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99, Avenue Jean-Baptiste Clément

93430, Villetaneuse, FRANCE

Email: seiller@lipn.fr

Abstract—In a series of papers, Seiller introduced models
of linear logic known as ”Interaction Graphs”. These models
generalise Girard’s various geometry of interaction constructions,
providing a unifying framework for those. In this work, we
exhibit how these models can be understood mathematically
through a cocycle property satisfied by zeta functions of dynam-
ical systems. Focussing on probabilistic models, we then explain
how the notion of graphings used in the models captures a
natural class of Markov processes. We further extend previous
constructions to provide a model of second-order linear logic
as a type system over the set of all (discrete-time) sub-Markov
processes.

Denotational semantics were introduced by Scott [1] as a

mathematical theory of computation. This so-called theory of

domains provided many insights and applications, as well as

open questions, such as the question of full abstraction. It

is in fact a categorification of the notion of domains1 [4] that

lead Girard to the discovery of linear logic [5]. However, right

after his seminal paper introducing Linear Logic [5], Girard

proposed a research programme [6] aimed at developing a new

semantic approach, which we call here ”dynamic semantics”.

The motivations for this programme was adequately mod-

elling the dynamics of proof normalisation (cut-elimination),

which through the Curry-Howard correspondence amounts

to adequately modelling the dynamics of program execution

(in lambda-calculus). Indeed, whereas denotational semantics

identifies both a proof π – or equivalently a program P applied

to an input n – and its normal form ρ – equivalently, the

result of the computation P (n), Girard’s aim was to model

both π and ρ as different objects, together with a mathematical

operation – called execution – computing ρ from π. As such, a

model satisfying Girard’s expectations would correctly model

not only programs and data, but also the dynamic process of

program execution.

Girard’s programme inspired the introduction of game se-

mantics which were used to solve the long-standing problem

of full abstraction [7], [8]. However, Girard’s approach differs

from game semantics in that the model is inherently untyped.

Indeed, game semantics consider strategies which subsume

a definition of type, and hence can easily be designed to

fit the model of computation under study. As such, they

1Which turned out to be a quantitative version of Berry’s dI-domains [2],
see also the appendix of [3] for the connexion with coherence spaces.

follow a types-as-constraints methodology, where types are

used to restrict the behaviour of programs and therefore of the

strategies considered in the model. On the other hand, Girard’s

methodology is that of types-as-descriptions philosophy, where

the model under study is untyped, and types are constructed

through realisability techniques and describe the behaviour

of programs. As a fundamental example, we consider the

reconstruction of simple types by realisability on the pure

λ-calculus described by Riba [9]. This can be compared

with game semantics models of Church-style lambda-calculus

in which many pure λ-terms cannot be written, and thus

represented: while the latter follows the classic game semantics

approach, the former follows Girard’s methodology.

The models defined by Girard were however concerned

with less standard underlying models of computation. This

is explained by his aim to model linear logic, a refinement

of intuitionnistic logic: as a consequence one seeks models

providing more precise mechanisms than the λ-calculus. The

first such models [10], [11], [12], [13] were constructed around

an abstraction of programs as bounded operators on Hilbert

spaces. However, recent work by Seiller reformulated and

generalised the constructions by considering graphs or graph-

like structures called graphings to account for programs [14],

[15], [16], [17]. We will now describe the basic intuitions

behind the construction of models in the simple case of graphs,

before explaining the need for generalising the approach to

graphings.

A. Interaction Graphs

Graphs provide a minimal but natural mathematical struc-

ture to represent programs. Indeed, Turing machines and

automata can naturally be abstracted as finite graphs. In these

models, computation is represented as the computation of

paths in the graph: in the case of Turing machines, the

graph represents the transition function, and the process of

computation corresponds to the iteration of this transition

function, i.e. following a path to travel through the graph. The

basic notions of the models are thus that of graphs, and that of

the execution Ex(G) of a graph G which is defined as some

set of maximal paths in G. This alone describes some kind

of abstract, untyped, model of computation, which one can

structure by defining types depending on how graphs behave.



Types are defined as sets of graphs (satisfying some prop-

erties), i.e. a type A is understood as the set of all programs

that can be given the type A. The notion of execution, which

abstractly represents the execution of a program given some

input, is the key ingredient to the construction of (linear)

implication, i.e. arrow types. Indeed, supposing A,B are

defined types, then a graph G will have type A ⊸ B (the

linear implication) if and only if for all graph of type A,

the graph G applied to A – noted G�A – reduces to a

graph Ex(G�A) of type B. Let us note that this formalism

is extremely expressive; for instance it naturally interprets

polymorphism (a graph belongs to many sets of graphs, thus

many types), subtyping (the inclusions of sets of graphs), and

quantifiers (defined through unions and intersections of sets of

graphs).

However, the setting of finite graphs is not rich enough to

adequately model expressive computational models such as

Turing machines or lambda-calculus. Some information is lost

by considering discrete graphs: following an edge corresponds

to performing some instruction and therefore modifying the

state of the machine; restricting to finite structures in some

sense limits the approach to models of computation with

finite sets of states. To regain expressivity, Seiller introduced

graphings [16]. Graphings are graphs which are realised on a

topological or measured space which represent the space of all

possible configurations of the machine. Edges are interpreted

as specific endomorphisms of this space restricted to some

subspace, representing the action of instructions on a chosen

subset of configurations.

As an example, for Turing machines one may consider

the space of configurations X = {∗, 0, 1}|Z| of Z-indexed

sequences of symbols ∗, 0, 1 that are almost always equal to

∗. Moving the working head to the right can be represented

as the map right : X → X, (ai)i∈Z 7→ (ai+1)i∈Z. The

instruction ”if the head is reading a 0 or a 1, move to the

right” is then represented as an edge of source the subspace

{(ai)i∈Z ∈ X | a0 6= ∗} and realised by the map right.

B. Contributions

The main and more saliant contribution of this work is

the definition of a model of second-order linear logic (LL2)

from realisability techniques applied to general sub-Markov

kernels. This is, to the author’s knowledge, the first model of

LL2 able to accommodate discrete and continuous probability

distributions. As a consequence, we expect the construction

will naturally provide models of typed lambda-calculus ex-

tended with probabilities and specific instructions for sampling

discrete and non-discrete distributions.

The obtention of this result goes through several steps, each

of which consists in a separate contribution.

• Firstly, we relate Seiller’s discrete IG models based on

graphs with the work of Ihara on zeta functions of graphs.

We explain how the models, and particularly the fact

that the notion of type inferred follows the linear logic

discipline, then essentially relies on a cocycle relation

relating the notion of execution and the zeta functions.

• Secondly, we show that the restriction of Seiller’s models

[16], [17] to deterministic graphings boils down to the

representation of programs as partial dynamical systems.

In this case, execution is more or less described as the

iteration of the considered map, and – extending the

discrete case – types are constructed based on some

notion of zeta function for dynamical systems related

to Ruelle’s zeta functions of dynamical systems. This

exhibits Seiller’s models as realisability models on the

set of partial dynamical systems.

• Thirdly, if one allows to weight edges with probabilities,

then the natural notion of probabilistic graphings is

shown to coincide with a class of sub-Markov processes

that we will describe. This hints at a possible generali-

sation of the realisability construction on the set of all

sub-Markov kernels. We therefore introduce the notions

of execution and zeta functions for general sub-Markov

kernels and prove they satisfy the cocycle relation.

I. INTERACTION GRAPHS: LINEAR LOGIC AND ZETA

FUNCTIONS

In this section, we review the models of linear logic

introduced by Seiller under the name ”Interaction Graphs”.

Among these models, the first instances were build around the

notion of graph, while the latter used the more general notion

of graphing. We first review the former setting to ease the

reader in understanding the basic concepts we are pinpointing

through a new presentation – stressing in particular the use

of zeta functions –, before detailing in the next section how

those adapt in the case of graphings.

A. Interaction Graphs: the discrete case in a nutshell

We briefly recall the basics of IG model in the discrete case.

We work with weighted directed (multi-)graphs; here we will

suppose weights are complex numbers C. Graphs are defined

as tuples G = (V G, EG, sG, tG, ωG), where V G and EG are

sets, sG and tG are respectively the source and target maps

from EG to V G, and ωG : EG → C is a weight map.

The basic operation is that of execution between two graphs

F,G. This interprets program execution (explaining the nam-

ing convention) through cut-elimination. The cut is implicitly

represented as the common vertices of the two graphs F,G.

This eases the expressions, and is equivalent to the more

traditional approach where one would consider both F and

G, together with a graph representing the cut rule (cf. Figure

1). As execution is defined through alternating paths, the

results are equivalent and we urge the reader to use whatever

convention she finds more natural.

We start to fix a few notations that will be used in this paper.

Notations 1. Given two sets A,B, we write A\B the set {a ∈
A | a 6∈ B}, and A△B their symmetric difference (A\B) ∪
(B\A) = (A ∪B)\(A ∩B).

Given two graphs G,H , we write G ∪H the graph (V G ∪
V H , EG ⊎ EH , sG ⊎ sH , tG ⊎ tH , ωG ⊎ ωH). Note the non-

disjoint union of sets of vertices, which is essential to consider

alternating paths between the two graphs.
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Fig. 1. On the left: implicit cut between two graphs (one is plain, the other is dashed). On the right: explicit cut between the same two graphs (the cut is
shown below). Both representations lead to the same result, as the cut-elimination is represented by execution, an operation defined from alternating paths. It
is easily checked that there is a bijective correspondence between alternating paths on the left and alternating paths on the right.

Definition 2 (Alternating paths). Let G and H be two graphs.

An alternating path π of length |π| = k between G and H is a

path (ei) in G∪H which satisfy that for all i = 0, . . . , k− 1,

ei ∈ EF if and only if ei+1 ∈ EG. The source and target

of the path are respectively defined as sG∪H(π) = sG∪H(e0)
and tG∪H(π) = tG∪H(ek−1).

The set of alternating paths will be denoted by Path(G,H),
while Path(G,H)V will mean the subset of alternating paths

between G and H with source and target in a given (sub)set

of vertices V .

