1]. As a consequence, to keep track of where the heads are positioned
at a given time, we store a permutation that we update when applying each instruction. Lastly, the
stack is initiated with the symbol ¢; this is done by simply restricting the source of the edges from
the initial state to the subspace + (¢) of sequences starting with the symbol ¢.

De�nition 50. Let M = (⌃,&,!) be a 2P��+�(k). We de�ne {M} a graphing in nk with dialect – set
of states – & ⇥G: ⇥ {¢, 0, 1}: ⇥ {¢, 0, 1} as follows.

• each transition of the form t = ((©B,@), (a,@0)) with @ < init and a = (8,3 0) ⇥ ] with ] < pop
gives rise to a family of edges indexed by a permutation f and an element D of {¢, 0, 1}:

h(0,3)i ⇥ {(@,f,©B,D)}
�! h(B8 ,3 0)i ⇥ {(@0, g1,f (8 ) � f,©B [Bf�1 (1) := B],D)},

realised by the map p(1,f (i) ) together with the adequate map on the stack subspace and the
adequate translation on Z, and of weight! (©B,@) (a,@0);

• each transition of the form t = ((©B,@), (a,@0)) with @ < init and a = (8,3 0) ⇥ pop gives rise
to a family of edges indexed by a permutation f and an element D of {¢, 0, 1}:

h(0,3)i+ (D ) ⇥ {(@,f,©B)}
�! h(B8 ,3 0)i ⇥ {(@0, g1,f (8 ) � f,©B [Bf�1 (1) := B],D)}

realised by the map p(1,f (i) ) composed with the pop map and the adequate translation on Z,
and of weight! (©B,@) (a,@0);
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• each transition of the form t = ((©B,@), (a,@0)) with @ = init and a = (8,3 0) ⇥ ] with ] < pop
gives rise to a family of edges indexed by an element E 2 {a, r} and an element D of {¢, 0, 1}:

hviV(¢) ⇥ {(init, Id,©¢, u)}
�! h(B8 ,3 0)i ⇥ {(@0, g1,f (8 ) ,©B [Bf�1 (1) := B],D)},

realised by the map p(1,f (i) ) together with the adequate map on the stack subspace and the
adequate translation on Z, and of weight! (©B,@) (a,@0);

• each transition of the form t = ((©B,@), (a,@0)) with @ = init and a = (8,3 0) ⇥ pop gives rise
to a family of edges indexed by an element E 2 {a, r} and an element D of {¢, 0, 1}:

hviV(¢) ⇥ {(init, Id,©¢, u)}
�! h(B8 ,3 0)i ⇥ {(@0, g1,f (8 ) ,©B [Bf�1 (1) := B],D)},

realised by the map p(1,f (i) ) together with the pop map on the stack subspace and the
adequate translation on Z, and of weight! (©B,@) (a,@0).

We now state the key lemma, essential for all later results. The proof is a simple but lengthy
induction.

L���� 51. Let M be a 2pfa + s(:). Alternating paths of odd length between {M} and !{w} of source
haiY (resp. hriY) with10 . = [0, 1

lg(w) ]: ⇥ [0, 1]N are in a weight-preserving bijective correspondence
with the accepting (resp. rejecting) runs of M on input w.

This proposition states that given an automaton M and a word w, the set of possible executions of
M on input w is in bijection with the edges in {M} :: !{w} (which, we recall, is de�ned as the maximal
alternating paths). Moreover the probability of a given execution is equal to the weight of the
corresponding edge.

C�������� 52. The probabilistic (resp. non-deterministic) automaton M accepts w with probability
? 2 [0, 1] (resp. on exactly ? 2 N runs) if and only if ? is equal to the sum of the weights of alternating
paths between {M} and !{w} of source and target hai.

This corollary is almost enough to prove the needed completeness results. First, consider the
probabilistic cas. I.e. given a probabilistic automaton M and a word w:

• w belongs to L(M) if and only if the probability that M accepts on input w is greater than 1
2 ;

• the probability that M accept on input w is equal to the sum of the weights of edges from hai
to itself in {M} :: !{w};

• by uniformity,

w 2 LT+, 12 ({M}) i� {M} :: !{w} ‹ T+, 12 ;

All that is left to prove is the following lemma. Taking n = 1
2 , it shows that {M} :: !{w} ‹ LT+, 12 (")

if and only if the sum of the weights of edges from hai to itself in {M} :: !{w} is greater than 1
2 . Using

the three facts above, this shows that

w 2 LT+, 12 ({M}) i� w 2 L(M).

