
HAL Id: hal-02458330
https://hal.science/hal-02458330v1

Preprint submitted on 28 Jan 2020 (v1), last revised 6 Apr 2024 (v6)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Zeta Functions and the (Linear) Logic of Markov
Processes

Thomas Seiller

To cite this version:

Thomas Seiller. Zeta Functions and the (Linear) Logic of Markov Processes. 2020. �hal-02458330v1�

https://hal.science/hal-02458330v1
https://hal.archives-ouvertes.fr

Zeta Functions and the (Linear) Logic of Markov

Processes

Thomas Seiller – seiller@lipn.fr

CNRS & University Sorbonne Paris North, France

January 28, 2020

Abstract

In a series of papers, the author introduced models of linear logic
known as ”Interaction Graphs”. These models generalise Girard’s various
geometry of interaction constructions, providing a unifying framework for
those. In this work, we exhibit how these models can be understood
mathematically through a cocycle property satisfied by zeta functions of
dynamical systems. Focussing on probabilistic models, we then explain
how the notion of graphings used in the models captures a natural class
of Markov processes. We further extend previous constructions to provide
a model of linear logic as a type system over the set of all (discrete-time,
time-independent) Markov processes.

1 Introduction

Right after his seminal paper introducing Linear Logic [4], Girard proposed a re-
search programme [5] aimed at obtaining new semantic models, which we chose
here to call ”dynamic semantics”. One could understand the motivations for
this programme as adequately modelling the dynamics of proof normalisation
(cut-elimination), which through the Curry-Howard correspondence amounts to
adequately modelling the dynamics of program execution (in lambda-calculus).
Indeed, whereas denotational semantics identifies both a proof π – or equiva-
lently a program P applied to an input n – and its normal form ρ – equivalently,
the result of the computation P (n), Girard’s aim was to model both π and ρ as
different objects, together with a mathematical operation – called execution –
computing ρ from π. As such, a model satisfying Girard’s expectations would
correctly model not only programs and data, but also the dynamic process of
program execution. In some sense, Girard’s programme inspired the introduc-
tion of game semantics which provide such models, although they fail to fulfil
the second Girard’s expectation.

Indeed, while providing a mathematical account of proof normalisation was
a major goal, it somehow clouded an even more appealing and ambitious objec-
tive, namely to use the Curry-Howard correspondence to provide foundations
of mathematical logic based on computer science. As such, the models envi-
sioned where to be constructed around a notion of program abstracted from
types, the types being defined as a language to describe the behaviour of the
considered programs. While the first such models were constructed around an

1

abstraction of programs as bounded operators on Hilbert spaces, recent work by
the author reformulated the constructions by considering graphs or graph-like
structures called graphings to account for programs. We will now describe the
basic intuitions behind the construction of models in the simple case of graphs.

Graphs provide a minimal but natural mathematical structure to represent
programs. Indeed, Turing machines and automata naturally abstract as finite
graphs. In these models, computation is represented as the computation of
paths in the graph: in the case of Turing machines, the graph represents the
transition function, and the process of computation corresponds to the iteration
of this transition function, i.e. following a path to travel through the graph. The
basic notions of the models are thus that of graphs, and that of the execution
Ex(G) of a graph G which is defined as some set of maximal paths in G. This
alone describes some kind of abstract, untyped, model of computation, which
one can structure by defining types depending on how graphs behave. E.g.
supposing A,B are defined types, then a graph G will have type A ⊸ B (the
linear implication) if and only if for all graph of type A, the graph G applied to
A – noted G�A – reduces to a graph Ex(G�A) of type B.

Obviously, the abstraction is not rich enough to adequately model expres-
sive computational models such as Turing machines. Some information is lost by
considering discrete graphs: following an edge corresponds to performing some
instruction and therefore modifying the state of the machine. To regain expres-
sivity, the author introduced graphings. Graphings are graphs which are realised
on a topological or measure space which represent the space of all possible con-
figurations of the machine. Edges are interpreted as specific endomorphisms of
this space restricted to some subspace, representing the action of instructions on
a chosen subset of configurations. As an example, for Turing machines one may
consider the space of configurations X = {∗, 0, 1}|Z| of Z-indexed sequences of
symbols ∗, 0, 1 that are almost always equal to ∗. Moving the working head to
the right can be represented as the map right : X → X, (ai)i∈Z 7→ (ai+1)i∈Z.
The instruction ”if the head is reading a 0 or a 1, move to the right” is then rep-
resented as an edge of source the subspace {(ai)i∈Z ∈ X | a0 6= ∗} and realised
by the map right.

As we will show in the first sections, the restriction to deterministic graph-
ings boils down to the representation of programs as partial dynamical systems.
In this case, execution is more or less described as the iteration of the considered
map, and – as we will show – the types are constructed based on some notion
of zeta function for dynamical systems, related to Ihara and Ruelle works. The
models, and particularly the fact that the notion of type inferred follow the lin-
ear logic discipline, then essentially relies on a cocycle relation relating iteration
and the zeta function.

Moreover, if one allows to probabilities on edges, then the natural notion of
probabilistic graphings coincide with a class of Markov processes that we will
describe. The goal of the present work, and its main achievement, is to extend
the model to the class of all Markov processes. More precisely, we define both a
notion of execution and of zeta function for general sub-Markov kernels and show
how these satisfy the cocycle relation that ensures that types do form a model of
linear logic. This naturally provides models of typed lambda-calculus extended
with probabilities and specific instructions for sampling specific distributions.

2

2 Interaction Graphs: Linear Logic and Zeta

functions

In this section, we review the models of linear logic introduced by the author
under the name ”Interaction Graphs”. Among these models, the first instances
were build around the notion of graph, while the latter used the more general
notion of graphing. We first review the former setting to ease the reader in
understanding the basic concepts we are pinpointing through a new presentation
– stressing in particular the use of zeta functions –, before detailing in the next
section how those adapt in the case of graphings.

2.1 Bowen-Lanford Zeta Functions

We first recall the definition and some properties of the zeta function of a di-
rected graph. We refer to the book of Terras [25] for more details. We will
later on continue with zeta functions for weighted directed graphs, and further
with zeta functions for dynamical systems. The graph case is important as it
provides intuitions about the later generalisations.

Now, we consider a directed graph G = (V G, EG, sG, tG) and suppose it is
simple, i.e. that the map EG 7→ V G×V G; e 7→ (sG, tG) is injective. We consider
the set of closed paths (called circuits by the author in Interaction Graphs (ig)
[17]), i.e. words e1, . . . , ek considered up to cyclic permutations. A prime closed
path (called 1-circuits in ig) is a closed path which is not a proper power of a
smaller closed path. We denote by C(G) the set of prime closed paths in G.

The following definition provides a clear parallel with the famous Euler zeta
function.

Definition 1. The Bowen-Lanford zeta function associated with the graph G
is defined as:

ζG(z) =
∏

τ∈C(G)

(1− zlg(τ))−1

which converges provided |z| is sufficiently small.