Definition 3. Let F and G be two graphs. The execution of

F and G is the graph F ::G defined by:

V F ::G = V F△V G

EF ::G = Path(F,G)V F△V G

sF ::G = π 7→ sG∪H(π)

tF ::G = π 7→ tG∪H(π)

ωF ::G = π = {ei}
n
i=0 7→

n
∏

i=0

ωG�H(ei)

When V F ∩ V G = ∅, we write F ∪G instead of F ::G.

This notion of execution can be related to cut-elimination in

proof nets, and it represents the execution of programs through

the Curry-Howard correspondence. We will now define the

notion of orthogonality which can be related to corrected

criterions for proof nets, and is used to define types by means

of testing. We refer the interested reader to work by Naibo,

Petrolo and Seiller [18] for more details and explanations.

Defining orthogonality in IG models is is done by quantifying

closed paths and prime closed paths.

Definition 4. Given a graph G, a closed path π (called circuit

in earlier work by Seiller [14]) of length |π| = k is a path

(ei)
k−1
i=0 such that sG(e0) = tG(ek−1) and considered up to

cyclic permutations. A prime closed path (called 1-circuit in

IG) is a closed path which is not a proper power of a smaller

closed path. We denote by C(G) the set of prime closed paths

in G.

Definition 5. Given graphs F,G, an alternating closed path

π of length |π| = 2k is a closed path (ei)06i62k−1 in F ∪G

such that for all i ∈ Z/2kZ, ei ∈ F if and only if ei+1 ∈ G.

The set of prime alternating closed paths between F and G
will be denoted C(F,G).

This notion is used in previous Interaction Graphs (IG)

models to define a measurement which in turn defines the

orthogonality relation. The orthogonality, in turn, is used to

define types in a way reminiscent of classical realisability

[19], and related to Hyland and Schalk’s double glueing

construction [20]. We only recall the measurement here and

refer to the first IG paper for more details [14]. The notion of

measurement depends on a map that is used to associate to

each cycle a positive real number depending on its weight.

Definition 6. Let m be a map C → R>0. For any two graphs

F,G we define the measurement

JF,GKm =
∑

π∈C(F,G)

m(ωF�G(π)).

Based on these two ingredients (execution and measure-

ment), and two essential properties, namely the associativity

of execution [14] and the trefoil property [15], one can define

a myriad of models of Multiplicative Linear Logic (MLL) and

Multiplicative-Additive Linear Logic (MALL). These models

capture the different models introduced by Girard by choosing

carefully the map m used to define the measurement. We will

now explain how there is a similarity between the measure-

ment defined by Seiller and just recalled, and the Bowen-

Lanford zeta function of graphs. To formalise the connection,

we need to consider zeta functions of weighted graphs, but we

will start with a quick overview of the theory of zeta functions

of (non-weighted) graphs.

B. Bowen-Lanford Zeta Functions

We first recall the definition and some properties of the zeta

function of a directed graph. We refer to the book of Terras

[21] for more details. We will later on continue with zeta

functions for weighted directed graphs, and further with zeta

functions for dynamical systems. The graph case is important

as it provides intuitions about the later generalisations.

In this subsection only, we consider a directed graph as

a tuple G = (V G, EG, sG, tG) (i.e. without weights) and

suppose it is simple, i.e. that the map EG 7→ V G × V G; e 7→



(sG(e), tG(e)) is injective. Given such a graph, its transition

matrix is defined as the V G×V G matrix whose coeficients are

defined by MG(v, v
′) = 1 if there is an edge e ∈ EG such that

sG(e) = v and tG(e) = v′, and MG(v, v
′) = 0 otherwise. The

following definition provides a clear parallel with the famous

Euler zeta function.

Definition 7. The Bowen-Lanford zeta function associated

with the graph G is defined as:

ζG(z) =
∏

τ∈C(G)

(1 − z|τ |)−1

which converges provided |z| is sufficiently small.

The two following lemmas are easy to establish (using the

identity log(1−x) =
∑∞

k=1
xn

n ). The first lemma is essential,

as it is the alternative expression of the zeta function that

we will be able to generalise later. Indeed, while the formal

definition above uses the notion of prime closed paths, this

one quantifies over all closed paths.

The second lemma is key to the representation of ζG(z)
as a rational function. This relates the zeta function with the

determinant of the adjacency matrix of G. Notice that this

relation was obtained by Seiller in the special case z = 1
[14] and was the initial motivation behind the definition

of orthogonality in Interaction Graphs models, as it relates

the measurement with the Fuglede-Kadison determinant of

operators [22] used in Girard’s model [13].

Lemma 8. Let N(n) denote the number of all possible strings

(v1, . . . , vn) representing a closed path in G of length n. Then:

ζG(z) = exp

(

∞
∑

i=1

zn

n
N(n)

)

Lemma 9. Let G be a graph, M(G) its transition matrix:

tr(M(G)k) = N(k)

Together, these two lemmas yield the following result.

Proposition 10. Let G be a graph, M(G) its transition matrix:

log(ζG(z)) = − log(det(1− z.M(G))),

for sufficiently small values of |z|.

Proof. From the following computation:

log(ζG(z)) =
∞
∑

i=1

zn

n
N(n)

=

∞
∑

i=1

zn

n
tr(M(G)k)

=

∞
∑

i=1

(z.tr(M(G))n

n

= − log(det(1− z.M(G))),

where the last equality can be found with a (simple) proof in

Seiller’s earlier work [14, Lemma 61].

As we will show later on, the zeta function of graphs is

strongly related to the orthogonality in IG models, as the

measurement used in these models boils down to computing

the value of some graph zeta function at z = 1. In fact, we

will show how to define new models by simply considering

the zeta function itself instead of its value at 1. But for this

we need to define the zeta function of weighted graphs.

C. Zeta functions of weighted directed graphs

Now, we consider weighted directed graphs, i.e. graphs with

weights of the edges, and we will restrict to the case of

complex numbers as weights. We write ω the weight function,

as well as its extension to paths, using the product, i.e.

ω(π) =
∏

e∈π

ω(e).

We recall that a (weighted) simple graph is a graph G =
(V G, EG, sG, tG, ωG) with at most one edge between two

given vertices, i.e. the pairing 〈sG, tG〉 : EG → V G is

injective. Given a simple weighted graph G, we define its

transition matrix as the V G × V G matrix with MG(v, v
′) =

ω(e) if there exists a (necessarily unique) edge e ∈ EG with

〈sG(e), tG(e)〉 = (v, v′), and MG(v, v
′) = 0 otherwise.

Now, given a graph (not necessarily simple) G, we write

G(v, v′) the set {e ∈ EG | sG(e) = v, tG(e) = v′}. One

can extend the definition of transition matrix by associating

to G the V G×V G matrix with MG(v, v
′) =

∑

e∈G(v,v′) ω(e).

Alternatively, this matrix can also be defined as MĜ where Ĝ
is the simple collapse of G, i.e. the simple graph defined as

Ĝ = (V G, ÊG, ŝG, t̂G, ω̂G) with:

• ÊG = {(v, v′) ∈ V G × V G | G(v, v′) 6= ∅},

• ŝG((v, v′)) = v,

• t̂G((v, v′)) = v′,
• ω̂G((v, v′)) =

∑

e∈G(v,v′) ω(e).

Let us notice that Seiller proved in earlier work that the

measurement defined from the function m := λx.− log(1−x)
satisfies JF,GKm = JF̂ , ĜKm.

Now, the zeta function of the weighted graph is defined

as follows. Note that we take the product of the weights to

define the weight ω of a path, while standard work on zeta

functions for weighted graphs define the weight ν of a path

as a sum; this is formally explained by taking a logarithm,

i.e. ω = log ◦ν, explaining why we consider the product of

expressions 1−ω(π)z while the latter is defined by taking the

product of 1− zν(π).

Definition 11. The zeta function associated with the weighted

graph G is defined as:

ζG(z) =
∏

π∈C(G)

(1− ω(π).z)−1

which converges provided |z| is sufficiently small.

Following the same reasoning as in the non-weighted

case, one obtains the following general result, which ex-

tends Seiller’s combinatorial interpretation of the determinant

det(1−M(G)) [14, Corollary 61.1].



Proposition 12. Let G be a directed weighted graph, M(G)
its transition matrix:

log(ζG(z)) = − log(det(1− z.M(G))),

for sufficiently small values of |z|.

Taking the logarithm we obtain:

log(ζG(z)) =
∑

π∈C(G)

− log(1− ω(π).z)),

an expression that appears in the definition of measurement in

the previous section. This can be used to relate the measure-

ment defined in interaction graphs for m := λx. log(1 − x)
with the value of the zeta function at z = 1:

JF,GKm = log(ζF•G(1))

where the • operation consists in composing (i.e. taking

length-2 paths) the graphs F + 1V F \V G and G+ 1V G\V F .

Now, we recall that orthogonality in IG models is de-

fined by F ‹ G as JF,GKm 6= 0,∞, i.e. if and only if

− log(ζF•G(1)) 6= 0,∞, i.e. if and only if ζF•G(1) 6= 0, 1.

We will show in the next section how this remark can be

used to extend the construction of IG models to provide new

models by using zeta functions to define the orthogonality.

D. Zeta, Execution and a Cocycle Property

There are two main properties used to define IG models

[15], [23]. The first is the associativity of execution, i.e. that

F ::(G ::H) = (F ::G) ::H under some mild hypothesis on

the graphs (i.e. that V F ∩ V G ∩ V H = ∅). The second main

property is the so-called trefoil property [15]:

JF,G ::HKm + JG,HKm = JG,H ::F Km + JH,F Km. (1)

The identity is in fact obtained from the so-called geometric

trefoil property [23], [15], satisfied for graphs F,G,H such

that V F ∩ V G ∩ V H = ∅:

C(F,G ::H) ⊎ C(G,H) ≡ C(G,H ::F ) ⊎ C(H,F ), (2)

where ≡ denotes a weight-preserving bijection.

The trefoil property can now be rephrased as a special case

of a general cocycle condition satisfied by zeta functions. In-

deed, remembering that JF,GKλx. log(1−x) = − log(ζF•G(1)),
the trefoil property (Equation 1) is a straightforward conse-

quence of the following theorem for z = 1.