L���� 53. The sum of the weights of alternating paths between {M} and !{w} of source and target
hai is greater than n if and only if {M} :: !{w} ‹ T+,n .
10To understand where the subset . comes from, we refer the reader to the proof of Lemma 56.
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P����. Let us write the weights of alternating paths between {M} and !{w} of source and target
hai as ?0, ?1, . . . , ?: . We use here a result from the �rst work on Interaction Graphs [28] showing
that in the probabilistic case the measurement of two graphs J⌧,�K< is equal to the measurement
of the graphs J⌧̂, �̂K< where .̂ fusions the edges with same source and target into a single edge by
summing the weights [28, Proposition 16]. Therefore, J{M} :: !{w},T+,nK is equal to n � log(1�<( 12 ·
1.(Õ?8 ))) = n � log(1 � 1

2 (
Õ
?8 )). Now,

Õ
?8 > n if and only if 1 � 1

2 (
Õ
?8 ) < 1 � 1

2n , if and only if
� log(1 � 1

2 (
Õ
?8 )) > � log(1 � 1

2n). I.e.
Õ
?8 > n if and only if log(1 � 1

2n) � log(1 � 1
2 (
Õ
?8 )) > 0.

This gives the result, i.e.’
?8 > n

i� {M} :: !{w} ‹ (log(1 � 1
2
.D), Id1/2haiV(¢

n )
[0, 1n ]n⇥ [0,1]N

])

for all D 2 [0, n]. ⇤

This covers the case of probabilistic automata. The deterministic and non-deterministic cases are
covered in a similar way:

• w belongs to L(M) if and only if the number of accepting runs is greater than 1;
• the number of accepting runs of M on input w is equal to the sum of the weights of edges
(i.e. the number of edges since all weights are equal to 1) from hai to itself in {M} :: !{w};

• by uniformity,
w 2 LT+ ({M}) i� {M} :: !{w} ‹ T+ .

The following lemma then �nishes the argument for deterministic and non-deterministic ma-
chines.

L���� 54. There exists an alternating path between {M} and !{w} of source and target hai if and
only if {M} :: !{w} ‹ T+.

The last case is that of non-deterministic machines with the complementary notion of acceptance.
Here the key ingredients is the following lemma.

L���� 55. There exists an alternating path between {M} and !{w} of source and target hai if and
only if {M} :: !{w} 6‹ T� .

These results together provide the completeness part of theorem 47. Indeed, given any automaton
M one can de�ne a graphing {M} such that L(M) = LT ({M}) for the adequate notion of test T . We
now need to prove soundness, i.e. the semantic classes de�ned from the realisability model do not
contain more languages than expected. This is more intricate, as it will be necessary to show that
the behaviour of any graphing can be simulated by an automaton (while respecting the number of
heads). This will be the topic of the next section.

6 SOUNDNESS
We here generalise a technical lemma from our previous paper [37, Lemma 4.14] to include prob-
abilities and pushdown stacks. The principle is the following. Following our previous proof, the
computation of am8 -machine given an inputF can be simulated by a computation of paths between
�nite graphs. This can be extended with probabilistic weights in a straightforward manner. Now,
the operations on stacks could be thought of as breaking this result, since stacks are arbitrarily
long. However, this can be dealt with by considering graphs whose weights are extended with an
element of the monoid ⇥ generated by {0, 1,¢, 2} and the relations 20 = 21 = 2¢ = [ where [ is
the empty sequence, thus the neutral element of ⇥. We will thus obtain that the computation of a
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(⌦-weighted) n8-machine given an inputF can be simulated by a computation of paths between
�nite graphs with weights in ⌦ ⇥ ⇥.

L���� 56 (T�������� L����). Let ⌧ be a n1-machine. The computation of ⌧ with the represen-
tation !{w} of a word w is equivalent to the execution of a �nite ⌦ ⇥ ⇥-weighted graph ⌧̄ and a �nite
graph ,̄w.

P����. The proof of this lemma follows the proof of the restricted case provided in earlier
work [37]. Based on the �niteness of n1-machines, there exist an integer # such that ⌧ is a n# -
machine. We now pick a word w 2 ⌃: . All maps realising edges in ⌧ or in !{w} are of the form
q ⇥ Id>1

8=# +1 [0,1] ⇥k – i.e. they are the identity on copies of [0, 1] indexed by natural numbers > # .
So we can consider the underlying space to be of the form Z ⇥ [0, 1]# ⇥ {¢, 0, 1}N instead of X by
just replacing those realisers by q ⇥k . Moreover, the maps q here act either as permutations over
copies of [0, 1] (realisers of edges of ⌧) or as permutations over a decomposition of [0, 1] into :
intervals (realisers of !{w}). Consequently, all q act as permutations over the set of # -dimension
cubes of size : :

{
#

?