The two following lemmas are easy to establish (using the identity log(1 −
x) =

∑∞
k=1

xn

n). The first lemma is essential, as it is the alternative expression
of the zeta function that we will be able to generalise later. Indeed, while the
formal definition above uses the notion of prime closed paths, this one quantifies
over all closed paths.

The second lemma is key to the representation of ζG(z) as a rational function.
This is done by relating the zeta function with the determinant of the adjacency
matrix of G. Notice that this relation was obtained by the author in the special
case z = 1 [17] and was the motivation behind the definition of orthogonality in
Interaction Graphs models.

Lemma 2. Let N(n) denote the number of all possible strings (v1, . . . , vn) rep-
resenting a closed path in G of length n. Then:

ζG(z) = exp

(

∞
∑

i=1

zn

n
N(n)

)

3

Lemma 3. Let G be a graph, M(G) its transition matrix:

tr(M(G)k) = N(k)

Together, these two lemmas yield the following result.

Proposition 4. Let G be a graph, M(G) its transition matrix:

− log(ζG(z)) = − log(det(1− z.M(G))),

for sufficiently small values of |z|.

Proof. From the following computation:

− log(ζG(z)) =

∞
∑

i=1

zn

n
N(n)

=

∞
∑

i=1

zn

n
tr(M(G)k)

=

∞
∑

i=1

(z.tr(M(G))n

n

= − log(det(1− z.M(G))),

where the last equality can be found with a (simple) proof in the author’s earlier
work [17, Lemma 61].

In fact, work on zeta functions of graphs showed a stronger result which uses
the Perron-Frobenius theorem in case the adjacency matrix M of the graph is
aperiodic, i.e. there exists N such that MN > 0.

Theorem 5. If A is aperiodic then A has simple positive eigenvalue λ1 > 0
and all other eigenvalues verify max26i6k|λi| < λ1.

This leads to the theorem of Bowen and Lanford [2].

Theorem 6. The zeta function ζG(z) is non-zero and analytic for |z| < 1/λ1.
Morover, it has a simple pole at z = λ1 and a meromorphic extension to the
complex plane C of the form ζ(z) = det(1 − zA)−1. (In particular, it is a
rational function.)

This can be used to prove the prime graph theorem.

Theorem 7.

Card({π ∈ C(G) | lg(π) = n}) ∼
λn
1

n
as n → ∞

As we will show later on, the zeta function of graphs is strongly related to
the orthogonality in ig models, as the measurement used in these models boils
down to computing the value of some graph zeta function at z = 1. In fact,
we will show how to define new models by simply considering the zeta function
itself instead of its value at 1. But for this we need to define the zeta function
of weighted graphs.

4

a b c d a b c b’ c’ d

Figure 1: On the left: implicit cut between two graphs (one is plain, the other
is dashed). On the right: explicit cut between the same two graphs (the cut
is shown below). Both representations lead to the same result, as the cut-
elimination is represented by execution, an operation defined from alternating
paths. It is easily checked that there is a bijective correspondence between
alternating paths on the left and alternating paths on the right (though it does
not preserve the length).

2.2 Interaction Graphs: the discrete case in a nutshell

We briefly recall the basics of ig model in the discrete case. We work with
weighted directed graphs; here we will suppose weights are complex numbers.
The basic operation is that of execution between two graphs F,G. This in-
terprets program execution (explaining the naming convention) through cut-
elimination. The cut is implicitely represented as the common vertices of the
two graphs F,G. This eases the expressions, and is equivalent to the more tradi-
tional approach where one would consider both F and G, together with a graph
representing the cut rule (cf. Figure 1). As execution is defined through alter-
nating paths, the results are equivalent and we urge the reader to use whatever
convention she finds more natural.

Definition 8 (Alternating paths). Let G and H be two graphs. We define the
alternating paths between G and H as the paths (ei) in G∪H which satisfy that
for all i = 0, . . . , k − 1, ei ∈ F if and only if ei+1 ∈ G. The set of alternating
paths will be denoted by Path(G,H), while Path(G,H)V will mean the subset
of alternating paths in G�H with source and target in a given set of vertices
V .

Definition 9. Let F and G be two graphs. The execution of F and G is the
graph F ::G defined by:

V F ::G = V F∆V G = (V F ∪ V G)− (V F ∩ V G)

EF ::G = Path(F,G)V F∆V G

sF ::G = π 7→ s(π)

tF ::G = π 7→ t(π)

ωF ::G = π = {ei}
n
i=0 7→

n
∏

i=0

ωG�H(ei)

When V F ∩ V G = ∅, we write F ∪G instead of F ::G.

This notion of execution can be related to cut-elimination in proof nets, and
it represents the execution of programs through the Curry-Howard correspon-

5

dence. We will now define the notion of orthogonality which can be related
to corrected criterions for proof nets, and is used to define types by means of
testing. We refer the interested reader to work by Naibo, Petrolo and the author
[13] for more details and explanations.

Definition 10. We will call an alternating closed path a closed path (ei)06i6n

such that for all i ∈ Z/nZ, ei ∈ F if and only if ei+1 ∈ G. The set of prime
alternating closed paths between F and G is denoted C(F,G).

This notion is used in previous Interaction Graphs (ig) models to define a
measurement which in turn defines the orthogonality relation. The orthogonal-
ity, in turn, is used to define types in a way reminiscent of classical realisability
[11], and related to Hyland and Schalk’s double glueing construction [9]. We
only recall the measurement here and refer to the first ig paper for more details
[17].

Definition 11. For any two graphs F,G, we define the measurement

JF,GKm =
∑

π∈C(F,G)

−log(1− ωF�G(π)).

As the reader might already have noticed, there is a similarity between the
measurement defined by the author and the Bowen-Lanford zeta function. To
formalise the connection, we will consider zeta functions of weighted graphs.

2.3 Zeta functions of weighted directed graphs

Now, we consider weighted directed graphs, i.e. graphs with weights of the
edges. For now, consider weights to be complex numbers. We write ω the
weight function, as well as its extension to paths, using the product, i.e. ω(π) =
∏

e∈π ω(e).
Now, the zeta function of the weighted graph is defined as follows.

Definition 12. The zeta function associated with the weighted graph G is
defined as:

ζG(z) =
∏

π∈C(G)

(1− ω(π).zlgπ)−1

which converges provided |z| is sufficiently small.

Following the same reasoning as in the non-weighted case, one obtains the
following general result, which extends the author’s combinatorial interpretation
of the determinant det(1−M(G)) [17, Corollary 61.1].

Proposition 13. Let G be a directed weighted graph, M(G) its transition ma-
trix:

− log(ζG(z)) = − log(det(1− z.M(G))),

for sufficiently small values of |z|.

Notations 14. In this paper, given two sets A,B, we write A\B the set {a ∈ A |
a 6∈ B}.