Theorem 13. Suppose V F ∩ V G ∩ V H = ∅. Then:

ζF•(G ::H)(z).ζG•H(z) = ζG•(H ::F )(z).ζH•F (z).

Proof. By definition and the geometric trefoil property:

ζF•(G ::H)(z).ζG•H(z)

=
∏

π∈C(F,G ::H)

(1 − ω(π).z)−1
∏

π∈C(G,H)

(1 − ω(π).z)−1

=
∏

π∈C(F,G ::H)⊎C(G,H)

(1− ω(π).z)−1

=
∏

π∈C(G,H ::F )⊎C(H,F )

(1− ω(π).z)−1

=
∏

π∈C(G,H ::F )

(1− ω(π).z)−1
∏

π∈C(H,F )

(1 − ω(π).z)−1

= ζG•(H ::F )(z).ζH•F (z)

We can then define families of models of linear logic extend-

ing Seiller’s approach by considering the following constructs.

We change the terminology to avoid conflicts. We use the term

proof object instead of the term project, and we call types what

is usually called a conduct. We also use the term antipode for

the set of functions defining the orthogonality relation, as the

more traditional term “pole” might be confused with the notion

of pole from complex analysis.

Definition 14. A proof-object of support V is a pair (f,G) of

a function g : C → C and a directed weighted graph G with

V G = V .

Definition 15. Given two proof objects g = (g,G) and

h = (h,H) we define the zeta-measurement as the complex

function:

ζg,h = g · h · ζG•H ,

where · denotes pointwise multiplication of functions.

Definition 16. An antipode P is a family of functions C → C.

Given two proof objects g = (g,G) and h = (h,H), they are

orthogonal w.r.t. the antipode P – denoted g ‹P h – if and

only if ζg,h ∈ P .

Given a set E of proof objects, we define its orthogonal as

E‹ = {g | ∀e ∈ E, e ‹ g}.

We note that many interesting properties of the graph can be

used to define orthogonality in this case. Indeed, a number of

properties and invariants of a graph can be related to analytic

properties of the zeta function of a graph. Note that previous

notions of orthogonality [14] can be recovered by considering

as an antipode the set of functions which are not equal to 0

or 1 at z = 1.

For the sake of self-containment, we define types and

explain how models of MLL can be defined from this. We

suppose now that an antipode has been fixed until the end of

this section. We will therefore omit the subscript when writing

the orthogonality.

Definition 17. A type of support V is a set A of proof-objects

of support V such that there exists a set B with A = B‹ .

Equivalently, a type is a set A such that A = A
‹‹ .



The following constructions on type can then be shown to

define a model of Multiplicative Linear Logic. For A and B

two types, we define:

A⊗ B = {a :: b | a ∈ A, b ∈ B}‹‹

A ⊸ B = {f | ∀a ∈ A, f :: a ∈ B}

A model of Multiplicative-Additive Linear Logic can also

be constructed by considering linear combinations of proof-

objects [15]. Both these constructions are quite automatic and

the results are mainly dependent on the two properties cited

above: associativity of execution and the trefoil property.

II. GRAPHINGS, DYNAMICAL SYSTEMS AND MARKOV

PROCESSES

In this section, we review the more general setting of

Interaction Graphs based on graphings. We first explain how

the notions introduced in the previous section generalises,

pinpointing how out the general construction based on zeta

functions naturally adapts here. We then provide two results

explaining how deterministic, respectively probabilistic, graph-

ings correspond to partial dynamical systems, respectively

discrete-image Markov processes.

We first recall briefly the notion of graphing. Interested

readers can find more detailed presentations in Seiller’s recent

work on computational complexity [24], [25]. The definition

is usually parametrised by a monoid action α : M y X on

the underlying space X, but the choice of the action will not

be important in this paper. Graphing come in different flavours

(discrete, topological, measurable), depending on the type of

space X one wishes to consider. If X is a topological space,

the parametrising monoid action will be continuous. If X is a

measured space, which will be the case considered here, the

action will be measurable.

More precisely, for technical purposes related to the def-

inition of the measurement [16], the action is supposed to

be by NSMP maps, i.e. maps which are non-singular – i.e.

the inverse images of negligible sets are negligible sets – and

measure-preserving – i.e. the (direct) image of a measurable

set is measurable. We fix a measured space X = (X,X , µ).
Graphings are equivalence classes of graph-like objects called

graphing representatives.

Definition 18. An α-graphing representative G (w.r.t. a

monoid action α : M y X) is defined as a set of edges EG

and for each element e ∈ EG a pair (SG
e ,mG

e ) of a subspace

SG
e of X – the source of e – and an element mG

e ∈ M – the

realiser of e.

Similarly, a weighted α-graphing representative G is de-

fined as a set of edges EG and an EG-indexed family of

triples {(SG
e ,mG

e , ω
G
e ) | e ∈ EG}.

In the following, we identify non-weighted graphings with

weighted graphings with constant weight equal to 1.

Graphings are then defined as equivalence classes of graph-

ing representatives. The intuition is that a graphing represents

an action on the underlying space, which can be represented

by different graphings. For instance, consider a graphing

representative G with a single edge e of source Se and realised

by the monoid element me, and the graphing representative

H with two edges e1, e2 of respective sources Se1 and Se2

and realised by me1 = me2 = me. Then the graphing

representatives G and H represent the same action on the

underlying space X as long as2 Se =a.e. Se1 ∪ Se2 and

Se1 ∩ Se2 =a.e ∅. In fact, H is more than equivalent to G, it

is a refinement of the latter.

Definition 19 (Refinement). A graphing representative F is a

refinement of a graphing representative G, noted F 6 G, if

there exists a partition3 (EF
e )e∈EG of EF such that ∀e ∈ EG:

µ
((

∪f∈EF
e
SF
f

)

△ SG
e

)

= 0; ∀f ∈ EF
e , mF

f = mG
e

∀f 6= f ′ ∈ EF
e , µ(SF

f △ SF
f ′) = 0;

Two graphing representatives F , G can then be considered

equivalent (i.e. having the same action on the underlying

space) whenever there exists a graphing representative H
which is a refinement of both F and G. The fact that this

defines an equivalence relation compatible with the operations

that are essential to define models of linear logic, is shown in

Seiller’s first work on graphings [16].

This leads to the notion of graphing, on which notions of

execution and measurement can be defined in order to build

models of linear logic [16] that we write M[Ω, α], where Ω is

the monoid of weights (as already mentioned in the previous

section, we will only consider the case Ω = C in this paper)

and α the monoid action. By extension, the notation M[Ω, α]
also denotes the set of all Ω-weighted α-graphings.

Definition 20. An α-graphing is an equivalence class of α-

graphing representatives w.r.t. the equivalence relation gener-

ated by refinements: F ∼ G if and only if there exists H with

H 6 F and H 6 G.

We refer the interested reader to Seiller’s work [16], [17]

for the definitions of execution and measurement of graph-

ings [16]. We will now show how graphings relate to well-

established notions in mathematics.

A. Dynamical Systems

Definition 21. A measured dynamical system is a pair (X, f)
of a measured space X and a measurable map f : X → X. A

partial measured dynamical system is a triple (X, D, f) where

X is a measured space, D ⊂ X a subspace – the domain –,

and f : D → X is a measurable map.

Measured dynamical systems are a well-studied field of

mathematics and applies to a range of physical and biological

problems. The measured space X represent the set of states

of the system under consideration, while the map f describes

the dynamics, i.e. the time-evolution of the system, based on

the assumption that those do not vary with time (e.g. they

2Note that working with measured spaces, equalities holds up to a null
measure set here, while exact equalities may be considered in e.g. the
topological framework.

3We allow the sets EF
e to be empty.



are consequences of physical laws which are supposed not to

change over time). It is then the iterated maps f i that are of

interest as they describe how the system will evolve.

It is important to realise that dynamical systems represent

deterministic systems, such as those described by classical

mechanics. If one wants to describe non-deterministic be-

haviour, one might have to consider several partial maps. It

turns out that the resulting object coincides with the notion of

graphing without weights. One may be interested in describing

probabilistic behaviour, which can be done by considering

several partial maps assigned with probabilities; the resulting

object is then a graphing with weights in [0, 1]. While we will

consider the latter case in the next section, we now focus on

the deterministic case.

Definition 22. A graphing G = {SG
e , φG

e , ω
G
e | e ∈ EG} is

deterministic if ∀e ∈ EG, ωG
e = 1 and the following holds:

µ
({

x ∈ X | ∃e, f ∈ EG, e 6= f and x ∈ SG
e ∩ SG

f

})

= 0

Theorem 23. There is a one-to-one correspondence between

deterministic graphings and partial non-singular measurable-

preserving dynamical systems (up to a.e. equality).

More precisely, deterministic α-graphings are in one-to-

one correspondence with partial measured dynamical sys-

tems (X, D, f) such that the graph of f in included in the

measurable preorder P(α) = {(x, y) ∈ X × X | ∃m ∈
M,α(m)(x) = y}.

B. A submodel

We now prove that the set of deterministic graphings is

closed under the operation of execution, i.e. if F,G are

deterministic graphings, then their execution F ::G is again a

deterministic graphing. This shows that the sets of determinis-

tic graphings defines a submodel Mdet[Ω, α] of M[Ω, α], i.e. it

is a subset of graphings closed under execution and therefore

a model of linear logic can be defined on this subset, using

the restriction of the measurement defined on M[Ω, α].

Lemma 24. The execution of two deterministic graphings is

a deterministic graphing.

One can then check that the interpretations of proofs by

graphings in earlier papers [16], [26], [17] are all deterministic.

This gives us the following theorem as a corollary of the

previous lemma.

Theorem 25 (Deterministic model). Let Ω be a monoid

and α a monoid action. The set of Ω-weighted determinis-

tic α-graphings yields a model, denoted by M
det[Ω, α], of

multiplicative-additive linear logic.

Now, this defines a model M
det[Ω, α] of linear logic

based on the set of all partial measured dynamical systems

whose graph is included in P(α), based on Theorem 23 and

Theorem 25. This model uses the measurement defined by

Seiller [16] but, as we will now show, this measurement is

also related to a standard notion of zeta function.