8=1
[:8/:, (:8 + 1)/:] | 0 6 :8 6 : � 1},

i.e. their restrictions to such # -cubes are translations.
Based on this, one can build two (thick11) graphs ⌧̄ and ,̄w over the set of vertices

⌃� ⇥ {
#

?

8=1
[:8/:, (:8 + 1)/:] | 0 6 :8 6 : � 1}

as in the proof of the restricted lemma proved in our previous work [37]. The only di�erence is
that we will here keep track of weights and encode the stack operations as elements of ⇥ (we use
the identi�cation: [[push1]] = 1, [[push0]] = 0, [[push¢]] = ¢, [[pop]] = 2):

• there is an edge in ⌧̄ of source (B, (:8 )#8=1,3) to (B0, (: 08 )#8=1,3 0) and weight (?, [[k ]]) if and
only if there is an edge in ⌧ of source hBi ⇥ {3} and target hB0i ⇥ {3 0}, of weight ? and
whose realisation is q ⇥k where q sends the # -cube

>#
8=1 [:8/:, (:8 +1)/:] onto the # -cube

>#
8=1 [: 08 /:, (: 08 + 1)/:].

• there is an edge (of weight (1, n)) in,̄w of source (B, (:8 )#8=1,3) to (B0, (: 08 )#8=1,3 0) if and only if
3 = 3 0, :8 = : 08 for 8 > 2 and there is an edge in {w} of source hBi ⇥ [:1/:, (:1+1)/:]⇥ [0, 1]N
and target hB0i ⇥ [: 01/:, (: 01 + 1)/:] ⇥ [0, 1]N.

Then one checks that there exist an alternating path between" and !{w} of weight ? and whose
stack operation is equal tok if and only if there exist an alternating path between "̄ and [w] of
weight (?, [[k ]]). ⇤

Remark 57. The previous lemma is not stated in this way because space limitations did not allow
us to de�ne thick graphs and their execution. However, the graph ,̄w is a re�nement of the graph
representation [w] of w, and a more satisfying statement of the above result is that the computation
of ⌧ with the representation !{w} of a word w is represented by the thick graph ⌧̄ ::C {w} where ::C
denotes the execution between thick graphs [34].

We will here work with alternating paths between the ⌦ ⇥ ⇥-weighted graphs. We will consider
the set of ⇥-trivial paths, i.e. paths whose weight is of the form (_, 28 ) (with 8 possibly equal to
0, with 20 = [), and consider the sum of the weights of ⇥-trivial paths as the sum in the �rst
component, i.e. a weight in ⌦.
11Thick graphs are graphs with, similarly to graphings, a sets of control states [34].
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As a consequence of this lemma, we have that:

L���� 58. Let ⌧ be a n1-machine. The computation of ⌧ with the representation !{w} of a word w
is orthogonal to equivalent to T+,n if and only if the sum of the weights of ⇥-trivial alternating paths
between ⌧̄ and ,̄w from h0i>#

8=1 [0,1/: ] to itself is greater than n .

S�����. The orthogonality relies on alternating cycles. Here, we have that ⌧ :: !{w} is orthog-
onal to T+,n if and only if the sum of the weights of alternating cycles between ⌧ :: !{w} and
Id1/2haiV(¢

n )
[0, 1n ]n⇥ [0,1]N

is of the form 0 · 1 for 0 > n . This is because only weights of the form 0 · 1 are
considered by the map< de�ning the measurement. Those alternating cycles then necessarily go
through at least one edge of Id1/2haiV(¢

n )
[0, 1n ]n⇥ [0,1]N

because ⌧ and !{w} do not have weights of the
form 0 · 1. As a consequence, these cycles are concatenations of alternating paths between ⌧ and
!{w} of source and target in h0i such that the overall path acts trivially on the stack.

Now, a key element in the result which has not yet appeared is that the shrinking of the support
of the tests as = grows implies that the alternating paths thus concatenated need to go through
the �rst # -cube in the �nite graphs ⌧̄ and ,̄w. Otherwise, this concatenation of paths will not
represent a cycle between ⌧ :: !{w} and Id1/2haiV(¢

m )
[0, 1m ]m⇥ [0,1]N for values of< larger than the length

of w. The same trick implies that the stack is emptied during the path, i.e. the weight of the path
alternating between the �nite graphs ⌧̄ and ,̄w is required to be equal to (?, 28 ).