6

Taking the logarithm we obtain:

− log(ζG(z)) =
∑

π∈C(G)

log(1− ¯ω(π).z)),

an expression that appears in the definition of measurement in the previous
section. This can be used to relate the measurement defined in interaction
graphs with the value of the zeta function at z = 1:

JF,GKlog(1−x) = − log(ζF•G(1))

where the • operation consists in composing (i.e. taking length-2 paths) the
graphs F + IdV F \V G and G+ IdV G\V F .

Now, we recall that orthogonality in ig models is defined by F ‹ G as
JF,GKlog(1−x) 6= 0,∞, i.e. if and only if − log(ζF•G(1)) 6= 0,∞, i.e. if and only

if ζF•G(1) 6= 0, 1.
We will show in the next section how this remark can be used to abstract

the construction of ig models and provide an even richer framework based on
zeta functions.

2.4 Zeta, Execution and a Cocycle Property

There are two main properties used to define ig models. The first is the as-
sociativity of execution, i.e. that F ::(G ::H) = (F ::G) ::H under some mild
hypothesis on the graphs (i.e. that V F ∩ V G ∩ V H = ∅). The second main
property is the so-called trefoil property [20]:

JF,G ::HKm + JG,HKm = JG,H ::F Km + JH,F Km.

The identity is in fact obtained from the so-called geometric trefoil property
[18, 20], satisfied for graphs F,G,H such that V F ∩ V G ∩ V H = ∅:

C(F,G ::H) ⊎ C(G,H) ≡ C(G,H ::F) ⊎ C(H,F),

where ≡ denotes a weight-preserving bijection.
The trefoil property can now be rephrased as a special case of a general cocy-

cle condition satisfied by zeta functions. Indeed, remembering that JF,GKlog(1−x) =

− log(ζF•G(1)), the trefoil property is a straightforward consequence of the fol-
lowing theorem for z = 1.

Theorem 15. Suppose V F ∩ V G ∩ V H = ∅. Then:

ζF,G ::H(z).ζG,H(z) = ζG,H ::F (z).ζH,F (z).

7

Proof. By definition and the geometric trefoil property:

ζF,G ::H(z).ζG,H(z)

=
∏

π∈C(F,G ::H)

(1− ω(π).zlgπ)−1
∏

π∈C(G,H)

(1− ω(π).zlgπ)−1

=
∏

π∈C(F,G ::H)⊎C(G,H)

(1 − ω(π).zlgπ)−1

=
∏

π∈C(G,H ::F)⊎C(H,F)

(1 − ω(π).zlgπ)−1

=
∏

π∈C(G,H ::F)

(1− ω(π).zlgπ)−1
∏

π∈C(H,F)

(1− ω(π).zlgπ)−1

= ζG,H ::F (z).ζH,F (z)

We can then define families of models of linear logic extending the author’s
previous approach by considering the following constructs. We change the ter-
minology to avoid conflicts. We use the term proof object instead of the term
project, and we call types what is usually called a conduct. We also use the term
antipode for the set of functions defining the orthogonality relation, as the more
traditional term “pole” might be confused with the notion of pole from complex
analysis.

Definition 16. A proof-object of support V is a pair (f,G) of a function g :
C → C and a directed weighted graph G with V G = V .

Definition 17. Given two proof objects g = (g,G) and h = (h,H) we define
the zeta-measurement as the complex function:

ζg,h : z 7→ g(z).h(z).ζG,H(z),

where the dots denotes pointwise multiplication of functions.

Definition 18. An antipode P is a family of functions C → C. Given two proof
objects g = (g,G) and h = (h,H), they are orthogonal w.r.t. the antipode P –
denoted g ‹P h – if and only if ζg,h ∈ P .

Note that many interesting properties of the graph can be used to define
orthogonality in this case. Indeed, a number of properties and invariants of a
graph can be related to analytic properties of the zeta function of a graph. Note
that previous notions of orthogonality [17] can be recovered by considering as
an antipode the set of functions which are not equal to 0 or 1 at z = 1.

For the sake of self-containment, we define types and explain how models of
mll can be defined from this. We suppose now that an antipode has been fixed
until the end of this section. We will therefore omit the subscript when writing
the orthogonality.

Definition 19. A type of support V is a set A of proof-objects of support V
such that there exists a set B with A = B‹ . Equivalently, a type is a set A

such that A = A
‹‹ .

8

The following constructions on type can then be shown to define a model of
Multiplicative Linear Logic [17]. For A and B two types, we define:

A⊗ B = {a :: b | a ∈ A, b ∈ B}‹‹

A ⊸ B = {f | ∀a ∈ A, f :: a ∈ B}

A model of Multiplicative-Additive Linear Logic can also be constructed by
considering linear combinations of proof-objects [20]. Both these constructions
are quite automatic and the results are mainly dependent on the two properties
cited above: associativity of execution and the trefoil property.

3 Graphings, dynamical systems and Markov

processes

In this section, we review the more general setting of Interaction Graphs based
on graphings. We first explain how the notions introduced in the previous sec-
tion generalises, pinpointing how out the general construction based on zeta
functions naturally adapts here. We then provide two results explaining how
deterministic, respectively probabilistic, graphings correspond to partial dynam-
ical systems, respectively discrete-image Markov processes.

We first recall the notion of graphing. Graphings are equivalence classes
of graph-like objects called graphing representatives. The definition is usually
parametrised by a monoid action M y X on the underlying space X, but the
choice of the monoid action will not be important in this paper.

Definition 20. An α-graphing representative G (w.r.t. a monoid action α :
M y X) is defined as a set of edges EG and for each element e ∈ EG a pair
(SG

e ,mG
e) of a subspace SG

e of X – the source of e – and an element mG
e ∈ M –

the realiser of e.

Graphings come in different flavours (discrete, topological, measurable), de-
pending on the type of space X one wishes to consider. If X is a topological
space, the action will be continuous. If X is a measure space, which will be the
case considered here, the action will be measurable. More precisely, for technical
purposes, the action is be by nsmp maps, i.e. maps which are non-singular and
measure-preserving [22].

Notations 21. Given two sets A,B, we write A∆B their symmetric difference.

Definition 22 (Refinement). A graphing representative F is a refinement of a
graphing representative G, noted F 6 G, if there exists a partition1 (EF

e)e∈EG

of EF such that ∀e ∈ EG:

µ
((

∪f∈EF
e
SF
f

)

△ SG
e

)

= 0; ∀f 6= f ′ ∈ EF
e , µ(SF

f △ SF
f ′) = 0;

∀f ∈ EF
e , mF

f = mG
e

This notion defines an equivalence relation defined by F ∼ G if and only if there
exists H with H 6 F and H 6 G.

1We allow the sets E
F
e to be empty.

9

Definition 23. Aa α-graphing is an equivalence class of α-graphing represen-
tatives w.r.t. the equivalence relation generated by refinements.

We will now show how graphings relate to well-established notions in math-
ematics.