C. Zeta Functions for dynamical systems

The Ruelle zeta function [27] is defined from a function

f : M → M where M is a manifold and a function φ : M →
Mk a matrix-valued function. We write Fix(g) the set of fixed

points of g. Then the Ruelle zeta function is defined as (we

suppose that Fix(fk) is finite for all k):

ζf,Φ(z) = exp





∑

m>1

zm

m

∑

x∈Fix(fm)

tr

(

m−1
∏

i=0

φ(f i(x))

)





Its even easier here to consider the logarithm,

log(ζf,Φ(z)) =
∑

m>1

zm

m

∑

x∈Fix(fm)

tr

(

m−1
∏

i=0

φ(f i(x))

)

For d = 1 and φ = 1 the constant function equal to 1, this is

the Artin-Mazur [28] zeta function:

ζf,1(z) = exp





∑

m>1

zm

m
Card(Fix(fm))





Now, we are working with measured spaces, so it is natural

to consider the following measured variant of the Ruelle zeta

function (defined for measure-preserving maps4). Suppose that

we work with a measured space (M,B, µ) and that Fix(fm)
is of finite measure:

ζf,Φ(z) = exp





∑

m>1

zm

m

∫

Fix(fm)

tr

(

m−1
∏

i=0

φ(f i(x))

)

dµ(x)





For d = 1 and φ = 1 (the constant function equal to 1), this

becomes:

ζf,1(z) = exp





∑

m>1

∫

Fix(fm)

zm

m





which is – at z = 1 – the exponential of the measurement on

graphings considered in earlier work [16].

Proposition 26. Given measure-preserving NSMP partial dy-

namical systems f, g : X → X, we have the following equality

for all constant c:

Jf, gKλx.c = log(ζg◦f.1(c)),

where J , Km denotes the measurement between graphings

defined in earlier work [16].

Based on this result, models based on deterministic graph-

ings – or equivalently on partial measured dynamical systems

– can be defined based on realisability techniques using zeta

functions to compute the orthogonality.

4Based on the result of Proposition 26, a definition for general NSMP maps
could be obtained using the method used by Seiller [16] to define a generalised
measurement between graphings. However, we considered this to be out of
the scope of this work.



III. PROBABILITIES AND KERNELS

One can also consider several other classes of graphings.

We explain here the simplest non-classical model one could

consider, namely that of probabilistic graphings. In order for

this notion to be of real interest, one should suppose that the

unit interval [0, 1] endowed with multiplication is a submonoid

of Ω. We will show how this can be used to define a sub-

probabilistic model, and how the corresponding objets can be

understood as (some) sub-Markov kernels.

A. A probabilistic model

Definition 27. A graphing G = {SG
e , φG

e , ω
G
e | e ∈ EG} is

sub-probabilistic if the following holds:

µ











x ∈ X |
∑

e∈EG,x∈SG
e

ωG
e > 1









 = 0

It turns out that this notion of graphing also behaves

well under composition, i.e. there exists a sub-probabilistic

submodel of M[Ω, α], namely the model of sub-probabilistic

graphings. As explained below in the more general case of

Markov processes, probabilistic graphings are not closed under

composition.

Theorem 28. The execution of two sub-probabilistic graph-

ings is a sub-probabilistic graphing.

Theorem 29 (Probabilistic model). Let Ω be a monoid and

α : M y X a monoid action. The set of Ω-weighted proba-

bilistic α-graphings yields a model, denoted by M
prob[Ω, α],

of multiplicative-additive linear logic.

B. Discrete-image sub-Markov processes

We now consider probabilistic systems. More specifi-

cally, we consider systems for which evolution is still time-

independent, not deterministic, but which obey the principle

of probabilistic choices: given a state, t may produce differ-

ent outputs but these different choices are provided with a

probability distribution. The notion of dynamical system, i.e.

a map from a measured space to itself, is then no longer the

right object to formalise this idea. In fact, a probabilistic time

evolution do not act on the states of the system but rather on

the set of probability distributions on this set of states.

Definition 30. Let X be a measured space. We denote P(X)
the set of sub-probability distributions over X, i.e. the set of

sub-probability measures on X.

The space of probability distributions is a convex space:

if p, q are probability distributions and α, β are positive real

numbers such that α + β = 1, then αp + βq is again a

probability distribution. It is a topological space, endowed with

the weak* topology, and it is weak* compact.

Now, a deterministic system also acts on the set of proba-

bility measures by post-composition. If (X, f) is a measured

dynamical system, then given a (sub-)probability distribution

(otherwise called a random variable) p : P → X, the map

f ◦ p is itself a (sub-)probability distribution. In the same

way deterministic graphings, defining dynamical systems, act

on the set of (sub-)probability distributions, sub-probabilistic

graphings will act on P(X). In fact, we show that sub-

probabilistic graphings define sub-Markov kernels. We recall

briefly that sub-probability distributions on X are Markov

kernels from the one-point space {∗} to X, and the action of a

sub-Markov kernel onto P(X) is defined as post-composition

(using the composition of kernels) [29].

Definition 31. Let X = (X,X , µ) and Y = (Y,Y, ν)
be measured spaces. A sub-Markov kernel on X × Y is a

measurable map κ : X × Y → [0, 1] with the properties that

for all x ∈ X and B ∈ Y , κ(x, ) is a subprobability measure

on X and κ( , B) is a measurable function.

If κ(x, ) is a probability measure, κ is a Markov kernel.

Within this section, we furthermore restrict to what we call

discrete-image kernels.

Notations 32. In this section and the following, we will

consider measured spaces X, Y, etc. noted in boldface fonts.

The implicit assumption will be that the underlying set is

named by the same letter in normal fonts, e.g. X , Y , etc.

and the associated σ-algebra is named by the same letter in

calligraphic fonts, e.g. X , Y , etc. We do not assume a generic

notation for the measures and, should the need to talk about

them arise, we would explicitly name them.

Definition 33. A discrete-image kernel is a sub-Markov kernel

κ on X × Y such that for all x ∈ X, κ(x, ) is a discrete

probability distribution.

Notations 34. To simplify equations, we write ẋ instead of the

usual dx (or dµ(x)) in the equations. With this notation, the

composition of the kernels κ on X×Y and κ′ on Y × Z is

computed as follows:

κ′ ◦ κ(x, ż) =

∫

Y

κ(x, ẏ)κ′(y, ż).

Theorem 35. There is a one-to-one correspondence between

sub-probabilistic graphings on X and discrete-image sub-

Markov kernels on X×X.

Proof. The fact that sub-probabilistic graphings define sub-

Markov processes is quite easy. One defines from a graphing

G = {SG
e , φG

e , ω
G
e | e ∈ EG} the kernel:

κG : X ×X → [0, 1]; (x, y) 7→
∑

e∈EG,x∈SG
e ,φG

e (x)=y

ωG
e .

The fact that is is a discrete-image sub-Markov kernel is clear.

The converse, i.e. given a kernel κ, define a graphing Gκ

is more involved. The difficulty lies in the fact that one has to

collect the pairs (x, y) such that κ(x, y) > 0 into a countable

collection of measurable maps. The key ingredients to make

this work are: the countability of {Y ∈ X | κ(x, Y ) > 0}
for all x ∈ X (because κ is supposed to be a discrete-image

kernel), the possibility to approximate all real numbers by a

(countable) sequence of rational numbers, the measurability of

κ( , B) for all B ∈ X .



IV. MARKOV PROCESSES AND LINEAR LOGIC

Based on the previous sections, we want to extend the con-

structions to general Markov processes. For technical reasons

we will illustrate below, the model will be defined on sub-

Markov kernels.

Notations 36. In the following we write 1 the identity kernel

on X → X, i.e. the Dirac delta function 1(x, ẋ) = δ(x, ẋ)
satisfying

∫

A
1(x, ȧ) = 1 whenever x ∈ A and

∫

A
1(x, ẋ) = 0

otherwise.

We will now define the two key ingredients of the model:

the execution and the zeta function. We then proceed to prove

the cocycle property which will ensure the construction of

linear logic types.

Definition 37 (Iterated kernel). Let κ be a sub-Markov kernel

on X×Y. For k > 1, we define the k-th iterated kernel κ(k)

as

κ(k)(x0, ẋk) =

∫∫

(x1,...,xk−1)∈(X∩Y)k−1

k−1
∏

i=0

κ(xi, ẋi+1).

By convention, κ(1) = κ.

Definition 38 (Maximal paths – Execution kernel). Let κ be a

sub-Markov kernel on X×Y. We define the execution kernel

of κ as the map (in the formula, xn+1 is used as a notation

for y):

tr(κ) : X\Y × Y\X → [0, 1]

(x, y) 7→
∑

n>1 κ
(n)(x, y).

While this maps could be defined on the whole space X×Y ,

the restriction is needed to define a sub-Markov kernel. This

can be understood on a very simple Markov chain:

x y z

1 1

1

On this figure, the partial sums of κ(i)(x, y) is a diverging

series. This example also shows why the resulting kernel could

be a sub-Markov kernel even when κ is a proper Markov

kernel. To ensure that tr(κ) is a Markov kernel, additional

assumptions on κ are required. We will discuss these in the

conclusion. For the moment, we prove that trA(κ) is indeed a

sub-Markov kernel.

Lemma 39. If κ is a sub-Markov kernel, trA(κ) is well-defined

and a sub-Markov kernel.

Proof. The gist of the proof is an induction to establish that

for all integer k and measurable subset A such that A ∩X ∩
Y = ∅, the expression

∫

a∈A

∑k
i=1 κ

(i)(x, a) is bounded by 1.

This is clear for k = 1 from the assumption that κ is a sub-

Markov kernel. The following computation then establishes

the induction (we write x = y0 to simplify the equations):

∫

a∈A

k+1
∑

i=1

κ(i)(y0, ȧ) =

∫

a∈A

κ(y0, ȧ)+

∫

a∈A

k
∑

i=0

κ(i+1)(y0, ȧ).