Finally, if such cycles exists, they must be composed from ⇥-trivial alternating paths between ⌧̄
and ,̄w from h0i>#

8=1 [0,1/: ] to itself. From a previous work on Interaction Graphs [28, Proposition
16] already used in the proof of lemma 53, we can fusion the edges with same source and target
into a single edge by summing the weights without changing the measurement. We thus get the
result. ⇤

All that is left is to de�ne an automaton that will compute the same language as a given n1-
machine ⌧ . Notice one subtlety here: a n8 machine can use the push¢ instruction at any given
moment. Thus the automata to be de�ned works with a ternary stack – over the alphabet {¢, 0, 1} –
and not a binary one. This is �ne because from any automaton with a ternary stack one can de�ne
an automaton on a binary stack recognising the same language (very naively, using a representation
of the ternary alphabet as words of length 2, this simply multiplies the number of states by a factor
of 2).

As we have seen, for any n1-machine ⌧ and word w, ⌧ :: !{w} is orthogonal to T+,n if and only if
there exist a path of weight (?, 28 ) with ? > n from the �rst # -dimensional cube on a to itself. It is
then easy to de�ne an automata {G} that computes the same language as⌧ by simply following the
transitions of ⌧̄ , and ensuring that this automata accepts a wordF with probability ? if and only if
there is a path of weight (?, 28 ) with ? > n from h0i>#

8=1 [0,1/: ] to itself. This leads to the following
proposition.

P���������� 59. Let ⌧ be a n8 -machine,F a word. Then {G} acceptsF with probability greater
than n if and only if the sum of the weights in ⌦ of alternating paths of ⇥-weight n between ⌧ and
!, ⌦ Idhai from hai to itself is greater than n .

Combining the three previous statements, we obtain a proof of completeness for the probabilistic
classes. The proof technique applies in a similar, yet easier, fashion to the deterministic and non-
deterministic cases.
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7 CONCLUSION AND PERSPECTIVES
We have shown how to extend our method based on realisability models for linear logic to capture
complexity classes. We have obtained in this way numerous characterisations of numerous classes
between regular languages and polynomial time, showing how the techniques applies as well
to probabilistic computation. This provides the �rst examples of implicit characterisations of
probabilistic complexity classes. This is however related to unbounded error classes, and it will be
natural to try and characterise bounded-error classes. In particular, it should be possible to capture
both BPL and BPP from the present work. We expect to be able to do so using the rich notion of
type provided by Interaction graphs models, which allows for intersection and dependent types, as
well as quanti�cation over parameters. As an illustration, let us explain how the characterisations
above can be expressed through types in the models.

We can de�ne the language associated to a m-machine" and a test T as a type. Indeed, we say
a word F is in the language de�ned by " if and only if " ::w ‹ t for all t 2 T . Using standard
properties of the execution and orthogonality [35], this can be rephrased as" :: t ‹ w. Thus,"
de�nes a set of projects {" :: t | t 2 T } which tests natural numbers, i.e. elements of Nat2.

De�nition 60. Let" be a m-machine and T be a test. We de�ne the type:

LangT (") = (!Nat‹2 [ {" :: t | t 2 T })‹

In fact, LangT (") can also be de�ned as an intersection type. We write" (T ) = {" :: t | t 2 T }
and can obtain the following lemma.

L���� 61. LangT (") = " (T )‹ \ !Nat2.

The type represents a language in the following fashion.

P���������� 62. Let" be a m-machine and T be a test.

w 2 LangT (") , 9F 2 LT ("),w 2 Rep(w)

Now, this is particularly interesting when one considers that the model allows for the de�nition
of (linear) dependent types. Indeed, if A(u) is a family of types (we suppose here that u ranges over
the type U), the types

Õ
u:U A(D) and

Œ
u:U A(D) are well de�ned:’

u:U
A(D) = {u ⌦ a | u 2 U, a 2 A(u)}‹‹

÷
u:U

A(D) = {f | 8u 2 U, f :: u 2 A(u)}

In the probabilistic model, we can use the following type to characterise12 PP����:’
" :!Nat2(NBool

LangT+, 12
(").

Indeed, we have that:

A 2 PP����
, 9" : !Nat2 ( NBool,A = LangT+, 12

(").

12In fact, this type is more than PP���� and the latter should be de�ned as a quotient to identify those " such that
LangT (" ) .



Implicit complexity through linear realisability 21

Noting that T+, 12 can be de�ned as a countable intersection (thus a universal quanti�cation), it is
equal to 8= 2 N,T+, 12+ 1

=
. The above type then becomes:

’
" :!Nat2(NBool

8= 2 N, " (T+, 12+ 1
=
)‹ \ !Nat2.

This type could then be used, through a quotient, to represent PP���� in themodelMprob [[0, 1], n1],
and PL������� in the modelMprob [[0, 1],m1].

We expect to provide types characterising bounded error predicates in the same way, providing
characterisations of BPP in the modelMprob [[0, 1], n1], and BPL in the modelMprob [[0, 1],m1].
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