3.1 Dynamical Systems

Definition 24. A measured dynamical system is a pair (X, f) of a measured
space X and a measurable map f : X → X. A partial measured dynamical
system is a triple (X, D, f) where X is a measured space, D ⊂ X a subspace –
the domain –, and f : D → X is a measurable map.

Measured dynamical systems are a well-studied field of mathematics and
applies to a range of physical and biological problems. The measured space X

represent the set of states of the system under consideration, while the map
f describes the dynamics, i.e. the time-evolution of the system, based on the
assumption that those do not vary with time (e.g. they are consequences of
physical laws which are supposed not to change over time). It is then the iterated
maps f i that are of interest as they describe how the system will evolve.

It is important to realise that dynamical systems represent deterministic
systems, such as those described by classical mechanics. If one wants to describe
non-deterministic behaviour, one might have to consider several partial maps.
It turns out that the resulting object is the notion of graphing without weights.
One may be interested in describing probabilistic behaviour, which can be done
by considering several partial maps assigned with probabilities; the resulting
object is then a graphing with weights in [0, 1]. While we will consider the
latter case in the next section, we now focus on the deterministic case.

Definition 25. A graphing G = {SG
e , φG

e , ω
G
e | e ∈ EG} is deterministic if the

following holds:

µ
({

x ∈ X | ∃e, f ∈ EG, e 6= f and x ∈ SG
e ∩ SG

f

})

= 0

Theorem 26. There is a one-to-one correspondence between deterministic graph-
ings and partial non-singular measurable-preserving dynamical systems (up to
a.e. equality).

Proof. Clearly, a partial dynamical system (X, V,Φ) where Φ is a nsmp map
defines a graphing of support V with a single edge realised by Φ.

Now, let us explain how a deterministic graphing G defines a partial non-
singular measurable-preserving dynamical system as follows. Since G it is de-
terministic, we can consider a representative Ḡ of G such that the set

{

x ∈ X | ∃e, f ∈ EG, e 6= f and x ∈ SG
e ∩ SG

f

}

is the empty set. Then, one defines the partial dynamical system (X,∪e∈EḠSḠ
e ,Φ),

where:

Φ(x) =

{

φḠ
e (x) if x ∈ SḠ

e

0 otherwise

Moreover the map Φ is nsmp as a (disjoint) union of partial nsmp maps.

10

To end the proof, we need to show that the choice of representative in the
previous construction is irrelevant. We prove this by showing that G is equiva-
lent to the graphingH induced by (X,∪e∈EḠSḠ

e ,Φ). But this is obvious, as Ḡ is
a refinement of H , and G and Ḡ are equivalent. This is sufficient because of the
following claim: if G and G′ are equivalent, then the induced partial dynamical
systems are a.e. equal.

3.2 A submodel

We now prove that the set of deterministic graphings is closed under compo-
sition, i.e. if F,G are deterministic graphings, then their execution F ::G is
again a deterministic graphing. This shows that the sets of deterministic and
non-deterministic graphings define submodels of M[Ω,m].

Lemma 27. The set of deterministic graphings is closed under execution.

Proof. A deterministic graphing F satisfies that for every edges e, f ∈ EF ,
SF
e ∩SF

f is of null measure. Suppose that the graphing F ::G is not deterministic.

Then there exists a Borel B of non-zero measure and two edges e, f ∈ EF ::G

such that B ⊂ SF ::G
e ∩ SF ::G

f . The edges e, f correspond to paths πe and πf

alternating between F and G. It is clear that the first step of these paths belong
to the same graphing, say F without loss of generality, because the Borel set
B did not belong to the cut. Thus πe and πf can be written πe = f0π

1
e and

πf = f0π
1
f . Thus the domains of the paths π1

e and π1
f coincide on the Borel set

φF
f0
(B) which is of non-zero measure since all maps considered are non-singular.

One can then continue the reasoning up to the end of one of the paths and show
that they are equal up to this point. Now, if one of the paths ends before the
other we have a contradiction because it would mean that the Borel set under
consideration would be at the same time inside and outside the cut, which is not
possible. So both paths have the same length and are therefore equal. Which
shows that F ::G is deterministic since we have shown that if the domain of two
paths alternating between F and G coincide on a non-zero measure Borel set,
the two paths are equal (hence they correspond to the same edge in F ::G).

One can then check that the interpretations of proofs by graphings in earlier
papers [22, 24, 21] are all deterministic. This gives us the following theorem as
a corollary of the previous lemma.

Theorem 28 (Deterministic model). Let Ω be a monoid and m a microcosm.
The set of Ω-weighted deterministic graphings in m yields a model, denoted by
M

det[Ω,m], of multiplicative-additive linear logic.

3.3 Zeta Functions for dynamical systems

The Ruelle zeta function [16] is defined from a function f : M → M where M
is a manifold and a function φ : M → Mk a matrix-valued function (all that
counts is the trace so we may use a type II1 factor here). We write Fix(g) the
set of fixed points of g. Then the Ruelle zeta function is defined as (we suppose
that Fix(fk) is finite for all k):

ζf,Φ(z) = exp





∑

m>1

zm

m

∑

x∈Fix(fm)

tr

(

m−1
∏

i=0

φ(f i(x))

)





11

Its even easier here to consider the logarithm,

log(ζf,Φ(z)) =
∑

m>1

zm

m

∑

x∈Fix(fm)

tr

(

m−1
∏

i=0

φ(f i(x))

)

For d = 1 and φ = 1, this is the Artin-Mazur [1] zeta function:

ζf,1(z) = exp





∑

m>1

zm

m
Card(Fix(fm))





Now, we are working with measure spaces, so it is natural to consider the
following measured variant of the Ruelle zeta function (defined for measure-
preserving maps2). Suppose that we work with a measure space (M,B, µ) and
that Fix(fm) is of finite measure:

ζf,Φ(z) = exp





∑

m>1

zm

m

∫

Fix(fm)

tr

(

m−1
∏

i=0

φ(f i(x))

)

dµ(x)





For d = 1 and φ = 1, this becomes:

ζf,1(z) = exp





∑

m>1

∫

Fix(fm)

zm

m





which is – at z = 1 – the exponential of the measurement on graphings consid-
ered in earlier work [22].

Proposition 29. Given measure-preserving nsmp partial dynamical systems
f, g : X → X, we have the following equality:

Jf, gK− log(1−x) = − log(ζg◦f.1(1)),

where J , Km denotes the measurement between graphings defined in earlier work
[22].

3.4 The Probabilistic Model

One can also consider several other classes of graphings. We explain here the
simplest non-classical model one could consider, namely that of probabilistic
graphings. In order for this notion to be of real interest, one should suppose
that the unit interval [0, 1] endowed with multiplication is a submonoid of Ω.

Definition 30. A graphing G = {SG
e , φG

e , ω
G
e | e ∈ EG} is sub-probabilistic if

the following holds:

µ











x ∈ X |
∑

e∈EG,x∈SG
e

ωG
e > 1









 = 0

2Based on the result of Proposition 29, a definition for general nsmp maps could be ob-
tained using the method used by the author [22] to define a generalised measurement between
graphings. However, we considered this to be out of the scope of this work.