We now bound the second term as follows, using the induction

hypothesis to establish that
[

∫

a∈A

∑k
i=1 κ

(i)(y1, a)
]

6 1:

∫

a∈A

k
∑

i=0

κ(i+1)(y0, ȧ)

=

∫

a∈A

k
∑

i=0

∫

y1

· · ·

∫

yi

κ(yi, ȧ)
i−1
∏

j=0

κ(yj , ẏj+1)

=

∫

y1

∫

a∈A

k
∑

i=0

∫

y2

· · ·

∫

yi

κ(yi, ȧ)

i−1
∏

j=0

κ(yj , ẏj+1)

=

∫

y1

κ(y0, ẏ1)





∫

a∈A

k
∑

i=1

∫

y2

· · ·

∫

i

κ(yi, ȧ)

i−1
∏

j=0

κ(yj , ẏj+1)





=

∫

y1

κ(y0, ẏ1)

[

∫

a∈A

k
∑

i=1

κ(i)(y1, ȧ)

]

6

∫

y1

κ(y0, ẏ1).

Coming back to the initial expression, we obtain the required

bound by using the additivity of κ (we recall that A and X∩Y
do not intersect):

∫

a∈A

k+1
∑

i=1

κ(i)(y0, ȧ) 6 κ(y0, A) + κ(y0,X ∩Y) 6 1.

Now, the execution kernel just defined is the main operation

for defining the execution of sub-Markov kernels, as we

will explain in the next section. We now define the second

ingredient, namely the zeta function. For this, we first define

a map which we abusively call the ”zeta kernel”, although it

is not a kernel as we explain below.

Definition 40 (Finite orbits – Zeta kernel). Let κ be a sub-

Markov kernel on X×Y. The zeta kernel, or kernel of finite

orbits of κ is a kernel on X×N – where N denotes the set

of natural numbers – defined as:

ζκ(x0, ẋ0, n) =

∫∫

(x1,...,xn−1)∈(X∩Y)n−1

∏

i∈Z/nZ

κ(xi, ẋi+1).

Notice that this expression computes the probability that a

given point x0 lies in an orbit of length n. It is a sub-Markov

kernel for each fixed value of n, but the sum over n ∈ Z is

not. The reason is simple: if a point x lies in a length 2 orbit

with probability 1 (e.g. the point y in the example Markov

chain above), then it lies in a length 2k orbit with probability

1 as well. However, let us remark that the expression
∫

x∈X∩Y

ζκ(x, ẋ, n)



plays the rôle of the set Fix(fn) that appears in dynamical

and graph zeta functions.

Definition 41 (Zeta function). We now define the Zeta func-

tion associated with a sub-Markov kernel κ on X×Y:

ζκ(z) : z 7→ exp

(

∞
∑

n=1

zn

n

∫

x∈X∩Y

ζκ(x, ẋ, n)

)

A. Execution and the Cocycle Property

Definition 42. Given two sub-Markov kernels κ on X ×X
′

and κ′ on Y × Y
′, we define their execution κ ::κ′ as the

kernel tr(κ • κ′) where:

κ • κ′ = (κ+ 1Y\X′) ◦ (κ′ + 1X′\Y)

The reader with notions from traced monoidal categories

[30], [31], [32] should not be surprised of this definition and

the following properties.

Definition 43. Three sub-Markov kernels κ on X×X
′, κ′ on

Y×Y
′, and κ′′ on Z×Z

′ are said to be in general position5

when the following condition is met:

µ(X′ ∩Y ∩ Z) = µ(Y′ ∩ Z ∩X) = µ(Z′ ∩X ∩Y) = 0,

µ(X ∩Y
′ ∩ Z

′) = µ(Y ∩ Z
′ ∩X

′) = µ(Z ∩X
′ ∩Y

′) = 0.

Note that if X = X
′, Y = Y

′ and Z = Z
′, the condition

becomes µ(X ∩ Y ∩ Z) = 0, which is the condition of

application of the associativity of execution and of the trefoil

property in the graph case.

Lemma 44. Given three sub-Markov kernels κ0 on X×X
′,

κ1 on Y ×Y
′, and κ2 on Z× Z

′ in general position:

(κ0 ::κ1) ::κ2 = κ0 ::(κ1 ::κ2).

Lemma 45. Given two sub-Markov kernels κ on X×X
′ and

κ′ on Y ×Y
′ such that X ∩Y = X

′ ∩Y
′ = ∅:

κ ::κ′ = κ′ ::κ.

However, having a well-defined associative execution is not

enough to model linear logic. Following what was exposed in

the first sections, we now define a zeta function associated to

a sub-Markov process, and show that this zeta function and

the execution satisfy the required cocycle property.

Definition 46. Given two kernels κ, κ′, we define their zeta-

measurement ζκ,κ′ as the function ζκ•κ′(z).

Proposition 47 (Cocycle). Given three sub-Markov kernels κ
on X × X

′, κ′ on Y × Y
′, and κ′′ on Z × Z

′ in general

position:

ζκ,κ′(z)ζκ ::κ′,κ′′(z) = ζκ′ ::κ′′,κ(z)ζκ′,κ′′(z)

To construct the model of linear logic, we will now follows

the usual process. We need to consider not only kernels, but

pairs of a kernel and a function. This is used to capture the

information about closed paths appearing during the execution,

as in the graph case. This is discussed by Seiller in earlier work

[14], and is essential to obtain Theorem 54.

5The reader will realise the terminology is inspired from algebraic geom-
etry, but no formal connections should be expected.

B. A first model of Linear Logic

To obtain a model of linear logic, one has to consider

sub-Markov kernels with a set of states. Following Seiller’s

construction of a model of second-order linear logic [17], we

will consider here that the set of states is equal to the segment

[0, 1]. Note however that fragments of linear logic can be

modelled when the set of states is chosen to be discrete [26],

so a model where all sets of states are considered is possible

to describe although it would be in some cases impossible to

interpret some constructions.

Definition 48. A proof-object of support X is a pair f =
(f, F ) of a function C → C and a sub-Markov kernel F on

(X× [0, 1])× (X× [0, 1]).

We define the operations ( )† and ( )‡ that will be used

throughout the constructions. These operations are meant

to ensure that the set of states of two proof-objects do

not interact. Indeed, those should be understood as sets of

control states, such as the states of automata, and the set

of state of a composition is defined as the product of the

sets of states of the two objects composed. Given a sub-

Markov kernel F : (X × [0, 1]) × (X × [0, 1]) → [0, 1],
we define (κ)† and (κ)‡ as the following sub-Markov kernels

(X× [0, 1]× [0, 1])× (X× [0, 1]× [0, 1]) → [0, 1]:

(κ)† : ((x, e, f), (ẋ, ė, ḟ)) 7→ κ((x, e), (ẋ, ė))1(f, ḟ)

(κ)‡ : ((x, e, f), (ẋ, ė, ḟ)) 7→ κ((x, f), (ẋ, ḟ))1(e, ė).

Definition 49. Given two proof objects f = (f, κF) and

g = (g, κG) we define the zeta-measurement as the complex

function:

ζκF,κH
: z 7→ f(z).g(z).ζκ†

F
•κ‡

F

(z).

Definition 50. The execution of two proof objects f = (f, κF)
and g = (g, κG), of respective supports X and Y, is defined

as the proof-object:

(f.g.ζκF,κG
, κ†

F ::κ‡
G).

Note that this is a proof-object up to isomorphism between

[0, 1] and [0, 1]× [0, 1].

Based on Lemma 44 and Lemma 45 and the associativity

and commutativity of the pointwise product of functions, this

notion of execution is associative and commutative.

We now define the orthogonality relation through the zeta

function. This follows what we exposed above in the case of

graphs.

Definition 51. An antipode P is a family of functions C →
C. Given two proof objects f = (f, κF) and g = (g, κG) of

support X, they are orthogonal w.r.t. the antipode P – denoted

f ‹P g – if and only if ζf,g ∈ P .

We suppose now that an antipode has been fixed until the

end of this section. We will therefore omit the subscript when

writing the orthogonality.



Definition 52. A type of support V is a set A of proof-objects

of support V such that there exists a set B with A = B‹ .

Equivalently, a type is a set A such that A = A
‹‹ .

Definition 53. For A and B two types of disjoint supports,

we define:

A⊗ B = {a :: b | a ∈ A, b ∈ B}‹‹

A ⊸ B = {f | ∀a ∈ A, f :: a ∈ B}

The following is a direct consequence of the cocycle prop-

erty. We omit the proof as it follows the proof of the same

statement in Interaction Graphs models [14], [15], [16].

Theorem 54. For any two types A,B with disjoint support:

(A⊗ B
‹)

‹

= A ⊸ B.

Now, to define exponentials, one has to restrict to specific

spaces. Indeed, not all sub-Markov kernels can be exponenti-

ated. This is easy to understand: if a proof-object uses several

copies of its argument, it uses it through its set of states. To

understand how states allow for this, consider two automata

that are composed. If the first automata has two states, it can

ask the first automata to perform a computation, change state,

and then ask again, triggering two computations of the second

machine. This works perfectly provided the second machine

ends its computation on its initial state, otherwise it would not

run correctly the second time as there is not way to reinitiate

it. This issue is dealt with in the models by exponentiation, as

only exponentiated processes can be used multiple times. To

ensure the latter end their computation in the same state as they

started, exponentiation erases the states to define a single-state

machine, while the states are encoded in the configurations of

the machine to avoid information loss. This encoding requires

the underlying space X to be large enough, that is to contain

the space [0, 1]N. Exponentiation is therefore defined as long

as the underlying space X contains [0, 1]N.

We now restrict to the spaces of the form X = Y× [0, 1]N

in order to define exponentials.

Definition 55. A proof-object f = (f, κF) is balanced if f =
0. If E is a set of proof-objects, we write bal(E) the subset

of balanced proof-objects in E.

Following Seiller’s model [17], we will define the exponen-

tial through the following maps for all space X as above:

BX :

{

Y × [0, 1]N × [0, 1] → Y × [0, 1]N

(a, s, d) 7→ (a, d : s)

where : denotes here the concatenation. This map is used

to define !κ from a sub-Markov kernel κ : (X × [0, 1]) ×
(X × [0, 1]) → [0, 1] (we recall that the copies of [0, 1] here

represent the set of states of the proof-object). We first define6

B−1
X

◦κ ◦BX, which is a sub-Markov kernel X×X → [0, 1],

6Here B is a bijective map, and not a kernel, but we implicitly use the
kernel composition by considering the kernel form of B and B−1.

and then !κ : (X× [0, 1])×(X× [0, 1]) → [0, 1] can be defined

as follows:

!κ : (x, e, ẋ, ė) 7→ B−1
X

◦ κ ◦BX(x, ẋ)1(e, ė).

Note that the information of the states of κ is encoded in !κ
within the space X and the latter acts on the set of states as

the identity, i.e. as if it has a single state.

Definition 56 (Perennisation). Let f = (0, κF) be a balanced

proof-object. We define its perennisation !f = (0, !κF).

Definition 57 (Exponential). Let A be a type. We define the

perrenial type !A as the bi-orthogonal closure !A = (♯A)‹‹

where ♯A is the set ♯A = {!a | a ∈ bal(A)}.

As a consequence, we get a model of second-order linear

logic (LL2) using the construction from Seiller’s work on

graphings [17].

Theorem 58. Restricting to spaces X = Y × [0, 1]N, proof-

objects and types define a sound model of LL2.

Proof. All the work has been done already. Indeed, the in-

terpretations of linear logic proofs are defined in IG for full

linear logic [17], and it is sufficient to remark that those are

interpreted by deterministic graphings. As such, they are in

fact interpreted by dynamical systems by Theorem 23, which

in turn define sub-Markov kernels.

Obviously, this interpretation of linear logic can now be

extended with terms for sampling distributions in a natural

way, as well as probabilistic sums of proofs (this aspect is

already discussed in previous work [17]). However, as we will

show in the next section, we can model LL2 in the unrestricted

setting of sub-Markov kernels.

V. SUB-MARKOV PROCESSES AND LINEAR LOGIC

Notations 59. When writing down explicit formulas for the

value of a sub-kernel κ on (X× [0, 1])× (Y× [0, 1]), we will

notationally separate the set of states and the spaces X and

Y. I.e. we will write κ : X · [0, 1]×Y · [0, 1] and write explicit

definitions as κ(x; ẏ) · (e; ḟ) to denote κ(x, e, ẏ, ḟ). This will

help clarify the definitions and computations in the following,

especially when the spaces X and Y contain copies of [0, 1].

We restricted the previous model to spaces of the form X =
Y × [0, 1]N to ease the presentation and proofs. However, it

can be shown that the set of proof-objects and types – without

any restrictions on the underlying spaces – is also a model of

linear logic. Indeed, instead of considering that κ and !κ should

act on the same space, it is possible to consider that while κ is

defined on X×Y, !κ is defined on (X× [0, 1])× (Y× [0, 1]).
In that case, no assumptions need to be made on X and Y,

and !κ is simply defined as the kernel on

(X× [0, 1]) · [0, 1]× (Y × [0, 1]) · [0, 1]

where the second copy of [0, 1] represent the set of states and

!κ(x, e; ẋ, ė) · (f ; ḟ) = κ(x; ẋ) · (e; ė)× 1(f, ḟ).



Notations 60. In the following, when considering proof-

objects (f, κF), we will say κF is a sub-Markov kernel from X

to Y to express that κF has type X · [0, 1]×Y · [0, 1]→ [0, 1].

We now detail this construction, which will require us to

redefine the interpretations of linear logic proofs by adapting

previous techniques [17].

A. Multiplicatives

We here sketch the basic definitions. The definition of

orthogonality, types, and multiplicative connectives follows the

constructions exposed in Section IV-B. Additive connectives

and quantifiers can also be constructed, following blindly

previous constructions [15], [16], [26], [17]. Due to space

constraint, we skip those to focus on the real novelty: the

construction of exponentials in this larger setting.

Definition 61. A general proof-object of support X → Y is

a pair f = (f, κF) of a complex function f and a sub-Markov

kernel κF from X to Y.

In the following, as above, an antipode P is a family of

functions C → C.

Definition 62. Two general proof-objects f, g of respective

supports X → Y and Y → X are orthogonal w.r.t. an

antipode P , which is denoted by f ‹P g, when ζf,g ∈ P .

Definition 63. Given two general proof-objects f, g of respec-

tive supports X → Y and X
′ → Y

′, their execution is the

proof-object of support (X∪X′)\(Y∪Y′) → (Y∪Y′)\(X∪
X

′) defined as f :: g = (ζf,g, κF ::κG).

Remark 64. Notice that the execution is not commutative here.

Commutativity can be shown as long as one requires that X∩
X

′ and Y ∩Y
′ are negligible.

Definition 65. Let f, g be two general proof-objects of respec-

tive supports X → Y and X
′ → Y

′, where X,X′,Y,Y′ are

pairwise disjoint. We write f⊗g the execution of f and g. Note

that f⊗ g = g⊗ f by the above remark.

B. Exponentials

We now redefine exponentials for arbitrary proof-objects.

Definition 66. Let f = (1, κ) be a proof-object, where κ
is a sub-Markov process from X to Y. We define !f as the

proof object (1, !κ) where !κ is the sub-Markov process from

X× [0, 1] to Y × [0, 1] defined as:

!κ((x, e; ẋ, ė) · (f ; ḟ)) = κ(x; ẋ) · (e; ė)1(f ; ḟ)

Definition 67 (Exponentiation). Let f = (1, κF) be a balanced

proof-object. We define its exponential !f = (1, !κF).

We will now show that the principles of linear logic can be

interpreted faithfully. To do this, we introduce some notations.

Notations 68. Given a map f : X → Y, it induces a kernel κf

on X×Y defined as κf (x, ẏ) = 1(f(x), ẏ). It also induces a

kernel κ∗
f on Y ×X defined as κ∗

f (y, ẋ) = 1(f(x), ẏ). Note

that if f is bijective, κ∗
f = κf−1 .

We will also use the sum symbol + to denote the parallel

composition of kernels, i.e. given kernels κ on X × Y and

κ′ on Z×W, the kernel κ+ κ′ on (X + Z) × (Y ×W) is

defined as

(u, v) 7→







κ(u, v̇) if u ∈ X, v̇ ∈ Y

κ′(u, v̇) if u ∈ Z, v̇ ∈ W

0 otherwise

Lastly, if κ is a kernel on X × Y, we write κ̄ the kernel

κ extended with a dialect on which it acts as the identity,

i.e. κ̄ is the kernel on (X × [0, 1]) × (Y × [0, 1]) defined as

κ̄(x; ẏ) · (e; ḟ) = κ(x, ẏ)1(e, ḟ).

The following claim, established by Seiller [26, Proposition

37], will be particularly useful in the following proofs. It states

that to prove a proof-object f belongs to A ⊸ B, it is enough

to prove f :: a ∈ B when a ranges over a generating set for A.

Claim 69. Let A,B be types and E a generating set for A, i.e.

A = E‹‹ . If f is such that ∀a ∈ A, f :: a ∈ B, then f belongs

to the type A ⊸ B.

Proposition 70. The digging rule can be interpreted.

Sketch. Suppose A is of support X → Y. This map is

implemented as a project dig
X→Y

= (1, κdig
Y
+ κ∗

dX
) with

κ∗
dig

X

the kernel on (X× [0, 1]2) · [0, 1]× (X× [0, 1]) · [0, 1]
defined by

κ∗
dX

(x, e, e′; ẋ′, ḟ) · (e′′; ḟ ′) = 1(x, ẋ′)1(e, ḟ)1(ϕ(e′, e′′), ḟ ′),

and κdY
is the kernel on (Y×[0, 1])·[0, 1]×(Y×[0, 1]2)·[0, 1]

defined by

κdY
(x, e; ẋ′, ḟ , ḟ ′)·(e′; ḟ ′′) = 1(x, ẋ′)1(e, ḟ)1(e′, ϕ(ḟ ′, ḟ ′′)),

where ϕ is a fixed bijection between [0, 1] and [0, 1]2.

Which proves that !a :: dig
X→Y

= !!a (up to the isomor-

phism ϕ between [0, 1]2 and [0, 1] on the stateset).

This ends the proof: since !A is generated by the elements

of the form !a, the fact that digX→Y maps every element of

the form !a to an element of !!A suffices to establish that it

belongs to !A ⊸ !!A, by Claim 69.

Proposition 71. The dereliction rule can be interpreted.

Proof of Proposition 71. Now, dereliction is a map !A ⊸ A.

Suppose A is of support X → Y. This map is easily

implemented as a project der = (1, κ∗
derX

+κderY ) with κ∗
derX

the kernel on (X) · [0, 1]×X× [0, 1] · [0, 1] defined by:

κ∗
derX(x; ẋ

′, ḟ) · (e, ḟ) = 1(x, x′)1(e, ϕ(f, f)),

and κderY the kernel on (Y× [0, 1]) · [0, 1]×Y · [0, 1] defined

by:

κderY (x, e; ẋ
′) · (ė′; ḟ) = 1(x, x′)1(ϕ(e, e′), f),

where ϕ is a fixed bijection between [0, 1] and [0, 1]2.

To show that this implements dereliction is a simple compu-

tation. Taking a a balanced project, we consider !a, and show

that !a :: derX→Y = a up to some bijection on the stateset.

Now, we compute !a :: der with !a = (1, !κ). Again, given the



definition of der, this consists in computing paths of length

3. This shows that !a :: derX→Y = a up to the isomorphism

between [0, 1]3 and [0, 1]2 defined by (a, b, c) 7→ (ϕ(a, c), b).
Again, by Claim 69 this is enough to establish that derX→Y

belongs to !A ⊸ A.

Proposition 72. The functorial promotion can be interpreted

in the model.

Based on this construction and usual methods for interpret-

ing multiplicatives, additives and quantifiers [17], we obtain

another model of LL2.

Theorem 73. General proof-objects and types define a sound

model of LL2.

VI. CONCLUSION AND PERSPECTIVES

We have established that sub-Markov processes do provide

a model of Linear Logic. It should be clear that probabilistic

languages with sampling instructions can be interpreted in

this model. Indeed, while axiom rules are interpreted by the

identity kernel – i.e. the Dirac delta function –, generalised

rules introducing non-trivial Markov kernels can very well be

accommodated in our model. We expect strong connections

with game semantics models dealing with such languages [33],

although our approach differs from the start by its intention.