12

Definition 31. A graphing G = {SG
e , φG

e , ω
G
e | e ∈ EG} of support V is proba-

bilistic (on V) if the following holds:

µ











x ∈ V |
∑

e∈EG,x∈SG
e

ωG
e 6= 1









 = 0

It turns out that this notion of graphing also behaves well under composition,
i.e. there exists a sub-probabilistic submodel of M[Ω,m], namely the model of
sub-probabilistic graphings. As explained below in the more general case of
Markov processes, probabilistic graphings are not closed under composition.

Theorem 32. The set of sub-probabilistic graphings is closed under execution.

Proof. If the weights of edges in F and G are elements of [0, 1], then it is clear
that the weights of edges in F ::G are also elements of [0, 1]. We therefore only
need to check that the second condition is preserved.

Let us denote by Out(F ::G) the set of x ∈ X which are source of paths
whose added weight is greater than 1, and by Out(F ∪G) the set of x which are
source of edges (either in F or G) whose added weight is greater than 1. First,
we notice that if x ∈ Out(F ::G) then either x ∈ Out(F ∪G), or x is mapped –
through at least one edge – to an element y which is itself in Out(F ∪ G). To
prove this statement, let us write paths(x) (resp. edges(x)) the set of paths in
F ::G (resp. edges in F or G) whose source contain x. We know the sum of all
the weights of these paths is greater than 1, i.e.

∑

π∈paths(x) ω(π) > 1. But this
sum can be rearranged by ordering paths depending on theirs initial edge, i.e.
∑

π∈paths(x) ω(π) =
∑

e∈edges(x)

∑

π=eρ∈paths(x)e ω(π), where paths(x)e denotes
the paths whose first edge is e. Now, since the weight of e appears in all
ω(eρ) = ω(e)ω(ρ), we can factorize and obtain the following inequality.

∑

e∈edges(x)

ω(e)





∑

π=eρ∈paths(x)e

ω(ρ)



 > 1

Since the sum
∑

e∈edges(x) ω(e) is not greater than 1, we deduce that there

exists at least one e ∈ edges(x) such that
∑

π=eρ∈paths(x)e ω(ρ) > 1. However,

this means that φe(x) is an element of Out(F ::G).
Now, we must note that x is not element of a closed path. This is clear from

the fact that x lies in the carrier of F ::G.
Then, an induction shows that x is an element of Out(F ::G) if and only if

there is a (finite, possibly empty) path from x to an element of Out(F ∪ G),
i.e. Out(F ::G) is at most a countable union of images of the set Out(F ∪ G).
But since all maps considered are non-singular, these images of Out(F ∪ G)
are negligible subsets since Out(F ∪G) is itself negligible. This ends the proof
as a countable union of copies of negligible sets are negligible (by countable
additivity), hence Out(F ::G) is negligible.

Theorem 33 (Probabilistic model). Let Ω be a monoid and α : M y X a
monoid action. The set of Ω-weighted probabilistic α-graphings yields a model,
denoted by M

prob[Ω, α], of multiplicative-additive linear logic.

13

3.5 Discrete-image sub-Markov processes

We now consider probabilistic systems. More specifically, we consider systems
for which evolution is still time-independent, not deterministic, but which obey
the principle of probabilistic choices: given a state, t may produce different
outputs but these different choices are provided with a probability distribution.
The notion of dynamical system, i.e. a map from a measured space to itself, is
then no longer the right object to formalise this idea. In fact, a probabilistic
time evolution do not act on the states of the system but rather on the set of
probability distributions on this set of states.

Definition 34. Let X be a measured space. We denote P(X) the set of sub-
probability distributions over X, i.e. the set of sub-probability measures on
X.

The space of probability distributions is a convex space: if p, q are probability
distributions and α, β are positive real numbers such that α+β = 1, then αp+βq
is again a probability distribution. It is a topological space, endowed with the
weak* topology, and it is weak* compact.

Now, a deterministic system also acts on the set of probability measures
by post-composition. If (X, f) is a measured dynamical system, then given a
(sub-)probability distribution (otherwise called a random variable) p : P →
X, the map f ◦ p is itself a (sub-)probability distribution. In the same way
deterministic graphings, defining dynamical systems, act on the set of (sub-
)probability distributions, sub-probabilistic graphings will act on P(X). In fact,
we show that sub-probabilistic graphings define sub-Markov kernels. We recall
briefly that sub-probability distributions on X are Markov kernels from the
one-point space {∗} to X, and the action of a sub-Markov kernel onto P(X) is
defined as post-composition (using the composition of kernels) [14].

Definition 35. A sub-Markov kernel is a measurable map κ : X × Y → [0, 1]
with the properties that for all x ∈ X and B ⊂ Y , κ(x,) is a subprobability
measure on X and κ(, B) is a measurable function.

If κ(x,) is a probability measure, κ is a Markov kernel.

We restrict in this paper to time-independent Markov processes. Within this
section, we furthermore restrict to what we call discrete-image kernels.

Definition 36. A discrete-image kernel is a sub-Markov kernel κ : X × Y →
[0, 1] such that for all x ∈ X, κ(x,) is a discrete probability distribution.

Theorem 37. There is a one-to-one correspondence between sub-probabilistic
graphings on X and discrete-image sub-Markov kernels X×X → [0, 1].

Proof. The fact that sub-probabilistic graphings define sub-Markov processes is
quite easy. One defines from a graphing G = {SG

e , φG
e , ω

G
e | e ∈ EG} the kernel:

kG : X×X → [0, 1]; (x, y) 7→
∑

e∈EG,x∈SG
e
,φG

e
(x)=y

ωG
e .

The fact that is is a discrete-image sub-Markov kernel is clear.
The converse, i.e. given a kernel κ, define a graphing Gκ is more involved.

The difficulty lies in the fact that one has to collect the pairs (x, y) such that

14

κ(x, y) > 0 into a countable collection of measurable maps. The key ingredients
to make this work are: the countability of {y ∈ X | κ(x, y) > 0} for all x ∈
X (because κ is supposed to be a discrete-image kernel), the possibility to
approximate all real numbers by a (countable) sequence of rational numbers,
the measurability of κ(, B) for all B ⊂ X.

4 Markov processes and linear logic

Based on the previous sections, we want to extend the constructions to general
Markov processes. For technical reasons, the model will be defined on sub-
Markov kernels, but we discuss later the possible restrictions to Markov kernels.

We will now define the two key ingredients of the model: the execution and
the zeta function. We then proceed to prove the cocycle property which will
ensure the construction of linear logic types.

Definition 38 (Iterated kernel). Let κ be a sub-Markov kernel X×Y → [0, 1].
For k > 1, we define the k-th iterated kernel κ(k) as

κ(k)(x0, xk) =

∫∫

(x1,...,xk−1)∈(X∩Y)k−1

k−1
∏

i=0

κ(xi, xi+1).