In particular, types arise from the behaviour of processes and

are therefore not predefined. Moreover, the typing discipline

is very rich, and can incorporate dependent types [16], [17],

[13], and could be used to consider new type constructions

adapted to probabilistic computation [34].

It is also worth noting that the formal relation with zeta

function could turn out to be of a great interest with respect

to the recasting of complexity theory by means of Interaction

Graphs models [35], [24]. Indeed, it is hoped that invariants

from dynamical systems (and the group/monoid action used

to restrict graphings) to be related to the expressivity of the

models, and I already showed with Pellissier how strong

algebraic lower bounds can be expressed and strengthened

using the notion of topological entropy [25]. This work thus

provides an additional element with respect to these ideas, as

the orthogonality, which is used to characterise the complexity

classes, is here shown to be related to the zeta function of the

underlying dynamical systems.

Lastly, it is important to stress that while the consideration

of sub-kernels is important here, the typing discipline may be

used to ensure that composition of well-typed Markov kernels

are Markov kernels. Indeed, we believe that one can extend

the definition of the the zeta function to define a function

ζ∞κ (z) that incorporates infinite orbits. We expect then to

show that this modified zeta function will still satisfy the

properties needed to build models of linear logic, and show

that ζ∞κ•κ′(z) = 0 implies that the execution κ ::κ′ is a Markov

kernel (and not a sub-Markov kernel) as long as κ and κ′ are.
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APPENDIX

Proof of Theorem 23. Clearly, a partial dynamical system

(X, V,Φ) where Φ is a NSMP map defines a graphing of

support V with a single edge realised by Φ.

Now, let us explain how a deterministic graphing G de-

fines a partial non-singular measurable-preserving dynamical

system. Since G it is deterministic, we can consider a repre-

sentative Ḡ of G such that the set
{

x ∈ X | ∃e, f ∈ EG, e 6= f and x ∈ SG
e ∩ SG

f

}

is the empty set. Then, one defines the partial dynamical

system (X,∪e∈EḠSḠ
e ,Φ), where:

Φ(x) =

{

φḠ
e (x) if x ∈ SḠ

e

0 otherwise

Moreover the map Φ is NSMP as a (disjoint) union of partial

NSMP maps.

To end the proof, we need to show that the choice of

representative in the previous construction is irrelevant. We

prove this by showing that G is equivalent to the graphing H
induced by (X,∪e∈EḠSḠ

e ,Φ). But this is obvious, as Ḡ is a

refinement of H , and G and Ḡ are equivalent. This is sufficient

because of the following claim: if G and G′ are equivalent,

then the induced partial dynamical systems are a.e. equal.

Proof of Lemma 24. A deterministic graphing F satisfies that

for every edges e, f ∈ EF , SF
e ∩ SF

f is of null measure.

Suppose that the graphing F ::G is not deterministic. Then

there exists a Borel B of non-zero measure and two edges

e, f ∈ EF ::G such that B ⊂ SF ::G
e ∩ SF ::G

f . The edges e, f
correspond to paths πe and πf alternating between F and G.

It is clear that the first step of these paths belong to the same

graphing, say F without loss of generality, because the Borel

set B did not belong to the cut. Thus πe and πf can be written

πe = f0π
1
e and πf = f0π

1
f . Thus the domains of the paths π1

e

and π1
f coincide on the Borel set φF

f0
(B) which is of non-zero

measure since all maps considered are non-singular. One can

then continue the reasoning up to the end of one of the paths

and show that they are equal up to this point. Now, if one of the

paths ends before the other we have a contradiction because

it would mean that the Borel set under consideration would

be at the same time inside and outside the cut, which is not

possible. So both paths have the same length and are therefore

equal. Which shows that F ::G is deterministic since we have

shown that if the domain of two paths alternating between

F and G coincide on a non-zero measure Borel set, the two

paths are equal (hence they correspond to the same edge in

F ::G).

Proof of Proposition 26. On one hand, we have

− log(ζg◦f.1(1)) =
∑

m>1

∫

Fix((g◦f)m)

1

m

∑

m>1

µ(Fix((g ◦ f)m))

m
.

On the other hand, the measurement Jf, gKm defined on

general graphings [16, Definitions 37 and 57] is given by the

formula shown in Figure 2 in which ρφ is a measurable map

associating to each point the length of the orbit it belongs to

[14, Corollary 45], P [f, g] denotes the set of prime closed

paths alternating between f and g, and generally h∗µ denotes

the pullback measure of µ along h.

As established by Seiller, this expression simplifies in the

measure-preserving case [14, Proposition 52], and can be

expressed as

Jf, gKm =
∑

π=e0...en∈P[f,g]

∫

supp(π)

m(ω(π)ρφπ (x))

ρφπ
(x)

Now, we can split this expression by considering the parti-

tion of supp(π) given by the preimage of ρφ. I.e. this partitions

supp(π) into (measurable) subsets Sπ
i = ρ−1

φ (supp(π)) con-

taining the points x ∈ supp(π) such that the orbit of x is of

length i.
As the value of ρφ is constant on these sets, this gives:

Jf, gKm =
∑

π=e0...en∈P[f,g]

∞
∑

i=0

∫

Sπ
i

m(ω(π)i)

i

Now, we are considering the case where m(x) = z, and we

know all weights in the graphing are equal to 1. Hence:

Jf, gKm =
∑

π∈P[f,g]

∞
∑

i=0

∫

Sπ
i

z

i
.

On the other hand, we have that, writing AltCycle(f, g)m
the set of all alternating cycle between f and g of length m:

log(ζg◦f,1(z)) =
∑

m≥1

∫

Fix((g◦f)m)

z

m

=
∑

m≥1

∑

π∈AltCycle(F,G)m

∫

Sπ
m

z

m

since each fixpoint belongs to exactly one alternating cycle

of length m between f and g (because the graphings are

deterministic).

Now each alternating cycle of length m between f and g can

be written uniquely as a product of alternating prime cycles,

we deduce (this is essentially Proposition 60 in Seiller’s first

paper on Interaction Graphs [14]):

log(ζg◦f,1(z)) =
∑

m≥1

∑

π∈P[f,g]

∫

Sπ
m

z

m

=
∑

π∈P[f,g]

∑

m≥1

∫

Sπ
m

z

m

= Jf, gKm

Proof of Theorem 28. If the weights of edges in F and G are

elements of [0, 1], then it is clear that the weights of edges in

F ::G are also elements of [0, 1]. We therefore only need to

check that the second condition is preserved.

Let us denote by Out(F ::G) the set of x ∈ X which are

source of paths whose added weight is greater than 1, and by

Out(F ∪ G) the set of x which are source of edges (either

in F or G) whose added weight is greater than 1. First, we



∑

π=e0e1...en∈P[f,g]

n
∑

j=0

∫

supp(π)

ρφπ (x)−1
∑

k=0

m(ω(π)ρφπ (φk
π(x)))

(n+ 1)ρφπ
(x)ρφπ

(φk
π(x))

d(φen ◦ φen−1
◦ · · · ◦ φej )∗λ(x)

Fig. 2. General measurement function on graphings.

notice that if x ∈ Out(F ::G) then either x ∈ Out(F ∪G), or

x is mapped – through at least one edge – to an element

y which is itself in Out(F ∪ G). To prove this statement,

let us write paths(x) (resp. edges(x)) the set of paths in

F ::G (resp. edges in F or G) whose source contain x. We

know the sum of all the weights of these paths is greater

than 1, i.e.
∑

π∈paths(x) ω(π) > 1. But this sum can be rear-

ranged by ordering paths depending on theirs initial edge, i.e.
∑

π∈paths(x) ω(π) =
∑

e∈edges(x)

∑

π=eρ∈paths(x)e ω(π), where

paths(x)e denotes the paths whose first edge is e. Now, since

the weight of e appears in all ω(eρ) = ω(e)ω(ρ), we can

factorize and obtain the following inequality.

∑

e∈edges(x)

ω(e)





∑

π=eρ∈paths(x)e

ω(ρ)



 > 1

Since the sum
∑

e∈edges(x) ω(e) is not greater than 1, we

deduce that there exists at least one e ∈ edges(x) such that
∑

π=eρ∈paths(x)e ω(ρ) > 1. However, this means that φe(x) is

an element of Out(F ::G).
Now, we must note that x is not element of a closed path.

This is clear from the fact that x lies in the carrier of F ::G.

Then, an induction shows that x is an element of

Out(F ::G) if and only if there is a (finite, possibly empty)

path from x to an element of Out(F ∪G), i.e. Out(F ::G) is

at most a countable union of images of the set Out(F ∪ G).
But since all maps considered are non-singular, these images

of Out(F ∪G) are negligible subsets since Out(F ∪G) is itself

negligible. This ends the proof as a countable union of copies

of negligible sets are negligible (by countable additivity),

hence Out(F ::G) is negligible.

Proof of Lemma 44. The fact that the Markov kernels are in

general position allows us to write the composition in a traced

monoidal category style (Figure 3).

The above theorem then states that the feedbacks commute

with the composition. I.e. that Figure 4 computes the same

kernel as the one below which represent the left-hand side of

the equation.

The fact that this is true is a consequence of the fact

that kernels are in general position since the integrals are

taken over disjoint domains. The underlying explanation is

that the execution kernel κ ::κ′ is computed by integrating over

alternating paths between κ and κ′, i.e. it is computed as an

integral over the sequences x1, x2, . . . , xk of the alternating

product of κ(xi, ẋi+1) and κ′(xi+1, ẋi+2). These paths can

be seen in the above figures. Taking the iterated composition

(κ0 ::κ1) ::κ2 thus integrates over alternating paths between

κ2 and alternating paths between κ0 and κ1. As in the case of

graphs [14], this can be shown to be the same as integrating

over all alternating paths between κ0 and alternating paths

between κ1 and κ2.

Proof of Proposition 47. The proof consists in heavy com-

putations, but without any technical difficulties. The main

ingredient is again the geometric adjunction. The pictures

shown in the proof of 44 can be used here to have better

insights on the situation. The zeta function quantifies the finite

orbits, i.e. the proportion of points that can be reached from

themselves by alternating iterations of the involved kernels

(weighted by the probabilities of such dynamics occurring).

The main ingredient of the proof is then that a closed path

alternating between F , G, and H is either a closed path

alternating between F and G, or a closed path alternating

between H and alternating paths between F and G. Since

the roles of F , G and H are symmetric in this statement,

we obtain three different splittings of the initial set of closed

paths. Now, since zeta functions measure sets of closed paths,

these three equal but different expressions yield three different

products of two zeta functions. The statement above simply

corresponds to stating the equality of two of those.

Proof of Proposition 70. Suppose A is of support X → Y.

This map is easily implemented as a project dig
X→Y

=
(1, κdig

Y
+ κ∗

dig
X

) with

κ∗
dig

X

:

(X× [0, 1]× [0, 1]) · [0, 1]× (X× [0, 1]) · [0, 1] → [0, 1]

(x, e, e′) · e′′, (x′, f) · f ′ 7→ 1(x, x′)1(e, f)1(ϕ(e′, e′′), f ′)

κdig
Y
:

(Y × [0, 1]) · [0, 1]× (Y × [0, 1]× [0, 1]) · [0, 1] → [0, 1]

(x, e) · e′, (x′, f, f ′) · f ′′ 7→ 1(x, x′)1(e, f)1(e′, ϕ(f ′, f ′′))

where ϕ is a fixed bijection between [0, 1] and [0, 1]2.

To show that this implements digging is a simple exercise.

Taking a a balanced project, we consider !a, and show that

!a :: dig
X→Y

= !!a. In fact, it is easy to convince oneself that

the kernel of !a :: dig
X→Y

is computed as the set of ”length
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′

X ∩Y
′

X ∩ Z
′
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′
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′
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′

κ0
X

′ ∩Y

κ1

Y
′ ∩ Z

X
′ ∩ Z

κ2
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′\Y ∪ Z
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Y
′ ∩X
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Z
′ ∩X

Z
′ ∩Y

Fig. 3. Proof of Lemma 44, first figure
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′

X ∩Y
′
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′
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′

Z\X′ ∪Y
′

Y\X′ ∪ Z
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κ0
X

′ ∩Y

κ1

Y
′ ∩ Z

X
′ ∩ Z

κ2

X
′\Y ∪ Z

Y
′\X ∪ Z

Z
′\X ∪Y

Z
′ ∩X

Z
′ ∩Y

Fig. 4. Proof of Lemma 44, second figure

3 paths”. i.e.

tr(!κ†
A • (κdig

Y
+ κ∗

dig
X

)‡)((x, e, f); (ẋ, ė, ḟ)) · (g, h; ġ, ḣ)

=

∫

(y,u,d,d′),(z,v,c,c′)




κ∗
dig

X

((x, e, f), (ẏ, u̇)) · (g, ḋ)1(h, ḋ′)

×!κA((y, u); (ż, v̇)) · (d′, ċ′)1(d, ċ)

×κdig
Y
((z, v), (ẋ, ė, ḟ)) · (c, ġ)1(c′, ḣ)





=

∫

(y,u,d,d′)




1(x, ẏ)1(e, u̇)1(ϕ(f, g), ḋ)1(h, ḋ′)

×
∫

(z,v,c,c′)

[

!κA((y, u); (ż, v̇)) · (d′, ċ′)1(d, ċ)

×κdig((z, v), (ẋ, ė, ḟ)) · (c, ġ)1(c′, ḣ)

]





=

∫

(z,v,c,c′)

[

!κA((x, e); (ż, v̇)) · (h, ċ′)1(ϕ(f, g), ċ)

×κdig((z, v), (ẋ, ė, ḟ)) · (c, ġ)1(c
′, ḣ)

]

=

∫

(z,v,c,c′)

[

!κA((x, e); (ż, v̇)) · (h, ė)1(ϕ(f, g), ė
′)

×1(z, ẋ)1(v, ė)1(c, ϕ(ḟ , ġ))1(c′, ḣ)

]

= !κA((x, e); (ẋ, ė)) · (h, ḣ)1(ϕ(f, g), ϕ(ḟ , ġ))

= !κA((x, e); (ẋ, ė)) · (h, ḣ)1(f, ḟ)1(g, ġ)

= κA(x; ẋ) · (e; ė)1(h, ḣ)1(f, ḟ)1(g, ġ)

= κA(x; ẋ) · (e; ė)1(f, ḟ)1(ϕ(h, g), ϕ(ḣ, ġ))

Which proves that !a :: dig
X→Y

= !!a (up to the isomorphism

ϕ between [0, 1]2 and [0, 1] on the stateset).

This ends the proof: since !A is generated by the elements

of the form !a, the fact that dig
X→Y

maps every element of

the form !a to an element of !!A suffices to establish that it

belongs to !A ⊸ !!A, by Claim 69.

Proof of Proposition 71. Now, dereliction is a map !A ⊸ A.

Suppose A is of support X → Y. This map is easily

implemented as a project der = (1, κ∗
derX

+ κderY ) with:

κ∗
derX :

(X) · [0, 1]×X× [0, 1] · [0, 1] → [0, 1]

x · e, (x′, f) · f ′ 7→ 1(x, x′)1(e, ϕ(f, f))



κderY :

(Y × [0, 1]) · [0, 1]×Y · [0, 1] → [0, 1]

(x, e) · e′, x′ · f 7→ 1(x, x′)1(ϕ(e, e′), f)

where ϕ is a fixed bijection between [0, 1] and [0, 1]2.

To show that this implements dereliction is a simple compu-

tation. Taking a a balanced project, we consider !a, and show

that !a :: derX→Y = a up to some bijection on the stateset.

Now, we compute !a :: der with !a = (1, !κ). Again, given the

definition of der, this consists in computing paths of length 3,

i.e.

tr(!κ†
A • (κ∗

derX + κderY )
‡)(x; ẋ) · (e, f ; ė; ḟ)

=

∫

(y,a,b,c)

∫

(z,u,v,w)




κ∗
derX

(x; (ẏ, ȧ)) · (e; ḃ)1(f, ċ)
×!κA((y, a); (ż, u̇)) · (c; ẇ)1(b; v̇)

×κderY ((z, u); ẋ) · (v; ė)1(w, ḟ )





=

∫

(y,a,b,c)

1(x; ẏ)1(e;ϕ(ȧ, ḃ))1(f, ċ)

∫

(z,u,v,w)

[

!κA((y, a); (ż, u̇)) · (c; ẇ)1(b; v̇)

×κderY ((z, u); ẋ) · (v; ė)1(w, ḟ )

]

=

∫

(z,u,v,w)

[

!κA((x, ϕ
−1
0 (e)); (ż, u̇)) · (f ; ẇ)1(ϕ−1

1 (e); v̇)

×κderY ((z, u); ẋ) · (v; ė)1(w, ḟ )

]

=

∫

(z,u,v,w)

[

!κA((x, ϕ
−1
0 (e)); (ż, u̇)) · (f ; ẇ)1(ϕ−1

1 (e); v̇)

×1(z; ẋ)1(ϕ(u, v); ė)1(w, ḟ )

]

= !κA((x, ϕ
−1
0 (e)); (ẋ, ϕ−1

0 (u̇))) · (f ; ḟ)1(ϕ−1
1 (e);ϕ−1

1 (v̇))

= κA(x; ẋ) · (ϕ
−1
0 (e);ϕ−1

0 (ė))1(f, ḟ)1(ϕ−1
1 (e);ϕ−1

1 (v̇))

This shows that !a :: derX→Y = a up to the isomorphism

between [0, 1]3 and [0, 1]2 defined by (a, b, c) 7→ (ϕ(a, c), b).

Again, by Claim 69 this is enough to establish that derX→Y

belongs to !A ⊸ A.

Proof of Proposition 72. The proof is a tad more involved

than the preceding ones. Here we will implement the rule in

three steps. The principle is easy to understand: given !a ∈ !A
and !f ∈ !(A ⊸ B), we will first compute the executions

!a :: left and !f :: right in order to ensure disjointness of the

spaces used to encode the statesets of a and f respectively.

Once this is done, the execution (!a :: left) ::(!f :: right) morally

computes the same as !f :: a up to some transformation fit that

internalises a stateset isomorphism.

Let a ∈ A and f ∈ A ⊸ B be balanced proof-objects, of

respective supports X → Y and X
′ → Y

′. We consider the

proof-object twist = (1, κtwist) with:

κtwist :

(X ∪X
′)× [0, 1] · [0, 1](Y ∪Y

′)× [0, 1] · [0, 1] → [0, 1]

(x, e) · f(ẏ, ė) · ḟ 7→ 1(x, ẏ)1(e, ϕ−1
0 (ḟ))1(f, ϕ(ė, ϕ−1(ḟ))

for x, ẏ ∈ Y ∩X. We then use the kernels:

κl :

(X× [0, 1]) · [0, 1]× (X× [0, 1]× [0, 1]) · [0, 1] → [0, 1]

(x, e) · e′, (x′, f, f ′) · f ′′ 7→ 1(x, x′)1(e, f)1(e′, ϕ(f ′, f ′′))

κr :

(X× [0, 1]) · [0, 1]× (X× [0, 1]× [0, 1]) · [0, 1] → [0, 1]

(x, e) · e′, (x′, f, f ′) · f ′′ 7→ 1(x, x′)1(e, f ′)1(e′, ϕ(f, f ′′))

κc :

(X× [0, 1]× [0, 1]) · [0, 1]× (X× [0, 1]) · [0, 1] → [0, 1]

(x, e, e′) · e′′, (x′, f) · f ′ 7→ 1(x, x′)1(ϕ(e, e′), f)1(e′, f ′)

where ϕ is a fixed bijection between [0, 1] and [0, 1]2.

Consider projects !a = (1, !κA) and !f = (1, !κF)
of support X and X×Y respectively. We show that

((!κA ::κl) ::κtwist ::(!κF ::κr)) ::κc is equal to !κA :: F.
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