By convention, κ(1) = κ.

Definition 39 (Maximal paths – Execution kernel). Let κ be a sub-Markov
kernel X ×Y → [0, 1]. We define the execution kernel of κ as the map (in the
formula, xn+1 is used as a notation for y):

tr(κ) : X\Y ×Y\X → [0, 1]
(x, y) 7→

∑

n>1 κ
(n)(x, y).

While this maps could be defined on the whole space X×Y, the restriction
is needed to define a sub-Markov kernel. This can be understood on a very
simple Markov chain:

x y z

1 1

1

On this figure, the partial sums of κ(i)(x, y) is a diverging series. This example
also shows why the resulting kernel could be a sub-Markov kernel even when κ is
a proper Markov kernel. To ensure that tr(κ) is a Markov kernel, an additional
assumption on κ is required. We will discuss these issues in ??. For the moment,
we prove that trA(κ) is indeed a sub Markov kernel.

Lemma 40. If κ is a sub-Markov kernel, trA(κ) is well-defined and a sub-
Markov kernel.

Proof. The gist of the proof is an induction to establish that for all integer k and
measurable subset A such that A∩X∩Y = ∅, the expression

∫

a∈A

∑k
i=1 κ

(i)(x, a)

15

is bounded by 1. This is clear for k = 1 from the assumption that κ is a sub-
Markov kernel. The following computation then establishes the induction (we
write x = y0 to simplify the equations):

∫

a∈A

k+1
∑

i=1

κ(i)(y0, a) =

∫

a∈A

κ(y0, a) +

∫

a∈A

k
∑

i=0

κ(i+1)(y0, a)

We now bound the second term as follows, using the induction hypothesis to

establish that
[

∫

a∈A

∑k
i=1 κ

(i)(y1, a)
]

6 1:

∫

a∈A

k
∑

i=0

κ(i+1)(y0, a)

=

∫

a∈A

k
∑

i=0

∫

y1

· · ·

∫

yi

κ(yi, a)

i−1
∏

j=0

κ(yj , yj+1)

=

∫

y1

∫

a∈A

k
∑

i=0

∫

y2

· · ·

∫

yi

κ(yi, a)

i−1
∏

j=0

κ(yj, yj+1)

=

∫

y1

κ(y0, y1)





∫

a∈A

k
∑

i=1

∫

y2

· · ·

∫

i

κ(yi, a)

i−1
∏

j=0

κ(yj , yj+1)





=

∫

y1

κ(y0, y1)

[

∫

a∈A

k
∑

i=1

κ(i)(y1, a)

]

6

∫

y1

κ(y0, y1)

Coming back to the initial expression, we obtain the required bound by using
the additivity of κ (we recall that A and X ∩Y do not intersect):

∫

a∈A

k+1
∑

i=1

κ(i)(y0, a) 6 κ(y0, A) + κ(y0,X ∩Y) 6 1.

Now, the execution kernel just defined is the main operation for defining the
execution of sub-Markov kernels, as we will explain in the next section. We now
define the second ingredient, namely the zeta function. For this, we first define
a map which we abusively call the ”zeta kernel”, although it is not a kernel as
we explain below.

Definition 41 (Finite orbits – Zeta kernel). Let κ be a sub-Markov kernel
X × Y → [0, 1]. The zeta kernel, or kernel of finite orbits of κ is a kernel
X×N → [0, 1] – where N denotes the set of natural numbers – defined as:

ζκ(x0, n) =

∫∫

(x1,...,xn−1)∈(X∩Y)n−1

∏

i∈Z/nZ

κ(xi, xi+1).

Notice that this expression computes the probability that a given point x0

lies in an orbit of length n. It is not a sub-Markov kernel. The reason is simple:

16

if a point x lies in a length 2 orbit with probability 1 (e.g. the point y in the
example Markov chain above), then it lies in a length 2k orbit with probability
1 as well. However, let us remark that the expression

∫

x∈X∩Y

ζκ(x, n)

plays the rle of the set Fix(fn) that appears in dynamical and graph zeta func-
tions.

Definition 42 (Zeta function). We now define the Zeta function associated
with a sub-Markov kernel κ : X×Y → [0, 1]:

ζκ(z) : z 7→ exp

(

∞
∑

n=1

zn

n

∫

x∈X∩Y

ζκ(x, n)

)

4.1 Execution and the Cocycle Property

Definition 43. Given two sub-Markov kernels κ : X × X′ → [0, 1] and κ′ :
Y ×Y′ → [0, 1], we define their execution κ ::κ′ as the kernel tr(κ • κ′) where:

κ • κ′ = (κ+ IdY\X′) ◦ (κ′ + IdX′\Y)

The reader with notions from traced monoidal categories [10, 8, 7] should
not be surprised of this definition and the following properties.

Definition 44. Three sub-Markov kernels κ : X×X′ → [0, 1], κ′ : Y ×Y′ →
[0, 1], κ′′ : Z×Z′ → [0, 1] are said to be in general position3 when the following
condition is met:

µ(X′ ∩Y ∩ Z) = µ(Y′ ∩ Z ∩X) = µ(Z′ ∩X ∩Y) = 0.

Lemma 45. Given three sub-Markov kernels κ : X×X′ → [0, 1], κ′ : Y×Y′ →
[0, 1], κ′′ : Z× Z′ → [0, 1] in general position:

(κ ::κ′) ::κ′′ = κ ::(κ′ ::κ′′).

Lemma 46. Given two sub-Markov kernels κ : X ×X′ → [0, 1] and κ′ : Y ×
Y′ → [0, 1]:

κ ::κ′ = κ′ ::κ.

However, having a well-defined associative execution is not enough to model
linear logic. Following what was exposed in the first sections, we now define
a zeta function associated to a sub-Markov process, and show that this zeta
function and the execution satisfy the required cocycle property.

Definition 47. Given two kernels κ, κ′, we define their zeta-measurement ζκ,κ′

as the function ζκ•κ′(z).

Proposition 48 (Cocycle). Given three sub-Markov kernels κ : X×X′ → [0, 1],
κ′ : Y ×Y′ → [0, 1], κ′′ : Z× Z′ → [0, 1] in general position:

ζκ,κ′(z)ζκ ::κ′,κ′′(z) = ζκ′ ::κ′′,κ(z) + ζκ′,κ′′(z)
3The reader will realise the terminology is inspired from algebraic geometry, but no formal

connections should be expected.

17

Proof. The proof consists in heavy computations, but without any technical
difficulties. The main ingredient is again the geometric adjunction. Basically,
what makes the whole proof work is that a closed path alternating between F ,
G, and H is either a closed path alternating between F and G, or a closed
path alternating between H and alternating paths between F and G. Since the
roles of F , G and H are symmetric in this statement, we obtain three different
splittings of the initial set of closed paths. Now, since zeta functions measure sets
of closed paths, these three equal but different expressions yield three different
products of two zeta functions. The statement above simply corresponds to
stating the equality of two of those.

To construct the model of linear logic, we will now follows the usual process.
We need to consider not only kernels, but pairs of a kernel and a function.
This is used to capture the information about closed paths appearing during
the execution, as in the graph case. This is discussed by the author in earlier
work [17], and is essential to obtain Theorem 55.

4.2 A first model of Linear Logic

To obtain a model of linear logic, one has to consider sub-Markov kernels with
a set of states. Following the author’s model for second-order linear logic [21],
we will consider here that the set of states is equal to the segment [0, 1]. Note
however that fragments of linear logic can be modelled when the set of states is
chosen to be discrete [24], so a model where all sets of states are considered is
possible to describe although it would be in some cases impossible to interpret
some constructions.

Definition 49. A proof-object of support X is a pair f = (f, F) of a function
C → C and a sub-Markov kernel F : (X× [0, 1])× (X× [0, 1]) → [0, 1].

We define the operations ()† and ()‡ that will be used throughout the
constructions. These operations are meant to ensure that the set of states of
two proof-objects do not interact. Indeed, those should be understood as sets
of control states, such as the states of automata, and the set of state of a
composition is defined as the product of the sets of states of the two objects
composed. Given a sub-Markov kernel F : (X× [0, 1])× (X× [0, 1]) → [0, 1], we
define (κ)† and (κ)‡ as the following sub-Markov kernels (X × [0, 1] × [0, 1]) ×
(X× [0, 1]× [0, 1]) → [0, 1]:

(κ)† : ((x, e, f), (y, e′, f ′)) 7→ κ((x, e), (x′, e′))Id(f, f ′)
(κ)‡ : ((x, e, f), (y, e′, f ′)) 7→ κ((x, f), (x′, f ′))Id(e, e′)

where Id : X → X is the identity kernel, i.e. Id(x, x) = 1 and Id(x, y) = 0
whenever y 6= x.

Definition 50. Given two proof objects f = (f, κF) and g = (g, κG) we define
the zeta-measurement as the complex function:

ζκF,κH
: z 7→ f(z).g(z).ζκ†

F
•κ‡

F

(z).

Definition 51. The execution of two proof objects f = (f, κF) and g = (g, κG),
of respective supports X and Y, is defined as the proof-object:

(f.g.ζκF,κG
, κ†

F ::κ‡
G).

18

Note that this is a proof-object up to isomorphism between [0, 1] and [0, 1]×[0, 1].

Based on Lemma 45 and Lemma 46 and the associativity and commutativity
of the pointwise product of functions, this notion of execution is associative and
commutative.

We now define the orthogonality relation through the zeta function. This
follows what we exposed above in the case of graphs.

Definition 52. An antipode P is a family of functions C → C. Given two proof
objects f = (f, κF) and g = (g, κG), they are orthogonal w.r.t. the antipode P
– denoted f ‹P g – if and only if ζf,g ∈ P .

We suppose now that an antipode has been fixed until the end of this section.
We will therefore omit the subscript when writing the orthogonality.

Definition 53. A type of support V is a set A of proof-objects of support V

such that there exists a set B with A = B‹ . Equivalently, a type is a set A

such that A = A
‹‹ .

Definition 54. For A and B two types of disjoint supports, we define:

A⊗ B = {a :: b | a ∈ A, b ∈ B}‹‹

A ⊸ B = {f | ∀a ∈ A, f :: a ∈ B}

The following is a direct consequence of the cocycle property. We omit the
proof as it follows the proof of the same statement in Interaction Graphs models
[17, 20, 22].

Theorem 55. For any two types A,B with disjoint support:

A⊗ B
‹‹

= A ⊸ B.

Now, to define exponentials, one has to restrict to specific spaces. Indeed,
not all sub-Markov kernels can be exponentiated. This is easy to understand:
if a proof-object uses several copies of its argument, it uses it through its set of
states. To understand how states allow for this, consider two automata that are
composed. If the first automata has two states, it can ask the first automata
to perform a computation, change state, and then ask again, triggering two
computations of the second machine. This works perfectly provided the second
machine ends its computation on its initial state, otherwise it would not run
correctly the second time as there is not way to reinitiate it. However, this issue
is dealt with in the models by exponentiation, as only exponentiated processes
can be used multiple times. To ensure they end their computation in the same
state as they started, the principle is that exponentiation erases the states to
define a single-state machine, while the states are encoded in the configurations
of the machine to avoid information loss. This encoding requires the underlying
space X to be large enough, that is to contain the space [0, 1]N. Exponentiation
is therefore defined as long as the underlying space X contains [0, 1]N.

We now restrict to the spaces of the form X = Y× [0, 1]N in order to define
exponentials.

19

Definition 56. A proof-object f = (f, κF) is balanced if f = 0. If E is a set of
proof-objects, we write bal(E) the subset of balanced proof-objects in E.

Following the auuthor’s model [21], we will define the exponential through
the following maps for all space X as above:

BX :

{

X× [0, 1] → X

(a, s, d) 7→ (a, d • s)

This map is used to define !κ from a sub-Markov kernel κ : (X× [0, 1])× (X×
[0, 1]) → [0, 1] (we recall that the copies of [0, 1] here represent the set of states
of the proof-object). We first define4 B−1

X
◦κ◦BX, which is a sub-Markov kernel

X×X → [0, 1], and then !κ(X× [0, 1])× (X× [0, 1]) → [0, 1] can be defined as
follows:

!κ : ((x, e), (x′, e)) 7→ B−1
X

◦ κ ◦BX(x, x′)Id(e, e′).

Note that the information of the states of κ is encoded in !κ within the space
X and the latter acts on the set of states as the identity, i.e. as if it has a single
state.

Definition 57 (Perennisation). Let f = (0, κF) be a balanced proof-object. We
define its perennisation !f = (0, !κF).

Definition 58 (Perrenisation). Let A be a type. We define the perrenial type
!A as the bi-orthogonal closure !A = (♯A)‹‹ where ♯A is the set

♯A = {!a | a ∈ bal(A)}.

We are now ready to state the main theorem.

Theorem 59. Restricting to spaces of the form X = Y × [0, 1]N, proof-objects
and types define a sound model of linear logic.

Proof. All the work has been done already. Indeed, the interpretations of linear
logic proofs are defined in ig for full linear logic [21], and it is sufficient to
remark that those are interpreted by deterministic graphings. As such, they are
in fact interpreted by dynamical systems by Theorem 26, which in turn define
sub-Markov kernels.

Obviously, this interpretation of linear logic can now be extended with terms
for sampling distributions in a natural way, as well as probabilistic sums of proofs
(this aspect is already discussed in previous work [21]).

Remark 60. We restricted the model to the spaces of the form X = Y× [0, 1]N

to ease the presentation and proofs. However, it is clear that the set of proof-
objects and types – without any restrictions on the underlying spaces – is also
a model of linear logic. Indeed, instead of considering that κ and !κ should act
on the same space, it is possible to consider that while κ is defined on X, !κ is
defined on X× [0, 1]. In that case, no assumptions need to be made on X, and
!κ is simply defined as the kernel

((X × [0, 1])× [0, 1])× ((X× [0, 1])× [0, 1]) → [0, 1]

4Here B is a bijective map, and not a kernel, but we implicitly use the kernel composition
by considering the kernel form of B and B

−1.

20

where the second copy of [0, 1] represent the set of states and

!κ(((x, e), f), ((x′, e′), f ′)) = κ((x, e), (x′, e′))Id(f, f ′).

This construction however requires to redefine the interpretations of linear
logic proofs, which are obtained as easy adaptations of the interpretation used
by Seiller [21]. Nonetheless, we had to leave them out for lack of space but may
include those in an extended version of this work.

5 Conclusion and Perspectives

We have established that sub-Markov processes do provide a model of Linear
Logic. It should be clear that probabilistic languages with sampling instructions
can be interpreted in this model. We expect strong connections with game
semantics models dealing with such languages [3], although our model differs
from the start by its intention. In particular, types arise from the behaviour
of processes and are therefore not predefined. Moreover, the typing discipline
is very rich, and can incorporate dependent types and quantifiers [22, 21, 6],
and could be used to consider new type constructions adapted to probabilistic
computation [12].

Lastly, the formal relation with zeta function could turn out to be of a
great interest with respect to the recasting of complexity theory by means of
Interaction Graphs models [19, 23]. Indeed, it is hoped that invariants from
dynamical systems (and the group/monoid action used to restrict graphings) to
be related to the expressivity of the models, and I already showed with Pellissier
how strong algebraic lower bounds can be expressed and strengthened using the
notion of topological entropy [15]. This work thus provides an additional element
with respect to these ideas, as the orthogonality, which is used to characterise
the complexity classes, is here shown to be related to the zeta function of the
underlying dynamical systems.

It is important to stress here that while the consideration of sub-kernels is
important here, the typing discipline may be used to ensure that composition of
well-typed Markov kernels are Markov kernels. Indeed, we believe that one can
extend the definition of the the zeta function to define a function ζ∞κ (z) that
incorporates infinite orbits. We expect then to show that this modified zeta
function will still satisfy the properties needed to build models of linear logic,
and show that ζ∞κ•κ′(z) = 0 implies that the execution κ ::κ′ is a Markov kernel
(and not a sub-Markov kernel) as long as κ and κ′ are.

References

[1] M. Artin and B. Mazur. On periodic points. Annals of Mathematics, pages
82–99, 1965.

[2] R. Bowen and O. Lanford. Zeta functions of restrictions of the shift trans-
formation. Proceedings of Symposia in Pure Mathematics, 14:43–50, 1970.

[3] S. Castellan and H. Paquet. Probabilistic programming inference via inten-
sional semantics. In L. Caires, editor, Programming Languages and Systems
- 28th European Symposium on Programming, ESOP 2019, Held as Part

21

of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, vol-
ume 11423 of Lecture Notes in Computer Science, pages 322–349. Springer,
2019.

[4] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101,
1987.

[5] J.-Y. Girard. Towards a geometry of interaction. In Proceedings of the
AMS Conference on Categories, Logic and Computer Science, 1989.

[6] J.-Y. Girard. Geometry of interaction V: Logic in the hyperfinite factor.
Theoretical Computer Science, 412:1860–1883, 2011.

[7] E. Haghverdi and P. Scott. A categorical model for the geometry of inter-
action. Theoretical Computer Science, 350(2):252–274, 2006.

[8] M. Hasegawa. Recursion from cyclic sharing: Traced monoidal categories
and models of cyclic lambda calculi. pages 196–213. Springer Verlag, 1997.

[9] M. Hyland and A. Schalk. Glueing and orthogonality for models of linear
logic. Theoretical Computer Science, 294, 2003.

[10] A. Joyal, R. Street, and D. Verity. Traced monoidal categories. Mathemat-
ical Proceedings of the Cambridge Philosophical Society, 119(3):447–468,
1996.

[11] J.-L. Krivine. Typed lambda-calculus in classical zermelo-fraenkel set the-
ory. Arch. Mathematical Logic, 40, 2001.

[12] A. Naibo, M. Petrolo, and T. Seiller. Logical constants from a computa-
tional point of view. in preparation.

[13] A. Naibo, M. Petrolo, and T. Seiller. On the computational meaning of
axioms. In Epistemology, Knowledge and the Impact of Interaction, pages
141–184. Springer, 2016.

[14] P. Panangaden. The category of markov kernels. Electronic Notes in The-
oretical Computer Science, 22:171 – 187, 1999. PROBMIV’98, First Inter-
national Workshop on Probabilistic Methods in Verification.

[15] L. Pellissier and T. Seiller. Prams over integers do not compute maxflow
efficiently. submitted, 2018.

[16] D. Ruelle. Zeta-functions for expanding maps and anosov flows. Inventiones
mathematicae, 34(3):231–242, 1976.

[17] T. Seiller. Interaction graphs: Multiplicatives. Annals of Pure and Applied
Logic, 163:1808–1837, December 2012.

[18] T. Seiller. Logique dans le facteur hyperfini : géometrie de l’interaction et
complexité. PhD thesis, Université Aix-Marseille, 2012.

[19] T. Seiller. Towards a Complexity-through-Realizability theory.
http://arxiv.org/pdf/1502.01257, 2015.

22

[20] T. Seiller. Interaction graphs: Additives. Annals of Pure and Applied Logic,
167:95 – 154, 2016.

[21] T. Seiller. Interaction graphs: Full linear logic. In IEEE/ACM Logic in
Computer Science (LICS), 2016.

[22] T. Seiller. Interaction graphs: Graphings. Annals of Pure and Applied
Logic, 168(2):278–320, 2017.

[23] T. Seiller. Interaction graphs: Nondeterministic automata. ACM Transac-
tion in Computational Logic, 19(3), 2018.

[24] T. Seiller. Interaction Graphs: Exponentials. Logical Methods in Computer
Science, Volume 15, Issue 3, Aug. 2019.

[25] A. Terras. Zeta functions of graphs: a stroll through the garden, volume
128. Cambridge University Press, 2010.

23

	Introduction
	Interaction Graphs: Linear Logic and Zeta functions
	Bowen-Lanford Zeta Functions
	Interaction Graphs: the discrete case in a nutshell
	Zeta functions of weighted directed graphs
	Zeta, Execution and a Cocycle Property

	Graphings, dynamical systems and Markov processes
	Dynamical Systems
	A submodel
	Zeta Functions for dynamical systems
	The Probabilistic Model
	Discrete-image sub-Markov processes

	Markov processes and linear logic
	Execution and the Cocycle Property
	A first model of Linear Logic

	Conclusion and Perspectives

